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Préface

Le volume 28/I1 comprend 11 publications traitant les problémes les plus
divers mais aussi les plus actuels de I’ensemble du domaine des ponts et char-
pentes. Les résultats obtenus par les auteurs contribueront immédiatement a
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Les Secrétaires Généraux:

Dr sc. techn. HANS vON GUNTEN Dr sec. techn. PIERRE DuBas
Professeur a I’Ecole Polytechnique Professeur a I’Ecole Polytechnique
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Dr sec. techn. CHRISTIAN MENN
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Vorwort
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Die von den Verfassern erhaltenen Ergebnisse verhelfen dem praktischen
Ingenieur dank der klaren Darstellung der SchluBlfolgerungen zu bessern
Leistungen. Wir danken den Verfassern fiir ihre Beitrdge und hoffen, daB
Band 28/II unserer «Abhandlungen» eine grofle Verbreitung unter den Mit-
gliedern und den Nichtmitgliedern der IVBH finden wird.

Ziirich, im Dezember 1968.

Der Prasident der IVBH :

Prof. MAURICE COSANDEY
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Preface

Volume 28/I1 comprises 11 papers dealing with the most diverse but also
the most current problems in the field of bridge and structural engineering.
The results obtained by the authors directly contribute to the improvement
of the work of practical engineers thanks to the clear presentation of the
conclusions. We should like to express our gratitude to the authors for their
contributions and hope Volume 28/I1 of our «Publications» will have a large
distribution within and outside the IABSE.

Zurich, December 1968.

The President of IABSE:

Prof. Maurice COSANDEY

Director of the Institute of Technology of the University of Lausanne

The General Secretaries:
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The Design and Analysis of Buildings with Light Cladding
Projection et dimensionnement de constructions a revétements extra-légers

Entwurf und Berechnung von Gebduden mit leichter Verkleidung

E. R. BRYAN W. M. EL-DAKHAKHNTI
M. Se., Ph. D., Senior Lecturer, B. Sc., Ph. D., Associate Professor,
University of Manchester, England Assuit University, Egypt, U.A.R.
Introduction

It has long been recognised that light cladding makes a contribution to the
stiffness and strength of steel framed buildings but the effect has not been
taken into account in design. This is probably because the cladding has been
regarded as an uncertain element for structural purposes; it can be easily
removed for maintenance and the methods of attachment have been variable
and uncertain. In addition, steel sheets may corrode and the properties of
other types of cladding may deteriorate with the passage of time. Also, no
method has been available for estimating, even approximately, what the
likely stiffening effect of the sheeting would be. Consequently, designers have
tended to regard the effect as a “bonus’’ in reducing frame stresses and
deflexions to values somewhat below the calculated values. In many cases,
the only conscious use of the sheeting in design has been to allow the sheeting
to provide lateral support to the purlins, but this must be regarded as a purely
local effect. which does not affect the overall behaviour of the building.

In recent years, however, a much more positive role for sheeting and decking
has been adopted in the United States [1—4]. Welded floor decking has been
used to provide resistance to wind and seismic forces, and light steel decking
has been used for the shear diaphragms in folded plate roofs. In both these
cases, design information has been based on the results of full scale tests.

In the design of industrial shed-type buildings, it has been shown [5] that
the contribution of the sheeting to the frame stiffness and strength can be
calculated provided that the shear behaviour of a panel of sheeting is known.
In this connexion a panel is regarded as being that area of sheeting, complete
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with all attachments, between two adjacent rafters and between the extreme
purlins. Originally, full scale tests were carried out to determine the shear
behaviour of complete panels, though it was realised that the expense and
delay occasioned by such a procedure could not normally be tolerated in
design practice. More recently [6], a method of calculating the shear behaviour
of complete roof panels has been advanced and satisfactory agreement has
been obtained with experimental results [6, 7].

Before considering in detail the shear behaviour of roof decks and the
analysis of an actual building allowing for the contribution of the decking, it
is important to first consider whether it is safe or even desirable to take this
stiffening effect into account in design.

Safety of Clad Buildings

The prime purpose of most shed-type buildings is to act as an umbrella
to protect the contents from the weather, so that much of the load on the
building frames is dependent on the sheeting (i.e. dead load, wind load and
snow load). If the sheeting were totally removed much of the load would also
be removed. Under such conditions, it is suggested that the effect of the sheeting
should be taken into account in design. If the major part of the load on the
building is derived from other sources, then the argument for allowing for the
sheeting is not so strong.

