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Inelastic Stability of Tapered Wide-Flange Columns
Stabilité de colonnes émincées a larges ailes dans le domaine plastique

Stabilitdt von zugespitzten Breitflanschstiitzen im plastischen Bereich

K. H. LIN

Ph. D., Associate Senior Research Engineer, General Motors Research Laboratories,
‘Warren, Michigan, U.S.A.

E. C. ROSSOW S. L. LEE
Ph. D., Associate Professor of Civil Ph. D., Professor of Civil Engineering
Engineering

Northwestern University, Evanston, Illinois, U.S.A.

1. Introduction

The behavior of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to arbitrary end loading which
causes bending in addition to axial compression is investigated. The inter-
action curves for tapered cantilever columns are obtained numerically neg-
lecting any torsional-flexural behavior. Approximate equations for these
curves are presented to facilitate the determination of the load carrying
capacity of simply supported columns.

Numerous analytical studies have been made of the elastic buckling of
axially loaded tapered columns [1-6]. The elastic stability of tapered columns
subjected to combined bending and thrust has been treated by several investi-
gators [7-11]. While the inelastic buckling of axially loaded tapered columns
has been studied [12-14], little work has been done on the inelastic stability
of tapered columns subjected to eccentric loading although columns of uniform
cross section under such loading have been analyzed [15-18].

2. Assumptions

The present analysis is based on the following assumptions; the material is
elastic-perfectly plastic as shown in Fig. 1; the material is homogeneous and
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isotropic in both the elastic and plastic states; plane sections remain plane
during bending; deflections, slopes, and curvatures are small and are confined
to the plane of the web; the effect of the shear stresses on yielding and cur-
vature is neglected; residual stresses and strain reversal are not considered;
instability of snap through type occurs in the plane of web which coincides
with the plane of loading; and the idealized section is characterized by an
H-shape, where the flange thickness is very small but finite.

Oo [

Fig. 1. Idealized stress-

strain relationship.
-] -a‘o

3. Tapered Columns

The column considered herein is symmetrically and linearly tapered along
its length by varying the depth of the web but keeping the flange width and
thickness constant. The taper slope, denoted by a and defined as the change
of the half-depth per unit length of the column, may assume positive or
negative values depending on whether the larger or the smaller section is
chosen as the reference section. To facilitate the analysis that follows, a
rectangular coordinate system is introduced as shown in Fig. 2.

For the reference section where the origin is located, designate the radius
of gyration about the strong axis by r,, the half-depth by by, the web area
by 4,4, and the flange-web area ratio, A,/4,, by R,. The nondimensional
distance from the origin and the deflection of the centroidal axis are defined
respectively, as
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Fig. 2. Tapered wide-flange cantilever column under arbitrary end loads.
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X
= (1)
and Y =Z. (2)
7o
By introducing a parameter
—aql0 ‘
A abo. (3)
The following expressions are readily derived for any section.
b =b(x) =0by(l—-Ax), (4)
Aw=Aw(x) =Aw0(1_Aw)> (5)
A =_A_(x) =Aw0(R0+1—}‘x)7 (6)
— _ R,
R =R@) =i, (7)
I =1I() =d4,,b5(1-A2)2[Ry+5(1—Ax)], (8)
S =8(@) = Adyoeby(1-A2)[By+3(1-A2)], (9)
Z =Z(@) =A4,0by(1-A2)[Ey+3(1-2A2)], (10)
. _ _ +3(1—-Ax)
r =r@) =by(l—2Ax) RBotl—Az (11)

where b, A,,, A, R, I, S, Z and r are respectively, the half-depth, the web
area, the total area, the flange-web area ratio, the moment of inertia, the
elastic section modulus, the plastic section modulus, and the radius of gyration.
Setting x=0 in Eq. 11 and substituting into Eq. 3 leads to

ot3
= 2
“VR0+ 1 (12)

4, Stress Zones

When a wide-flange section shown in Fig. 3 (a) is subjected to a compressive
axial force P and a bending moment M, one of the three stress distributions,
referred to as elastic, primary plastic, and secondary plastic, as shown in
Figs. 3(b), (¢), and (d) will result.

A¢/2
Aw
2b
[ A§/2

(a) (b) Elastic (c) Primary (d) Secondary
Plastic Plastic

Ot
[aial

o
fﬁéj

°'o

Jo

i 1s

-e-lc" wlo [
°q££:ml'>‘=ttcm'
hﬂ{crl ‘9—";‘

r

Fig. 3. Cross section and
stress distribution due to
bending and compression.
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The nondimensional axial force and moment are defined, respectively, as

P
P=20=po (13)
and m=m(x) = ]]”l[——:((%, (14)
in which Fy(z) = 0yA4 (x) (15)
and My () =0yZ (), (16)

where o, denotes the yield stress of the material.

