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Die Verschiebungsmethode in der Theorie der diinnwandigen Stibe und
ein neues Berechnungsmodell des Stabes mit in seinen Ebenen
deformierbaren Querschnitten

Displacement-Method in the Theory of Thin-Walled Members, and a New Calcu-
latvon-Model for the Thin-Walled Bars with Deformable Contours

La méthode des déplacements dans la théorie des membres a parois minces et un
nouveaw modeéle de calcul pour des membres & parois minces avec contour déformable

CURT F. KOLLBRUNNER NIKOLA HAJDIN
Dr. sc. techn., Dr. h. c., Zollikon, Dr. sc. techn., Professor an der
Zurich Universitdt Beograd

1. Einleitung

Vor iiber funf Jahren begannen wir die Theorie der diinnwandigen Stabe
systematisch zu bearbeiten.

Bisher hat sich unsere Arbeit auf die Probleme der linearen Theorie be-
schrinkt und ist in den Publikationen [1] bis [6] erschienen. In der Folge
beabsichtigen wir, mit unserer Arbeit weitere wesentliche Bereiche, welche mit
dem Gebiet der diinnwandigen Stiabe und ihrer Anwendung im Bauwesen
zusammenhéingen, zu erfassen?).

In den letzten Jahren wurde die lineare Theorie durch eine ganze Anzahl
von Verfassern eingehend behandelt. Der Hauptzweck unserer bisherigen
Arbeit war eine Zusammenfassung und Vereinheitlichung der auf diesem
Gebiete gewonnenen Erkenntnisse unter besonderer Beriicksichtigung ihrer
praktischen Anwendung zu schaffen.

Einige Ergebnisse dieser in den erwdhnten Monographien behandelten
Arbeit stellen unseres Erachtens nach einen Beitrag zur Theorie dieser Kon-
struktionen dar:

In der Arbeit [3] ist die Statik der Systeme diinnwandiger Stabe mit offenem
Profil als eine Erweiterung der Lehren der klassischen Statik gebracht. Der

1) Ein Teil dieser Probleme wurde im Artikel [7] erwéahnt.
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Aufbau der Theorie erfolgt in erster Linie durch die konsequente Anwendung
des Prinzips der virtuellen Arbeit bei der Variation der Spannungen sowie
durch die Entwicklung der verallgemeinerten KraftgroBBenmethode.

Eine sehr ausfiihrliche Ubersicht und Darlegungen der einzelnen Methoden
fiir die praktische Berechnung diinnwandiger Stdbe mit geschlossenem Profil
wurde in der Publikation [4] gebracht.

In dieser Veroffentlichung wurde ein besonderes Gewicht auf die Erldu-
terung der Verfahren von BENSCOTER [7], UmanskI [8] und HEerrie [9],
sowie auf den Vergleich derselben mit der genaueren Theorie von Wrassow
[10] gelegt.

Die Ergebnisse dieser Vergleiche sind vom praktischen Standpunkt aus
interessant, doch konnen wir an dieser Stelle nicht naher auf sie eingehen.

Eine ausfiihrliche kritische Darlegung des Berechnungsverfahrens von
Kusirzki, welches auf dem sog. Schubfeldschema beruht, wurde im letzten
Kapitel der Publikation [4] gebracht.

Die Theorie des langen prismatischen Faltwerks bzw. des diinnwandigen
Stabes mit in seinen Ebenen deformierbaren Querschnitten unter Anwendung
der Verschiebungsmethode wurde eingehend in der Arbeit [5] behandelt. Die
in dieser Publikation dargelegte Theorie konnte in einer geniigend allgemeinen
Form entwickelt werden, so daB in ihr als Sonderfille die sogenannten Theorien
des steifknotigen und des gelenkigen Faltwerks sowie die klassische Theorie
der Wolbkrafttorsion enthalten sind.

Abgesehen von diesen Sonderfillen ist es, unabhéingig von der fiir die
Analyse angewendeten Methode, auflerdem noch méglich zwei Berechnungs-
modelle aus dem allgemeinen Berechnungsmodell zu gewinnen.