If cladding is to be taken into account, it must be regarded as a structural
element and proper care must be taken in specifying fixings, etc. For instance,
hook bolts would not suffice, but self tapping screws or fired pins would be
necessary. There is also the difficulty that sheeting has traditionally been
regarded as an element which can be easily removed for maintenance purposes.
Hence, it could be asked whether unauthorized removal of a number of
sheets in an important part of the building would endanger the structure. It
might also be asked if deterioration of the sheeting could weaken the whole
building rather than cause a local weakness.

The foregoing questions are quite legitimate and contain elements of truth.
Undoubtedly, if the membrane strength of cladding is to be used in design,
then it will be necessary to train engineers to think in terms of the whole
building, rather than in terms of a framework. Nevertheless, this has been
done in the unitary construction of car bodies, in the stressed skin construction
of airframes and in the design of ships’ hulls, so there seems no basic reason
why it should not be done in the structural industry, in spite of the special
problems.

Because of the varied workmanship likely to be achieved in the site fixing
of cladding, it is necessary to have proper safeguards. It is also necessary to
ensure that the building is safe at all stages of construction, occupation and
use. It is therefore suggested that the bare steel framework must be strong



THE DESIGN AND ANALYSIS OF BUILDINGS WITH LIGHT CLADDING 3

enough to withstand by itself all the design loads but that the maximum
stress under this condition be allowed to approach the yield stress. After
sheeting, the maximum calculated stress in the clad frame under the design
loads should not exceed the present permissible working stress, and the cal-
culated deflexions should be acceptable. By conforming to these conditions
the safety of a building would be assured and economy in the design of the
frame would result. It would also mean that the design reflected the true
behaviour of the building rather than the hypothetical behaviour based on
the bare frame.

Shear Tests on Steel Decks

In order that the method proposed for calculating the shear behaviour of
panels of sheeting or decking may be assessed, the results of three sets of
tests are compared with the calculated values. These tests are described more
fully in references [6] and [7]. The method of calculation is given in reference
[6] and illustrated by the example in the present paper.

Test 1. This test was carried out on a panel of steel sheeting 8 ft. wide
X 10 ft. deep with 3 purlins (Fig. 1). The sheeting was 0.024 in. thick, the
pitch of the corrugations was 4 in., the seam bolts were spaced at 12 in. centres
and the sheet-purlin fasteners (self tapping screws) were spaced at various
centres. Table 1 gives a comparison of the calculated and measured shear
flexibilities and shear strengths.

8 ft
i _Purlin

<z E Purlin E

=1 ©

x . [+ 4

Fig. 1. Panel of sheeting in test 1. Purlin_|_§ A
01
Table 1
No. of fasteners Shear flexibility 4/@ in in./ton Shear strength in tons

per aheet Calculated Measured Calculated Measured
7 0.18 0.17 1.7 2.3—2.8
4 0.27 0.31 1.7 1.6—1.8
3 0.40 0.38 1.4 1.0—1.6

Test 2. The panel of steel sheeting was 12 ft. x 12 ft. with provision for
either 3 purlins or 5 purlins (Fig. 2). The sheeting was 0.028 in. thick, the pitch
of the corrugations was 63/, in., the seam fasteners (pop rivets) were generally
at 18 in. centres and the sheet-purlin fasteners (self tapping screws) were
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fixed in every corrugation or alternate corrugations. Table 2 summarizes the
calculated and observed behaviour.

12 £t
‘ Purlin ’

( Purlin)

12 ft
Rafter

Fig. 2. Panel of sheeting in test 2.

Table 2
No. of Sheet-purlin Shear flexibility 4/@ in in./ton Shear strenﬁgth in tons
purlins fosteners Calculated ‘ Measured Calculated Measured
| |

3 Every corrug. 0.060 | 0.056 3.5 | 3.4
Altern. corrug. 0.359 l 0.328
.5 Every corrug. 0.045 0.050
Altern. corrug. 0.305 0.237

Test 3. The panel was of steel sheeting 5 m wide X 3 m deep with 4 light
gauge purlins (Fig. 3). The sheet thickness was 0.85 mm, the pitch of the
corrugations was 125 mm, the seam fasteners (pop rivets) and the sheet-
purlin fasteners (self tapping screws) were spaced at 125 mm or 250 mm
centres. Table 3 summarizes the calculated and observed behaviour of the

original and modified panels.