Referring to Fig. 3(d), the condition 1/¢=0, where ¢ denotes the non-
dimensional curvature, defines the limit of statical admissibility. The plastic
moment is given by

_ Ry+1-2x ) 1-Ax
My (T) = R0+%(1——)\x)[1_p(x)] for m§}7(9€)§ 1, (17a)
[(By+1—Ax)p(x)]? 1-Ax

mpl(x)=1_(2R0+1—)\x)(1—)\x) for 0=p(x)= (17b)

Ry+1-2dzx

Referring to Fig. 3 (b), the condition of initial yield, which defines the boundary
between the elastic and the primary plastic zones, gives
_By+i(1-Ax)
my () —m[l—p(x)]- (18)
The boundary between the primary and the secondary plastic zones is given
by the condition 8=2/¢ in Fig. 3 (¢) and is expressed by

1 Ry+1—-Ax
= 1(1— UL e
mp_RO—i—%(l—)\x) {R0+3(1 )\x)[lf X% p(x)
2 (B ) }

The admissible domain and the boundaries for each stress zone are described
by Eqgs. 17, 18, and 19 in a p-m plane shown in Fig. 4.

€o
a
0 Ro Constant
a
X

—Eq.17a

Primary Plastic Zone

p(x) Eq. 18

Elastic Zone Secondary Plastic

Zone
Eq.i7 b Fig. 4. Stress zones.

m(x) d
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5. Curvature Functions

The nondimensional curvature at any section is defined as

()]
¢ =&, (20)

where @ is the actual curvature, @,=¢,/b is the curvature at initial yield due
to pure bending, and ¢, is the strain at yield point. The function ¢ (m, p) for
each stress zone can be readily expressed as follows.

In the elastic zone,

¢ = R0+ El—igm(x)’ (21)
in the primary plastic zone,
= S# 2(§0+1—Ax)[12—R p ()] S (222)
=200 (0+25) + [V + 5 eV O10 + 5 s
in which U=1 _Rgf (11_*/\’\;) l’ff()x), (221b)
while in the secondary plastic zone,
¢ = ! (23)

Vg{zRiti;M[l —m(2)] — [Rol-k_l)\—x)\:cp (x)]Z}'

Eqgs. (21), (22), and (23) are derived for positive moment, hence the absolute
value of m must be used and ¢ replaced by (—¢) in cases where the moment
is negative.

6. Equilibrium Equations

When the tapered cantilever column is subjected to an axial force P, a
shear force @, and a bending moment M at the free end as shown in Fig. 2
the conditions of equilibrium require that

1
Rt T2 (1 -ra) & o)

— V(By+1) (By+}) (99 +4,)], (24)

m(x) =

in which p;=P/|F;(0), q;=Q/F;(0), m;=M;/My(0), and M, = the fixed end
moment. The relation between p (x) and p; is given by
(25)

1=z
PE) = Rpr1-Aal
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7. Differential Equation

From the small deflection theory and Eqs. 2 and 20, it follows that

a2y 1 , €

in which prime denotes differentiation with respect to «. Introducing Egs. (3),
(4) and (12) in Eq. (26) leads to

0ot3 €
VR0+ 1 1-az? (27)
Substitution of Egs. (24) and (25) into the appropriate curvature function,
i.e., Eq. (21), (22), or (23), and the results into Eq. (27) yields the differential

equation for each stress zone.
The boundary conditions

y(0)=y(0)=0 (28)

being both specified at one end of the column make this an initial-value
problem.

8. Numerical Integration

The numerical solution of the initial value problem defined by Egs. (27) and
(28) is obtained by a step-by-step integration procedure. Let the subscript ¢
denote the discrete stations evenly spaced along the z-axis such that x; = (i-1) 4 z,
t=1,2,3... Approximating the second derivative in Eq. (27) by a three-term
central difference formula, upon application of the boundary conditions,
Eq. (28), leads to

+
Y = %50 ]/RO 3 (29)

and in general

€p (4 x)? Ry+1

iy = . — Y. = 2.
Yira 1~Axi R0+1¢@+2y1. Yia fOI'Z_Z (30)

For given values of p;, g;, and m;, the values of m,; and p; can be obtained
from Eqs. (24) and (25), respectively. Having determined the stress zone from
Eqgs. (17), (18), and (19), the appropriate curvature function ¢,, Egs. (21), (22)
or (23), is chosen. The value of y,,, can then be computed by means of Eq. (30).

9. Equilibrium Curves

By means of the marching procedure described above, the values of m can
be plotted against z for various values of m, as shown in Fig. 5 (a), provided
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the values of ¢y, Ry, a, p;, and ¢, are specified. The m-x curves are referred to
as equilibrium curves of the tapered cantilever column.