Das erste kann als eine Erweiterung der klassischen Theorie der Wolbkraft-
torsion auf Querschnitte, deren Wandstérke nicht ausgesprochen klein im
Vergleich zu seinen iibrigen linearen Abmessungen ist, angesehen werden 2).

In diesem Beitrag wird das zweite Berechnungsmodell behandelt, welches
eine Theorie des Faltwerkes unter Beriicksichtigung auch der Torsionsmomente
ermoglicht.

2. Verformung des Stabes

Wir betrachten einen geraden diinnwandigen Stab mit offenem Querschnitt.
Die beliebig geformte Profilmittellinie ersetzen wir durch einen Polygonzug.
Die Wandstédrke ¢ zwischen zwei Knoten sei konstant.

Die Lage eines beliebigen Punktes auf der Mittelfliche ist durch die Koordi-
naten s und z bestimmt. Die Koordinate s ist die lings der Profilmittellinie
gemessene Entfernung des Punktes von einer vorher bestimmten Erzeugenden

2) Siehe die Arbeit [5], Kapitel 10.
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und z dessen Abstand von einem beliebigen Querschnitt, gemessen lings der
Stabachse (Fig. 1).

4 |

1. |
i

i Fig. 1.
P ty

hn,

Den Abstand eines beliebigen, nicht auf der Mittelfliche gelegenen Punktes
von derselben gemessen in Richtung der inneren Normalen bezeichnen wir
mit e.

AuBler dem Koordinatensystem s, z und e fihren wir das Kartesische
Koordinatensystem z, ¥ und z ein, wobei wir, der Einfachheit halber, fiir die
Achsen x und y die Haupttrigheitsachsen des Querschnitts wihlen.

Die Verschiebungen der Punkte der Mittelfliche in den Richtungen s und 2
bezeichnen wir mit » und w und die Verschiebungskomponenten in den Rich-
tungen z und y mit £ und 7.

In bezug auf die Verformung der Mittelfliche des Stabes treffen wir die
folgenden Voraussetzungen:

1. Die den Stab bildenden Platten erleiden in der Querrichtung keine Deh-
nungen, d.h. ¢,=0.

2. Die Gleitverzerrung v, in der Mittelfliche des Stabes wird vernachlissigt.

Die erste Voraussetzung besagt, dafl die Verschiebungen der Knoten der
Profilmittellinie in der Ebene des Querschnittes gleich sind den entsprechenden
Verschiebungen von Knoten einer kinematischen Kette, deren einzelne Glie-
der aus in diesen Knoten gelenkig miteinander verbundenen Stidben bestehen,
deren Achsen mit den Seiten der polygonalen Profilmittellinie zusammenfallen.

Die Zahl der voneinander unabhéngigen Verschiebungen V, = V;(z)
(t=1,2...n) ist gleich dem Freiheitsgrad der kinematischen Kette.

Wir wihlen fiir die ersten drei unabhingigen Parameter die Verschiebungen
des Querschnitts in den Richtungen x und v und dessen Verdrehung um den
beliebigen Punkt P (Fig. 1):

Vl=§0> Vz=’70> V= op. (1)
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Die iibrigen n— 3-Verschiebungen beschreiben die Forménderung des Quer-
schnittes in seiner Ebene (siche z.B. das Verschiebungsdiagramm in der
Fig. 2a) fir den Fall, daBl wir die vollkommene Starrheit der Platten in der
Querschnittsebene und ihre gelenkige Verbindung in den Knoten voraussetzen.

m=6 "\,‘—'-‘1" b) M=k
i>3 i

a)

Fig. 2.

Die Verschiebung des beliebigen Punktes in Richtung der Tangente an die
Profilmittellinie konnen wir in der folgenden Form ausdriicken:

v(s) = 3 V@) ¥0(s). (2)

Die Funktion +® stellt die Verschiebungen v fiir V;=1 dar (Fig. 2a).
Insbesondere ist:

D = —gin«, v® = cos o, v® = hp, (3)

wo « der Winkel ist, welchen die positive y-Achse mit der Profilmittellinie
einschlieBt und %, der Abstand der Tangente an die Profilmittellinie von P ist.