5m
| Purlin l

c B Purlin g
© o Purlin =
1 Purlin { Fig. 3. Panel of sheeting in test 3.
ol
Table 3
Spacing of sheet- | Spacing of seam Shear flexibility 4/@ in in./ton
purlin fasteners fasteners Caloulated Meoasured
Original 250 mm 250 mm 0.97 1.30
Panel 125 mm 125 mm 0.91 1.36
Modified 125 mm 125 mm 0.10 0.14
Panel 250 mm 125 mm 0.14 0.15
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Summary of Results. The tests show that the calculated values of the shear
flexibilities of the panels tested are generally in satisfactory agreement with
the measured values. The shear strengths in Tests 1 and 2, calculated on the
assumption that failure occurs due to tearing at the sheet fasteners, are also
in approximate agreement with the observed values. A comparison of shear
strengths in Test 3 was not possible as failure did not occur in the above mode.

On the evidence of the above results, and others not quoted, it would appear
that a reasonable estimate of the shear flexibility of panels of steel sheeting
can be made provided that the details of construction do not differ too widely
from the panels tested. Also, an estimate of the shear strength can be made
assuming that failure occurs by tearing at the sheet fasteners (the usual mode).

Analysis of Clad Building

The steel framed building in question was 80 ft. wide, 309 ft. long and
50 ft. high. A diagrammatic representation of the main frames is shown in
Fig. 4 and the plan of the building is given in Fig. 5. It is seen that the trans-

50 ft

-1
|
!
|

rame 7

Frame 4
Frame
Stitfened

trame 6
trame 11
rgme 12

Gable frame 13
80 ft

Frame 3

g

Gable frame 1
- P
Frame
Fram

Fram:
‘___ Stiftened

r_

1

7’;7' he T
I Average spacing of frames = 27.05 ft
1

309 ft

Fig. 4. Idealized steel frame. Fig. 5. Plan of roof deck.

verse strength of the building depends on the rigid portal frame ABCD in
Fig. 4 and that the outer pinned frames, shown dotted, do not contribute to
this strength. Referring to Fig. 5, there are rigid partition walls across the
building at frames 6 and 11, so that the greatest length of building to be
considered is the portion between these frames. In this portion, there are four
intermediate frames and the average width of a panel of sheeting is 27.05 ft.

Bare Frame Analysis

In the bare frame analysis, the bending moments due to wind loads far
exceeded those due to any other type of loading. In order to simplify the
example, only wind bending moments will therefore be considered. Fig. 6
shows these calculated bending moments in the bare steel frame under working
loads; the calculated sway deflexion is 2.90 in.

497

Twrs o
]
Fig. 6. Bare frame bending |
moments in ton-ft. : l A D

181.0 1810

9.2ton

Sway deflexion
=2.90in

O o o e — ——0
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Shear Flexibility of Panel of Sheeting

The flexibility of a panel of sheeting will be due to:

1. 1.1. Bending of the corrugation profile.
1.4. Shear strain in the panel.
1.5. Axial strain in the purlins.

2. 2.1. Slip in the sheet/purlin fasteners.
2.3. Slip in the seam fasteners.

3. 3.1. Twisting of the purlin/rafter connexions.

The above sub-heading numbers are those used in reference 6 where an
expression for each effect was separately derived.

1.1. Bending of the corrugation profile. The sheet profile is shown in Fig. 7.

1=388"

\1’[-? o.oze"k!/ ~Thaas

825" Fig. 7. Corrugation profile.

The shear flexibility due to distortion of the profile is given by
144 K h312

€1y = —E—tsb—s—ncflx 13.8,
where b6 = depth of panel = 80X 12 in.
E = modulus of elasticity = 13,000 ton/in.?
k= height of corrugation = 1.375 in.
I = width of flat top of corrugation = 3.88 in.
t = thickness of sheeting = 0.028 in.
K = constant of sheeting (ref. [7], table 4) = 0.145
n, = number of corrugations per panel = 48

fi = reduction factor to allow for the effect of intermediate purlins
(ref. [6], table 1) = 0.49

13.8 = multiplication factor to allow for fasteners in alternate corruga-
tions (ref. [7], table 4)

hence ¢;,;, = 1.0Xx10-3in./ton (1)

1.4. Shear strain in panel. The shear flexibility due to distortion of the
panel from a rectangle to a parallelogram is given by

o = 2a (1+v) developed length of profile
47 btE pitch of corrugations

fz,



THE DESIGN AND ANALYSIS OF BUILDINGS WITH LIGHT CLADDING 7

where @ = average width of panel = 27.05x 12 in.
v = Poisson’s ratio = 0.25
developed length/pitch = 1.26 (ref. [7], table 4)
fs = reduction factor to allow for the effect of intermediate purlins
(ref. [6], table 1) = 0.29
hence ¢,, = 0.8x 1073 in./ton (2)

1.5. Azial strain in purlins. The shear flexibility due to the tendency of the
purlins to lengthen or shorten under axial stress is given by
2a?