If }m| nowhere exceeds m,, the column is entirely elastic. In some of the
equilibrium curves, m, < |m| <m,; in a portion of the column. For some values
of m;, the equilibrium curves intersect the curves m = +m,, at some point .
Beyond this point, the equilibrium curve is statically inadmissible and need
not be considered.

m Lr"

7mf

(x*,m")
-me
b ~Mpl b T-mpl
ower envelope
{a) (b)

Fig. 5. Moment equilibrium curves and envelopes.

It is of interest to observe that all the elastic equilibrium curves pass
through a common point (x*,m*). For the inelastic equilibrium curves, the
value of x corresponding to m* are always smaller than x*. The existence of
the common point (x*, m*), of the elastic equilibrium curves implies that x*
and m* are both independent of m;. If ¢; vanishes, all the elastic equilibrium
curves meet at (z*,0). Thus, z* is the nondimensional elastic buckling length
or Kuler length.

10. Elastic Tapered Columns

Elasting Buckling Length x*. Consider an elastic cantilever column sub-
jected to an axial force P at the free end. The differential equation for the
centroidal axis of the slightly bent column is

(Cr23+Cya22 4+ Caz+Cy)y"+Cyy = C50, (31)
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in which C; =23, C,=—-3A2(Ry+1), C3=3A2Ry+1), Cy=—-BRy+1), C;=
—(3 By+1), ¢gp; and 8 is the arbitrary deflection at the free end. The boundary
conditions are

y(0) =0, (32a)
y'(0) =0, (32b)
y(x*)=3. (32¢)

Examining the coefficient function of Eq. (31) indicates that =0 is an ordinary
point and x=(3 By+1)/A and x=1/A are both regular singular points. The
complementary function takes the form of an infinite power series which
converges uniformly for 0 <z < |1/A].

Taking the solution of the boundary value problem defined by Egs. (31)

and (32) in the form y=8+Zakx’“ and demanding the nontrivial solution
£=0
lead to the elastic buckling criterion

3 ap (@*)F = 0, (33
k=0
in which
Y (34a)
a, =0, (34b)
ag =~ o (34c¢)
1
a; = _m{ak_l (k—1) (k—2)Cs+a;_5[(k—2) (k—3) Cy+ (5]

tay_g(k=3)(k—4)C},  k=3,4,5,... (34d)

For a given value of p;, the smallest positive real root z* of Eq. (33) is the
elastic buckling length of the cantilever column.

The Euler length 2* can also be obtained with excellent accuracy by inter-
secting any elastic equilibrium curve for ¢;,=0 with the xz-axis by means of
the numerical integration procedure. It must be pointed out that if @ <0, the
Euler length is obtainable from Eq. (33) for 2* < [1/A|, whereas the numerical
solution is always valid. The x* —p; curves for various taper slopes are pre-
sented in solid lines in Fig. 6.

Determination of m*. Consider the cantilever column subjected to general
loading at the free end as shown in Fig. 2. Assuming that the column is entirely
elastic, the differential equation may be obtained by combining Egs. (21),
(24), and (27) as

2R,+1 m q
C,x3+Co,22+Cox+C)y"+Cy =C [ 0 (J)—(J)w] 35
(Cy 2 3 )Y 5Y 5 2V(R0+1)(RO+%) P, », (35)
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” 7:‘\\\\\ \ - —Iig’::rcotx. Eqs.40 &

'40*!. \ €0=0.0012 =
(N
|

120 l \ \\

100

60

40

20

Fig. 6. Euler lengths of tapered
cantilever columns.

The boundary conditions are
y (0) =0, (36a)
y'(0) = 0. (36b)

The homogeneous equation corresponding to Eq. (35) is identical to that
corresponding to Eq. (31).

Solving the initial value problem defined by Eqs. (35) and (36) and sub-
stituting the solution into Eq. (24) leads to the equation of the elastic equi-
librium curve

1 —_—
in which
_ 2R,+1 m; a8
o 2V(Ry+1) (By+ 1) (p;)’ \38)
_ 4 b
G pf’ (38D)
8y == (Z2R,+1) ¢, (38¢)

(Rt 1) (Bt )V
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1
*—j"c‘“{ckq (k—

Cp = — %k

+cp_g(k—3)(k—4)C},

1) (k—2) Cg+cp_o[(k—2) (k—3) Uy + C5]
k=3,4,5,... (38d)

Since the common point (z*,m*) of elastic equilibrium curves is indepen-
dent of m,, it is appropriate to set m;=0 in Eqgs. (37) and (38) to obtain the
expression for m* in the form

m*

— (%) = V(Ry+1) (Ry+13) g (39)

T[Bori(l—-aa¥)] (1 —na*) P12

It is important to observe that the coefficients, ¢;,k=1,2,3,..., hence m*
are linear functions of g¢;.

