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Stresses in Thin Conical Shells
Tenstons dans les coques minces coniques

Spannungen in dimnen Kegeln

WOLF ALTMAN D. H. YOUNG
Professor of Structural Engineering, Professor of Civil Engineering, Stanford
I1.T.A., Sao Paulo, Brasil University, California

1. Introduction

This paper deals with the problem of stresses and deformations in thin
conical shells subjected to axially symmetric edge loadings.

The shell material is assumed to be isotropic and to obey Hooke’s law. In
addition, the following assumptions are made:

1. The displacements are small in comparison with the thickness # of the
shell and A < R, where R is a representative shell radius. ‘

2. Straight fibers normal to the middle surface before deformation remain
so after deformation and do not change their lengths.

3. Normal stresses acting on planes parallel to the middle surface may be
neglected in comparison with the other stresses. The last two assumptions are
due to Kirchhoff and they are equivalent to reducing the problem of deforma-
tion of the shell to that of deformation of its middle surface.

4. Finally, tangential displacements » and v will be neglected in comparison
with normal displacements w in the formulae for change of curvature and
twist of a shell element. This last assumption is justifiable if the bending
stresses are of the same order of magnitude or less than the membrane stresses

[1].
2. Basic Equations

Referring to Fig. 1, the cone is defined by its angle « and any point in the
middle surface is located by the coordinates § and s, where s replaces the
usual coordinate ¢ for a shell of revolution since, in the case of a cone, p=a,
is constant. The displacement of a point on the middle surface is defined by
its orthogonal components u, v and w as shown.
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The relations between middle surface strains €g, €, €9 and corresponding
displacements u, v, w are given by:

ov
€s=%’ (1&)
ou :
€gSCOSoc=-a—é—+’UCOSoc+’LUSln<x, (1b)
Dep=t My L 0V (Lo)

0s s @ scosa 00°

Neglecting » and v displacements in comparison with w displacements in
the formulae for change in curvature «,, kg and twist «,g9, we can write

2w
Ks =—-_é?2—’ (ld)
_ 1 2w 1 ow (Le)
0 T T2costa 002 s Os’ :
0 1 Jw
KSB:__B—S(SCOSOL W) (1)

As a result of the adoption of the Kirchhoff hypotheses and neglecting the
small quantities of the same order of magnitude or less than A/R in comparison

Ms6
s \.d—-- ”
s

6 -

%/ Lo
MeQﬁ"
M
7\Ms+m b

N

Fig. 2.
MgO+:--
(b)

with unity, the force resultants Ny, Ny, N,y (Fig. 2a) and moment resultants
M., My, M,y (Fig. 2b) can be written as follows:
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Eh
Ns = l_vz-(es-i-VEg),
Eh
NH = 1_V2(€0+V€s)3
Eh
Ns@ =N08=I—_*—_—;€s9>

M, =—D(ks+vky),
My =—D(kg+vk,),
M80 = M@s = —D(I_V) Kg9>

E h3

Where D= m.

In these expressions k is the thickness of the shell, assumed to be constant,

and £ and v are the elastic constants for the material.

From static equilibrium of the forces and moments acting on a small element

defined by ds and df (Figs. 2a and 2b), we can write:

0 (N,s) 1 0Ny,
0s cosa 00
E(ngs) 1 3Ng
0s +COSOL 00

0(9s8) 1 0@

Ny =0,

+N03—Q9tanoc =0,

08 cosa 00 +Ngtana =0,
o(M,s) 1 oM, _

08 cosa 06 —Mo—Qss =0,
o(Mys) 1 oM, ~

0s cosa 00 +Myp—Cos =0,

Mg+ (Ngg—Ny,) scota = 0.