5 = 3RAE

where A = cross sectional area of purlins = 2.68 in.2
fs = reduction factor to allow for the effect of intermediate purlins
(ref. [6], table 1) = 0.39
hence ¢,; = 0.3x1073in./ton ' (3)
2.1. Slip in sheet|purlin fasteners. The shear flexibility due to this cause is
given by ) _2sp[6 +a2]‘3
21 — a np b2 ’
where p = pitch of fasteners = 13.5 in.
s = slip of fastener per unit load (ref. [6]) = 0.10 in./ton
n, = number of purlins = 13
hence ¢,; = 4.2x1073in./ton (4)

2.3. Slip in the seam fasteners. The shear flexibility due to seam slip is given by

nshss
Cog = "

&

where ng = number of sheet widths per panel = 14

n, = number of seam fasteners per seam = 54
s, = slip of seam fastener per unit load
(assumed to have the same value as s) = 0.10 in./ton
hence c¢,; = 25.9X 1073 in./ton (5)

3.1. Twisting of the purlin/rafter connexions. Fig. 8 shows a typical purlin/
rafter connexion at eight of the purlins; the remaining connexions were more

0.15‘:! l"

- 1ton

Height |
Varies

Fig. 8. Detail of purlin/rafter connexion.

7777 r 7777
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flexible. From tests on other types of connexion (ref. [6]), it can be estimated
that the flexibility per connexion is 0.160 in./ton.

0.160 .
hence 31 =g = 20.0 X 10~3in/ton. (6)

Total Shear Flexibility

From Eqs. (1) to (6), the total shear flexibility is given by
¢c=(10+0.840.3+4.2+25.9+20.0) X 1073 = 0.052 in./ton.

Modified Bending Moments and Deflexions in Clad Frames

From Fig. 6, the flexibility of a bare frame is

_ sway deflexion  2.90
~ sway force 9.2

= 0.3151in/ton,

Hence, the relative stiffness factor r is

¢ 0.052
%= o315 = 0168

r =

Instead of using the type of design chart derived in reference [5], the informa-
tion is tabulated. It is seen from Table 4 that for a building with 4 inter-
mediate frames and for r=0.168, the maximum value of m is 0.34. This is
used in the expression

Final moment in clad frame =
Non sway moment + m X Sway moment of bare frame.

Since only wind bending moments are being considered, the non sway
moment is zero and

Final moment in clad frame = 0.34 X Sway moment in bare frame.

This expression applies to the two central frames of the portion considered,
i.e. frames 8 and 9. The relevant factor for frames 7 and 10 is 0.24. For frames
8 and 9 the modified bending moment diagram is given in Fig. 9; the sway
deflexion is 0.34 of the bare frame value.

169
°=—==-9 —* 9.2 ton (of which 31ton

| is taken by the frame
| and 61 ton by the

: sheeting )
| Sway deflexion = 034 x 2.90

D $ =1.0in

615 615

Fig. 9. Clad frame bending moments in ton-ft.
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Table 4. Reduction factors to be applied to sway moments in clad buildings with 4 inter-
mediate frames

. . Reduction factor m to be applied
Relative stiff-
ness factor
r Intermediate Intermediate
frames 1 and 4 frames 2 and 3
0.02 0.04 0.06
0.04 0.07 0.11
0.06 0.10 0.16
0.08 0.13 0.20
0.10 0.16 0.24
0.12 0.19 0.27
0.15 0.22 0.32
0.20 0.27 0.39
0.25 0.31 0.45
0.30 0.35 0.50
0.40 0.41 0.58
0.50 0.46 0.64
0.60 0.49 0.68
0.80 0.56 0.75
1.00 0.60 0.80

Forces on Roof Sheeting

Referring to Figs. 5 and 9, the force on the sheeting at frames 8 and 9 is
(1—0.34) X 9.2 = 6.1 tons and the force on the sheeting at frames 7 and 10 is
(1-0.24) X 9.2 = 7.0 tons. Hence the total shear force on the sheeting between
frames 6 and 7 and between frames 10 and 11 is 13.1 tons. This represents an
average shear stress in the sheeting of 13.1/80 x 12X 0.028 = 0.5 ton/in.2, which
is very small compared with the likely stress due to ordinary flexure of the
sheet.

