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Die Verschiebungsmethode in der Theorie der dünnwandigen Stäbe und
ein neues Berechnungsmodell des Stabes mit in seinen Ebenen

deformierbaren Querschnitten

Displacement-Method in the Theory of Thin-Walled Members, and a New Calcu-
lation-Model for the Thin- Walled Bars with Deformable Contours

La methode des deplacements dans la theorie des membres ä parois minces et un
nouveau modele de calcul pour des membres ä parois minces avec contour deformable

CURT F. KOLLBRUNNER NIKOLA HAJDIN
Dr. sc. techn., Dr. h. c, Zollikon, Dr. sc. techn., Professor an der

Zürich Universität Beograd

1. Einleitung

Vor über fünf Jahren begannen wir die Theorie der dünnwandigen Stäbe
systematisch zu bearbeiten.

Bisher hat sich unsere Arbeit auf die Probleme der linearen Theorie
beschränkt und ist in den Publikationen [1] bis [6] erschienen. In der Folge
beabsichtigen wir, mit unserer Arbeit weitere wesentliche Bereiche, welche mit
dem Gebiet der dünnwandigen Stäbe und ihrer Anwendung im Bauwesen
zusammenhängen, zu erfassen1).

In den letzten Jahren wurde die lineare Theorie durch eine ganze Anzahl
von Verfassern eingehend behandelt. Der Hauptzweck unserer bisherigen
Arbeit war eine Zusammenfassung und Vereinheitlichung der auf diesem
Gebiete gewonnenen Erkenntnisse unter besonderer Berücksichtigung ihrer
praktischen Anwendung zu schaffen.

Einige Ergebnisse dieser in den erwähnten Monographien behandelten
Arbeit stellen unseres Erachtens nach einen Beitrag zur Theorie dieser
Konstruktionen dar:

In der Arbeit [3] ist die Statik der Systeme dünnwandiger Stäbe mit offenem
Profil als eine Erweiterung der Lehren der klassischen Statik gebracht. Der

x) Ein Teil dieser Probleme wurde im Artikel [7] erwähnt.
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Aufbau der Theorie erfolgt in erster Linie durch die konsequente Anwendung
des Prinzips der virtuellen Arbeit bei der Variation der Spannungen sowie
durch die Entwicklung der verallgemeinerten Kraftgrößenmethode.

Eine sehr ausführliche Übersicht und Darlegungen der einzelnen Methoden
für die praktische Berechnung dünnwandiger Stäbe mit geschlossenem Profil
wurde in der Publikation [4] gebracht.

In dieser Veröffentlichung wurde ein besonderes Gewicht auf die
Erläuterung der Verfahren von Benscoter [7], Umanski [8] und Heilig [9],
sowie auf den Vergleich derselben mit der genaueren Theorie von Wlassow
[10] gelegt.

Die Ergebnisse dieser Vergleiche sind vom praktischen Standpunkt aus
interessant, doch können wir an dieser Stelle nicht näher auf sie eingehen.

Eine ausführliche kritische Darlegung des Berechnungsverfahrens von
Kubitzki, welches auf dem sog. Schubfeldschema beruht, wurde im letzten
Kapitel der Publikation [4] gebracht.

Die Theorie des langen prismatischen Faltwerks bzw. des dünnwandigen
Stabes mit in seinen Ebenen deformierbaren Querschnitten unter Anwendung
der Verschiebungsmethode wurde eingehend in der Arbeit [5] behandelt. Die
in dieser Publikation dargelegte Theorie konnte in einer genügend allgemeinen
Form entwickelt werden, so daß in ihr als Sonderfälle die sogenannten Theorien
des steifknotigen und des gelenkigen Faltwerks sowie die klassische Theorie
der Wölbkrafttorsion enthalten sind.

Abgesehen von diesen Sonderfällen ist es, unabhängig von der für die
Analyse angewendeten Methode, außerdem noch möglich zwei Berechnungsmodelle

aus dem allgemeinen Berechnungsmodell zu gewinnen.
Das erste kann als eine Erweiterung der klassischen Theorie der Wölbkrafttorsion

auf Querschnitte, deren Wandstärke nicht ausgesprochen klein im
Vergleich zu seinen übrigen linearen Abmessungen ist, angesehen werden2).

