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Stresses in Thin Conical Shells

Tensions dans les coques minces coniques

Spannungen in dünnen Kegeln

WOLF ALTMAN D. H. YOUNG
Professor of Structural Engineering, Professor of Civil Engineering, Stanford

I.T.A., Sao Paulo, Brasil University, California

1. Introduction

This paper deals with the problem of stresses and deformations in thin
conical shells subjected to axially Symmetrie edge loadings.

The shell material is assumed to be isotropic and to obey Hooke's law. In
addition, the following assumptions are made:

1. The displacements are small in comparison with the thickness h of the
shell and h<^ B, where R is a representative shell radius.

2. Straight fibers normal to the middle surface before deformation remain
so after deformation and do not change their lengths.

3. Normal stresses acting on planes parallel to the middle surface may be

neglected in comparison with the other stresses. The last two assumptions are
due to Kirchhoff and they are equivalent to reducing the problem of deformation

of the shell to that of deformation of its middle surface.
4. Finally, tangential displacements u and v will be neglected in comparison

with normal displacements w in the formulae for change of curvature and
twist of a shell element. This last assumption is justifiable if the bending
stresses are of the same order of magnitude or less than the membrane stresses

2. Basic Equations

Referring to Fig. 1, the cone is defined by its angle a and any point in the
middle surface is located by the coordinates 6 and s, where s replaces the
usual coordinate cp for a shell of revolution since, in the case of a cone, cp a,
is constant. The displacement of a point on the middle surface is defined by
its orthogonal components u, v and w as shown.
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The relations between middle surface strains €q, es, €sq and corresponding
displacements u, v, w are given by:

_ dv
*s~Js~'

du
€ßSC0Sa —^ + vcosoc + wsmoc,du

du u 1
2€sR - +

dv
ds s scosoc d6

-I A Fig. 1.

(la)

(lb)

(lc)

Neglecting u and v displacements in comparison with w displacements in
the formulae for change in curvature ks, kq and twist ksQ, we can write

k0 —
d2w
ds2'

1 d2w 1 dw
K0 =- s2cos2 oc d62 s ds '

*80 " ~"d^s\s cos oc Tdj'

(ld)

(le)

(lf)

As a result of the adoption of the Kirchhoff hypotheses and neglecting the
small quantities of the same order of magnitude or less than hjR in comparison

-W"'
Q0

Ns0 .-'

Ns0
N0+

NsöO^
Qß+

' ^0c +
Nc+

a

ms0 ^Q ^

Mq//

Ms0 +

(b)

Fig. 2.

with unity, the force resultants Ns, Nq, Nsq (Fig. 2a) and moment resultants
M8, Md, Ms0 (Fig. 2b) can be written as follows:



STRESSES IN THIN CONICAL SHELLS

s

Eh
1-v2 (es + vee)>

0
Eh

1-v2 (*0 + >*«*)>

s8 N6s
Eh

1 _L,. €s0>

where D

(2a)

(2b)

(2 c)
x -r v

Ms =-D(ks + vk6), (2d)

Me =-D(k0 + vks), (2e)

Msd M9s -D(l-v)Ksd, (2f)

^A3
12(l-v2)*

In these expressions h is the thickness of the shell, assumed to be constant,
and E and v are the elastic constants for the material.

From static equilibrium of the forces and moments acting on a small element
defined by ds and dd (Figs. 2a and 2b), we can write:

!fflf> +_!_"<»_», _„. ,3a,8 s cos ol o 6

8(Ns0s) 1 dNe „ _ x ^ ,„_,

^£l +^_^ + ^tana 0, (3c)ds COS a dd

lWA + ^^M^QsS 0, (3d)
ds cosa d6

HMsds) 1 dMd

-¥~ + co^"¥+ifsr^ ö' (3e)

Jf^ + (^-xV^)Äcota 0. (3f)

With regard to these equations, two comments are in order. First, from
(2c), we have Nse NQs and this result is incompatible with (3f); therefore,

(3f) will simply be ignored. Secondly, we will take into account that Qq << —^-~

and thus neglect Qq in the tangential equilibrium Eq. (3b).
Substituting (ld-f) into (2d-f) we obtain

tut r^\^w l^w l l 8wY\ IA x

ids* \dü* s*cos2oc s dsj]
ix/r t^\{^w 1 dw\ d2w~\ /A..Me =2) -__ + _ +„ 4b

L\^^ s cos a s ds] ds2]