The expression for m* given by Eq. (39) is valid only when z* <|1/A|.
However, the value of m* can always be obtained numerically as the value
of m for any elastic curves at x=x*. The m* —p, curves for various taper
slopes are presented in solid lines for a particular value of g, as shown in Fig. 7.
The values of m* for other values of ¢, can be obtained by linear proportioning.

Insensitivity of x* and m* to R,. It is observed that the values of * and m*
are insensitive to the variation of the parameter R,. The following approximate

expressions for z* and m* are derived on the basis of E,=3.25.

0.5 | I 0.10 ]
Exact
— — — Approx. Eq.4l Exact
0.4 — 0.08— - 4= — — Approx. £q.47 —
€,=0.0012 €0=0.0012
:o=g~gg' \ Ro=3.25
t=0. \ .
0.3 e 006 4t = 0.00!

_m:).z \
AN
N

002—==

Fig. 7. Variation of m* with p; and a.

11. Approximate Expressions for x* and m*

The values of z* and m* for B,=3.25 and ¢,=0.0012, corresponding to
A 36 steel, for taper slopes in the range — 0.025 < a < 0.025 may be approximated
by the following expressions.
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For 0<a £0.025,

T 481.1 q0-9647 (40)
Y 0.0048 p, p;0-9953/’<101-14a)1’
m* = —q, {100@P- L A H (p,,—p)}, (41)
in which
%, = 7.480+9.20a - . (42a)
B = 0.02816+1.495¢q | OF 05a=0.0125 (42D)
%, = 7.414+14.50a - (43a)
B —0.03229+1.165¢ | OF 0-012650=0.025 (43b)
(@/0.015)785
_( 44
Am (pf/030)532 4 ( )
Pje = —0.2625+32.50 (45)

and H denotes the Heaviside unit function, i.e., H(n)=0 for n<0 and
H (p)=1 for »> 0.

For —0.025<5a=<0

. m  688.1(—q)o¥ (46)
Y 0.0048 p, ~;;11007«100-587wn ’
m* = —q, % 10@niefm-e, (47)
in which

%, = 7.469+9.20a - ) (48a)

—0.025<a< —0.01:
B — 0.02605+0.867q | 0F ~0-026=a=-0.0125 (48D)
%, = 7480 +1010a | (49a)

—0.01255a<0

B, = 0.02816+0.964q =4= (49Db)

The approximate Euler lengths obtained from Eqs. (40) and (46) are plotted
as dashed lines in Fig. 6. The approximate values of m* obtained from Eqs. (41)
and (47) are plotted as dashed lines in Fig. 7. It is seen that, in both cases,
the approximation is satisfactory for practical purposes.

12. Interaction Curves

For a given set of ¢y, Ry, a, p;, and ¢,, a family of equilibrium curves, as
shown in Fig. 5 (a), can be constructed. From this family of curves, an m —m;,
curve can be plotted for a given value of x such as shown in Fig. 5(b). At
point @ or b where the slope of the m —m; curve vanishes, i.e.,

om

=0 50
o, (50)
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the column is in the state of neutral equilibrium. Thus, Eq. (50) defines the
limit of stability and is used as the inelastic stability criterion. The loci of all
maximum points such as @ and minimum points such as b corresponding to
different values of x represent, respectively, the upper and lower envelopes

€0=0.0012 m
a=0.0l €,:0.0012

Pg= 0.5
9 =0.002

Fig. 8. Influence of Ry on interaction curves.

Exact
1o _ —— — Approx. Exact
o - € =0.0012 ~——Approx.
o8 N Ro=3.25 €o=0.0012
6.6 a =0.015 Ro<3.25
90 a £0.0I5
0.4 Qg = 0.002
0.2
m S S .
2 80 o0~ 80 o *
-02}
-0.4}
-0.6
08— _ ()
-1.0 (b)
107 Exact 1.07 Exoct
—~— —Approx. ! ———Approx.

€,:0.0012 €0=0.0012

R,:3.25 Ry=3.25

° 0:-0.0015

- Pl ag= 0.002

10t -1ol

Fig. 9. Interaction curves.
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of the family of equilibrium curves as shown in Fig. 5 (a). The envelopes are
referred to as interaction curves and define the ultimate strength of the tapered
cantilever column under various end loading conditions.

It is found that the interaction curve is insensitive to the parameter R, as
shown in Fig. 8. Typical interaction curves are presented in Fig. 9.

Let ¢ and ¢f* be the values of q; which satisfy, respectively,

m* = —mp}, (51)

where m}* and m}; are, respectively, the values of m, and m, at x=x%*. The
qf —p; and q}* —p, curves for various taper slopes are shown in Fig. 10.