In diesem Beitrag wird das zweite Berechnungsmodell behandelt, welches
eine Theorie des Faltwerkes unter Berücksichtigung auch der Torsionsmomente
ermöglicht.

2. Verformung des Stabes

Wir betrachten einen geraden dünnwandigen Stab mit offenem Querschnitt.
Die beliebig geformte Profilmittellinie ersetzen wir durch einen Polygonzug.
Die Wandstärke t zwischen zwei Knoten sei konstant.

Die Lage eines beliebigen Punktes auf der Mittelfläche ist durch die Koordinaten

s und z bestimmt. Die Koordinate s ist die längs der Profilmittellinie
gemessene Entfernung des Punktes von einer vorher bestimmten Erzeugenden

2) Siehe die Arbeit [5], Kapitel 10.
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und z dessen Abstand von einem beliebigen Querschnitt, gemessen längs der
Stabachse (Fig. 1).

m=6

P(xp,yP)

ynp

Fig. 1.

Den Abstand eines beliebigen, nicht auf der Mittelfläche gelegenen Punktes
von derselben gemessen in Richtung der inneren Normalen bezeichnen wir
mit e.

Außer dem Koordinatensystem s, z und e führen wir das Kartesische
Koordinatensystem x, y und z ein, wobei wir, der Einfachheit halber, für die
Achsen x und y die Hauptträgheitsachsen des Querschnitts wählen.

Die Verschiebungen der Punkte der Mittelfläche in den Richtungen s und z

bezeichnen wir mit v und w und die Verschiebungskomponenten in den

Richtungen x und y mit | und rj.
In bezug auf die Verformung der Mittelfläche des Stabes treffen wir die

folgenden Voraussetzungen:

1. Die den Stab bildenden Platten erleiden in der Querrichtung keine

Dehnungen, d.h. €s 0.

2. Die Gleitverzerrung yzs in der Mittelfläche des Stabes wird vernachlässigt.

Die erste Voraussetzung besagt, daß die Verschiebungen der Knoten der
Profilmittellinie in der Ebene des Querschnittes gleich sind den entsprechenden
Verschiebungen von Knoten einer kinematischen Kette, deren einzelne Glieder

aus in diesen Knoten gelenkig miteinander verbundenen Stäben bestehen,
deren Achsen mit den Seiten der polygonalen Profilmittellinie zusammenfallen.

Die Zahl der voneinander unabhängigen Verschiebungen Vi Yi (z)

(i 1, 2. .n) ist gleich dem Freiheitsgrad der kinematischen Kette.
Wir wählen für die ersten drei unabhängigen Parameter die Verschiebungen

des Querschnitts in den Richtungen x und y und dessen Verdrehung um den

beliebigen Punkt P (Fig. 1):

*Wo> V2 V0> K cpp. (1)
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Die übrigen n — 3-Verschiebungen beschreiben die Formänderung des
Querschnittes in seiner Ebene (siehe z.B. das Verschiebungsdiagramm in der

Fig. 2 a) für den Fall, daß wir die vollkommene Starrheit der Platten in der
Querschnittsebene und ihre gelenkige Verbindung in den Knoten voraussetzen.

b)y< =i- mr6
m=6

i>3
a) 60

c 4P

k=1

;=7

Fig. 2.

Die Verschiebung des beliebigen Punktes in Richtung der Tangente an die
Profilmittellinie können wir in der folgenden Form ausdrücken:

v(z,s)= 2 Vi(z)v^(s).
i l

Die Funktion v^ stellt die Verschiebungen v für Vi= 1 dar (Fig. 2 a).
Insbesondere ist:

i/D — sina, #(2) eosa, v^ — hV̂p,

(2)

(3)

wo a der Winkel ist, welchen die positive y-Achse mit der Profilmittellinie
einschließt und hp der Abstand der Tangente an die Profilmittellinie von P ist.