Aus der zweiten Voraussetzung folgt:
S

ow ov ow
= bzw. w(z,s)=——fa—8d8+WI)(2)-
0

Durch Einsetzen des Ausdrucks (2) fiir v erhalten wir:

n
w(z,8) == 2 V/ (2) 0@ (s) (4)
i=0 ‘
wo: ow® =1, w® = fsv(i)ds und V) = — W, (?) (5a,b,c)
0

sind. Insbesondere ist:

ol =g, w? =y, w(3)=j§hpds = wp. (6)
0

Wir withlen ein System orthogonaler Funktionen @ (s), 1=0,1,2...7n:

w(@°)= 1, w‘é)=x, wg)=y (7)

i—1
und wg) = w(’)—}— Z B’L] w(j), 9 = 3, 4...n. (8)
7=0
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Aus der Orthogonalitdtsbedingung erhalten wir:
f tw® wdds

Bi; = st (9)

wobei sich die bestimmten Integrale im Zahler und Nenner iiber die gesamte
Lénge der Profilmittellinie erstrecken.
Statt @ erhalten wir:

@) — @) fir ¢=12
Vg = ir ¢ =1, (10)

und (l)—fu(’b)+218 v, fur i=3,4...n.

Den neu eingefiihrten Funktionen entsprechen die neuen, verallgemeinerten
Parameter O, (z):

fir ¢=1,2

I

O (11)
e

I

V;
i1

U.Ild I/’l:+ZB’L]@]7 fﬁI‘ 7;=3,4:...n.

i=1
Man kann leicht ersehen, daB @) =12 sie sog. normierte sektorielle Koordinate
und v®=h der Abstand der Tangente an die Profilmittellinie vom Schub-
mittelpunkt D ist.

Mit den neu eingefithrten Funktionen erhalten wir statt der Ausdriicke
(2) und (4) fir » und w:

v(z,8) = Z @z (2) ’Ug) (s), (12)
i=0
w(z,8) = —Z 0; (2) WP (s), (13)
wobei e =0 ist. (14)

Die Parameter @; bestimmen vollstindig die Verschiebungen der Knoten
k(k=1,2...n) in der Ebene des Querschnittes, wobei wir auch die Enden der
Profilmittellinie zu den Knoten zihlen (siehe Fig. 1).

Fiir die Verschiebung « in Richtung der inneren Normalen zur Mittelfliche
fithren wir eine Naherungslosung von der Form ein:

u(z,8) = Z O, (2) u@ (s)+ Z Dy, () wP(s) +uy (2,8). (15)

In diesem Ausdruck bedeuten @, die unbekannten, durch die Forménderung
des Querschnittes hervorgerufenen Knotenverdrehungen und u@ sowie u{)
bekannte, durch die folgenden Ausdriicke bestimmte Funktionen:

ug =0, u8)=COSoc, uQ =sine, ud="h,,
(16)
m

um_z Z“mu%") 1=4,5...n,
k=1r=1
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(& & e
— T ~
(i —~r§1u¢) (17)

R
u, =r§1u,ﬂ,p. (18)

Die in den Ausdriicken (15) bis (17) neu eingefithrten Bezeichnungen haben
die folgende Bedeutung:

h, :

n
D) .
ockr .

(kr) -
’LL@ :

(kr) .
u¢ .

Uker, p

Abstand der Normalen zur Mittelfliche vom Schubmittelpunkt D;
Projektion der Verschiebung des Knotens k£ in Richtung der Normalen
auf die Platte kr, welche die Knoten £ und r verbindet, fiir den Zustand
0,=1, (i=4,5...n);

definiert die elastische Fliche des unendlich langen, an den Réndern
k und r (Fig. 3) eingespannten Plattenstreifens fiir den Fall, daB die
Kante k die Einheitssenkung erleidet.

kry . Srk Ster (Ster — Syte)
ubr)‘”r_[l_”l—b,%‘r— , (19)

Gesamtzahl, r=1,2... R der an den Knoten & angeschlossenen Platten.