—

0.02

0.0t

Fig. 10. g¥ and g}*—p;y curves.

The intersection of the upper and lower envelopes is the same as the common
point (z*,m*) of the elastic equilibrium curves as long as ¢,<¢/. When ¢,
exceeds ¢*, neither the elastic equilibrium curve nor the common point exists.
However, the numerical value of m* can still be computed as if the column
were infinitely elastic. For ¢ <g¢,<¢/*, it can be shown that the point
(x*, m*) still defines the intersection of the envelopes.

For g,=q/, the —m, (x) curve, which is independent of g;, completely
governs the lower envelope and the intersection, denoted by (x**, m**), shifts
along the lower envelope toward the negative z-direction as ¢; increases.
Therefore, the maximum admissible length z** is smaller than the Euler
length x*. The computed (x*, m*), which lies outside of the admissible domain,
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will be used in the next section as a fictitious end point of the upper envelope
for obtaining approximate interaction equations. The point (z**, m**) can
be located numerically by intersecting the upper and lower envelopes.

13. Approximate Interaction Equation

The actual interaction curves constructed for R,=3.25 and ¢,=0.0012 for
taper slopes in the ranges 0.005 < |a|<0.025 may be approximated by the
following expressions.

The upper envelope is approximated by

m =W+ (m*—m)é+p[10—10 (@ —0.01) H (@ —0.01)] (53)
and the lower envelope by

m=—m+(m*+m){+p[10-10(a—0.01) H (a —0.01)] for 0=q,<g}*, (54a)
m = —m+ (mp +m) for q; z ¢} *, (54Db)

in which m =m,; (0), m}; =m, (x*), E=x/x*, x* is obtained from Eq. (40) or
Eq. (46), m* from Eq. (41) or Eq. (47) and

w=CEL-8) (552)
" =E§%§) for £2 0.5, (55D)
% =g_(‘1—§‘g7)% (550)
b= 0(1-§) 2E-g)r (56a)
n= 22(%% for £€<0.5. (56b)
C=i-peE-a (%69)

The new variables ¢ and i in Eqgs. (55) and (56) are functions of a, p,, and ¢,
and defined as follows:
For 0.005 <a£0.025,
& = 0.5254 X 10831a+w~00¢1 _ (23 p +T)¢q,, (57)
B = 3.743a0%6957 _ (. —0.4) b, + 1641000 a2685 (2 p )3 ¢, (58)
for the upper envelope, and

£ = 0.5254 X 10B31a+@-0041 1 [29 38 44 X 10-3580 4 (p, —0.4) ] q;,  (59)
= —3.743a057 — (p, — 0.4) b, + 8.464 X 10874 (2.5 p Waq, (60)
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for the lower envelope, in which

Jy = 0.4354q01401_]
¢1 = —4.249 0.9247
'l‘z = —21.47 0-6888

for
for

for

pf é 04:3
p]‘g 0'43

(6la)
(61Db)

P;=0.4 and a=0.02, (62a)

fy = —1.45 for p;=0.4 and 0=0.02, (62b)
Py = —17.48 0785 for p,20.4, (62¢)
Py = —35 for p;£0.4, (63a)
g = —15 for p;=0.4, (63Db)
Py = —0.931 x 1015494 for p;=20.4, (64a)
fy = —0.2644 x 1027672 for p;=0.4. (64Db)
For —0.025<a= —0.005
£ = 0.1012(—a) 03344 x 10095 + (1.4 — 15 p,) ¢;, (65)
B =5 —6.705 p;y 04989 ¢, (66)

for the upper envelope, and

£ =0.1012 (—a)~0354 ¢ 10(p;—0.4)¢5 +[0.0153 ( —a)—1-750 p}'337 —1]q;, (67)

i = i —6.705 2970'4949 a

for the lower envelope, in which
Yy =02-5a
s = 0.1875

g = 11.52 (—@)0-7619 5 1003745 (_ g)~0.331
g = 11.52 (—a)07010 5 1002470 4% 1 9., —1.2] for 5, 20.6.  (71b)

(68)

for pf§_0.4, (69)
for p;20.4, (70)
for p;<0.6, (7la)

The curves defined by Eqs. (53) and (54) are plotted in dashed lines along-
side the actual interaction curves in Fig. 9 and show reasonably close approxi-
mation. Being insensitive to the parameter R, the interaction curves in Fig. 9
or the approximate expressions given by Egs. (53) and (54) may be applied
for practical purposes to tapered wide-flange cantilever columns made of

A 36 steel for 2.5 < B;<4.0.

In the case where g; exceeds g7 *, the intersection of the upper and lower
envelopes, i.e., (x** m*¥*), is readily located by solving Eqs. (53) and (54b)

simultaneously.

