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Maximum Loads for Eccentrically Loaded Thin-walled Channel Struts
Charges maximales pour piles a parois minces en U, comprimées excentriquement

Hoéchstlasten fir dimnwandige U-Stiitzen unter ausmittiger Belastung

A. C. WALKER
Department of Civil Engineering, University College, London

Introduction

The use of thin-walled open sections as load-bearing members in civil
engineering structures has increased considerably in the last few years. This
has given rise to a greater need to understand the mechanics of the behaviour
of these sections and also to obtain design information in a simple and com-
prehensible manner. Although considerable research effort [1-3] has been
applied to the testing and analysis of uniformly-compressed channel-columns,
relatively little attention has been given to the more general condition in
which the load is applied offset from the centroid of the cross-section. This
paper reports on work carried out on this problem both from an experimental
and theoretical standpoint.

The paper is concerned with channel columns having one axis of symmetry
in the cross-section, and in the analysis it is assumed that the compressive
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load is applied along this axis; then the web of the channel is compressed
uniformly, while a linearly varying stress is applied to the flanges, as in Fig. 2.
It is also assumed that open thin-walled channel-sections, in which the length
is of the same order of magnitude as the flange or web widths, may be con-
sidered from a theoretical viewpoint to be composed of individual plates that
are connected in a certain manner on their common longitudinal edges. The
determination of the channel load-bearing characteristics then becomes one
of obtaining the corresponding plate properties and combining these to obtain
compatible conditions along the adjoining edge.

We first consider the behaviour of thin, initially flat, plates loaded by a
linearly varying edge stress. It has been shown [4] that such plates may
sustain load considerably in excess of the theoretical buckling loads before
collapse occurs. Also, good engineering estimates of these maximum loads
may be obtained analytically by assuming that collapse takes place when the
direct stress at the edge reaches the material compressive yield stress. Since
the unloaded edge conditions were taken to be rotationally restrained the
calculated plate instability loads may be synthesise to provide the theoretical
buckling loads [5] of open sections considered to be composed of such plates.
In practice, no plate is perfectly flat, and deflections will grow from the
beginning of load application; for this reason, the theoretically predicted
buckling behaviour is never experienced in practice. However, such a buckling
analysis will indicate to a designer the loads for maximum growth of defor-
mation and maximum rate of decrease of stiffness. Like their constituitive
plates, compressed sections may sustain loads in excess of the theoretical
buckling loads. In this paper an approximate method of analysis is presented
which combines the plate collapse estimates to give the corresponding estimate
for lipped sections. Test results are described which show that the estimates
are good; these results are used as a basis for an empirical approach, by which
the actual collapse loads may be predicted from the corresponding theoretical
instability loads.

1. Analysis of Single Plates

a) Mathematical Formulation

Ref. [4] presents fully the analysis of the buckling and post-buckling
behaviour of initially-flat, rectangular plates compressed by a linear-varying
load action. The loaded edges were taken to be simply-supported whilst the
longitudinal edges have equal or unequal rotational restraint; this is shown
in Fg. 2. For the sake of completeness the above analysis is summarised in
this paper. We put,
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where a is the length of the plate in the x direction and b is the breadth in the
y direction; the voN KARMAN [6] large deflection equations may be written in
the nondimensional forms

i34w+2 *w +¢234w_12(1_ 2) 82F'3_22+82F'62w_28211" Pw
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where F’ is the non-dimensional form of the Airy stress function, which is
related to the direct and shear stresses by
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The in-plane boundary conditions for the loaded edges, £=0 and é=1,
with the imposed loading and for zero shearing stress, are

o2 F’ o

= =N'|{1=-2
log]g=0,1 [ ot ]§=o,1 N [( 2) to ”’)] , (3a)

76
= | == =0, 3b
lean = | =), (3D)
‘ ’ 1\70CL2 . o
where Nozﬁﬁ and o is the eccentricity parameter.