Jfs6, D(l-v) k-^5 Tfl-"ä * (4c
LdsdtfSCOSa #" S2COSaJ
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Addition of (4 a) and (4 b) gives

1+v

mM e20 ho i a2o

Substituting (4a-c) into (3d-e), we have

Q° - -ä7«
_

(6a)

gö _l_^f (6b)17

SCOSa dd

and when these are substituted into (3c), the result is

*-,* tt Nat&noc ^ ,_V2M + —- 0, (7a)
s

or using (5) DV2V2w + NQ^r^ 0. (7b)
s

The force resultants Ns, Nq Nsq can be expressed as funetions of an auxiliary
function 0 introduced by Vlasov [1] as follows:

AT
1 d20 1 d0

s2 cos2 oc dd2 s ds' [ ]

d20

^= äs^w)* (8c)

Substituting (8a-c) into the first two equations of equilibrium (3a-b), we can
see that they are identically satisfied. Now, substituting (8b) into (7b) which
actually is the third equation of equilibrium in terms of w, we obtain:

t.—o.^o tan ocd20
BV2V2w —^ 0. 9

s dsz

A second relation between the same funetions w and 0 can be obtained by
combining relations (la-c) as follows:

cos
ds\ ds) ds\ dd) ds cosocdU2 ds2

Solving (2a-c)fore^5 es, esq substituting these into (10), and then eliminating
the partial derivatives -^, sB from this result with the help of Eq. (3a),dB ' dOds
we have
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ds-3 dsz ds cos2a d02

d2 16?

-2(1+^)^ s-^tanocEh.
C S

Next, eliminating —~ and
g

sg from (3a-b), we obtain

d2(s2Ns) dNQ 1 d2Ne „„ds2 ds COS2a dd2 u x

Finally, multiplying (12) by (1 +v) and adding to (11), we have

1 r^o/Tvr tit x
tanocd2w ,,^EhF2{N°+Ne)=-lTJ^> (13)

!v 1
r^o r^o ^ tan oc d2w ^or using (8a—b) -=r-V2V20 + —- 0. (14)Eh s ds2

Eqs. (9) and (14) are two simultaneous partial differential equations which
describe the problem of a circular conical shell of constant wall thickness
subjected to edge loads. They represent an eighth order system of equations,
but we can combine them so as to obtain a fourth order partial differential
equation in complex form. Indeed, (9) and (14) can be rewritten as follows:

,/ P r,n ry9r,9 -,/l2(l-V2) tan OC d2 0 ^ ,„ri2(r^)^F2,72w-]/-V^-^--^ 0' <9a>

.mr?9^ .Jl2(l-v2) J h2 ^tanad2^ „ x^2F20 +^-VJ]/l2(T^)^Ä-^-^ 0' (14a)

where i — i — 1. Adding, we have

F2F2(/wb^-H
.-,/l2(l-v2) tana e2 /,/ P _7 .,\ n

(15)

Introducing the notations

1 h* (16a)

Ä-™ (16b)

Z =Hw + i0 (16c)

we have p p£ +1-c *^£^ 0. (17)
s ds2

Eq. (17) is the basic differential equation governing the stresses and deformations

of circular conical shells of constant thickness under edge loads.
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3. Solution for the Axisymmetric Case

In order to have a Separation of variables in (17), we will look for Solutions
of the form

Z Zjcosj6, (18)

where Z$ is a function of s only and j is an integer. Substitution of (18) into
(17) leads to the ordinary differential equation

(19)

.d*Zj 0 ^dzZj [ J 2?2 \ • ~\d2ZJ

/ 2p \dZj I 4j2 j* \

\ cos2a/ ds \ cos^a cos4a/ J

where Zj Hwj + i0j.
For the axisymmetric case (j 0), Eq. (19) reduces to

±d*Z rt A*Z 9 ^ ,d2Z dZ ^ /lrt x

ds4 ds3 ds2 ds

We can see that s 0 is a regulär singular point of the differential Eq. (19a).
Using Frobenius' method, we assume a Solution of the form

Z s*(A0 + A1s + A2s2+ • • •), (20)

where An an + i bn. (20 a)

The complex coefficients An and the exponent /jl are constants to be
determined.

