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Flambement des arcs
Bogenknicken

Buckling of Arches

J. COURBON
Prof., Ecole Nationale des Ponts et Chaussées, Paris

Nous exposerons deux méthodes de calcul de la poussée critique de flambe-
ment dans son plan d’un arc de section quelconque soumis & des charges verti-
cales: la méthode des approximations successives et la méthode de 1’énergie.
Nous examinerons les divers types d’arcs classiques: arc encastré, arc a deux
articulations, arc & une seule articulation et arc & trois articulations.

11 existe une théorie élémentaire du flambement des arcs fondée sur I’hypo-
thése simplificatrice qui consiste a négliger la composante horizontale du
déplacement d’un point de la fibre moyenne. Cette théorie, qui ramene 1’étude
du flambement d’un arc a celle d’une poutre droite, n’est valable que pour
des arcs trés surbaissés; dés que la fleche de 1’arc est notable, la théorie élémen-
taire donne des valeurs beaucoup trop fortes pour la poussée critique.

Il faut donc tenir compte de la composante horizontale du déplacement
d’un point de la fibre moyenne. Dans ce cas, il convient de distinguer deux
modes d’application des charges:

A. Charges liées a Uarc: les charges sont appliquées aux points matériels de
P’arc. La ligne d’action d’une charge se déplace donc en méme temps que le
point d’application de la charge.

B. Charges liées a Uespace: les lignes d’action des charges sont fixes dans
Pespace. Une charge appliquée initialement & un point matériel de ’arc, n’est
donc plus appliquée au méme point matériel de 1’arc apres déformation de I’arc.

Ces deux modes d’application des charges conduisent, pour un arc donné,
a des valeurs légérement différentes de la poussée critique. C’est le cas des
charges liées & 1’arc qui présente évidemment le plus d’intérét pour le construc-
teur.



14 J. COURBON
I. Etude géométrique des déformations de I’arc

1. Les fonctions considérées dans la déformation d’un arc

Les axes Ox et Oy étant rectangulaires, la fibre moyenne 4 B d’équation
y=y (x) vient, aprés déformation, en 4’ B’ (fig. 1). Un point matériel P de

Fig. 1.

X

0 a X b

A B de coordonnées (z,y) vient, aprés déformation en un point P’ de A’ B’ de
coordonnées (x+dzx, y +3vy).

L’axe O fait avec la tangente en P a la fibre moyenne 1’angle § et avec la
tangente en P’ & la fibre moyenne déformée 1’angle 6+ 6 6. Nous poserons:

dx=mu, dy=v, d0=ep.

Enfin il existe un point P” de 4’ B’ qui a méme abscisse que P. Nous

poserons P P" =z.

Les fonctions u, v, ¢, z sont des fonctions de x que nous considérerons
comme des infiniments petits au premier ordre. Nous allons montrer que la
connaissance de la fonction v entraine celle des fonctions u, ¢, z.

a) Calcul de la fonction u. Un point P, de A B voisin de P a pour coordonnées
(x+dx,y +dy). Ce point vient en un point P,/ de 4’ B’ voisin de P’ de coor-
données (x +u+dx+du,y+v+dy+dv).

En écrivant que P P, =P’ P/ nous obtenons:

dx?+dy? = (dx +du)? + (dy +dv)?
soit en désignant par y’, u’ et v’ les dérivées de y, u et v:
'u/’+'0’y, — ___]é_(u12+,012)-

w +v'y" étant du second ordre, nous pouvons, au troisieme ordre, prés, rem-
placer dans le second membre de 1’équation précédente u’ par —v'y’. Nous
obtenons ainsi:

4oy =—3(1+y'?)o'2 (1)

Lorsqu’on néglige les termes du second ordre, la relation précédente se
réduit a:
w+v'y =0. (2)
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Done, si ’on se donne » (x), la fonction « (x) a pour expression:
w(z) = u(@ =]V Oy € d (3)
a désignant I’abscisse de 1’origine 4 de la fibre moyenne.

b) Calcul de la fonction @. Des relations:
, l+vl
tgh=y, tgl+e) =17

on déduit sans difficulté, en négligeant les termes d’ordre égal ou supérieur
au second, la relation:

=10 (4)

c) Calcul de la fonction z. Au voisinage du point P’, les équations para-
métriques de la fibre moyenne déformée s’écrivent:

X=x+u+(1+u)de+iu"da®+---
Y=y+v+({y' +0v)de+3 @ +v)da?+ - - -
Dans les expressions précédentes, dx est le parameétre variable, x et y sont
les coordonnées du point P, et u, v, u’, v, u”, v" les valeurs des fonctions «, v

et de leurs dérivées au point P.
Le parameétre dx du point P” correspond & X =x donec:

u+(l1+u)de+3iu"da?+--- =0
d’ou il résulte que, en négligeant les termes d’ordre supérieur du second:
dx = —u+uu'.
_ On en déduit immédiatement 1’ordonnée Y de P” et la valeur de z=Y —y.
On trouve ainsi en négligeant les termes d’ordre égal ou supérieur au second:

z=v—uy'. (5)

d) Calcul de la variation de courbure de la fibre moyenne. La courbure de la

1 d , .
fibre moyenne en P est - = d—z et la courbure de la fibre moyenne déformée
1 a0+ ¢) . Py , A
B = g4, puisque les éléments d’arc ont la méme longueur. La

variation de courbure est donec:

1 _ d(p_dqodx

R  ds dxds

en P’ est

= ¢’ cosd.

Si Z est le module d’Young et I le moment d’inertie de la section, le moment
fléchissant résultant de la variation de courbure a donc pour valeur:
1

M=E18R

E I¢' cost.
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En désignant par J=1cosf le moment d’inertie réduit de la section et
P’arc, et par D le produit ¥ J nous avons done:

M = _D(p’ = Dv". (6)

Cette relation peut également étre déduire des formules de Bresse, a con-
dition de négliger les déformations dues & ’effort normal et I’effort tranchant.

2. Conditions aux limites vérifiées par le déplacement vertical

Nous définirons la déformation de ’arc par la fonction v (x). Dans chaque
cas particulier, cette fonction doit vérifier certaines conditions aux limites
que nous allons préciser.

a) Arc encastré. Les axes étant choisis comme il est indiqué sur la fig. 2, la
déformation est définie par la fonction » (x),  étant compris entre 0 et [ portée
de ’arc. La fonction est nulle pour x=0 et x=1/; la formule (4) montre qu’il
en est de méme pour la fonction »’ (z). Enfin % (0) et % (I) sont nuls. Il en résulte
le cinq conditions aux limites:

v(0) =0, v(l) =0,

v' (0) ==lO, v (l)=0, )
fv'y'de =0
0

la derniére résultant de la formule (3).

L Fig. 2.

b) Arc a deux articulations. Les axes étant toujours ceux de la fig. 2, v (2)
est nul pour =0 et x=1I; il en est de méme de v" (x) puisque le moment flé-
chissant est nul aux extrémités de 1’arc. Enfin « (0) et « (I) sont nuls. Nous
avons donc les cinq conditions aux limites:

v(0) =0, v(l) =0,

v (0) =0, o"()=0,
1 (8)
fv'y'de=0.
0
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¢) Arc a une seule articulation. Nous choisirons deux systémes d’axes O, x, ¥,
et 0,2,7, comme il est indiqué sur la fig. 3. La déformation est alors définie
par:
#{z) = {vl (x) pour 0sx=a, (0,4),
vo(x) pour 0<z=a, (0,4)

les fonctions v, (x) et v, (x) devant satisfaire aux huit conditions aux limites:

v;(0) =0, v1(0) =0, vi(a) =0,
v,(0) =0, v, (0) =0, vy (ay) = 0,
o u (9)

n)=n@),  [oyide+fuyide = o.

%1 A Y2

Y2
Y1 Xz 02
0 Xy
ay az Fig. 3.

Les sept premiéres sont évidentes; la derniére exprime, d’aprés la formule
(3), que le déplacement horizontal de 1’articulation 4 est le méme lorsqu’on
considére cette articulation comme appartenant soit & O; 4 soit & 0, 4.