Aus der zweiten Voraussetzung folgt:

dw dv
—-=-—- bzw. w (z,
ds dz -^~ds+W0(z).

Durch Einsetzen des Ausdrucks (2) für v erhalten wir:

w(z,s) -Z V!(z)^(s)
i 0

,(0) i, w(i) J f/f> ds und 70' -W0 (z)
o

wo:

sind. Insbesondere ist:
s

cü(1) x, o0 y, o>(3) — §hPds o)p.
o

Wir wählen ein System orthogonaler Funktionen aj(£(s), i 0,1,2. .n:

(4)

(5a,b,c)

«2>=i>

und
i-l

X,

e

™%) y

<*><§ o>«> + 2 ßijco$, i 3,±...n.
j=0

(6)

(7)

(8)
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Aus der Orthogonalitätsbedingung erhalten wir:

jta)<f>w(gd8
ßiJ SSt[a>$]2ds> (9)

s

wobei sich die bestimmten Integrale im Zähler und Nenner über die gesamte
Länge der Profilmittellinie erstrecken.

Statt v^ erhalten wir:

v^ v^, für i =1,2

und «#> v^ + V ß.. v%\ für i 3, 4. n.

Den neu eingeführten Funktionen entsprechen die neuen, verallgemeinerten
Parameter @i (z):

&i Vt, für i l,2

und ®i=Vi + %Ilßij®ii> für i 3,4...n.
i=i

Man kann leicht ersehen, daß oj{$=Q sie sog. normierte sektorielle Koordinate
und v{Z) h der Abstand der Tangente an die Profilmittellinie vom
Schubmittelpunkt D ist.

Mit den neu eingeführten Funktionen erhalten wir statt der Ausdrücke
(2) und (4) für v und w:

n
v(z,s) I ©«(«)«»(«), (12)

i 0

«> (*,*) -2 e; (2) «$(«), (i3)

wobei v® =0 ist. (14)

Die Parameter &i bestimmen vollständig die Verschiebungen der Knoten
k(k= 1, 2. .n) in der Ebene des Querschnittes, wobei wir auch die Enden der
Profilmittellinie zu den Knoten zählen (siehe Fig. 1).

Für die Verschiebung u in Richtung der inneren Normalen zur Mittelfläche
führen wir eine Näherungslösung von der Form ein:

n in
u(z,s) Z®i^)^(s)+Z^k(z)u%Hs) + up(z,s). (15)

i=0 fc=l

In diesem Ausdruck bedeuten &k die unbekannten, durch die Formänderung
des Querschnittes hervorgerufenen Knotenverdrehungen und u($ sowie u(£>

bekannte, durch die folgenden Ausdrücke bestimmte Funktionen:

u^ 0, u™ cos oc, u(2) sin a, u(® hne 0 @ 0
m K N '

^) 2 2>$<r), » 4,5...»,
k=lr=l
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und

r=l
R

Up 2j ukr,p '

(17)

(18)

Die in den Ausdrücken (15) bis (17) neu eingeführten Bezeichnungen haben
die folgende Bedeutung:

hn: Abstand der Normalen zur Mittelfläche vom Schubmittelpunkt D;
affil : Projektion der Verschiebung des Knotens k in Richtung der Normalen

auf die Platte kr, welche die Knoten k und r verbindet, für den Zustand
6^ 1, (i 4,5...n);

uffi: definiert die elastische Fläche des unendlich langen, an den Rändern
k und r (Fig. 3) eingespannten Plattenstreifens für den Fall, daß die
Kante k die Einheitssenkung erleidet.

u^) _ frk \

Kr L
1

skr(Skr~~Srk)

Kr
(19)

B: Gesamtzahl, r 1, 2. R der an den Knoten k angeschlossenen Platten.

Die im Ausdruck (17) angeführte Funktion

u{^\ definiert die elastische Fläche des unendlich langen, an den Rändern k
und r eingespannten Plattenstreifens für den Fall, daß die Kante k

(Fig. 4) die Einheitsverdrehung erfährt.

w(kr) —
Skr srk

0 h2°kr
(20)

Die Funktion

ukr definiert die elastische Fläche des erwähnten Plattenstreifens zufolge
der in der Richtung der Normalen zur Mittelfläche wirkenden, gegebenen
Belastung pn.