(3a)

(3b)

(3e)

(31)

With regard to these equations, two comments are in order. First, from
(2¢), we have N y=N,, and this result is incompatible with (3f); therefore,

(3f) will simply be ignored. Secondly, we will take into account that @y < %1%;0

and thus neglect @, in the tangential equilibrium Eq. (3b).
Substituting (1d—f) into (2d—f) we obtain

0% w 2w 1 1 ow
A, —D[882+V(862 s2cos?a ' 8 88)]’
w1 1 ow w
My = s
B D[(302 sfcosa s 8s)+vﬁsz]’
Aw 1 ow 1
M,y = 1-— —
0 = D{1=v) [83808008a 00 s2cosa
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Addition of (4a) and (4b) gives

Ms-i—Mg
1+v
where VZ()—az()+13()+ L 62(). (5a)

T 082 s 0s @ s?costa 002

M= =Drw, (5)

Substituting (4a—c) into (3d—e), we have

0 -2 (6)
W= ooz 70 (b
and when these are substituted into (3¢), the result is
VzAWJrM;o, (7a)
or using (5) Dl72[72w+N9ta:a=0. (7b)

The force resultants N, N 9-, N,y can be expressed as functions of an auxiliary
function @ introduced by Viasov [1] as follows:

1 *d 1 0P

Ny = T s2cos?a 002 s 08’ (8a)
02D
0 1 oD
Nos = %(SCOScx W) (8¢)

Substituting (8a—c) into the first two equations of equilibrium (3a~b), we can
see that they are identically satisfied. Now, substituting (8b) into (7b) which
actually is the third equation of equilibrium in terms of w, we obtain:

D rtw——"2 0 = 0. (9)

A second relation between the same functions w and @ can be obtained by
combining relations (1a-c) as follows:

0 869 0 36.0 Je 1 % e s 2w
— g2 )| 92 |8V} _ S S - _
008“83(8 88) 288(8 80) 8 COS ot +COSa gpe = Ssinas—. (10)

Solving (2a—c) for ¢, €, €,¢, substituting these into (10), and then eliminating
Nsp 02N,y

the partial derivatives %’ %555 from this result with the help of Eq. (3a),

we have
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32(82 ) 32N9 3N9 14 82Ng
22 2 e —
VN, + 0s* (1+v)+s 95 "°9s  costax 007
—2(14v) Ny = s tana B .
14 9= S 752 an o .
Next, eliminating é\; and 6(Nso) from (3a-b), we obtain
0%(s*N,) 0N, 1  &2Ny _
T T %8s tootx 007 +2Ng = 0. (12)
Finally, multiplying (12) by (1+v) and adding to (11), we have
tan o« P w
EhV (Ns+N9) = ’8—82—’ (13)
2
or using (8a—b) ﬂvz P24 ta;l“ %g =0. (14)

Eqgs. (9) and (14) are two simultaneous partial differential equations which
describe the problem of a circular conical shell of constant wall thickness
subjected to edge loads. They represent an eighth order system of equations,
but we can combine them so as to obtain a fourth order partial differential
equation in complex form. Indeed, (9) and (14) can be rewritten as follows:

]/ 12(1—1}2 ) tano 2P
272
12(1—V EhV g 752 = 05 (92)

sz72@+@}/12(2;"2) Vlz(l_vz)Ehta:“ 2232 =0, (14a)
where ¢ =  —1. Adding, we have
p2 VZ(]/i—Ehwwqﬁ)
12(1—v?)
(15)

/12(1=32) tano &2 V h? 2\
H]/ he s 832( 12(1—v2)Ekw“¢)“

Introducing the notations

= (162)

-] .

Z =Hw+1P (16¢)

we have I72V2Z+ictana%z—f=0. (17)

Eq. (17) is the basic differential equation governing the stresses and deforma-
tions of circular conical shells of constant thickness under edge loads.



6 WOLF ALTMAN - D. H. YOUNG
3. Solution for the Axisymmetric Case

In order to have a separation of variables in (17), we will look for solutions
of the form
Z = Zj;cosjb, (18)

where Z; is a function of s only and j is an integer. Substitution of (18) into
(17) leads to the ordinary differential equation

4 . 3 § D a2 2 .
s4d Z’+283d Z’+ [82(—1— 2] )+s3ictanoc] 4 Z;

dst ds? cos?a ds? (19)
272 \d Z; 45? 7t _
+8(1+coszoc) ds T (— costo T cos4a)zj =0,
where Z; = Hw; +19;.
For the axisymmetric case (j=0), Eq. (19) reduces to
d*Z a7 da*Z dZ
! Sl 3% “ (24435 il T il
st +2s 7e8 +(—s2+s3vctanx) 2 +s s 0. (19a)

We can see that s =0 is a regular singular point of the differential Eq. (19a).
Using Frobenius’ method, we assume a solution of the form

Z =st(Ag+ A8+ A8+ +), (20)
where A, =a,+1b,. (20a)

The complex coefficients A, and the exponent p are constants to be deter-
mined.