Les fonctions y, et y, sont les ordonnées des arcs de fibre moyenne O; 4

et, 0, A rapportées aux axes O, 2,¥y, et O, 2,7,.

d) Arc a trois articulations. En conservant les axes de la fig. 3, la déformation
est encore définie par:

» (@) = vy(x) pour 0w =a, (0,4),
" |wg(x) pour 0sz=<a, (0,4)

les fonctions v, (x) et v, (x) devant satisfaire aux huit conditions aux limites:

1)1(0) =09 ‘D;{(O)=O, ’vi,(al):O:

v (0) =0, vy (0) =0, vy (ag) = 0,
(10)

a; 253
vla) =v@),  foigide+viyde = 0.
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IL. L’équation fondamentale vérifiée par la composante verticale du déplacement

1. Cas des charges lices a Uarc

Prenons pour origine des axes O x y le centre de gravité de la section d’extré-
mité de gauche (fig. 4), et supposons ’arc funiculaire de la densité de charge
p(x) qui lui est appliquée.

p(x) P

pt P!

x Fig. 4.

Q

Désignons par @ et B les composantes horizontale et verticale de la réaction
d’appui en O et par —A le moment par rapport & 0 (compté positivement
dans le sens trigonométrique) de cette réaction d’appui. En écrivant que le
moment fléchissant au point P de coordonnées (z,y) de la fibre moyenne est
nul, nous obtenons:

m(x)+A+Bzx—Qy =0 (11)

expression dans laquelle m (x) désigne la part du moment fléchissant due a la
densité de charge p (x):

m(x) = ~Ip(€) (w—£) . (12)
Dérivons 1’équation (11) par rapport & x, nous obtenons:
~[p@©de+B-Qy @) = 0. (13)

Une nouvelle dérivation donne la relation classique:

Qy" (x) = —p (2). (14)
Si ’on fait x =0 dans (13), on obtient la relation:
B =Qy’ (0). (15)

Donnons une déformation a 1’arc; le point matériel P de coordonnées (z, y)
vient au point P’ de coordonnées (z +u, y + v). Les quantités 4, B, @ deviennent
A+38A4, B+6B, Q+3¢. Le moment fléchissant M (x) au point P’ de la fibre
moyenne déformée a pour valeur, en désignant par m (x)+8m (x) la part de
ce moment due & la densité de charge p(x):

M () =m(x)+dm(x)+A+84+(B+3B)(x+u)— (Q+8Q) (y+v)
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soit, en tenant compte de (11) et en négligeant les termes du second ordre:
M(x)=8m(x)+Bu—Qv+64+z3B—yd5@Q. (16)

Calculons 8 m (x); puisque les charges sont appliquées aux points matériels de
Uarc, nous avons:

m (@) +8m (x) = — | p (&) [ +u (@) — € —u (£)]dE

0

done, en retranchant membre & membre 1’équation (12) de 1’équation précé-

dente, nous obtenons:
x

om (x) = —Ofp(f) [u (x) —u ()] d€
soit compte tenu de (14):
dm () = Q[ y" (¢) [w(x) —u (£)]d¢.
Une intégration par parties transforme 1’équation précédente en:
S (x) = ~ QU ()u @)+ QY (D (§)d
soit en tenant compte des relations (2) et (15):
dm () = — Bu(e) = QY *(€)v ().
Reportons cette valeur dans 1’expression (16), nous obtenons:
M (@) = = Qo+ [y ()0 ()41 +5 A+25 B—yd Q.

Et, puisque M =Dv", la composante verticale du déplacement est une
- solution de l’équation fondamentale:

Dv"+Qv+,]=84+x6B—y3Q (17)

dans laquelle i, est une fonction de x qui se déduit de la fonction v (x) par
Vopérateur linéaire Ly:

Yo = Ly [v] = fy’2(£)v’ (&) dE. (18)

La solution générale de 1’équation (17) dépend de fagon linéaire et homo-
gene de cinq constants: 6 4, 8 B, 5 @ et deux constantes d’intégration. En effet
v(x) est l'intégrale générale de 1’équation différentielle linéaire du troisiéme
ordre:

Do) +Q(1+y?)v =8B—-y'6¢Q

déduite de 1’équation (18) par dérivation.
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2. Cas des charges lices a ’espace

Conservons les hypotheses et les notations du paragraphe précédent mais
calculons le moment fléchissant M (z) au point P’ (x,y +2) de la fibre moyenne
déformée qui a méme abscisse que P. Puisque les charges ont des lignes d’action
fizes, le moment des charges appliquées par rapport au point P” est égal au
moment m (x) de ces mémes charges par rapport au point P. Nous avons donec:

M@x)=m(x)+A+84+(B+8B)x—(Q+6Q)(y+2)

soit en tenant compte de (11) et en négligeant 1'infiniment petit du second
ordre 286 :

M(x)=8A+23B—ydQ—2Q.
La relation M =D v" nous donne donc 1’équation:
Dv"+Qz=08A+x6B—yb5Q.
En tenant compte des relations (2) et (5) que nous rappelons:
w+v'y =0 z=v—uy'

nous voyons que les fonctions u et v sont des intégrales du systéme différentiel
linéaire du troisieme ordre:

Dv"+Qwv—uy)=38A+x6B-ydQ,
w+v'y =0.
La fonetion v (x) dépend donc de fagon linéaire et homogene de cing cons-
tantes: 6 4, 6 B, 6 @ et deux constantes d’intégration.

Désignons par i, la fonction —uy’; nous voyons que la composante verti-
cale du déplacement est une solution de l’équation fondamentale:

Dv"+Qv+¢,) =34A+x3B—y3dQ (19)
dans laquelle la fonction ¢, est une fonction de x qui se déduit de la fonction

v (x) par Dopérateur linéaire Ly:

dy = Lyv] = o/ <x)f y (€)' (£)dE. (20)

3. Conséquences des résultats précédents

Pour les deux modes d’application des charges envisagés, la composante
verticale v (x) est une solution de 1’équation fondamentale:

D' +Qv+¢] =84A+25B—ysQ (21)

dans laquelle ¢ se déduit de v par I’opérateur linéaire L, dans le cas des charges
liées a 1’arc, et par 1'opérateur L, dans le cas des charges liées a ’espace.

Le terme i est un terme correctif d’autant plus faible que I’arc est plus
surbaissé. Lorsqu’on néglige le terme ¢ ce qui revient & négliger les déplace-
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ments horizontaux de la fibre moyenne, on retrouve 1’équation différentielle
de la théorie élémentaire du flambement des arcs.

a) Méthode théorique de calcul de la poussée critique: Le calcul de la poussée
critique est aisé lorsqu’on sait intégrer formellement 1’équation fondamentale.

Examinons d’abord le cas d’un arc encastré ou d’'un arc a deux articulations
(fig. 2). La donction »(x) dépend de facon linéaire et homogene de cinq cons-
tantes. Les cing conditions aux limites (7) ou (8) fournissent done cing équa-
tions linéaires et homogénes entre ces cing constantes; 1’élimination des cons-
tantes entre ces équations donne une équation en ¢ dont la plus petite racine
positive est la poussée critique.

Dans le cas d’un arc @ une seule articulation ou d’un arc a trois articulations
(fig. 3), nous devons écrire 1’équation fondamentale pour chacun des arcs
0,4 et O, A. Le déplacement vertical dépend donc de facon linéaire et homo-
géne de dix constantes:

5A,,8A4,, 8B,,8B,, 5Q,,5Q,

et quatre constantes d’intégration. Mais ces dix constantes se réduisent & huit,
car les équations d’équilibre de la statique exigent que:

$5Q,=8Q,=5Q, B,=-3B,=35B.

Les huit conditions aux limites (9) ou (10) donnent alors huit équations
linéaires et homogenes entre les huit constantes; I’élimination des constantes
entre ces équations donne une équation en ¢ dont la plus petite racine posi-
tive est la poussée critique.

b) Cas d’un arc non funiculaire: Dans ce cas le moment fléchissant It (x)
dans 1’arc avant déformation n’est pas nul; I’équation (11) est remplacée par:

M@x)=m(x)+A+Br—Qy.

En reprenant les calculs qui nous ont conduit & 1’équation fondamentale,
nous trouvons que v () satisfait a 1’équation:

Do+ Q[v+d] =M ) +04+28B—y8Q.

La solution générale de cette équation s’obtient en ajoutant a la solution
générale de 1’équation fondamentale (21) une solution particuliére de 1’équa-
tion:

Dv" +Qv+4] = M (x).