Ultimate Shear Strength of Panel
The strength of the panel will be calculated on the assumption that failure
occurs due to

1. Tearing at the sheet/purlin fasteners.
2. Failure of the seam fasteners.

1. Tearing at the sheet|/purlin fasteners. The normal forces on the fasteners
are assumed to vary linearly along the length of a purlin as shown in Fig. 10.

Q T p Fp b

Mp -:ib:H /ﬂ/ﬂ
._.f:_;l

HRR 'Q

Fig. 10. Forces acting on a purlin.
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The maximum normal force on a fastener, F;, can be shown to be given by

Lt =np[1+(a—2p)2f(a——4p)2+ -~ ] ~ 13><Q4.46 = 0.017 ¢

a a

The force per fastener along the purlin, Fy, is given by
Fy = gpf?, = 0.005 Q.

Hence, the maximum resultant load per fastener is
F, ={F2+F2 = 0.018 Q.

From tests, the ultimate tearing load per fastener = 0.42 tons, so ¢ =0.42/0.018 =
23.4 tons which is the maximum shear strength of a panel according to this
criterion. '

2. Failure of the seam fasteners. The total shear forces on the purlins give
rise to a moment Qa (Fig. 11) which is resisted by the forces on the sheeting.
Hence the total shear force distribution across the sheeting is as shown in
Fig. 12, the maximum value being 2 ).

P-=
A

Njw

2 Q
£a a

u

Q 3
—p-da | 2%

. a .

! Fig. 12. Shear force distribution
Fig. 11. Total forces acting on purlins. across sheeting.

Along the central seam there are 40 screws (ultimate tearing load 0.34 ton
each) and 14 self tapping screws into the purlins (0.42 ton each) so that the
maximum allowable shear force is 40 0.344 14 0.42 = 19.5 ton. Equating
this to £ @ gives the maximum permissible shear strength of a panel as @ =13.0
ton.

From criteria (1) and (2), it is apparent that case (2) dominates. Hence the
maximum shear force, under working loads, in a panel of sheeting, is slightly
greater than that to cause tearing at the seam fasteners (13.1 ton cf. 13.0 ton).

Conclusions

From the calculations for a particular clad building, it is shown that the
sway bending moments and deflexion may be drastically reduced by allowing
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for the effect of sheeting in design. Conversely, it can be said that in analysing
the given building, unless the cladding is taken into account, the calculated
stresses are fictitious.

In the building considered, the seam fasteners in certain panels of roof
decking are on the point of tearing the sheeting, even under working loads.
Obviously this does not endanger the structure, since the steelwork has been
designed on the basis of bare frames, but it could cause trouble in keeping
the cladding watertight. The level of shear stress in the sheeting is so low that
design of the sheeting would be determined by the ordinary flexural require-
ments.

By using the effect of sheeting in design it should be possible to achieve
greater economy than at present without loss of safety, for the design would
be based on the actual behaviour of the building rather than on the hypo-
thetical behaviour of the bare frame.
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Summary

A review is given of recent work on the diaphragm behaviour of light steel
sheeting, with particular reference to shed-type buildings. The safety and
desirability of taking account of the stiffening effect of sheeting in structural
design is then considered.
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A resume is given of three sets of shear tests on steel sheeting and decking
and the results are shown to be in satisfactory agreement with the calculated
values. On the basis of this agreement, a specimen calculation is made of the
stiffening effect of sheeting on an actual steel framed building. The calculations
show that the actual wind bending moments and transverse deflexions will be
only one third of the bare frame values, and that the seam fasteners in the
end panels of roof decking are stressed to the limit, even though the building
was not designed to take account of the cladding.

Résumé

L’auteur commence par un bref apergu sur les travaux récents concernant
le comportement de diaphragmes en panneaux d’acier minces, oul I’accent est
mis sur les constructions & sheds. Puis il étudie la sécurité et 1'utilité de la
prise en considération de la rigidité des panneaux dans le dimensionnement
d’une construection.

Il résume trois séries de tests de cisaillement faits sur des panneaux de
facades et de toitures en acier. Leurs résultats se rapprochent de fagon satis-
faisante des valeurs calculées. Cette concordance permet de développer un
calcul type pour évaluer l’effet de renforcement dii aux panneaux sur une
construction d’acier & portiques. Les calculs montrent que les valeurs réelles
des moments de flexion et des déplacements transversaux dus au vent se
réduisent & un tiers des valeurs calculées sur le squelette nu, et que les fixations
des panneaux extérieurs du toit sont sollicités a la limite, bien que le batiment
était projété en négligeant les revétements.

