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The Finite Element Method in Application to Plane Stress
La méthode des éléments finis appliquée a des contraintes bi-dimensionnelles

Das Verfahren der Endlichen Elemente in der Anwendung auf ebene
Spannungszustinde

A. HRENNIKOFF

Sc. D., Research Professor of Civil Engineering, The University of British Columbia,
Vancouver, B.C., Canada

General

The differential equations of the theory of elasticity governing the con-
ditions of plane stress are based on statics, continuity of the material and its
elasticity, in accordance with the constants E and u. The assumption of con-
tinuity implies that the intermolecular spacing is an infinitesimal of a higher
order compared to the dimensions dz and dy of the element analyzed.

With clear realization of these assumptions of the rigorous theory consider
a model of a plate made of polygonal cells of repeating pattern, joined to each
other at the nodes and possessing such properties as to make the nodes in the
model and the plate move identically in conditions of any arbitrary uniform
stress. 1f furthermore the size of mesh is visualized as an infinitesimal of a
higher order than dx and dy, the equations of elasticity describing the action
of the prototype should be equally applicable to the model which thus becomes
in effect a simplified representation of the molecular structure of the plate.
This reasoning is a demonstration of the proposition, sometimes questioned,
that the finite element solution involving proper cells, would converge to the
true values on infinite reduction of the size of mesh, provided of course that
the rounding off errors of the computer solution are negligible.
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Types of Finite Element Cells

Two kinds of cells are used in the finite element solution of plane stress
problems: the framework cells, made of elastic bars?!)2) and the no-bar cells?)*).
The former represent true elastic structures which may be actually constructed
and sometimes even experimented with physically. The no-bar cells on the
other hand are mathematical abstractions suitable for calculation but unsus-
ceptible to physical reproduction.

The nature of the no-bar cells may be explained in the following manner.
Imagine a plate of wide extent subjected to a simple stress condition such as
uniform unidimensional strain e, or shearless bending in X direction. Isolate
from this plate a polygonal area of the shape of the assumed finite element,
holding it in equilibrium by the appropriate peripheral stresses. Assume now
that the edge stresses are replaced by proper statically equivalent corner
forces without affecting by this operation the corner displacements. This
transforms the given piece of plate into the finite element proper which is in
effect a body, whose corners move through the same distances as the same
points in the plate when acted upon by corner forces statically equivalent to
the edge stresses. The finite element must behave in such manner under several
simple stress conditions. By combining these conditions in proper proportions
it is possible to effect the separate x or y displacements of the corners of the
cell and through that to find the stiffness matrix of the element relating its
corner forces to the displacements.

There are certain ambiguities associated with the transformation of the
edge stresses into the corner forces, for illustration of which it is necessary
to consider in detail a specific example — a cell in the form of an equilateral
trapezoid (Fig. 1).
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1) A. HRENNIKOFF: “Solution of Problems of Elasticity by the Framework Method™.
Journal of Applied Mechanics, ASME, New York, Vol. 63, December 1941.

2) A. HRENNIKOFF: “‘Framework Method and its Technique for Solving Plane Stress
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No. 9, September 1956.
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of ASCE 2nd Conference on Electronic Computation, Pittsburgh, September, 1960.



THE FINITE ELEMENT METHOD IN APPLICATION TO PLANE STRESS 51
Statics Type Stiffness Matrix of Equilateral Trapezoid

A quadrilateral cell has eight degrees of freedom with regard to w and v
displacements of its four corners along the x and y axes. Single corner dis-
placements may be effected by a combination of three rigid body movements
in the plane of the cell and five basic stress conditions which may be assumed
as follows:

A. Unilateral unit strain in x direction, ¢, (Fig. 2).
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Fig. 2
B. Unilatera unit strain in y direction, ¢, (Fig. 3)
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C. Unit shear strain y,, (Fig. 4)
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D. Shearless bending with stresses in « direction (Kig. 5).
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E. Shearless bending with stresses in y direction (Fig. 6).
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Other suitable conditions may be used in place of D and E but the three
uniform conditions 4, B and C, or their equivalents, the uniform stresses,
o,, 0, and 7,,, are compulsory.