Die im Ausdruck (17) angefiihrte Funktion

definiert die elastische Flache des unendlich langen, an den Réndern k
und r eingespannten Plattenstreifens fiir den Fall, dafl die Kante k
(Fig. 4) die Einheitsverdrehung erfdhrt.

8y, 82
(kr) — __ Zkr°rk (20)
(/) = —_——.
@ blzcr

Die Funktion

definiert die elastische Fldche des erwidhnten Plattenstreifens zufolge
der in der Richtung der Normalen zur Mittelfliche wirkenden, gegebenen
Belastung p,, .
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3. Schnittkriifte. Gleichgewichtsbedingungen. Grundlegende Differential-
gleichungen des Problems und Randbedingungen

Hinsichtlich der Schnittkrafte wollen wir folgende Vereinfachungen anneh-
men:

a) Die Biegungsmomente m, in der Léngsrichtung werden vernachlissigt,
ebenso wie der Einflul der Kriimmung %" in der Léngsrichtung auf die
Biegungsmomente m, in der Querrichtung.

b) Die Torsionsmomente m,, zwischen je zwei Knoten mogen konstant und
proportional der spezifischen Verdrehung der diese Knoten verbindenden
Sehne sein.

Fiir die Schnittkrafte n,, m,, und m, erhalten wir, unter Beriicksichtigung
dieser Vereinfachungen sowie der Voraussetzungen iiber die Verformung des
Stabes und des Hookeschen Gesetzes:

I4 ! ! t3 */ I4 t3
n, = H'tw, mzs=EiTZ(1—V)uo> my=—K Y (21)
wo u, die Verdrehung der Sehne zwischen zwei benachbarten Knoten und

E = ist.

1—»2

Durch Einsetzen der Ausdriicke (15) und (13) fiir v und w in die Gleichung
(21) erhalten wir:

n, =—E't Z 0] i),

E' -
Mes =~ 3 (I—V)Z_: @iu@m (22)
E' B3{n
mg = Z@ u“)+Z€D u‘k))+m
m
wo Sy = Py =uF, =0, aP =1, ud, —kzl % o) udn (23)
und Mg, = E'12 y, (24)
bedeuten. Fiir %" (Fig. 3) erhalten wir:
. 1
WD = ——. (25)
bkr

Wir schneiden aus dem Stabe ein durch die Querschnitte z, und z,+ dz begrenz-
tes Element heraus und lassen auf dasselbe die entsprechenden Kréfte wirken
(Fig. 5). Die beliebige Belastung mit den Komponenten p,, p, und p,, greift
in den Punkten der Mittelfliche an.



94 CURT F. KOLLBRUNNER - NIKOLA HAJDIN

Die Gleichgewichtsbedingungen stellen wir unter Anwendung des Prinzips
der virtuellen Verschiebungen auf:

W+U=0, (26)

wo W die Arbeit der duBeren und U die Arbeit der inneren Kriifte bei den
gegebenen virtuellen Verschiebungen der Punkte des Elementes sind.

(mzs +mzs dz)ds

(ny+n} dZ)d)S/ -
(nn+nzndz)ds

9/ {n;s +nls dz)ds

Die Punkte der Profilmittellinie des Querschnittes z =z, erfahren die vir-
tuellen Verschiebungen %, ¥ und w. Fiir den Querschnitt z=z,+d 2 betragen
diese Verschiebungen u+u'dz, v+7 dz und w=w'"dz.

Fiir die Arbeiten W und U, bezogen auf die Einheit der Stablinge, erhalten
wir:

Fig. 5.

W= jnznu-i-nzsv-i-nw m,, ) ds+[ P+ P 0+ p,w)ds,
— [ (n, @ —2m, u' +m,u)ds.
S

Durch Einsetzen dieser Ausdriicke in die Gleichung (26) erhalten wir:

[ (0L, T+ N T+ 0 —m u+n,, @ +n,, 0 +m, u +m,i)ds @)
s
+f PuU+ D0+ P, W)ds = 0.