Les constantes qui interviennent sont, dans chaque cas, déterminées par
les conditions aux limites. On obtient ainsi autant d’équations linéaires que
de constantes, mais ces équations ne sont plus homogénes. La poussée critique
est la plus petite valeur de pour laquelle le déterminant principal du systéme
d’équations précédentes s’annule. Le moment fléchissant IR () n’intervient
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donc pas dans le calcul de la poussée critique. La poussée critique est donc une
caractéristique de U'arc qui ne dépend pas des charges appliquées, mais seulement
de la fagon dont ces charges sont appliquées (charges liées a ’arc ou charges
liées & 1’espace).

III. Méthode des approximations successives

1. Calcul de la poussée critique par approximations successives

Nous allons d’abord définir un opérateur linéaire £2 permettant d’associer,
a toute représentation approchée v,(x) de la déformation au moment du
flambement, une représentation plus précise v, ().

Examinons d’abord le cas dun arc encastré ou d’un arc a deux articulations
(fig. 2). Donnons nous une fonction de départ v, vérifiant les conditions aux
limites (7) ou (8); il lui correspond une fonction i, par ’opérateur L, ou par
I’opérateur L, selon que les charges sont liées & 1’arc ou liées & 1’espace. La
fonction v, est la fonction qui vérifie les conditions aux limites (7) ou (8) et
dont la dérivée seconde a pour expression:

p_ —(Vot+ihy)+3A4+23B—ydQ
Ul = _D .

Il suffit pour déterminer la fonction v, d’intégrer deux fois ’expression
précédente et de déterminer 84, 8 B, 6 et les deux constantes d’intégration
au moyen des conditions aux limites (7) ou (8).

Dans le cas d’un arc & une seule articulation ou d’un arc a trois articulations
(fig. 3), nous nous donnons une fonction v, égale a (v,), sur O; 4 et a (v,), sur
0, A, les fonctions (v;), et (vy), Vérifiant les conditions aux limites (9) ou (10);
I’opérateur linéaire L, (ou L,) associe aux fonctions (v,), et (v,), les fonctions
(P1)o b (fy)y. La fonction v; est égale a (v,); sur O; 4 et & (v,); sur O, 4; les
fonctions (v,); et (v,); vérifient les conditions aux limites (9) ou (10) et ont
pour dérivées secondes:

—[(v1)o+ (f1)o] +6 4, +23 B~y 3@

(V)] = D )
v —[(02)o+ ()] +8 Ay —x 6B~y Q
(Vo)1 = D .

Il suffit pour déterminer les fonctions (v,); et (v,); d’intégrer deux fois les
expressions précédentes et de déterminer 64,, 64, 6B, 6@ et les quatre
constantes d’intégration au moyen des conditions aux limites (9) ou (10).

Nous avons ainsi défini dans tous les cas un opérateur linéaire 2 permettant
de calculer v, connaissant v,:

vy = £[v]. (23)
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On peut donc définir une suite de fonctions vy, v, v,. .. v,, telles que:
v =82[vy], v, =8[vy),..., v,=2[v, 4], ...

Ceci posé, supposons que v, (x) soit, & un facteur pres, la déformation qui
se produit au moment du flambement. Si nous multiplions v, (x) par la valeur
@), de la poussée critique, nous obtiendrons une fonction:

Q[Qc 7]0] = QCQ [Uo] = chl (.’1})

qui doit étre identique a v, (x). Nous aurions done:

Q, = 2@, (24)

vy (%)

Mais, puisque v,(x) n’est qu’une approximation de la déformation au
moment du flambement, le second membre de (24) n’est pas une constante.
On obtiendra cependant une valeur approchée de la poussée critique en
donnant & x dans la formule (24) une valeur particuliére (celle qui correspond
par exemple aux plus grandes valeurs de v, et de v, .

Si I’approximation est jugée insuffisante parce que le second membre de
(24) varie trop, on utilisera un des rapports de la suite:

v (x) vy () L Vp—1 (%)
va (@)’ vg(x)’ vy, (2)
qui tend vers la poussée critique.

11 résulte de ce qui précéde que la poussée critique est la plus petite valeur
propre de 1’équation:

i

v(x) = QL [v(2)]. (25)

Il est possible de montrer, dans chaque cas particulier, que 1’équation (25)
est une équation intégrale de FREDHOLM dont le noyau a généralement une
forme assez complexe.

Des simplifications de calcul sont possibles dans le cas des arcs ayant un
axe de symétrie. On peut dans ce cas distinguer le flambement symétrique et
le flambement antisymétrique correspondant & des déformations au moment
du flambement v (x) paires ou impaires, les abscisses z étant comptées & partir
de ’axe de symétrie.