The simplest way to determine the statically equivalent corner forces in the
cell is to transfer its edge stresses to the adjacent corners by the law of the
lever. This operation satisfies statics and at the same time carries the stresses
only to the corners situated in the immediate vicinity of the edges in question.
A weakness of this procedure will be pointed out later. The corner forces found
by this method in all five stress conditions considered here are stated in
Figs. 2—6.

The combination of the conditions A, C'and D with 4 ,=1/2u,, do=1/4u,,
and 4,,=1/4wu, results in a vertical displacement u, of the corner 1, with zero
vertical displacements of the three other corners. However the condition D
causes some unequal horizontal movements of the corners which must be
cancelled by a horizontal rigid body movement and a horizontal displacement

of the top edge to the left of the bottom edge by a shear condition C through
k2—1
to the ones shown in Fig. 4. The summation of the four sets of corner forces
gives the stiffness matrix coefficients corresponding to the vertical movement
u, of the corner 1.
The horizontal displacement v, of the same corner may be a.ccomphshed

by the combination of the conditions B and ¥ with 4 ,=4,=1/4v, and C,

a shear angle y = u, . The corresponding corner forces are proportional
Y 1
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involving a horizontal displacement 4,=1 / 2 v, of the bottom edge to the right

of the top edge, with the shear strain ;-——. Since the condition ¥ moves the

2 k
corners of the top edge down towards the bottom edge this displacement must
be corrected by addition of the condition 4 with 4, = % The com-

bination of these four conditions gives another set of stiffness matrix coefficients.
The corner forces produced by the displacements of the node 2 may be
found by symmetry with the node 1, and the ones brought about by the
movement of the top corners — by replacement of the parameters k£ and &,
with 1/k and k,;/k respectively, in the corresponding expressions of forces
caused by the bottom corner movements.
The force-displacement relation of the trapezoidal cell is given by Eq. (1)

Pﬂ 'XulelXu2_ X“lX”2=—X”1X“3X”3X“4— Xu3X®4__X1J3’ 'uﬂ
])13/ YulY'LlYu2__Yu1Y1J2_ leYu3Yv3Yu4=__Yu3Yv4_ Y1J3 vy
P2z XulelXu2__ Xule2____X'ulXu3X'v3Xu4_ Xu3Xv4_ Xv3 ’“2
sz Yul leyuz___yul sz._ YUIYM3Y”3YM4=~Y“3YU4— YvB vy
P31) XulelXu2 Xulez___leXu3Xv3Xu4_ Xu3X®4__X'v3 ‘ Uy °
B{'ll YulelYuz___Yu1Y'u2_ Y?JlYM3YU3Yu4__Yu3Y'v4_ Yv3 223
P4x XulelXu2_ Xulezz_leXu3Xv3Xu4_ Xu3Xv4__Xv3 Uy
Blyj kYu1Y1>1Yu2__Yu1YL2._ leYuSYv3Yu4___Yu3Y®4_ Y3 [v%

(1)
and the explicit expressions of the stiffness coefficients X and Y are presented
in Table 1. The system adopted in their nomenclature involves one digit
subscripts and two digit superscripts. The former indicate the node at which
the force in question is applied, and the latter — the corner moved and the
kind of the unit movement =1 or v=1 creating the nodal force.

An important characteristic of this stiffness matrix is the absence of sym-
metry about the principal diagonal. Thus for example the coefficients Y*?!
and X3! are not equal. The asymmetry of the matrix leads to results violating
the Betti’s reciprocal theorem thus evincing a theoretical deficiency of the
matrix.

If the trapezoidal cell is transformed into a rectangle by making the para-
meter k equal to unity the matrix becomes symmetrical. Apparently its lack
of symmetry reflects the asymmetry of the cell itself about the horizontal axis.