Dur bkr

(kr)
$k=1

A
(kr)

bkr -^m— bk(kr)

Fig. 4.

Jj>kr
r.(kr) Fig. 3
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3. Schnittkräfte. Gleichgewichtsbedingungen. Grundlegende Differential¬
gleichungen des Problems und Randbedingungen

Hinsichtlich der Schnittkräfte wollen wir folgende Vereinfachungen annehmen:

a) Die Biegungsmomente mz in der Längsrichtung werden vernachlässigt,
ebenso wie der Einfluß der Krümmung u" in der Längsrichtung auf die
Biegungsmomente ms in der Querrichtung.

b) Die Torsionsmomente mzs zwischen je zwei Knoten mögen konstant und
proportional der spezifischen Verdrehung der diese Knoten verbindenden
Sehne sein.

Für die Schnittkräfte nz, mzs und ms erhalten wir, unter Berücksichtigung
dieser Vereinfachungen sowie der Voraussetzungen über die Verformung des
Stabes und des Hookesehen Gesetzes:

t3 fi
nz E'tw', mzs E'~(1-v)<> ^s ~Efj^ü, (21)

wo ü0 die Verdrehung der Sehne zwischen zwei benachbarten Knoten und

W -^-ä ist.

Durch Einsetzen der Ausdrücke (15) und (13) für u und w in die Gleichung
(21) erhalten wir:

n

'.= -^(l-')E»Hfl.. (22)
*-Zi y — ni=0

E' t3 I n\ I n m \
- 2 8^+Z«-\i 0 k=l *7

m R
™ Ä§>0 «g,o «8,o 0, Äg>0=l, <0=2 2«Sg«gJ (23)

ft lr=l
t3

und w8iP=-E, — ü,p (24)

bedeuten. Für ü(^ (Fig. 3) erhalten wir:

ükr

Wir schneiden aus dem Stabe ein durch die Querschnitte z0 und z0 + dz begrenztes

Element heraus und lassen auf dasselbe die entsprechenden Kräfte wirken
(Fig. 5). Die beliebige Belastung mit den Komponenten pz, ps und pn greift
in den Punkten der Mittelfläche an.
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Die Gleichgewichtsbedingungen stellen wir unter Anwendung des Prinzips
der virtuellen Verschiebungen auf:

W+Ü 0, (26)

wo W die Arbeit der äußeren und U die Arbeit der inneren Kräfte bei den
gegebenen virtuellen Verschiebungen der Punkte des Elementes sind.

pr

mzsds

rucds
rvnds\ nzds(ms dz)dsm2S

nz+nzdz)ds^7^

(run+n^ndzids Fig. 5.
(n2S + nzsdz)ds

Die Punkte der Profilmittellinie des Querschnittes z z0 erfahren die
virtuellen Verschiebungen ü, v und w. Für den Querschnitt z z0 + d z betragen
diese Verschiebungen ü + ü'dz, v + v' dz und w—w'dz.

Für die Arbeiten W und U, bezogen auf die Einheit der Stablänge, erhalten
wir:

W — j(nznü + nzsv + nzw — mzsü)fds + j(pnü + psv + pzw)ds,
s s

U — J (nzwf — 2 mzs ü' + ms ü) ds.
s

Durch Einsetzen dieser Ausdrücke in die Gleichung (26) erhalten wir:

l (nznü + n'zsv + n'zw — mzs ü + nzn ü' + nzs v' + mzs u' +msü)ds
s

+ J (Vn ü + Ps v + Vz w) ds 0
(27)

Für die virtuellen Verschiebungen ü, v und w wählen wir Ausdrücke von
der gleichen Form wie die Ausdrücke (12), (13) und (15) für up 0, jedoch
führen wir statt ©i und <Pk die Parameter ®i und @k als beliebige Funktionen
der Koordinate z ein. Diese sind, allgemein genommen, unabhängig von der
wirklichen Belastung des Stabes.