Substituting the assumed solution (20) into the differential Eq. (19a), and
arranging the result according to ascending powers of s, we see that the coeffi-
cients of all powers of s must vanish independently in order to have the diffe-
rential equation satisfied. The vanishing of the coefficient of the lowest power
of s gives the indicial equation

pr(pP—4p+4) =0 (21)
whose roots are
pr=ps=2;  puzg=pg=0. _ (21a)
The vanishing of the coefficient of the nth power of s leads to the following
recurrence relation:
A {(p+n[ut (0 —2)]) = —[p+ (n—D)]ictanad, ;. (22)
The four exponents of the differential equation together with the recurrence

relation will provide four independent power series solutions if the exponents
are different and no pair of them differs by an integer. Since in our case
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pr1=ps=2 and py;=p,=0, the recurrence relation (22) will give only two
independent solutions, but two other independent solutions can be obtained
as follows [2]:

z
Zy(s) = Sl (23)
",:
and Z,(s) = %ﬂ! , (24)
w=2

where Z (u,s) is given by (20) and the coefficients 4, are expressed in terms
of A, and u by the recurrence formula (22).

Following the above procedure, after separating real and imaginary parts
we can write the general solution in the form:

o]
Hw=c; a, (2)s"t2—c,
n=0,2 n=1,3

18

b, (2) s™+2

+d,[Ins a, (2)s"*t2 4+ a,, (2) s"+?]

b, (2)s" 2+ by, (2) s"*?]

o ® (25)
+61 Z an(o) sn___e2 Z bn (0) sm

=0,2 n=1,3

2 @, (0)s"+ a, (0)s"]
n=0,2 n=2,4
2
=1

ADMs Lhs

b, (0)s™+ b,, (0) s"]
n 3

and D =c D a,(2)s"24+c¢; D b, (2)s7H2
n=0,2 n=1,3

+d,[Ins i a,(2)s"2+ > a, (2)s"+?]
n=0,2 n=2,4
+dyllns 3 5,20+ 3 0 (2)6]
o o (26)
+ey, > a,(0)s"+e > b
n=0,2 n=1

3

+fo[Ins

n

3

2 0y, (0)8,]
,2 n=2,4

0

2

+f[Ins

n

b, (0) 5™ +
3 n=1,3

by, (0) s™],

Aps Lpgs

where ¢,, ¢y, dy, dy, €4, €5, f1, f5 are arbitrary constants and the coefficients of
the powers of s are given in Table 1.

We can observe that for «=0, we have a,(0)=a,(2)=1, and all the other
coefficients are zero. Therefore, Eq. (25) takes the form

Hw =c;s*+d;s*Ins+e; +f,Ins, (27)
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Table 1
ay(2) =1 ay(0) =1
3c2tan?« c2tan?«
ay(2) = 42.32 a5 (0) =912
5cttant«x 3cttanta
a,(0) =

= 6%.52.42.32

a,(2) = (_1)n;2 [(n—1)+2]c"tan" «

[(r+2)(n+1)...4-3]%-1

a, (0) = (=)™

T 42.32.92.]2

(m—1)c*tan®™ «

[n(n—1)...2:1]2(—1)

2ctan «
by(d) = ——55—
4c3tand «
b3(2) = 52.42.32
6 ¢5tan’® «
b5(2) =

T M2.62.52.42.32

by (2) = (—1)m+v
[(n—1)42]c*tan™«

[(R+2)(rn+1)...4-3]%-1

b, (0) =0
2c3tan® «
b2(0) = —agrpe
4 cStan® «
b5 (0)