Energy Type Stiffness Matrix of Equilateral Trapezoid
Most of the authors employ a different stiffness matrix which is derived
from the energy considerations®). Its commonly used implicit expression in

5) R. H. GALnACHER: “A Correlation Study of Methods of Matrix Structural Analysis’’.
A Pergammon Press Book, the MacMillan Company, New York.
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the form of a product of several component matrices is convenient for com-
puter work, but is apt to conceal some of its peculiarities and defects. This
energy type matrix will be presented here explicitly, and it will be correlated
with the matrix found by statics.

As explained above the stress condition of a cell corresponding to a unit
displacement of one of its nodes may be described by combination of several
stress conditions 4 to K. This makes it possible to express the stresses and
displacements in the plate in terms of the particular node displacement. When
all nodes are moved simultaneously, the stresses and displacements in the cell,
including the values along the periphery, become linear functions of eight
corner displacements u,, v;, u,, etc.

Imagine eight nodal forces PF, PY, Pg, etc. statically equivalent to the
edge stresses o, (normal) and 7 (tangential) and apply them in reversed direc-
tions, as the equilibrants of the edge stresses. The application of these corner
forces does not affect the peripheral stresses o, and 7. Give one of the corners,
such as #1, a displacement du, and equate to zero the virtual work of the
system corresponding to this displacement. As is well known, the work of
deformation of a plate may be expressed either as an area integral or a line
integral taken along the periphery, and the latter version will be used here.
Of the eight corner forces only Pg does the virtual work.

Calling the virtual displacements developed on the edges of the cell A, -
normal and A, -tangential, and the thickness of the plate ¢, the work equation
may be stated in the following form:

Pedu, = tfaldlaa—?iudul+tf7dl M s, . (2)
I/ 1

[y ouy

The increment du, may be cancelled and the partial derivatives may be viewed
as the edge displacements produced by the unit movement of the corner u, =1

8AJ— — \u1=1 8/\11 — ui=1
Tuy Ap=1 and Fuy Ag=L.
Then P =tfo, X=tdl+£[ r X4=1dl. (3)
[VAN [ 7N

This equation defines the terms in the first row of the stiffness matrix. Its
individual terms are expressed thus:

Xyt = tf (A + 0 d, ®)
[N

Xv1 =t (o3I Ne1 41 0 dl  eto. (5)
(VAN

The terms in the other rows of the matrix are found in a similar manner, for

example:
Yt =if (ot Ayt 7t gf)dl. (6)

(7N
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The significance of the subsecript and the superseript symbols in X and ¥
was explained before. The edge stresses and displacements under the integral
signs are produced by the unit displacements of one of the nodes. The stresses
o, and 7 correspond to unit displacement of the corner indicated by the super-
seript in X or Y, while the displacements A, and A;; are produced by the unit
displacements stated in their superseript, which matches the subsecript of the
term X or Y.

For simplicity of calculation the line integrals along the sloping sides of
the cell 1-—3 and 2—4 may be expressed through the X and Y components
of the stresses and displacements rather than through the normal and tangen-
tial components, in accordance with the relation

fo A +7An)dl = [ o, A dy +[ o, A da+[ 7, A, dy + [ 7y Ay dec.

xy Y

Care must be taken in using proper signs of stresses and displacements in
these expressions.

Although the expressions X and Y (Eqs. 4, 5, 6) are extensively used
(sometimes in a modified form) they are incorrect, because they imply that
the virtual work of deformation of the material within the cell subjected to a
simultaneous action of the edge stresses and the opposing corner forces is zero.
This supposition is erroneous. Even though the corner forces and the edge
stresses are balanced the internal stresses within the cell are still extant and
there is no reason for their virtual work to be zero should the nodes be dis-
placed.

The edge stresses brought about by any two single corner displacements,
such as u; =1 or v; =1, are of course mutually balanced by themselves without
the addition of the corner forces and so the magnitudes of the work done by
the edge stresses of one of these conditions on the edge deformations of the
other must be equal. The two sides of this work equation are the integral
expressions of the matrix terms X3! and Y*! in Eqgs. (5) and (6). This signifies
the equality of these as well as of other symmetrically situated terms in the
stiffness matrix. The symmetry of the energy type matrix is an advantage
over the unsymmetrical matrix (Table 1) since it simplifies the computer work.
The energy type matrix involves however some inconsistency to be pointed
out presently.