Substituting the assumed Solution (20) into the differential Eq. (19a), and
arranging the result according to ascending powers of s, we see that the
coefficients of all powers of s must vanish independently in order to have the
differential equation satisfied. The vanishing of the coefficient of the lowest power
of s gives the indicial equation

iu2(/x2-4/x-|-4) 0 (21)

whose roots are

Ml=^2 2; ^3=^4 °- (21a)

The vanishing of the coefficient of the nth power of s leads to the following
recurrence relation:

An{(fM + n)2[lJi + (n-2)]} -[fM + (n-l)]ictanocAn__1. (22)

The four exponents of the differential equation together with the recurrence
relation will provide four independent power series Solutions if the exponents
are different and no pair of them differs by an integer. Since in our case
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^1==^,2 2 and ^3 ^4 0, the recurrence relation (22) will give only two
independent Solutions, but two other independent Solutions can be obtained
as follows [21: Q „,

Z3(s)
dZ(tl>S

d fi
8Z(n,s)

(23)
/Lt=0

(24)
p=2

and Zt(a) ^
where Z(/jl,s) is given by (20) and the coefficients An are expressed in terms
of A0 and /x by the recurrence formula (22).

Following the above procedure, after separating real and imaginary parts,
we can write the general Solution in the form:

00 00

Hw cx Z «M(2)s"+2-c2 2 M2)s»+2
n=0,2 n=l,3

00 00

+ ^[lnS Z an(2)s"+*+ 2 <(2)s»+2]
71=0,2 n=2,4

(25)

-d2[lns 2 bn(2)s^+ Z K(2)sn+2]
ti=1,3 7i=l,3

+ ex Z an(0)sn-e2 2 K(0)sn
n=0,2 n=l,3

00 00

+/i[hi« 2 «„(0)s"+ 2 <(o)sn]
7i=0,2 7i=2,4

00 00

-/2[inS 2 M0)5»+ 2 *;(0)sÄ]
»=1,3 m=l,3

and 0 c2 2 a„(2)s»+2 + Cl 2 M2)«w+2
71=0,2 n l,3

00 00

+ d2[\ns 2 «w(2)5"+2+ 2 <(2)«M+2]
71=0,2 7i=2,4

00 00

+^[lns 2 bn(2)s^+ 2 &;(2)sM+2]
71=1,3 71=1,3

+ e2 2 an(0)sm + e1 2 MO)«"
71=0,2 71=1,3

00 oo

+ /2[lns 2 «„(0)sM+ 2 <(0)V1
71=0,2 7i=2,4

+/i[in« 2 KWsn+ 2 &;(0)O,
71=1,3 71=1,3

where cx, c2, d±, d2, ex, e2, f1} f2 are arbitrary constants and the coefficients of
the powers of s are given in Table 1.

We can observe that for a 0, we have a0(0) a0(2) l, and all the other
coefficients are zero. Therefore, Eq. (25) takes the form

Hw c1s2 + d1s2lns + e1 + f1lns, (27)

(26)
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Table 1

M2)
a2(2)

1

3 c2 tan2 oc

42-32

5c4tan4a

2

a, (2)

an(2) (-l)m2

62.52.42.32
'

[(^-l) + 2]cntanna
[(w + 2)(w+l). .4-3]2-l

fJL 0

a0(0)

a2(0)

1

c2 tan2 oc

22-l2

3c4tan4a
a4(0)

^(0) ("ir/2

42.32.22.12

(n-1) cn tan71 oc

[n(n-l)...2A]2(-l)

61 (2)

63 (2)

65 (2)

M2)

2 c tan oc

P
4 c3 tan3 oc

52-42-32

6 c5 tan5 a
"72.52.52.42.32

_ iyn+D/2

[(^-l) + 2]cntan?la

61 (0)

M<>)

65(0)

MO)

0

x

2 c3 tan3 a
32-22l2
4 c5 tan5 a

52.42.32.22.p

_ l)(w+l)/2

(n-l)cntanna
[(n + 2)(n+l)..A'3]2A X [n(n-l)...2A]2(-l)

<(2)

ai(2)

<(2)

<(2)

«.™[Hi+i+s+-3-']
o»(2)'

X [(TO-l) + 2_2iJl¥T2~1J

«o(0)

a2(0)