T B2.42.32.92.]2

bn:(()) = (— 1)(n+.;1)/2
(n—1)c"tan™ «
“mm=0)...2.1F(=1)

ag(2) =0 al(0) =0
al(2) = ay(2) [;—2(é+i)—1] al (0) = a,(0) [1—2(1+%)+1]
a;(2) = a,(2) [5—2(%+i+é+%) 1: a; (0) =a4(0)[%—2(1+—;—+%+i-)+1]
a,(2) = a,(2) i @}, (0) = a,, (0) i
[(n—i)+2‘2,;ﬁlu‘2“l: X[nil"z,;‘llé“]
bi(2) = 6.2 [5-2(5) -1 b1(0) = ctanc
b (2) = by(2) E~2(§+i—+%)—1] b;(0) = b, (0) E- (§+§+§)+1]
b (2) = b;(2) b3 (0) = bs (0)
b ] | el dado]
bik(2) = b, (2) bu(0) =b,(0)
X[(n—i)+2”2k=lk}r2 1] | X[nil;2;1%+l]
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which is the known plate solution.
The series solutions (25) and (26) can be written in terms of Thomson func-
tions as follows [3]:

Hw= A4, (berx-—gber'x) +A2(beix——gbei’x)

+ B, (kerx ——gker' x) + B, (kei x —;kei’ x) + B, (28)
+d, [In s] —d,[b; (0) 5]

and ® = A2(berx—g—2cber’x) —Al(beix—gbei'x)
+ B, (kerx—%ker’x) —-B, (keix—gkei'x) +E, (29)
+d,[In s] +d, [b](0)s],

where z = 2 Vsctan «.

Before proceeding with any applications of these equations, it can be shown
that the constant d, = 0. For this purpose, we rederive Eq. (14) specifically for
the axisymmetric case.

Eqgs. (1a—b) can be written as

. —v+wt
€ = g’ €¢gs =v+wtana,
which combine to give
d (eg 8) _ dw
de 6= tana%, (30)
. 1 1
wherein eg=m—(Ng—-st); es=m—(Ns—ng). (31)
After substitution of (31) into (30), we have
1 d (8 Ng) ‘ _ dw
ﬁ( P _Ns) —tana%—. (32)
Eq. (32) can also be written in terms of @ as follows:
1 8d3<15 d*d 1dd\ ¢ dw
En\’ds Tde 75 ds) = —tanags
dfl1d| do dw
or Sas [E d—s(sﬁs—)] = —Ehtana%. (33)

Eq. (33) (axisymmetric case) corresponds to Eq. (14) (general case).
Alternatively, we can particularize Eq. (14) to the axisymmetric case by
dropping all derivatives with respect to 6. In this way it can be written as

d dfl d{ dd d?w
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Integrating (34), we obtain

a1l d| dd dw
Sag[g'gg(S';l?)jI =‘—Ekta¢na—(zs—+c. (35)

Since expressions (35) and (33) have to be identical, it follows that the con-
stant ¢ must be zero. Then substituting the solutions (28) and (29) into Eq. (33)
and performing the indicated differentiations, it will be found that d, must be
zero in order to have the equation satisfied.

4, Stress Resultants

For the axisymmetric case, the stress resultants (8), (4), (6) can be written
in the form

1 do

N, = ~5 ds’ (36a)
dzo

Ng = ——d;z—’ (36b)
ER3 d2w v dw

'Ms=12(1—v2)[ds2 *s ds]’ (36¢)
EhR3 1 dw d2w

T e | 5)

aM
Qs = s’ (36e)

where M is given by (5).
Also, the rotation of an element of a meridian, during deformation, will be

_dw
X=ds

(36f)

We can show that part of the solutions corresponding to (28) and (29) or
more precisely, the A- and B-terms of these solutions, when substituted into
(36a—f) will give exactly the same stress resultants and rotation as shown in
([4], p. 373). In fact, carrying out the above substitution, we have

cob a

N, =— [A_l(berx—%bei’x)+A—2(beix+§ber’x)
' . 9 _ 9 (37a)
+ B, (kerw—;kei’x) + B, (keix +5ker’x)] 3
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Ne cot o

- 4
[ 1|z ber’ x — 2berx+xbe1 a:)

+ 2(xbei’x—2beix—§ber’x
( (37b)

4
+ B, xker'x-—lerx+5kel’x)
= ., .4,
+ B, (ockel x—2kelx—;;ker x)],

{ 4, |z bei’ 2 —2(1—v) (beix+§ber’x)

- T
—A,|xber'z—2(1—v) (berx—?:bm x)

(37c¢)

+ B, |xkei'z — 2 (1 —v) (ke1x+iker x) ‘

— B, |xker'z—2 (1 —v) (kerx—%kei’x)

{ 4, (v bei’z+2(1—v) (beix—l—%ber x)]

— A, |vaber z+2(1—v) (berx—i—bei x)]
_ (37d)

+B; |vekei’x+2(1—v) (keix+ ;ker x)]

— B, |vaker' z4+2(1—v) (kerx—gkel x) }

@, =—N, tancx, (37e)

_112(1-?)