Fiir die virtuellen Verschiebungen %, ¥ und w wéahlen wir Ausdriicke von
der gleichen Form wie die Ausdriicke (12), (13) und (15) fiir u,=0, jedoch
fithren wir statt @, und @, die Parameter @, und @, als beheblge Funktionen
der Koordinate z ein. Diese sind, allgemein genommen, unabhingig von der
wirklichen Belastung des Stabes.

Auf diese Weise erhalten wir:

9

i [ (0, @ + 1 v —my ul) + m ul) ds +f (Ps VG + Py, uG) ds]

8

~.

|

(—n;w‘g)>+n u(1)+n v(z)+m u(@z) dé‘—fp, mds]

)

+
Mz gMS M=
-

‘Scl

(28)
L[ (g, wE) —m ul) +mg i) ds+fp ul) ds]
S

??‘
I
[

+
DMz

L [+, u] ds = 0.
S

&
I
=
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Die Befriedigung dieser Gleichung erfordert, dafl die vier Ausdriicke in den
eckigen Klammern fiir jedes ¢(1=0,1,2...n) und fiir jedes k(k=1,2...m)
Null sein miissen.

Die Nullsetzung dieser Ausdriicke ergibt, nach dem Einsetzen der Glei-
chungen (22) fiir die Gréflen n,, m,, und m,, das folgende System von Glei-
chungen:

[ () 4 + Ly 00) ds = B’ | z By O; — 26b,07) + 3 6D
=1

8

f(p v‘“+p u@ +myg , i) ds,

8

. n
j(nznu(é)_*_nzsv((:))) ds = B [—aii@;;,+2’<_z @ ]+J.pzwm
:;=

s

1=0,1,2...n, (29a—d)
n m
sf n;n u%“) ds = E, [y;o ij @] + Z§1 dkl @l] —sf (m;s,p ’a(ql;:) + ﬁnug;)) ds 5
f 7, upds =0,
S
k=1,2...m

In diesen Gleichungen bedeuten:

G . s 1 1
= . (@) = 0 _ (@)
K= Ay ——ft [w@]2ds, by, = 12J‘t3u(é)u@0 T8 ftau((‘;)ou(g')o ds, (30a—c)

s S

by = 13 £ u“’u((f))ds Ca =15 [t?' ug udds, (30d,e)
s s

“ _1_ 335 7 (,')d d . 1 1358 50 4

Cep = 15 | 1 Ugp g S u =g | Uy Ugds. (30f, g)

s

Die bestimmten Integrale der Ausdriicke (30b-g) erhalten wir, unter
Beriicksichtigung der Gleichungen (16), (23) fir 1=4,5...n sowie (17) als
lineare Kombinationen von Groflen (Fig. 3 und 4):

. 1
(k1) k0 g — (k1) 4 (rR) g —
[ g o ds = — gy UgedS = =
bkr
[ gk de = — [ &) k) g — E
770 O R T by’
(31)
Jugnugnds = — fugnughds = — [ufnigods = — by’
r
[ 4D uden ds = 4 1kr) 108 g — 2
o U U5 = ps JiigPughds = — 5=,
kr kr

wobei die bestimmte Integration in den Grenzen s,,=0 und s, =b,, ausge-
fithrt wurde.
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Durch Elimination erhalten wir aus dem Gleichungssystem (29):

1 .
07 = A — A0, fire=0,1,2 (32)
’ n . . m . 1
i=3 =1 E
. N ) (33)
2 6y 05+ 2 diy Py = 27 Byeo,
7=3 1=1
1=3,4...n, k=1,2...m
OF Ay = [mg i@ ds + [ (P, uld) + ps v 4+ p,wf) ds
s s (34)
und Byo = [mg, 4P ds+ [P, up ds
S S
sind.

Es kann gezeigt werden, daBl sich diese Glieder auch in der folgenden Form
ausdriicken lassen3):

m R
AiO = Z Z Prer O‘(lgf)' +f(ﬁs”g)+?;w(§)) d8>
k=1r=1 s (35)

R
By = Zlmk:
r=

wo (Fig. 6) p,, die Knotenlast im Knoten £ und m,, das Einspannmoment des
Plattenstreifens kr in diesem Knoten zufolge der gegebenen Belastung p,, sind.