Along the unloaded edges there is considered to be no direct stress acting
in the 7 direction nor any shearing stress, so that

[

[0,)y—sys g2 = [_~] =0, (4 2)
nln=t1/2,—1/2 08 =y, -1
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The out-of-plane boundary conditions along the loaded edges were those of
simple support, i.e. if M, is the linear intensity of bending moment about an
axis parallel to the » axis, then

[Mls_os = [a—gmbzh o0, (59)

[w]§=0,1 = 0. (5b)

The unloaded edges are fully restrained against lateral deflection and elasti-
cally restrained against rotation, i.e.
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[w]y—s12,—12 = 0, (6a)
Pw v Pw aw]
— + ———— — oy ———— = O 5 6b
[8 ”’12 ¢2 0 1o N1n=+1/2,-1/2 (65)
Pw v Pw 0 w]
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s, oo
where k; = —bry/D, kg= —bry/D and r,, ry are the degrees of rotation restraint.

An approximate solution of Eq. (2), together with the appropriate boundary
conditions (Eq. (3-6)), is obtained using Galerkin’s method and employing
a digital computer to perform the necessary arithmetic. The trial series for
F’ is

F - |(1=5) 5|+ STt @ 0.0, Y
r s
where A4 is a constant, b,, are constant coefficients, f, (£) and ¢, (n) are func-

tions of ¢ and % only, respectively. After consideration if Eqs. (3) and (4),
Eq. (7) besomes

R - - 1 1

1,2,... s=0,1,...

Similarly a trial series for w may be obtained which satisfies the appropriate
boundary conditions (Eqgs. (5) and (6)). This series may be written

©= & 021 QunSinma &[4+ 4, n"+3+ B, n" 2+ C, 9"t + D, 9], (9)

m=1,2,...n=

where the coeflicients 4,, B, , etc., may be obtained from the solution of the
matrix equation

1 —2 4 -8
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4, -4

B, 3

C, | = | —(n+4) [(n+3)+%9]
Du| | () [(n+3)+%]_

b) Buckling

Theoretically buckling occurs when the flat plate becomes unstable at a
particular value of the applied stress distribution. Thus, in Eq. (8) we have

— p—
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b,.=0, and, if the plate is considered to buckle in a unique sinewave form in
the longitudinal direction, we may write Eq. (9) in the form

n=1L
w= > gq,sinmnfY,, (10)
n=0,1,...
where Y, ="+ A4, "2+ B, 9" 2+ 0, 9"+ Dy, 9]
Thus Galerkin’s method when applied to Eq. (2) using b,,=0 and Eq. (10),
gives
1/2
n=L 2 d2Y, mbmt
f uf iR SR
m?2 72 . .
—kTg’[(1 2)+an]yn}yjdn=o (0<j<L), (11)
2
where k= —N;)b .

Evaluation of Eq. (11) leads to an algebraic eigenvalue problem for k, the
buckling coefficient. This is very easily programmed for solution on a digital
computer, and it has been shown [5] that the buckling coefficient converges
rapidly for increasing number of terms (L). The buckling load is obtained from

Fopir. = — ka(l —%)

¢) Post-buckling Behaviour

It is assumed here that there is no change of buckle pattern as the load is
increased beyond the buckling load. Thus, if Eq. (9) is written

n=

w = sinmm§ Z Qn [+ Ay "2+ By "2+ O™+ D, "],

n=0,1,...

and, if in Eq. (8) the summations are given the limits 1 < <7, 0 <s=<wu, then
Galerkin’s method for Eq. (2) gives
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where
1<p=<T, 0<q=<U, 0<i=<L.