VAR t o [A_l beix-{—;ber’x)

-4, (berx —%bei’ x
( (371)

where A, =ctan?a A,; A, =ctan?a A,;

B, = ctan®a B;; B, = ctan?a B,.
In these expressions the A-terms are regular functions, and describe stresses
produced by edge loads in a complete cone (Fig. 3a). The B-terms have a sin-

gularity at « = 0 and describe stresses caused by loads applied to the upper edge
of a truncated cone (Fig. 3b).
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Eq. (37e) can be interpreted as a condition of equilibrium for the part of
the shell above any parallel circle. Indeed, multiplying (37e) by 2nscos2«,
we obtain

(Ngsina+ Q,cosa)2mscosa=0. ; (38)

This equation expresses the fact that the vertical resultant of all forces trans-
mitted through a parallel circle must be zero. In summary, we can see that
Eq. (38) is a consequence of neglecting the d-terms in Eqs. (28) and (29) and
therefore characterizes conical shells with edge loading as shown in Figs. 3a,b.
The remainig part of solutions (28) and (29), i. e., the d-terms, have a singu-
larity at =0 and do not descibe the same kind of stress resultants as those
due to the above edge loadings.

M .
" Fig. 3.
Hk S g
(a) (b) (c)

5. Solution for a Finite Conical Shell with a Concentrated Load at the Apex

For this case (Fig. 3¢), the following conditions can be used in order to de-
termine the constants*) B,, B,, d,, d, in Eqgs. (28) and (29):

a) Ats=0;x=0,

b) lim (N sina+ @ ,cosa)2mscosa = — P.
$—>0

Eqgs. (28) and (29) can be written in the form
ctan?a Hw = A, (berw——gber’x) +A_2(beix—-9—26bei'x)
+ B, (kerx —gker’ x) +B, (keix —gkei’ m) (39)
+D,[2Inz—In (4ctan )]

2 — A4 _E ’ 4 . __E -7
and ctan?a @ Az(berx 2ber x) Al(belx 2bel x) (40)

s — _ 2
+B, (kerx—gker’x) — B, (keix—gkei'x) +D, (%)

In these expressions we have omitted the £, and #, solutions. For y and N,
we have

*) It has already been shown that da=0, see p- 10.
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V12 (1 —v?) — 2 - 2. .,
= ——E—h—2~—cot a{Al(belx+;ber x)—A2(berx—5bel x)
+ B, (kei x +—ker’ x) - B, (kerx—-—kei’ x) + D, (—2)},
x x x
N, = —CO:OL{ZI (berx—i—bei'x) +A_2(beix+zv2—ber’x)
(42)

+ B, (kerx—gkei’x) + B, (kei x +§—ker’x) +51}.

Now, substituting the series expansion of Thomson functions [5] into
condition a), we find

B,=2D, and B,=0. (43)
Before we will make use of condition b), we want to show that lim N s = 0.

§—0
In fact,

lim N,s = —lim [ffl (berx—%bei’x) + A4, (beix+§ber'm)

s—0
+ B, (kerx—a%kei’ x) +51] cot a, (44)
= —[B;(—%)+D;]cota = 0.

Condition b) can now be written in the form

lim (Q,s) 2mcos?ax = — P, (45)
8—0
where
1{ - 2. - . 2., = 2. .,
Qs = 3 [Al (berx —;bel x) +A2(be1x+iber x) + B, (kerx—;kel x)] ; (46)
Therefore,
. - 2 N RS- T
lim [Al (berx ——bei x) +4, (bel x +—ber x)
s§—0 X X
+ B, (ker x —%kei’ x)] 27 cos?a (47)
= B,(—3)2ncos?a = — P,
= P
or By = mcos?a (48)
and then from (43) we have
— P
D= 5 costa (49)

The final results of the bending analysis for this case can now be written as
follows:
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P x, 1
w = Fhosinie [kerx—-Eker x+—élns]

1
+tan2ch’k

12 (1 —p2)
— L]E-E(_Il_}_b_z,i_)_cot d{

~ . ’ ~ ' . (50a)
A, |\berx—_ber'z)+ A4, belx—gbel x)|,

(kelx—l— —ker’ xz + 2)

7 cos?