Comparison of the Matrices

A comparison of the two types of stiffness matrix discussed here would
clarify some of their peculiarities. In the stiffness matrix found by statics the
edge stresses are assembled into the corner forces at the two adjacent corners
by the law of the lever, while in the energy type matrix the same edge stresses
are multiplied by the edge displacements produced by the movement of the
corner and then added up. For a specific comparison take the term X¥! (Eq. (5)).
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The edge stresses o}! and %1 in its expression are produced by the displacement
v,=1, and the edge displacements A%! and A}l — by the displacement u;=1.
The diagrams of A¥! and A}l may be viewed as the influence lines by whose
ordinates the stresses ¢, and 7 created by any unit corner movement (v; =1 in
this case) must be multiplied and then summed up in order to form the force
X, produced by the given movement (%, =1 in this case). Of the eight corner dis-
placements seven are equal to zero and only one, u, =1, is distinct from zero.

Taking as an example a rectangular cell imagine as a possibility that the
edge displacements corresponding to u, =1 are all linear (Fig. 7). This means

b 3
Y,V

e

X A
2| 1 11
U

~ |
)\ ~ Fig. 7.
L 1X4 )

that of all edge displacements only A, on the edge 1—2 and A;; on the edge
1—3 are distinct from zero. Employment of the influence lines of the type
of A, and Aj; in Fig. 7 for calculation of X, is obviously equivalent to the
application of the law of the lever. Under the stated conditions the terms X,
found by the two methods should then be identical.

The linearity of the edge displacements was however used in this reasoning
only as a tentative supposition, true for the uniform strain conditions 4, B,
and C but false for the flexural conditions D and E. Thus the condition D
required for the displacement of u,=1, results in parabolic normal displace-
ments on the edges 1—3 and 2—4 directed inward on one edge and outward
on the other. Parabolically distributed tangential displacements are present
also on the edges 1—2 and 3—4. It so happens however that in all five basic
stress conditions A4 to E the edge stresses on the opposite sides of the rectangle
are equal, which results in mutual cancellation of the energy terms correspond-
ing to the non-linear displacements. This makes the statics and the energy
matrices for a rectangular cell identical, as well as symmetrical about the
principal diagonal.

The situation is however different in the case of a trapezoidal cell. When
such a cell is subjected to bending condition D its side edges become curved,
and under the condition £ its all four edges are curved. The diagrams of the
edge displacements thus become non-linear, making the matrix terms, deter-
mined by the two methods, different. It is significant that a single corner
displacement, such as u;=1, produces displacements on the non-adjacent
edges 2—4 and 4—3, as well as on the adjacent ones 1—2 and 1—3. This
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means that the terms X, and Y] are contributed to partly by the stresses on
the non-adjacent edges. The presence of such contributions appears logically
unsound and must be viewed as a defect of the energy matrix.

Correlation of the Matrices

The two matrices may be correlated by finding the complementary terms
whose addition to the terms of the statics type matrix transforms them into
the terms of the energy matrix. :

It was pointed out that integration of the edge stresses over the linear parts
of the edge displacements, such as the ones in Fig. 7, produces the terms of
the stiffness matrix found by statics. Then the complementary terms may be
found by integration of the products of the edge stresses over the non-linear
parts of the edge displacements with zero values at the corners. The nonlinear
displacements are produced exclusively by the flexural conditions D and Z,
and their shape always conforms to the second order parabola with the ordi-
nates measured from the chords passing through the ends. The ordinates of
these parabolas are fully described by the midlength values.

Influence Lines of Complementary Terms X,
The edge displacements considered here correspond to the corner movement

u; =1 (Fig. 8). Only the condition D is effective in producing the non-linear
components of the edge displacements.