Auf diese Weise erhalten wir:

X ®i U Kn u<§ + n'zs t$ - mfzs ü<§ + ms £g>) ds + J (ps v$ + pn u<§) ds]
i=0 s s

n _
+ 2 ®'i tJ" (- K «$ + nzn u<§ + nzs t# + mzs ü'§) ds - J ps dg ds]

i 0 s s

m
+ 2 #* [/ (Kn «g? - m'zs ü<£> + ms ü$) ds + J pn «g> ds]

fc=l s s

m
+ 2 *'*CK.«g? + nmuf]ds 0.

fc l 8

(28)
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Die Befriedigung dieser Gleichung erfordert, daß die vier Ausdrücke in den

eckigen Klammern für jedes i (i 0,1, 2. .n) und für jedes k(k 1,2. .m)
Null sein müssen.

Die Nullsetzung dieser Ausdrücke ergibt, nach dem Einsetzen der
Gleichungen (22) für die Größen nz, mzs und ms, das folgende System von
Gleichungen :

n m

j (n'zn v$ + n'zs t%) ds E'[Z (b« &} - 2 Kb% ©/) + 2 c„$j\
S 7=0 1=1

- J (Ps *§ + Pn «$ + ™s,p ü'g) ds,
s

n
J (nzn <+ nzs eg>) da W [ - au &'! + 2 K 2 b% 0'}] + J pz dg ds,

s 7 0 s

i 0, \,2...n, (29a—d)
7i m

j<„ «g> cfe #' [ 2 %• e, + 2 d„0j\ - /k, «g>+pB««?) <b,
s 7=0 Z=l s

1»,»*^* =0>
s

k 1,2.. .m.

In diesen Gleichungen bedeuten:

K W a ti=jt[o>g)*da, h-=±jt*ügü%0 ^J^>0^>, (30a-c)
S SSh-Jzfpvßüe**' Cii=^jt3ü(gü®ds, (30d,e)

%• ^ jpugtigda, d„ ±jfiü$ü%da. (30f,g)

Die bestimmten Integrale der Ausdrücke (30b-g) erhalten wir, unter
Berücksichtigung der Gleichungen (16), (23) für i 4:,5...n sowie (17) als
lineare Kombinationen von Größen (Fig. 3 und 4):

f Mn! Ünl d8 -l V,™ iß*> ds T-1
J 00 00 J ©0 00 qkr

Sü^u^da - Jfig?«g»d* ~,ukr

J fig« fig* <fe - J fig* fi<|*) <fe - J fi^> fig» ds= -~,®kr

(31)

J fig»-) vt*>da -£-, J* fig* ü«j*> ds= -£-,
°kr °kr

wobei die bestimmte Integration in den Grenzen s&r 0 und skr bkr ausgeführt

wurde.
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Durch Elimination erhalten wir aus dem Gleichungssystem (29):

««ÖT ^r^o. für » 0,1, 2

und

(32)

(33)

(34)

««®7 + 2 (-4kb%©'! + bti0j) + 2 z«*t w,Ai0,
3 1=1 &

n m \2hjfy+ 2 ^0, -=-,Bk0,
7 3 1=1 &

i 3,4:...n, k=l,2...m,
wo: Ai0 Jmsp^)^+J(^n^) + ^^) + ^>^)^

s s

und Bk 0 J* msp ä|> cfe + f pn^ ds
s s

sind.
Es kann gezeigt werden, daß sich diese Glieder auch in der folgenden Form

ausdrücken lassen3):
m R

AiO=Z ZPkr^+S(Ps^0+P>0)d^
k=lr=l s (35)

R '
Bk0 =Xmk>

r=l
wo (Fig. 6) pkr die Knotenlast im Knoten k und mkr das Einspannmoment des

Plattenstreifens kr in diesem Knoten zufolge der gegebenen Belastung pn sind.

muM
(kr)

Pn

C- L_I

t "Pkr ¦Or
Fig. 6.