En général, la poussée critique d’un arc encastré ou d’un arc & deux arti-
culations symétriques correspond au flambement antisymétrique, tandis que
la poussée critique d’un arc & une seule articulation ou d’un are & trois arti-
culations correspond au flambement symétrique.

2. Majoration des efforts dans un arc non funiculaire

On démontre que 1’équation intégrale (25) a une infinité de solutions non
identiquement nulles V;,V,,...,V,,... pour une infinité de valeurs crois-
santes de @: @, <@y < ... <@, < ... dont la plus petite est égale & la poussée
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critique @,. Les solutions V;,V,,...,V;,... appelées fonctions fondamen-
tales vérifient donc les identités:
Ni=0,2[V], Vo=@QR[Ve),.... Vi=@L[V] ...
Ceci posé, reprenons 1’équation (22) établie précédemment
Dv"+Qv+y] =M (x)+64+23B—-yd¢ (22)

et soit v, (x) la déformation calculée par les théories classiques de la Résistance
des Matériaux, en négligeant les déformations pour écrire les équations d’équi-
libre. Nous avons: D! = M (2)

et nous pouvons remplacer 1’équation (22) par 1’équation intégrale linéaire:
v (@) = v, (®) + QL[ ()] (26)
Développons v, (z) en série de fonctions fondamentales:
vo(x) =a, V(@) +aVa(x)+ ... +a, V(zx)+ ...
et cherchons v (z) sous forme d’une série de fonctions fondamentales:
v(@) =6V, @)+ b V() + ... +6, V() + ...

En reportant les expressions précédentes dans 1’équation (26), on trouve

sans peine que b
i 1“2
Qi
de sorte que:
a a a;
v(@) =—ah@+—gh@+ - +—g i@+
1-ar 1—oo 1-o

Les coefficients a; du développement de v, (z) sont donc multipliés par des
facteurs supérieurs & 'unité et tendant vers 1’unité lorsque 7 augmente indé-
finiment.

Le terme a, V] (x) étant le terme prépondérant du développement de v, (z),
il en résulte, avec une bonne approximation que:

Dans un arc de poussée critique Q,, les efforts et déformations calculés par les
théories classiques de la Résistance des Matériaux doivent étre multipliés par le

1 g Powr tenir compte de Uinfluence des déformations.
1—_2

c

facteur

IV. Méthode de I’énergie

Considérons 1’arc funiculaire en équilibre sous les charges qui lui sont
appliquées; cet équilibre sera stable si la fibre moyenne revient & sa position
initiale d’équilibre apres avoir subi une déformation, donc si le travail § T des
forces extérieures est inférieur & 1’énergie 3 W emmagasinée dans ’arc au
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cours de la déformation. La poussée critique s’obtiendra donc en écrivant que

3T est égal 4 6 W.

1. Cas des charges lices a Uarc

Nous considérons un arc quelconque, et nous lui donnons une déformation
compatible avec les liaisons imposées a 1’arc. Dans chaque cas particulier
étudié, la fonction v (x) doit donc vérifier les conditions aux limites qui ont
été indiquées précédemment.

Nous désignerons par § 1’ensemble des fonctions v (z) vérifiant les condi-
tions aux limites.

Calculons I’énergie 8 W emmagasinée dans 1’arc au cours de la déformation;
nous avons, les intégrales suivantes étant étendues d’une extrémité a 1’autre
de l’arc:

SW——I— M2ds 1 ( M?dx 1 M2dx
~2) EI 2) EJ 2] D

et, puisque M =Dv":
SW =1fDv"2dx. (27)

Calculons maintenant le travail 6 ¥ des forces extérieures. Supposons 1’arc
funiculaire des charges appliquées, ce qui, comme nous ’avons montré pré-
cédemment n’a pas d’influence sur la valeur de la poussée critique. En désignant
par p(x) la densité de charge appliquée & 1’arc, nous avons, les intégrales qui
figurent dans les formules qui suivent étant étendues d’une extrémité a 1’autre
de l'arc:

8% = —fpvdx
et, puisque I’arc est funiculaire nous avons @ y¥” = —p donec:
3T =Qfvy"de.