Ay2 }é

Ax I Ax [k p(E—1)?
4\7\J_=0 3 )\y_ 8k+ 32k ky ]%1
-1 _ kE
Ax: Sk Uy )\y 0 xy 7\y"‘ )\yl_gklul
2 Ap =0y [*X 1 =
: L= Uy l A2 Skklul
Fig. 8.

Edge 1—2. The normal displacements are linear. The nodes 1 and 2 move to

. k k
the left (Fig. 5) the amount 2%?141 b= é”—k:

remains at rest. The relative tangential displacement of the mid-

u,, while the mid-point

. . . wk
point in relation to the endsis A ; = + 57, Y
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Edge 3—4.

Edge 1—3.

Edge 2—4.
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k.

Similarly, the mid-point displacements are A, =0, A, = + §Ti 1

The vertical displacements of the corners 1 and 3 are +1/4u, and
respectively, and of the mid-point — zero. Then the dis-
k—1
8k

The horizontal displacements are produced by two effects: the
curvature and the u effect.

4k

placement of the mid-point in relation to the endsis up A, = (I

1 M _ 20 _ Ui
By the elementary flexure formula, & ===4=7 T

and the horizontal corner displacement to the left with reference
(h/2)2 _ K1

2R ~ 8k I

The horizontal displacements to the left of the corners 1 and 3
,u.k'u1

8k ’
. This makes the relative displacement of the

to the mid-point is

and of the mid-point produced by p effect are respectively

B UL p(k+1)2u
55k 2 " grm
mid- point in relation to the straight line through the ends

%( pk—1)2

32kk, -
The total horizontal displacement of the mid-point of the side 1—3
is

pkouy
8k,

plk+1)2u
32kk,

P %y

skkl)"

ky
8k

p(k—1)2

A 32k k,

y =+

= Uy + Uyq .
The displacements are equal in magnitude and opposite in sign

compared to the ones on the edge 1—3.

The edge displacements determined here are shown in Fig. 8. If the quantity
%, is made unity the curves become the influence lines of the complementary
terms X; and X, of the energy stiffness matrices. They are valid for X; and
X, produced by unit displacements « or v of any of the four corners. These
influence lines are antisymmetrical about the vertical axis X.

i
A2 +
Ax t;? A

Ay =< AR . v [k, =12
1178k, 1 T |8k T 32kk, | *

v A +y A k-1
Ao = =55 Y y A, = ——
127 8Lk, 2 /=0 |*X 1 v Y

I |

Fig. 9.

:
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The influence lines of the terms Y, and —Y, corresponding to the dis-
placement v, =1 are shown in Fig. 9. They are brought about by the flexural
condition ¥ with Az =1/4v;. These lines are symmetrical about the vertical
axis.

Complementary Term X7'. Energy Type Matrix Terms

The use of the influence lines of Figs. 8 and 9 is illustrated on the example
of"the complementary factor Xy! whose combination with the factor deter-
mined by statics produces the term X3! of the energy stiffness matrix.

The displacement v, =1 which creates the edge stresses used in calculation
of X%, is made up of the stress conditions 4, B, C and £ of which only the
stresses of the condition C' are capable of making the products with the edge
displacements of Fig. 8 distinct from zero, since the stresses of the condition C
and the displacements are both antisymmetrical about the X axis. On the
other hand the stresses of the condition 4, B and £ are symmetrical about
the X axis, and the integral of their products with the ordinates of Fig. 8 is
zero.

The edge stresses of the condition (' are constant along all edges and they
must be multiplied by the appropriate length of the edge and the mean dis-
placement equal to 2/3 of the maximum ordinate of the parabolic influence
line.

The unit shear force in condition C' corresponding to u, =1 is mt—%k—m.
Then the values of the complementary terms of X%1 are as follows (Fig. 8).
) Et 2 pk B kK Et
Edge 1—2: Tt Fha3sh "~ WUtk
Edge 3—4: At 2 p o pHI

T4tk a38kk, T 48(1+p)kk2

Edges 1—3 and 2—4 are replaced with stepped lines made up of infinitesimal
horizontal and vertical steps.