/bn
< ol “
% ¥ 1 17
.
(kr)
Up

m
kr
ﬂfm S

? = Pyr t ~Prk

In Hinblick auf die Bedeutung der Parameter V,=0), fir +=0,1 und 2

[Gleichungen (1)] sowie unter Beriicksichtigung der Werte @, w® und «»®

[Gleichungen (5a) und (6)], ferner, weil zufolge Gleichung (5¢) V' = — W, (2)
ist, konnen wir die Gleichungen (32) in der folgenden Form anschreiben:

E,FWO,,='p57 E,Iac.zé:g”_px_’_mx’ E Iz/y 8”'—py+m (36)

Wo: P, = [P, ds, p,=[(—p,sina+p,cosa)ds, m, = [p,xds,
8 8 S (37)

P, = [ (P, coso—p,sina)ds, m, = [p,yds
8

S

Fig. 6.

sind.
Die Gleichungen (36) sind offenbar die Differentialgleichungen fiir die Axial-

'3) Siche [5], Kapitel 4.
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und Biegungsbeanspruchung des diinnwandigen Stabes mit in ihren Ebenen
nichtdeformierbaren Querschnitten.

Die Randbedingungen fiir das Gleichungssystem (34) konnen durch Ver-
schiebungen, durch Krifte oder durch beide Arten von Einwirkungen gegeben
sein.

Die Verschiebungen der Stabenden miissen in der gleichen Form gegeben
sein wie die Verschiebungen u, v und w der Punkte der Mittelfliche. Die Rand-
bedingungen konnen auf die Ausdriicke:

0,=0f,  0;=06} (38)
zuriickgefithrt werden, wobei @F und @}’ Parameter sind, welche durch die
gegebenen Verschiebungen der Punkte des Endquerschnitts bestimmt werden.

Die Randbedingungen durch die Krifte stellen wir unter Anwendung des
Prinzips der virtuellen Verschiebungen auf:

([ = 135) WA (Mo — 05) B+ (my — 0F) W — (g —m%) u] ds = 0.
S

Die GroBen n , nX und n} sind die dulleren, am Endquerschnitt angreifenden
Krifte und mj} ist das dullere, verteilte Torsionsmoment.

Durch Einsetzen der Ausdriicke (22) fiir n, und m,, und Verwendung der-
selben Ausdriicke fiir die virtuellen Verschiebungen wie vorher, erhalten wir,

nach der Elimination der Krifte n,, und n,:

" o 7 ’ 1 " 1
WO! Q;k = —jpz w(@%) ds+ j (njn u%)0+n§<s U%)—m:; d@o) ds: (40)
8 S
M} = [nfo@ds sind.
s

Die Losung des Problems wird auf die Integration des Systems der Diffe-
rentialgleichungen (34) zuriickgefiihrt.

Die unbekannten GroBlen ©, und @, werden als Komponenten der Spalten-
vektoren @ und @ aufgefalit:

0, 2,
o= @,4, b = ?2 : (41)
0, P,

Aus den Koeffizienten a;; bilden wir die Diagonalmatrix 4 und aus den
Koeffizienten b.% und b'ﬁ die quadratischen Matrizen B® und B von der Ord-
nung n— 2. Ferner bilden wir aus den Koeffizienten ¢;, die Rechtecksmatrix C
mit n— 2 Zeilen und m Spalten und aus den Koeffizienten d,, die quadratische
Matrix D von der Ordnung m.

Das Gleichungssystem koénnen wir nun in der folgenden Form schreiben:
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wo C die transponierte Matrix von C ist und

sind.

A30 B10
Ao = A.m ’ Bo = B.20 (43)
Ano Bmo

Durch Elimination aus dem System (42) erhalten wir#?):

WO

sind.