In Hinblick auf die Bedeutung der Parameter Vi @i für i 0,1 und 2

[Gleichungen (1)] sowie unter Berücksichtigung der Werte a>(0), a>(1) und a/2)

[Gleichungen (5a) und (6)], ferner, weil zufolge Gleichung (5c) V0' — W0(z)

ist, können wir die Gleichungen (32) in der folgenden Form anschreiben:

E'FW0* -p„ E'Ixxft Vx + mx, E'IvyV': py + m'y, (36)

wo: pz §pzds, px /(— pnsinoi + pseos(x)ds, mx $pzxds,
s s s (37)

Py j(pncosoc-pssina)ds, my \pzyds
s s

sind.
Die Gleichungen (36) sind offenbar die Differentialgleichungen für die Axial-

3) Siehe [5], Kapitel 4.



VERSCHIEBUNGSMETHODE IN DER THEORIE DER DÜNNWANDIGEN STÄBE 97

und Biegungsbeanspruchung des dünnwandigen Stabes mit in ihren Ebenen
nichtdeformierbaren Querschnitten.

Die Randbedingungen für das Gleichungssystem (34) können durch
Verschiebungen, durch Kräfte oder durch beide Arten von Einwirkungen gegeben
sein.

Die Verschiebungen der Stabenden müssen in der gleichen Form gegeben
sein wie die Verschiebungen u, v und w der Punkte der Mittelfläche. Die
Randbedingungen können auf die Ausdrücke:

6t =0f, ©;. 6>r (38)

zurückgeführt werden, wobei @f und &f' Parameter sind, welche durch die
gegebenen Verschiebungen der Punkte des Endquerschnitts bestimmt werden.

Die Randbedingungen durch die Kräfte stellen wir unter Anwendung des

Prinzips der virtuellen Verschiebungen auf:

J[Kn~<n) u + Ks~n*)v + (nz -n?)w- W* - m*s )u\ds 0.

Die Größen n*n, n*s und n* sind die äußeren, am Endquerschnitt angreifenden
Kräfte und m% ist das äußere, verteilte Torsionsmoment.

Durch Einsetzen der Ausdrücke (22) für nz und mzs und Verwendung
derselben Ausdrücke für die virtuellen Verschiebungen wie vorher, erhalten wir,
nach der Elimination der Kräfte nvn und n„„:

1

*ii07-±Klib*8i -1jnQtE' a«9l E-,m

wo: Qi - J Pz o>{$ *? + j" «n u@o + nts v$ ~ m* Uq o) ds,

Mf $n*aj$,(«/ sind.

(39)

(40)

Die Lösung des Problems wird auf die Integration des Systems der
Differentialgleichungen (34) zurückgeführt.

Die unbekannten Größen ©i und &k werden als Komponenten der
Spaltenvektoren 0 und 0 aufgefaßt:

0

®3

e.

# $2

0̂m

(41)

Aus den Koeffizienten au bilden wir die Diagonalmatrix A und aus den
Koeffizienten b^ und b^ die quadratischen Matrizen B° und B von der
Ordnung n — 2. Ferner bilden wir aus den Koeffizienten cü die Rechtecksmatrix C
mit n — 2 Zeilen und m Spalten und aus den Koeffizienten dkl die quadratische
Matrix D von der Ordnung m.

Das Gleichungssystem können wir nun in der folgenden Form schreiben:

AB" ±kB«0' + BO+C$ ^,Ao, CO + D$ WB0, (42)
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wo C die transponierte Matrix von C ist und

^30 B10

A ^40
B0

B20

An0 Bm0
sind.

ir-4\.Durch Elimination aus dem System (42) erhalten wir4)

A0 -±KB<>0' + H0 ^rHo,
E

wo

sind.

H=B-CD * C und H0 A0-CD^B0

Die Randbedingungen (38) und (39) lauten in Matrizenform:

0 0*, 0=0*'
und A0"-±kB«0' =-i-ö*? Ae* ~M*,
wo Q* und M* Vektoren mit den Komponenten Qf und Mf sind.