It should be pointed out that the interaction equations presented above
do not apply for the range —0.005<a <0.005. In practice, tapered columns

in this range are hardly used.
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14. Simply Supported Columns

The approximate interaction equations, Eqgs. (53) and (54), derived for
cantilever columns can be extended to the treatment of the simply supported
tapered column shown in Fig. 11 (a). The column is subjected to axial force P

o © ©
M| i O\ g | M2=KM|
P s —— . —— s —— — —_— —
: P
Q}-— (t):r———_—ﬁo
P |
. P
GT_,_.i\.‘__.__.__.Eﬂ.leelz'Kel
: }

}-— X, — o s .
Q ' _9"_2', Fig. 11. Simply supported

—x, —4o tapered columns.

and unequal end moments M, and M, where M,=K M,, for —1 <K <1. The
simply supported column of length L may be considered as two cantilever
columns of lengths X, and X, with the fixed end located at section 0 as shown
in Fig. 11 (c). The taper slopes of the two cantilever columns are of the same
magnitude but of opposite sign and the fixed end is taken as the reference
section.

Referring to Fig. 11(c), the right segment X, is subjected to the same
type of loading as the cantilever column of Fig. 2. However, the shear force @
acting on the left segment X, is opposite in sense to that shown in Fig. 2.
Therefore, the corresponding interaction curves for the left segment must be
turned upside down as shown in Fig. 12 where the z,-axis is directed toward
the left for convenience in the combined m —x; and m —z, planes.

(x,,m,)
(x’:,-m%

Xy x2
’)X;.mi) Fig. 12. Interaction curves for a
simply supported tapered column.

The values of z; and x, at the point where the column becomes unstable
are not known a prior:. However, the relation

L
Ty + Xy = o (72)
0
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must hold true and the points (z;,m;) and (x,,m,) must both lie on the inter-
action curves. In other words, the solution of the stability problem is reduced
to solving three simultaneous algebraic equations by a trial-and-error procedure
outlined in the following. ,

Suppose p, and K are specified for a given column, and the critical value
of m, is to be determined. Referring to Fig. 11, let R, and r; be the flange-web
area ratio and the radius of gyration, respectively, of section 1 and A; =

aV(Ry+1/3)/(R,+1) in which a assumes a positive value. A trial reference
section 0 is located by assuming a value of X, /r;. The relation

Rit+}
T =
0 R1+%[1—A1(“”)] [1_)\1(&)]

71
X
}/R1 +1-X (Tll)
is readily established in view of Eq. (11), and x; and x, are then obtained,
respectively, from
Xy = (é) (ﬁ), (74a)

17 \ro
ST S WA
The nondimensional axial force with reference to section 0 is given by
R,+1
P=—— %P1 (75)
R, +1-A, (71) .

Knowing p;, the corresponding «* for the right and left segments are computed,
respectively, from Eqgs. (40) and (46). The value of m}; for each segment are
obtained from Eq. (41) or (47).

Next assume a trial value of m,, corresponding to which

My = KMy (76a)
(By+13)

o NE) | )

the nondimensional shear force is given by

L\ /Ryt
) Vst [me -n()]
The value of m*, which is a function of g,, for the right segment is obtained
from Eq. (41). In the case where m* < —m}, the intersection of the upper
and lower envelopes, (x**, m**), must be computed by the method described
in Section 13. For the left segment, m* corresponding to @ acting in the direc-
tion opposite to that shown in Fig. 11 (c) is obtained from Eq. (47).

where K =

K, (76 b)
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Table 1. Classification of Interaction Equations

Case Left Segment, a <0, z=x, Right Segment, a>0, x=x,
la ok % my=m* Egs. 53, 57, 58
1b ?§Qf§qf my Z —m* Eqgs. 54a, 67, 68 ?quéqf* my=<m* Egs. 54a, 59, 60
le 2 -7 my=m* Eqs. 53, 57, 58
1q | 0zmrzomd | my=-m* Egs. 53, 65, 66 0zm* z—mby | 1=, Egs_ 5in. 59, 60
2a my=m** BEqs. 53, 57, 58
2b ? f ar = 9f* my 2 —m* Egs. 54a, 67, 68 iqfeg 9r* My < m** Egs. 54b
2¢ - L7 my=m** Egs. 53, 57, 58
2d 0= m*=-my, mySm*=<my; | Egs. 53, 65, 66 m* < —-mpy m:§m** Eqs. 54b
Note: m is replaced by —m when Eqgs. 53 and 54 are applied to the left segment.
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Fig. 13. Column curves (A 36 steel).

(d)
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The value of ¢; determines which set of the approximate interaction curves
is to be used for the solution of a given problem. Two cases, each contains
four subcases, thus arise and are listed in Table 1.