Evaluation of Eq. (12) gives
[4][b,] = [B]1g:9;1 (13)
{[Oﬂ_N(,) [02]} [Qk] = [D] [brs%c]s (O§Z,],]{,‘§L) (14)

where the coefficients of the matrices [A], [ B] etc., are constants. Substitution
of [b,.], from Eq. (13) into Eq. (14), gives the simultaneous cubic equations

{[C1]1—=No[Col}lgx] = [D'11g; 9; %] (15)

This system of equations is solved by successive approximation on a digital
computer for various values of Ng> N

One result of this approximate solution is shown in Fig. 3; the direct
longitudinal stress at the cross-section corresponding to the crest of a buckle
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is plotted for various values of N,. It is seen that the stresses at the edges
grow more rapidly than those in the middle, and this gives rise to the formula-
tion of the collapse criterion. Results of tests given in Ref. [4] show that
good agreement is obtained using the above analysis for buckling and maxi-
mum loads.

2. Collapse Loads for Channel Struts Reinforced with *“Lips”

Fig. 4 shows how the section is considered to be subdivided into its consti-
tuent plates. The web is thus treated as a uniformly-loaded plate with equal
amounts of rotational restraint along the unloaded edge. The flanges are taken
to be eccentrically loaded plates elastically restrained against rotation along
the unloaded edge common to itself and the web; the lip along the other
unloaded edge is assumed to provide a simple support type of condition [7].
The matching at the common longitudinal edges is required to fulfill the
following conditions.
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a) The degree of edge restraint, », for the flange and web is equal but opposite
in sign, i.e. moment reactions are equal and the original corner geometry
is maintained.

b) The value and distribution of the longitudinal direct stress, and therefore
the unit shortening, were to be the same for the flange and web.

Fig. 4. Geometry and edge restraint
representation of component plates
of a lipped channel.

- 9 LIPPED
CHANNEL oL

-
N e Ku=6

_s \
/ - FLANGE
K=~ G/H

L/

-5 -10 -5 -20 25
%
w

l I « =05
N,OW o *\40‘6
. 0‘.23
ST

Fig. 5. Variation of load with longitudinal
direct stress at 7= 1.

The simultaneous application of these requirements results in a very
complex problem. This is simplified by assuming the stress distribution to be
defined to sufficient accuracy by taking only one term in the ¢ direction in
the series Eq. (8). Now, taking a specific web geometry (¢,,, «,,) we may, from
the solution of the appropriate non-linear Eq. (15), obtain a plot of non-
dimensionalised maximum edge stress against non-dimensional load para-
meter, as shown in fig. 5. Now

by 7 b;r
171
oy = ——7— and Kk =——1,
D, D,
but by assumption, above we have, r,= —r,,, and since we are considering

only sections with uniform thickness, D;=D,,. Thus, with H =b,/b,, we have

b,y b
Kf -_—_—-D—’b—f:'—HKw.

w w

Similarly, ¢,=1/H ¢,,, so that we may obtain corresponding plots on Fig. 5
for various values of H, and by using
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O¢., :%U& and N(;.,,'-:“f}*zN(l)ﬂ

they may be superposed on to the web plot as shown in Fig. 5. The inter-
sections of these curves are valid geometries in that all the specified boundary
matching conditions are fulfilled at the particular intersection load. Now,
these particular geometries are considered to be sections at the point of
collapse, i.e. the maximum direct longitudinal stress is equal to the material
yield stress. Thus, using o,,=o0,, where o,,=o;,,¢2 E h%/a® and prescribing
a value for o,, we can obtain the thickness for the sections.

100 100

o 05, B I =10, ¢ =1 m
T F = Tmax XDw l I 7 - %xltéw—
oy 1 LIPPED CHANNEL y LIPPED CHANNEL
80 + t=00725 80 + t=00735in
X 1 =007 O t=0068 in
& o t:0068 Xt = 0065 in
60 o o ¢ o s

~ N

40 N 40 =
20 20
0 03 06 09 12 H 15 0 03 0.6 09 2 H 15
Fig. 6. Variation of non-dimensional maxi- Fig. 7. Variation of non-dimensional maxi-
mum stress with shape factor « =0.5. mum stress with shape factor «=1.0.