) ) ) ) (50b)
+ A4, (beix +Eber’ :c) -4, (berx —Ebei' x)},

2. . 1
N, _ _cobef P kerx ——kei’ v+ -
s |7 cos?a T 2

~ 9 9 (50¢)
+A4, (berx—gbei'x) + 4, (beix +;ber’x)},

‘ t P
Ny = _oob« xker' x — 2kerx+ kel Zz
28 |mcosa

+Jl(xber’x—2berx+%bei'x) (50d)
= . .4,
+A2(xbe1’x—2be1x—§ber x)},

M. =

s

L] Pz [xkei'x——Q(l——v) (ke1x+ ker’ x)———(l—v)]

x os? o

+4, [xbei’x—Q(l—v) (beix-{—;ber’x)] (50e)
- 2. .

-4, [xber’x—2(l—v)(berx—;bel'x)]},

P

s2

M _2 vekei'z+2(1—v) keix+gker’x +i(1——v)
0~ 2 x x?

2|7 co
+ 4, [ xbei'z+2(1—v (belx+iber x)] (50f)
2
— [ xber' x+2(1—v) (b x——;bel x)]}
Qs =1{ P2 (kerm——kel x) (berm—gbel x)
T COS x

8

_ (50g)
+ 4, (beix+§ber’ x)}

The constants A; and A, are determined from given edge conditions for
each particular problem.

We want to observe that the membrane solution for a concentrated load
at the apex, namely '
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N, = zi Ny =0,

2w ssinacosa’

is contained in solutions (50c¢, d).

Some of the stress resultants represented by Egs. (50) have extremely large
magnitudes in the vicinity of the apex. For example, the graphical representa-
tion of @, and M, is shown in Fig. 4.
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Summary

The differential equations governing the bending behavior of a thin conical
shell subjected to edge loading represent an eighth order system. By the
introduction of a complex variable, this system of equations is reduced to a
fourth order differential equation in complex form. For axisymmetric loading,
this fourth order equation is solved by using the method of Frobenius. Sub-
sequently, the series solution, so obtained, is transformed into a closed form
solution in terms of Thompson functions. As an example, a complete set of
expressions for all stress resultants is given for the case of a cone subjected
to a concentrated load at the apex. It is believed that this solution, including
both bending and membrane stresses in the cone, has not previously been
shown.
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Résumé

Les équations différentielles régissant la flexion d’une coque mince conique
soumise a une force agissant sur son bord représentent un systéme du huitiéeme
ordre. En introduisant une variable complexe, ce systéme est réduit en une
équation différentielle complexe du quatriéme ordre. Pour des charges sym-
métriques par rapport & un axe, cette équation du quatrieme ordre est résolue
par la méthode de Frobenius. Ensuite, la solution en séries ainsi obtenue est
transformée en une solution de forme fermée en termes de fonction de Thomp-
son. Comme exemple, on a donné ’ensemble des expressions pour toutes les
tensions dans le cas du cone soumis & une force concentrée en son sommet.
Nous croyons que cette solution englobant & la fois les tensions de flexion et
les tensions de membrane n’a pas encore été trouvée dans le cas du cone.

Zusammenfassung

Die Differentialgleichungen, welche das Biegeverhalten diinner Kegel unter
Randlasten wiedergeben, fithren zu solchen achter Ordnung. Wenn man eine
komplexe Unabhingige einfiihrt, 148t sich dieses System auf eine komplexe
Form vierter Ordnung abmindern. Sind die Lasten achsialsymmetrisch, fithrt
das Verfahren Frobenius’ zur Losung der Differentialgleichung vierter Ord-
nung. Hernach kann die so erhaltene Reihenlosung in eine geschlossene Form
mit Gliedern der Thompson-Funktion iibergefiithrt werden. Als Beispiel wird
ein vollstindiger Satz fiir alle Spannungen angegeben, falls auf der Spitze des
Kegels eine Einzellast wirkt. Wir glauben, daf diese Losung, einschliefend
Biege- und Membranspannungen im Kegel, bis jetzt noch nie gezeigt ward.
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