(43)

(44)

(45)

(46)

(47)

b

e

h

K
ms, mz

™sz

™>z ,my
ns, ns

nzs

nsn > nzn

Pn, Ps'Pz
Px, PyPz
s

t

u

Liste der Bezeichnungen

Breite der einzelnen Platte
Abstand von der Mittelfläche in Richtung der Normalen
Abstand der Tangente zur Profilmittellinie von der Drehachse
Abstand der Normalen zur Profilmittellinie von der Drehachse

Biegemomente der einzelnen Platte
Torsionsmoment der einzelnen Platte
Äußere verteilte Biegemomente
Normalkräfte der einzelnen Platte
Schubkraft der einzelnen Platte
Querkräfte der einzelnen Platte
Flächenbelastungen in den Richtungen n, s, z

Linienbelastungen in den Richtungen x, y, z

Koordinate der Profilmittellinie
Wandstärke
Verschiebung der Punkte der Mittelfläche in Richtung zu
ihrer Normalen
Verschiebung der Punkte der Mittelfläche in Richtung
der Tangente zur Profilmittellinie

4) Die allgemeine Lösung dieser Gleichung wird in der Publikation [5], Kapitel 5,

gezeigt.
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w Verschiebung in Richtung der Stabachse

x, y, z Kartesische Koordinaten der Punkte der Mittelfläche
C Schwerpunkt
D Schubmittelpunkt
E Elastizitätsmodul
F Querschnittsfläche
G Schubmodul
Ixx $x2tds Flächenträgheitsmoment

F
Iyy §y2tds Flächenträgheitsmoment

F
U, V, W, @ Verschiebungsparameter
U Arbeit der virtuellen inneren Kräfte
W Arbeit der virtuellen äußeren Kräfte
oc Winkel
yzs Gleitung im Punkte der Mittelfläche

en, e6, ez Dehnungen der Mittelfläche
v Poissonsche Zahl
|, 7] Verschiebungskomponenten in den Richtungen x und y
cp Verdrehung des Stabes

co Sektorielle Koordinate, Einheitsverwölbung
Q Normierte sektorielle Koordinate
0 Verdrehung des Knotens
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Zusammenfassung

Der Artikel bezieht sich auf die Theorie des Faltwerks, in welcher außer
den Biegemomenten in der Querrichtung zum Unterschied der klassischen
Faltwerkstheorie auch die Torsionsmomente berücksichtigt werden.

Dank des Umstandes, daß für die grundlegenden Unbekannten die

Verschiebungsparameter eingeführt werden, ermöglicht diese Theorie eine relativ
einfache Berechnung.

Im Unterschied zum in der Faltwerkstheorie üblichen Verfahren der
Zerlegung des Systems in die einzelnen Platten, wird in der gebrachten Theorie
die Deformation der Stab-Schale einheitlich für das ganze Tragwerk beschrieben.

Man erhalt schließlich ein System von Differentialgleichungen, welches
ebenso wie die Randbedingungen in Matrizenform dargestellt wird.

Summary

The article treats the theory of folded structures which, contrary to the
classical theory, takes into account also the torsional moments, besides the
transversal bending moments.

This theory permits a relatively easy calculation in introducing for the
basic unknowns the deflection parameters.

Contrary to the ordinary procedure of decomposing the system into
individual plates, the present theory explains the deformation of the beam-shell

uniformly for the whole structure. Thus, we receive finally a system of differential

equations which can be written in form of matrices in the same way as

the boundary conditions.

Resume

L'article traite de la theorie des voütes polygonales qui, contrairement ä la
theorie classique, tient egalement compte du moment de torsion en plus du
moment de flexion transversal.

Cette theorie permet un calcul relativement facile, en introduisant pour les

inconnues de base les parametres de deplacement.
Contrairement au procede habituel de decomposition des voütes polygonales

en plaques isolees, la presente theorie decrit la deformation de la poutre-
coque uniformement pour toute la construction. On obtient ainsi finalement
un Systeme d'equations differentielles, qui peut etre mis sous la forme de

matrice, tout comme les conditions de bord.
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