In this study, o,= —35Xx10%1b.f/in% ¢,=1, £=33x10%1b./in? a=8in,
and by limiting the thickness range to 0.050 in —0.090 in the plots of collapse
load against section geometry shown in Figs. 6 and 7 were calculated; in these,

Omazt bw
oy h

example, with

and the lip width is 1 in. The procedure is shown in the following

H=062, o =-8.35, Ng, = —6.02.
P I —35x 103 % 64
|2 Eo,|  |1XxX33x108x —8.35
_ NyR*Eb, (141.5H+0.125)

12
] = 0.0902 in.,

P, e 5 = 3.75x 108 tbf.,
b3,
5= Imaz bw _ 599
o, h
Similarly, with H=0.65, h=0.0705, o=52.0,

H=0.68, %h=0.0582, o=5L.T.

In this way Figs. 6 and 7 were constructed; due to the approximate nature
of the solution of the plate differential equations there is some scatter in the
theoretical results; this is contained in the enclosed area shown in these plots.
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The most common design curve is that which enables the designer to cal-
culate the maximum load for a section from the corresponding theoretical
buckling load. Examples of this type of curve are given in Ref. [1] and [2]
for uniformly compressed sections. The usefulness of this curve lies in the
fact that the buckling load is relatively simple to calculate for even complex

1.0
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9 Sy
06 \X::‘Z ’
+ o=05 °

o4f—
0 «:=10 T

0.2

Fig. 8. Maximum strength of eccentrically
loaded short lipped channel struts. o
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sections. If the curves in Figs. 6 and 7 are recast in this manner it is seen that
on a plot of (0,,,/0,) against (¢,/0,)"? (Fig. 8), these quantities may be

related by
Omaz _ (&)0.54

oy Oy
— P axr
Here Omaz bwh[1+23(11_n%) +HL(1—oc)],
o R:r

- bwh[1+2ﬂ(1—%)+HL(1—a)]’

where H is the ratio of lip width to web width.

3. Experimental Investigation of Lipped Section Maximum Load

The special loading rig designed for this investigation is shown in Fig. 9.
It consisted of two relatively massive plattens opposed to each other and
individually mounted on four arms for vertical restraint and on two trunnions
for restraint in the horizontal plane. The trunnions fitted over two heavy
steel bars, one above the plattens and one below, which ran the length of the
frame and were firmly attached to it. Rotation of the serrated hand wheels
caused the end assemblies to approach each other thus inducing a load in the
specimen channel, placed accurately in position in the grooved case-hardened
face plates provided. Eccentric loading was obtained by the differential
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o~ =
“Gaaa1 T volt

Fig. 9. View of experimental
loading rig.

loading of one side from the other. The magnitude of the load was indicated
by electrical resistance foil strain gauges bonded to the link bars and connected
to a Huggenberger switch box and strain bridge. Each link bar was previously
calibrated and was found to give a linear reading over the required load range.
Collapse was indicated by a reduction of the load for an inward movement
of the loading plattens. Results of this series of tests are plotted in Fig. 6
and 7.

Conclusions

An approximate method of analysis has been presented which assumes
that a short channel column may be treated as a collection of individual
plates connected appropriately along their common edges. The analysis com-
bines the large deflection behaviour of these constituitive plates to provide
an engineering estimate of the maximum load capacity of the channel.

The analysis is shown to give good predictions when applied to short
columns subjected to eccentric loading. Tt is also found that the experimental
results may be described adequately by a single curve relating the column
theoretical buckling stress, the corresponding or maximum stress and the
material yield stress. The test programme reported here was of limited range
but the good agreement obtained promises hope for a coherent design for-
mulation for open channel columns subjected to a variety of eccentric load

actions.
Notation
a plate, or channel, length.
b plate breadth.
b;,b, flange and web widths respectively of a channel section.

byy - by, - ete. Galerkin coefficients in stress function series.
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integers used in Galerkin deflection series.

buckling constant.

integers used in stress function series.