2Bt (2 (k—1) 20k, pk—1)2% (k—1)a
'4(1+;L)lc1a{§ 8k kl“‘s’[é’%*’ 48kk1] 2 }

Adding these up. The complement to

p(k+1)(k2—1) k—l] Bt

vl — e e
Xy [ 64 k k2 16k | (14+p)

The procedure described here allows determination of all complementary terms.
Combination of the complementary terms with the statics type matrix terms
(Table 1) results in the energy type stiffness matrix whose terms are presented
in Table 2. As was pointed out earlier this matrix is symmetrical about its
principal diagonal.
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Table 2. No-bar Trapezoidal Cell Energy Type Stiffness Matrix ( Symmetrical )
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Intercell Continuity

The continuity of displacements of the neighbouring cells in the finite
element model is preserved at the nodes, but not necessarily along the inter-
cell boundaris and there is a difference of opinion with regard to the significance
of this discontinuity. Some authors maintain firmly that the displacements
must be continuous across the boundaries if the solution of the model is to
converge to the true solution of the structure. This view has apparently been
prompted by the use of the Rayleigh-Ritz principle for the derivation of the
energy stiffness matrix.

For this purpose a grid of reference points is established over the plate
under investigation with the interspaces between the nodes having the shape
of the finite elements. The values of the displacements of these points, con-
verging to the exact values on reduction of mesh, may be determined by the
Rayleigh-Ritz principle, whose application results in the same energy type
matrix as the one found above. The necessary condition for the applicability
of the principle is continuity of the displacements along the internodal lines.

It follows from this discussion that the displacement continuity along the
intercell boundaries is a sufficient condition for the validity of the finite element
method, but not the necessary condition. Irrespective of the edge continuity
the finite element method is valid because of the identity of the differential
equations of elasticity in application, on the one hand, to the solid plate and
on the other — to the finite element model of proper deformability with
infinitesimal mesh size.

It may be pointed out that the edge continuity has no meaning in applica-
tion to the bar cells, which by their very nature are joined only at the nodes.

Triangular no-bar cells preserve edge continuity under all conditions, while
the rectangular do not. Yet the precision of the results obtained with the
rectangular cells has been found invariably much better than with the trian-
gular ones of comparable size.

Appraisal of Imperfections of Stiffness Matrices

The existence of two different stiffness matrices of unsymmetrical no-bar
finite elements calls for their comparison. No fault can be detected in the
derivation of the statics type matrix, yet its asymmetry violates the basic
structural principle of reciprocity. The inconsistency must be charged against
the inexact nature of the method of no-bar finite element.

The energy type matrix may appear more attractive in view of its symmetry,
but the error committed in its derivation in neglecting a part of the virtual
work speaks against it. Furthermore the inclusion of certain edge stresses into
the corner forces on the opposite side of the cell is contrary to common sense.
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The defects discussed here do not apply to a rectangular no-bar cell or to a
cell in the form of a triangle of any kind. It may be observed that the matrix
of a quadrilateral framework cell is free from the faults of its no-bar counter-
part because unlike the latter it is an actual structure and as such it is subject
to the law of reciprocity.

The practical significance of the defects of the unsymmetrical no-bar cells
should not, however, be exaggerated. On reduction of the size of cells the
state of stress in the neighbourhood of the individual units approaches uni-
formity, diminishing by that the effect of the flexure conditions D and Z,
responsible for the inconsistencies of both types of the no-bar matrix. This
means that the errors induced by the defects of the matrices tend to disappear
on reduction of the size of mesh.

Comparison of the models made of bar and no-bar cells is worthy of comment.
The stiffness matrix of the former is based on the uniform stress conditions,
and of the latter — on the uniform conditions assisted by shearless bending.
At first glance one might expect better results with the no-bar cells in view of
their seemingly better conformity to the actual state of stress in the prototype.
The present author himself at one time held this view®). However, the actual
results have not confirmed the expectation, apart from some cases (like that
of an end loaded wide cantilever beam), favouring the no-bar cells. It appears
that the non-uniform components of the actual stresses in the prototype are
normally not of the nature of shearless bending of conditions D and E, and
for this reason they are not described any better by the matrix of the no-bar
cell than by the one of the framework cell.