<(0)

«»(0)

a2(0)[l-2(l+i| + lj

M0)[H1 + 2" +H + 1]

«»(0)

K(2) =b1

K(2)

65 (2) 68(2)

X[l-2(l + I + l + l + ^-1]
6^(2) =6n (2)'

6^(0) ctana

-m»[HJ+MH63(0)

65(0) =65(o)

X [Hi+i+i+H+i]

x [(»-l)+2 2t>1k + 2 XJ

b'n(0)=bn(0)

X [^i-£H
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which is the known plate Solution.
The series Solutions (25) and (26) can be written in terms of Thomson funetions

as follows [3]:

Hw Ribera; —-ber'#)+^2(bei:r — -bei':ri

+ B± [ker x - |ker' x\ + B2 [kei x -^kei' x\ + E1 (28)

+ d1[lns]-d2[b[(0)s]

and 0 ^42(ber^ —-ber'xl — u41lbei# — -bei'xl

+ B2 [ker x - |ker' x\ - Bx [kei x -1 kei' x\ + E2 (29)

+ d2[lns]+d1[b[(0)s],
where x 2 /s c tan oc.

Before proeeeding with any applications of these equations, it can be shown
that the constant d2 — 0. For this purpose, we rederive Eq. (14) speeifieally for
the axisymmetric case.

Eqs. (la-b) can be written as

which combine to give

dv
es ~-j-, €qS v + wtanoc,

d Uas) t
dw /n v-i^-e8 tan«-^-, (30)

wherein eö -^j (N0 - v Ns); eg -j^(Ns-vN0). (31)

(32)

After Substitution of (31) into (30), we have

1 ld(sNe) ,T\ x dw

Eq. (32) can also be written in terms of 0 as follows:

Eh\ ds3 ds2 s ds) ds

d \1 d I d0\l dw
or

Eq. (33) (axisymmetric case) corresponds to Eq. (14) (general case).
Alternatively, we can particularize Eq. (14) to the axisymmetric case by

dropping all derivatives with respect to 0. In this way it can be written as

d \ d \1 d l d0\\\ T11 d2w
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Integrating (34), we obtain

"1 d
ds

d I d0Y\ ri7 2
dw /OK.Msw)\=-Eht™«w+C- (35)

Since expressions (35) and (33) have to be identical, it follows that the
constant c must be zero. Then substituting the Solutions (28) and (29) into Eq. (33)
and performing the indicated differentiations, it will be found that d2 must be

zero in order to have the equation satisfied.

4. Stress Resultants

For the axisymmetric case, the stress resultants (8), (4), (6) can be written
in the form

N-—\iC' (36a)

d2&

Eh* [d2w v dw~\

Eh3 Tl dw d2w~\ ,no,.

Qs =§, (86.)

where M is given by (5).
Also, the rotation of an element of a meridian, during deformation, will be

*-£¦ <3»>

We can show that part of the Solutions corresponding to (28) and (29) or
more precisely, the A- and i?-terms of these Solutions, when substituted into
(36a-f) will give exactly the same stress resultants and rotation as shown in
([4], p. 373). In fact, carrying out the above Substitution, we have

Ns LlJberx — bei'a;) +-42(Deix + _Der;r)

+ B± Ikevx — kei'^J +B2 (kei# + -ker'#)
(37a)



X Eh2
cot oc L41jbeix + -ber,^l

- J^lbera; —bei'#)

?1lkei# + -ker'#J

— B2lkerx —kei'xl

+ B,

(37b)
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Nq — J^l^ber'x —2ber# + -bei'#)

+ A2 Ix bei' x — 2 bei x — ber' x I

+ B1 Ix ker' x — 2 ker x + -kei' x\

+ B2 Ix kei' x — 2 kei x —ker'#l

Ms -^lÄAxbei'x-2(1 -v) IbeixH—ber'xj

— Ä2 \xber' x — 2(1 —v) jberx bei'an

+ BX Lrkei''x-2(l-v) IkeiaH—ker'xl '

— B2 a; ker'a;-2(1 — v) (kera;—kei'an l.