AO"-4xkB'@"+HO = -El—,HO, (44)
H=B-CD'¢ uwd H,=A4,-CDB, (45)

Die Randbedingungen (38) und (39) lauten in Matrizenform:

und

AQ 4B O =%Q*, 40" =

0 = 0%, o' = 0¥ (46)
1

El M* > (47)

wo Q* und M* Vektoren mit den Komponenten Q¥ und M¥ sind.

b

e

h

b,

mg, My,
Mg,

My, My,
ng, N,

Nos

U nzn
i)vw ﬁw ﬁz
P> Py> P
S

t

u

v

Liste der Bezeichnungen

Breite der einzelnen Platte

Abstand von der Mittelfliche in Richtung der Normalen
Abstand der Tangente zur Profilmittellinie von der Drehachse
Abstand der Normalen zur Profilmittellinie von der Drehachse
Biegemomente der einzelnen Platte

Torsionsmoment der einzelnen Platte

AuBere verteilte Biegemomente

Normalkrifte der einzelnen Platte

Schubkraft der einzelnen Platte

Querkrifte der einzelnen Platte

Fliachenbelastungen in den Richtungen =, s, z
Linienbelastungen in den Richtungen z, y, 2

Koordinate der Profilmittellinie

Wandstirke

Verschiebung der Punkte der Mittelfliche in Richtung zu
ihrer Normalen

Verschiebung der Punkte der Mittelfliche in Richtung
der Tangente zur Profilmittellinie

4) Die allgemeine Losung dieser Gleichung wird in der Publikation [5], Kapitel 5,

gezeigt.
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w Verschiebung in Richtung der Stabachse
x, Y, 2 Kartesische Koordinaten der Punkte der Mittelfliche
C Schwerpunkt
D Schubmittelpunkt
E Elastizitdtsmodul
¥ Querschnittsfliche
G Schubmodul
L= Jx%tds Flachentragheitsmoment
F

1,, =1£ y2tds Flachentragheitsmoment

u, v, w,e Verschiebungsparameter

U Arbeit der virtuellen inneren Krifte

W Arbeit der virtuellen duBeren Krifte

o Winkel

Vs Gleitung im Punkte der Mittelfliche

€ €55 €, Dehnungen der Mittelfliche

v Poissonsche Zahl

& Verschiebungskomponenten in den Richtungen « und y
® Verdrehung des Stabes

w Sektorielle Koordinate, Einheitsverwolbung
Q Normierte sektorielle Koordinate

0 Verdrehung des Knotens
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Zusammenfassung

Der Artikel bezieht sich auf die Theorie des Faltwerks, in welcher auller
den Biegemomenten in der Querrichtung zum Unterschied der klassischen
Faltwerkstheorie auch die Torsionsmomente beriicksichtigt werden.

Dank des Umstandes, daf3 fiir die grundlegenden Unbekannten die Ver-
schiebungsparameter eingefiihrt werden, ermdoglicht diese Theorie eine relativ
einfache Berechnung.

Im Unterschied zum in der Faltwerkstheorie iiblichen Verfahren der Zer-
legung des Systems in die einzelnen Platten, wird in der gebrachten Theorie
die Deformation der Stab-Schale einheitlich fiir das ganze Tragwerk beschrie-
ben. Man erhilt schlieBlich ein System von Differentialgleichungen, welches
ebenso wie die Randbedingungen in Matrizenform dargestellt wird.

Summary

The article treats the theory of folded structures which, contrary to the
classical theory, takes into account also the torsional moments, besides the
transversal bending moments.

This theory permits a relatively easy calculation in introducing for the
basic unknowns the deflection parameters.

Contrary to the ordinary procedure of decomposing the system into indi-
vidual plates, the present theory explains the deformation of the beam-shell
uniformly for the whole structure. Thus, we receive finally a system of differen-
tial equations which can be written in form of matrices in the same way as
the boundary conditions.

Résumé

L’article traite de la théorie des votites polygonales qui, contrairement a la
théorie classique, tient également compte du moment de torsion en plus du
moment de flexion transversal.

Cette théorie permet un calcul relativement facile, en introduisant pour les
inconnues de base les parameétres de déplacement.

Contrairement au procédé habituel de décomposition des voites polygonales
en plaques isolées, la présente théorie décrit la déformation de la poutre-
coque uniformément pour toute la construction. On obtient ainsi finalement
un systéme d’équations différentielles, qui peut étre mis sous la forme de
matrice, tout comme les conditions de bord.
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