Intégrons par parties, nous obtenons, v étant toujours nul aux extrémités
de I’arc:

3T =—Qfv'y'dx
soit, compte tenu de la formule (1):
ST =Qf[w+3(1+y'2)v'2)da
et, puisque u est toujours nul aux extrémités de 1’arc:
3T =3Qf(1+y ?)v'2dx. (28)

On remarquera qu’il est nécessaire de tenir compte des termes du second
ordre pour calculer le travail des forces extérieures. Sil’on avait utilisé 1’expres-
sion (2) au lieu de ’expression (1), on aurait trouvé une valeur nulle pour le
travail des forces extérieures.
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Le flambement a lieu dés que 6§ T dépasse 8 W; il en résulte immédiatement
que la poussée critique @, a pour valeur:

. . Dv"2dx
Q, = Mlgleqéum [f(lf—i—y’z) ”,de]. (29)

Si la déformation v(x), appartenant & ’ensemble ¢, n’est pas exactement
celle qui se produit au moment du flambement, la formule (29) donne une
valeur par exces de la poussée critique. On obtiendra une grande précision en
choisissant pour v(z) les fonctions v,(x), v, (z),... obenues par la méthode
des approximations successives exposée précédemment; on utilise ainsi toutes
les valeurs des fonctions calculées.

Le calcul des variations permet de montrer 1’équivalence de la méthode
des approximations successives et de la méthode de 1’énergie.

2. Cas des charges lices a ’espace

Conservons les définitions du paragraphe précédent; le calcul de 1’énergie
6 W emmagasinée dans 1’arc est inchangé, et la formule (27) est encore exacte.

Par contre, le calcul du travail 8 ¥ des forces extérieures souléve des diffi-
cultés parce qu’il est difficile d’imaginer une liaison permettant d’appliquer
a ’arc, durant la déformation, une densité de charge dont les lignes d’action
sont liées & l’espace. Par exemple, on pourrait étre tenté de prendre pour
valeur de 8 T:

3T = —[pzde =Qfy"zdx.

Ce résultat est inexact, parce qu’il correspond & la liaison indiquée sur la
fig. 5; cette liaison donne lieu & une densité de charge verticale p et & une
densité de charge horizontale py’. Si I’on veut transmettre & I’arc une densité

Fig. 5. Fig. 6.
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de charge verticale au moyen de la liaison indiquée sur la fig. 5, il faut que
cette liaison soit une liaison avec frottement; il est alors nécessaire de tenir
compte du travail négatif des forces de frottement dans 1’évaluation de & I.

Pour appliquer au moyen d’un pointeau coulissant verticalement une den-
sité de charge verticale & I’arc, on peut imaginer (fig. 6) qu’un élément indé-
formable horizontal P H a été soudé en P a la fibre moyenne. Apres déforma-
tion cet élément vient en P’ H'; P’ est le méme point matériel que P, et P'H’
n’est plus horizontal, mais a une pente ¢ =v'". Le pointeau s’abaissant de
PP"=v—uv' le travail 6; T des forces exercées par le pointeau sur 1’arc est

5, T=—pw—uv)dx.

Mais, au cours de la déformation, si la densité de charge verticale appliquée
a 1’arc reste égale a p, la densité de charge horizontale appliquée a 1’arc varie
(lindairement si la déformation est petite) de 0 & pv’. Le travail 6, T est donc
la somme du travail % de la composante verticale p (c’est le travail que
nous cherchons), et du travail 8,3 de la composante horizontale:

3, T =L [pv ude.
Il en résulte que:

8T =8,T-8,T =—[pw—}uv)de
ou, I’arc étant funiculaire de la densité de charge p:
3T =Qf(vy" —}uv'y")de.
Nous avons montré dans le paragraphe précédent que:
foy"de =3[v'2(1+y'2)dx
done, nous obtenons finalement: |
3T =1Qfv2(1+y?)—uv y"]dx. (30)
Compte tenu de la valeur (5) de z, ’expression (30) peut également s’écrire:
03X =4 [v2dx.

Dans toutes les formules, les intégrales sont étendues d’une’ extrémité a
I’autre de 1’arc.