Once the appropriate set of interaction equations is chosen for the parti-
cular case listed in Table 1, the values of the interaction curves at z; and =z,
can be computed and compared with the trial values of m, and m,, respec-

1.0 10
\ 7
0.8 08
a=0015 / \ a=0015
\ K=10 ! \ K-0.5
/
0.6 06 {
\\\ ,, \ pl:o.z
m, m,
[ 0.3

0.4\

N )
0.4 ] \ 0.4
| N 0.5
N

07— 02 o6 \\
SRR

08

/93 a:0015
0.4 K-=0
0.6 / 0.6 ; \ 0.3
L 05 \
/ | ! 4
m JA | ™ /
. , 0.5
0.4 [N | 04 A\

a=0.015
p,=0.2 K=-0.5

0.2 N\ 02— 0.6->§\ -\\
0.7 ')\\
\l\ \\
0 20 40 80 0 20 40 60 80
L/fl L /l"

(g) (h)
Fig. 13. Column curves (A 36 steel).
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tively. The trial value of m, is varied until the interaction equation for each
segment is satisfied. However, the two interaction equations may not be
satisfied for the same trial value of m,. It is necessary to vary the trial value
of X,/r; and to repeat the above-mentioned process until both interaction
equations are satisfied simultaneously. The corresponding value of m, gives
the critical end moment.

1.0
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a=0.02
K=10
0sl\
m' |=0.2
0.3
0.4 o4
0.5
\ 0.6
0.2 %
9 20 40 60 80
L/r,
(i)
1.0
/
/
08 v
/\ a=0.02
// \ K=0
06 ¢
m, I’\\ Pi=0.2
2\
! 0.3
04 \\\ a
0.2 05 >\
o.s\
0 20 40 60 80

L/r,
(k)

1.0
/
A
08 -4
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06 J p,z0.2
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0.4 \ o8
\\\ 0.6
0.2 \\\\ ?
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Fig. 13. Column curves (A 36 steel).
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The trial-and-error procedure described above, taking into account all the
cases shown in Table 1, is built into a computer program.

15. Column Curves

Column curves, i.e., m; — L[r; curves, are prepared for A 36 steel in Fig. 12
for various combinations of the parameters a, p;, and K. These curves can be
used to solve for ultimate loads of A 36 steel wide-flange columns subjected
to various end loading conditions.

It is of interest to observe that for the case where K =1, i.e., Figs. 13 (a),
(e), and (i), the carrying capacity of the columns is governed entirely by
instability. For 0< K <1, the ultimate load carrying capacity is governed
either by yielding of the large end section for short columns or by instability
for longer columns, and the demarcation line between these two regions is
shown by the dashed line in Figs. 13 (b), (¢), (f), (g), (j) and (k). When K <0,
there are three different regions, separated by the dashed lines shown in Fig.
13(d), (h), and (1), representing, from left to right, yielding of the large end
section, yielding of the small end section, and instability.

16. Illustrative Examples

A few examples illustrating the use of the approximate interaction equa-
tions as well as the column curves are given in the following.

Example 1. A tapered wide-flange cantilever column made of A 36 steel is
loaded as shown in Fig. 2. Find the critical values of the applied end moment
m if Ljry=35, Ry=3.25, a=0.015, p;=0.5, and g,=0.002.

Eqs. (40) and (41) give, respectively, z* =47.88 and m* = —0.1586. Setting
=0 in Eq. (17a) yields 7z = 0.5667 and, referring to Fig. 10, it is found that
0 <g;<g#* in this case. 4

Upper limit: Substituting a, p;, and ¢, into Eqgs. (57) and (58) give £ =0.6491
and ji=0.2710 for which n=0.6866 is obtained from Eq. (55b) and C'=0.6079
from Eq. (55c¢). Substituting £=235/47.88 into Eq. (55a) gives u=0.2629.
Finally Eq. (53) yields m = 0.2863 which is the upper limit of m.

Lower limit: Substituting a, p;, and g, into Egs. (59) and (60) give £ =0.7045
and = —0.1513, respectively, for which » =0.5073 is obtained from Eq. (55b)
and C= —0.3041 from KEq. (55c¢). Substituting £=35/47.88 into Eq. (55a)
yields = —0.1508. Finally, Eq. (54a) yields m= —0.4117, which is the lower
limit of m.

As long as —0.4117 <m < 0.2863, the column is stable. The values obtained
from the actual interaction curves, Fig. 9(b), are —0.422 <m < 0.304.

Example 2. A tapered wide-flange column made of A 36 steel is simply
supported and eccentrically loaded as shown in Fig. 11(b). Find the critical



134 K. H. LIN - E. C. ROSSOW - S. L. LEE

value of p; at which the column passes from stable to unstable equilibrium
if Ljry=40, R,=2.5,a=0.015, ey/e; =0.5. and e, =e, A,/Z,=m,/p,=0.8.