Me -2\Ä1 \vxbei'x + 2(l-v) (beia; + -ber'a*j

— Ä2 Lxber'^ + 2(1 — v) (bera:— bei'a-J

+ BX La;kei'a, + 2(l-v)(keia-+-ker'a-J

vxker'x + 2(l — v) I

(37 c)

(37 d)

B2\vx ker' x + 2 (1 — v) (ker x — - kei' x

Qs -Altana, (37e)

A2(i--2)^ JäL^:~ 2i

(37f)

where Ax ctan2a Ax, A2 =ctan2ocA2;

Bx c tan2 ocBx; B2 c tan2 oc B2.

In these expressions the J^-terms are regulär funetions, and describe stresses

produced by edge loads in a complete cone (Fig. 3 a). The 5-terms have a sin-
gularity at x 0 and describe stresses caused by loads applied to the upper edge
of a truncated cone (Fig. 3 b).
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Eq. (37 e) can be interpreted as a condition of equilibrium for the part of
the shell above any parallel circle. Indeed, multiplying (37e) by 27rscos2a,
we obtain

(Nssinoc + Qscosoc)2 7TScosoc 0. * (38)

This equation expresses the fact that the vertical resultant of all forces
transmitted through a parallel circle must be zero. In summary, we can see that
Eq. (38) is a consequence of neglecting the d-terms in Eqs. (28) and (29) and
therefore characterizes conical shells with edge loading as shown in Figs. 3 a, b.
The remainig part of Solutions (28) and (29), i. e., the d-terms, have a singu-
larity at x 0 and do not descibe the same kind of stress resultants as those
due to the above edge loadings.

H^ B Fig. 3.

5. Solution for a Finite Conical Shell with a Concentrated Load at the Apex

For this case (Fig. 3 c), the following conditions can be used in order to
determine the constants*) Bx, B2, dx, d2 in Eqs. (28) and (29):

a) At s 0; x 0,
b) lim (Ns sin oc + Qs cos oc)2tts cos a — P.

s-^0

Eqs. (28) and (29) can be written in the form

ctan2ocHw — Ribera; — -ber'a:) +^T2(beia: —-bei'a;)

+ BxlkeYx-^kerfx\+B2lkeix-^keifx\ (39)

+ !>! [2 In a; - In (4 c tan a)]

and ctan2a0 Ä2\berx — ~ber,x)—Ä,\beix--7rbeVx)
x2\ 2 / x\ 2 / (40)

+ l?2lkera;--ker'a;J -i?1(keia---kei'a;l +D1j^-J.

In these expressions we have omitted the Ex and E2 Solutions. For x an(i ^s
we have

*) It has already been shown that d2 09 see p. 10.
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_ jl2(l-v2)
X ~ Eh2

cot a<^41jbeia; + -ber'a*J—^42jbera: — bei'a;)

+ BX lkeia;-f--ker'a;l — B2 Ikerx— kei'a-J 4-^!(-^)f

jVs MJbera-— bei'an+^2lbeia; + -ber'a;l

^(kera; — kei'a;J+i?2(keia;-|--ker'a*J -f-IM.

(41)

(42)

+ B,

Now, substituting the series expansion of Thomson funetions [5] into
condition a), we find

BX 2DX and B2 0. (43)

Before we will make use of condition b), we want to show that limA^s 0.
s^O

In fact,

limA^s —lim L4, Ibera- — bei'an +^L|beia; + -ber';
s-+0 L \ x I \ X

-t-.BJkera-— kei'#1+DJ cota, (44)

-[Bx(-%)+Dx]cotoc 0.

Condition b) can now be written in the form

lim (Qss) 2 rr cos2 oc - P, (45)
s-^0

where

Qs - \ÄXIbera: — bei'a:) +J^2(beia; + -ber'a*J +BXIkerx— kei'a;) (46)

Therefore,

lim \Äi Ibera; — bei'a;) + X>(beia; + -ber'a;|
*->oL \ x I \ x I

+ BXikerx — kei'ar) 2tt cos2oc (47)

Bx(-±)2ttCOS2oc -P,
or Bx —^- (48)

77 COS2 OC

and then from (43) we have

2 77 cos2 a

The final results of the bending analysis for this case can now be written as
follows:
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W Eh TT sin2 oc

tan2

X

ker x — — ker' x +—In s\

hEh[Äl(heTX~lher'X)+M

mi^)^<^(keix
(77 COS2 oc \

bei a* —-bei'a;

Eh2 -cot 2i 2
+ -ker # + -5x x

+

N.