Galerkin coefficients in deflection function series.

degrees of rotational restraint per unit distance in x direction
at plate edges y = —b/2 and y = +b/2 respectively.

plate thickness.

displacement of a point of the plate middle surface in a direction
normal to the undeformed middle surface.

cartesian coordinates.

flexural stiffness of the plate, defined by D= E3/12 (1 —»?).
Young’s modulus of the plate material.

Airy’s stress function.

non-dimensional form of Airy’s stress function, F' = F|[E 2.
Channel shape factor, H=0b,/b,,.

ratio of lip width to flange width.

limit of deflection series.

normal force per unit length in the middle surface of the plate
in the « direction.

value of N, at =0, y=056/2 and x=a, y=0/2.

non-dimensional form of Ny, N, =N,a?/¢2 E 2.

critical value of N, at initial buckling.

total compressive load applied to plate.

critical value of P at initial buckling.

maximum plate load.

limits of stress function series.

load eccentricity parameter.

non-dimensional forms of the degrees of rotational restraint per

unit length in x direction at plate edges y= —b/2 and y= +b/2
71 b _ 70 b

DT T D

values of «; at common edges for flange and web, respectively.
Poisson’s ratio of the plate material.

cartesian coordinates in non-dimensional form, £ =z/a, n=y/b.

respectively, ;= —

aspect ratio of plate, ¢ =a/b.
aspect ratio of flange and web, respectively, of a channel section.
direct stresses in the x and y direction, respectively.

. . 0502 __oya?
non-dimensional forms of ¢, and o, %= pmp O Ee-

shearing stress in the xy plane.

. . Ty Q2
non-dimensional form of 7, ¢, =$§%t.

non-dimensional form of w, w =w/t.
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Summary

An analytical and experimental investigation is made of the maximum
load-carrying capacity of thin-walled open channel columns under eccentric
compression. The channels are treated as being composed of individual plates
connected appropriately along their common edges. The large deflection
behaviour of these plates is analysed approximately using Galerkin’s method
and the results are synthesised to give an engineering estimate of the maximum
load of the short columns.

The results of the experimental investigation show these estimates to be
of good engineering accuracy and it is also shown that the results may be
described adequately by a single curve relating the column buckling stress,
the corresponding maximum stress and the material yield stress.

Résumé

Ce rapport présente une étude théorique et expérimentale sur la capacité
de charge de piliers & section en U. On considere la section comme composée
de parois individuelles, liées conformément. Les grandes déformations propres
4 ces plaques ont été analysées a 1’aide de la méthode Galerkin. A partir des
résultats obtenus, on réussit une estimation tres générale de la capacité de
charge de piliers courts, estimation qui se montre en bon accord avec les
valeurs expérimentales. En plus on voit que les résultats peuvent étre repré-
sentés par une seule courbe reliant la tension de flambage, la tension maximale
correspondante et la limite d’écoulement du matériau.
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Zusammenfassung

Es wird eine theoretische und experimentelle Studie iiber die Hochstlast
diinnwandiger U-Stiitzen dargelegt. Man nimmt an, der Querschnitt sei aus
einzelnen Platten zusammengesetzt, die an ihren Ecken entsprechend verbun-
den sind. Die diesen Platten eigenen groBen Verformungen werden néherungs-
weise nach dem Galerkin-Verfahren untersucht. Die Synthese der Ergebnisse
dient der praktischen Schitzung der Maximallast kurzer Stiitzen.

Die Versuchsergebnisse zeigen, dal diese Schitzung fiir praktische Zwecke
geniigend genau ist. Es wird ferner gezeigt, daB die Ergebnisse zweckmafBig
durch eine einzige Kurve dargestellt werden konnen: Diese Kurve verbindet
die Beulspannung, die entsprechende Maximalspannung und die Flielgrenze
des Materials.
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