Le flambement a lieu deés que 6 T dépasse & W; il en résulte immédiatement
que la poussée critique ¢, a pour valeur:

[ [Dv"2dx

ETererrat &Y

@, = Minimum
vVEF

Le calcul des variations permet encore de montrer 1’équivalence de la
méthode des approximations successives et de la méthode de 1’énergie.
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Conclusion

Nous avons donné deux méthodes de calcul numérique de la poussée cri-
tique d’un are, tant dans le cas pratique des charges liées a 1’arc que dans le
cas théorique des charges liées a 1’espace. La méthode des approximations
successives donne lieu & des calculs d’intégration numérique beaucoup plus
longs que la méthode de 1’énergie; elle parait cependant indispensable pour
trouver une déformation approchée v (z) correcte, et non choisie au hasard,
afin de pouvoir appliquer la méthode de 1’énergie.

Dans le cas particulier d’'un arc de fibre moyenne quelconque et de loi
d’inertie quelconque, on obtiendra une valeur suffisamment précise de la
poussée critique en opérant de la fagon suivante:

a) En prenant pour fonction de départ v,(x) la déformation de la théorie
élémentaire de 1’arc parabolique d’inertie réduite constante, on déterminera,
par intégration numérique, la premiere déformation v, (x) de la méthode des
approximations successives.

b) On calculera la poussée critique par la méthode de 1’énergie en prenant
pour déformation v, ().

Nous avons appliqué les méthodes précédentes aux arcs symétriques d’iner-
tie réduite constante J & fibre moyenne parabolique. En désignant par 2a la
portée de 1’arc et par f sa fléche, la valeur approchée de la poussée critique
peut se mettre dans tous les cas sous la forme:

2EJ 1
T
Q. =m 2 12 (32)
a /
1+ K (—‘,—)
-~ a
m et K étant des constantes données dans le tableau suivant:
K pour des charges liées
Type d’Are m Observations
a l’are a ’espace
Are encastré 2,0458 3,35 4,01 Flambement
Arc & 2 articulations 1 6,14 6,95 antisymétrique
Arc & 1 articulation 1,1132 1,15 1,36 Flambement
Arc a 3 articulations 0,7527 1,99 2,27 symétrique
Résumé

La théorie élémentaire du flambement des arcs néglige les déplacements
horizontaux des points de la fibre moyenne de 1’arc; cette théorie ne donne
de résultats suffisamment précis que pour les arcs tres surbaissés. Des que la
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fléche de I’arc est importante, elle conduit & surestimer beaucoup la poussée
critique de ’arc et de ce fait est dangereuse.

Deux méthodes correctes de calcul numérique de la poussée critique sont
données: la méthode des approximations successives et la méthode de 1’énergie,
tant dans le cas des charges liées & 1’arc que dans le cas des charges liées &
P’espace. Les différentes liaisons pouvant étre imposées a I’arc ont été examinées:
arc encastré, arc a deux articulations, arc & une seule articulation et arc & trois
articulations.

Zusammenfassung

Die elementare Theorie der Knickung von Bogen vernachlissigt die waag-
rechten Verschiebungen der Nullachsen-Punkte des Bogens. Diese Theorie
ergibt nur fiir sehr flache Bogen geniigend genaue Ergebnisse. Sobald die
Pfeilhohe maBgebend wird, fithrt dies zu einer gefihrlichen Uberschitzung
des kritischen Horizontalschubes.

Es werden zwei fehlerfreie Methoden der numerischen Berechnung des
kritischen Schubes angegeben: Die fortgesetzte Annédherung sowie die Energie-
methode. Sowohl fiir den Fall der in der Bogenebene liegenden Belastung als
auch fiir raumliche Belastung. Verschiedene Bogenausbildungen wurden unter-
sucht, ndmlich den eingespannten, den Eingelenk-, Zweigelenk- und Drei-
gelenkbogen.

Summary

The elementary theory of the buckling of arches neglects the horizontal
movements of the mean fibre of the arch; this theory gives sufficiently accurate
results only for drop arches. As soon as the rise of the arch becomes consi-
derable, it leads to a marked overestimation of the critical thrust of the arch
and is therefore dangerous.

Two correct methods of numerical calculation of the critical thrust are
given: the method of successive approximations and the energy method, both
in the case of loads bound with the arch and in the case of loads bound with
space. The different connections that can be imposed on the arch were exam-
ined: fixed arch, two-hinged arch, arch with a single hinge and three hinged
arch.
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