JL1(beia; + -ber'a;l — J^lbera;— bei' x\>,

\ g- kera; — kei'a; + -ls |77COS2a\ x 2)

N»=- COt oc I

+ A,

l x
I ber a* — bei' x I + A 21 bei x + -ber' a* I >,

'(PI 4 \l s— a-ker'a* — 2ker# + -kei'aM
^77 cos2 oc \ x

lx Ix ber' x — 2 ber x + -bei' x I

+ .42 la* bei'a; — 2beia*— ber' x\\,

M„ -ri ^ Lkei'a*-2(l-v) (keia; + -ker'a;) ^(1-^)s x2 \tt cos2 a[ \ # x2 J

+ ^4X a*bei'a: —2(1—1/) lbeia; + -ber'a;l

— ^42 a: ber'a: —2(1 — v)(bera"—bei'a;) >,

Ma -öi 5- väkei'«+ 2(l-i/) |keia; + -ker'a;| + —(1-v)
a*2 [77 cos2 oc 1 \ x f x2 ]

+ ÄX \vxbei'x + 2 (1-v) lbeia- + -ber'a;l

— Ä2 va"ber'a* + 2(l — v) lber#—bei'xl >,

Öq -\ Tr- (kera* — kei'a* +Ä-. (bera: — bei'a;)
s {TT cos2 a \ x I \ x I

+ Ä21 bei x + -ber' x\\.

(50 a)

(50b)

(50 c)

(50d)

(50e)

(50f)

(50g)

The constants Äx and A2 are determined from given edge conditions for
each particular problem.

We want to observe that the membrane Solution for a concentrated load
at the apex, namely
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Ns 2 77 s sin oc cos a' Nq=0,

is contained in Solutions (50c, d).
Some of the stress resultants represented by Eqs. (50) have extremely large

magnitudes in the vicinity of the apex. For example, the graphical representa-
tion of Qs and Ms is shown in Fig. 4.
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Fig. 4.
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Summary

The differential equations governing the bending behavior of a thin conical
shell subjected to edge loading represent an eighth order system. By the
introduction of a complex variable, this system of equations is reduced to a
fourth order differential equation in complex form. For axisymmetric loading,
this fourth order equation is solved by using the method of Frobenius. Sub-
sequently, the series Solution, so obtained, is transformed into a closed form
Solution in terms of Thompson funetions. As an example, a complete set of
expressions for all stress resultants is given for the case of a cone subjected
to a concentrated load at the apex. It is believed that this Solution, including
both bending and membrane stresses in the cone, has not previously been
shown.
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Resume

Les equations differentielles regissant la flexion d'une coque mince conique
soumise ä une force agissant sur son bord representent un Systeme du huitieme
ordre. En introduisant une variable complexe, ce Systeme est reduit en une
equation differentielle complexe du quatrieme ordre. Pour des charges sym-
metriques par rapport ä un axe, cette equation du quatrieme ordre est resolue

par la methode de Frobenius. Ensuite, la Solution en series ainsi obtenue est
transformee en une Solution de forme fermee en termes de fonction de Thompson.

Comme exemple, on a donne l'ensemble des expressions pour toutes les

tensions dans le cas du cone soumis ä une force concentree en son sommet.
Nous croyons que cette Solution englobant ä la fois les tensions de flexion et
les tensions de membrane n'a pas encore ete trouvee dans le cas du cone.

Zusammenfassung

Die Differentialgleichungen, welche das Biegeverhalten dünner Kegel unter
Randlasten wiedergeben, führen zu solchen achter Ordnung. Wenn man eine

komplexe Unabhängige einführt, läßt sich dieses System auf eine komplexe
Form vierter Ordnung abmindern. Sind die Lasten achsialsymmetrisch, führt
das Verfahren Frobenius' zur Lösung der Differentialgleichung vierter
Ordnung. Hernach kann die so erhaltene Reihenlösung in eine geschlossene Form
mit Gliedern der Thompson-Funktion übergeführt werden. Als Beispiel wird
ein vollständiger Satz für alle Spannungen angegeben, falls auf der Spitze des

Kegels eine Einzellast wirkt. Wir glauben, daß diese Lösung, einschließend

Biege- und Membranspannungen im Kegel, bis jetzt noch nie gezeigt ward.
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