From Fig. 13 (f), an m; —p, curve for L/r, =40 is constructed as shown in
Fig. 14. The solution is obtained by intersecting this curve with the straight
line m;=0.8p,. This gives p, =0.442 as the critical value for which m, =
Py €, =0.3536.

Using p, =0.442 in solving the approximate interaction equations for m,,
by means of the trial-and-error procedure described in Section 14, yields
my = 0.3547 which verifies the graphical solution.

m, m m,
06t a=0.015 0.8+ 08+ L/r =50
’ L/r, =40 K-0
K-0.5 P, =045
.61 0.6
os {m)cr =0.465
04l [

e e e = —— —

Nmer =0.3536 -7 o4l 04 3
// : ]
0.2t 4 ' |
/// Ieﬁo‘s : 0.2 0.2+ al
2l ! i
o L7 I:/(p,)e:r=o.442 E/a=o.0|25
0.2 0.4 0.6 P .0 0.2 0.4 os » ©° 001~ 002
. . . -p C -
Fig. 14. Graphical solution of fe) m =, Curves (b} m,-a Curve
example 2. Fig. 15. Graphical solution of example 3.

Example 3. A simply supported tapered wide-flange column made of A 36
steel, as shown in Fig. 11 (a), is subjected to the end moment at the left end
in addition to the axial force, i.e., K =0. Find the maximum value of the end
moment for which the column remains stable if L/r; =50, R, =2.5, a=0.0125,
and p, =0.45.

From Figs. 13 (c), (g), and (k), the m, —p, curves for L/r; =50 are plotted
for three different values of a as shown in Fig. 15 (a). From these curves, read
off the values of m, at p, =0.45 and plot them against @ as shown in Fig. 15 (b)
from which m, =0.465 is obtained for @ =0.0125. The value obtained from the
approximate interaction equations is m, =0.472.

17. Conclusions

The method presented above leads to a more realistic evaluation of the
strength of tapered columns than is possible either from a consideration of
elastic behavior only, or from the elementary treatment of columns concen-
trically loaded into the plastic range.

The curvature functions, expressed in closed form, are also valid for box
sections provided the stress-strain relationship and cross sections are idealized
the same way.
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The excellent agreement between the exact solution and the numerical
solution for * and m* assures the applicability of the latter which is straight-
forward and less time-consuming. It is observed that the interaction curves
are insensitive to the parameter R,. For practical purposes, R,=3.25 is used
to derive the approximate interaction equations. It schould be pointed out
that for materials other than A 36 steel, the approximate expressions must
be rederived.

The carrying capacity of simply supported columns is governed by inelastic
instability, yielding at the large end, or yielding at the small end depending
on the combination of the parameters a, K and p;.

With appropriate modifications in the formulations, the present method
can be extended to investigate the inelastic stability of columns of nonlinear
taper, or elastic-strain hardening materials.
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Summary

The stability of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to combined bending and
axial loads is investigated. Torsional-flexural behavior is not considered.
Approximate interaction equations are derived for cantilever columns. These
interaction equations are used to determine the load carrying capacity of
simply supported columns subjected to arbitrary end loading conditions.
Column curves for A 36 steel are prepared. Numerical examples are given to
illustrate the use of the approximate interaction equations as well as the
column curves.

Résumé

Des études de stabilité sous sollicitation combinée flexion-compression ont
été faites sur des colonnes émincées symétriquement et linéairement, a larges
ailes et en un matériau élastoplastique. Les effets de torsion de flexion ont été
négligés. Pour les colonnes encastrées, on a développé des équations d’inter-
action approximées, qui servent a déterminer la charge de rupture de colonnes
simples, soumises & des conditions de charge arbitraires. Des courbes pour
colonnes en acier A 36 sont en préparation. Des valeurs numériques sont
données pour illustrer I’emploi des équations et des courbes.

Zusammenfassung

Symmetrisch und linear verjingte Breitflanschstiitzen aus elastoplasti-
schem Material wurden unter einer gleichzeitigen Biege- und Druckbean-
spruchung auf ihre Stabilitét untersucht. Das Biegedrillverhalten wurde dabei
nicht beriicksichtigt. Fiir eingespannte Stiitzen wurden Naherungsgleichungen
entwickelt, mit deren Hilfe man die Bruchlast von einfachen Stiitzen fiir
beliebige Lastfille bestimmen kann. Diagramme fiir Stiitzen aus Stahl A 36
sind in Vorbereitung. Es wurden numerische Werte gegeben, um den Gebrauch
der Gleichungen und der Diagramme zu veranschaulichen.
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