Conclusions

1. On infinite reduction of the size of the mesh the finite element solution
of a plane stress problem converges to the true solution, provided the rounding
off errors of the computer are negligible. This is true with regard to both the
bar cells and the no-bar cells of a proper pattern.

2. Two types of stiffness matrix are available for the unsymmetrical no-bar
cells, the statics type and the energy type. They are mutually related by the
“complementary’’ terms which may be found by the use of influence lines.

3. Both types of the no-bar stiffness matrix contain some theoretical defects
reflecting the inexact nature of the method utilizing cells of finite size. The
framework cells are free from comparable defects.

4. The stiffness matrix of the framework cell and the energy type matrix
of the no-bar cell are symmetrical about their principal diagonals, and so they

6) A. HRENNIKOFF and S. TrzcanN: “Analysis of Cylindrical Shells by the Finite
Element Method”. International Conference on Shell Structures, Leningrad, U.S.S.R.,
1966.
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have an advantage in the computer work over the statics matrix of the no-bar
cell, which does not possess the symmetry.

5. The continuity of the displacements on the intercell boundaries is not
compulsory for the validity of the method.

6. The precision of the results obtained with the three matrices is not
greatly different for the same shape and size of cells.

Appendix. Notation

small base of a trapezoidal cell

modulus of elasticity

height of a trapezoidal cell

ratio of bases of a trapezoid

ratio of height to base of a trapezoid

distance along boundary of cell

plate thickness

displacements along x and y axes, nodal displacements
coordinates, coordinate axes

nodal forces, terms of stiffness matrix

base angle in a trapezoidal cell

normal strain

shearing strain

normal stress, normal stress on cell boundary

shearing stress, shearing stress on cell boundary
displacements on cell boundary perpendicular and parallel to it
displacements on cell boundary parallel to x and y axes
Poisson’s ratio

nodal displacement
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Summary

The purpose of this paper is clarification of some aspects of the Finite
Element method which so far have not been studied sufficiently closely.

Two kinds of cells used in the analysis of plane stress by the Finite Element
method, framework cells and the no-bar cells, are examined in detail. Two
distinct types of stiffness matrix associated with the latter are presented in
explicit form for a cell having the shape of an equilateral trapezoid. Some
inconsistencies inherent in these matrices are pointed out and their effect on
the results is discussed.
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Résumé

Ce papier a pour but de mettre plus de clarté dans quelques aspects de la
méthode des éléments finis, qui n’ont pas encore été étudiés a fond jusqu’a ce
jour.

Deux éléments utilisés par la méthode des éléments finis dans I’analyse de
contraintes bi-dimensionnelles, sont examinés en détail: 1’élément de barre et .
P’élément de plaque. Deux types distincts de matrice associée avec ces éléments
sont présentés explicitement pour un élément ayant la forme d’un trapéze
équilatéral. L’attention est tirée sur quelques irrégularités inhérentes & ces
matrices, et leur effet sur le résultat est discuté.

Zusammenfassung

Zweck dieser Schrift ist, verschiedene Auffassungen des Endlichen-Elemen-
ten-Verfahrens zu klaren, derart wie es bis jetzt in seinem Umfange noch
nicht geschehen ist.

Zwei Zellenarten, die in der Analyse der ebenen Spannungen vom Endlichen-
Elementen-Verfahren angewandt werden, namlich Stabwerkszelle und Schei-
benelement, werden genau untersucht. Zwei verschiedene Steifigkeitsmatrizen,
mit letzteren verbunden, werden explizit fiir ein Trapezelement aufgefiihrt.
Auf einige innewohnenden Unstetigkeiten dieser Matrizen wird hingewiesen
und der EinfluB auf das Ergebnis untersucht.



Leere Seite
Blank page
Page vide



	The finite element method in application to plane stress