Zusammenfassung

Die Verfasser geben einen Uberblick iiber die Scheibenwirkung von Leicht-
stahlplatten mit besonderer Beriicksichtigung von Gebdauden mit Schirmdach
(Shed-Dach).

Sicherheit und Wunsch, dem Steifigkeitseinflul der Platten Rechnung zu
tragen, werden sodann untersucht. Fiir drei Schubversuchssitze von Stahl-
platten und -decken wird eine Zusammenfassung angegeben, und es zeigt sich,
daB die Ergebnisse mit den errechneten Werten gut iibereinstimmen.

Auf Grund dieser Ubereinstimmung wurde eine spezielle Berechnung iiber
den Steifigkeitseinflul der Platte fiir einen gingigen Stahl-Stockwerkrahmen
angestellt. Die Rechnung zeigt uns, dafl die wirklichen Windbiegemomente
und Querverschiebungen nur einen Drittel der Werte des baren Rahmens
ausmachen und daB die Saumverbindungen in den Endfeldern der Dach-
platten bis zur Grenze beansprucht sind, als ob das Gebdude ohne Verklei-
dung entworfen worden wire.



Flambement des arcs
Bogenknicken

Buckling of Arches

J. COURBON
Prof., Ecole Nationale des Ponts et Chaussées, Paris

Nous exposerons deux méthodes de calcul de la poussée critique de flambe-
ment dans son plan d’un arc de section quelconque soumis & des charges verti-
cales: la méthode des approximations successives et la méthode de 1’énergie.
Nous examinerons les divers types d’arcs classiques: arc encastré, arc a deux
articulations, arc & une seule articulation et arc & trois articulations.

11 existe une théorie élémentaire du flambement des arcs fondée sur I’hypo-
thése simplificatrice qui consiste a négliger la composante horizontale du
déplacement d’un point de la fibre moyenne. Cette théorie, qui ramene 1’étude
du flambement d’un arc a celle d’une poutre droite, n’est valable que pour
des arcs trés surbaissés; dés que la fleche de 1’arc est notable, la théorie élémen-
taire donne des valeurs beaucoup trop fortes pour la poussée critique.

Il faut donc tenir compte de la composante horizontale du déplacement
d’un point de la fibre moyenne. Dans ce cas, il convient de distinguer deux
modes d’application des charges:

A. Charges liées a Uarc: les charges sont appliquées aux points matériels de
P’arc. La ligne d’action d’une charge se déplace donc en méme temps que le
point d’application de la charge.

B. Charges liées a Uespace: les lignes d’action des charges sont fixes dans
Pespace. Une charge appliquée initialement & un point matériel de ’arc, n’est
donc plus appliquée au méme point matériel de 1’arc apres déformation de I’arc.

Ces deux modes d’application des charges conduisent, pour un arc donné,
a des valeurs légérement différentes de la poussée critique. C’est le cas des
charges liées & 1’arc qui présente évidemment le plus d’intérét pour le construc-
teur.
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I. Etude géométrique des déformations de I’arc

1. Les fonctions considérées dans la déformation d’un arc

Les axes Ox et Oy étant rectangulaires, la fibre moyenne 4 B d’équation
y=y (x) vient, aprés déformation, en 4’ B’ (fig. 1). Un point matériel P de

Fig. 1.

X

0 a X b

A B de coordonnées (z,y) vient, aprés déformation en un point P’ de A’ B’ de
coordonnées (x+dzx, y +3vy).

L’axe O fait avec la tangente en P a la fibre moyenne 1’angle § et avec la
tangente en P’ & la fibre moyenne déformée 1’angle 6+ 6 6. Nous poserons:

dx=mu, dy=v, d0=ep.

Enfin il existe un point P” de 4’ B’ qui a méme abscisse que P. Nous

poserons P P" =z.

Les fonctions u, v, ¢, z sont des fonctions de x que nous considérerons
comme des infiniments petits au premier ordre. Nous allons montrer que la
connaissance de la fonction v entraine celle des fonctions u, ¢, z.

a) Calcul de la fonction u. Un point P, de A B voisin de P a pour coordonnées
(x+dx,y +dy). Ce point vient en un point P,/ de 4’ B’ voisin de P’ de coor-
données (x +u+dx+du,y+v+dy+dv).

En écrivant que P P, =P’ P/ nous obtenons:

dx?+dy? = (dx +du)? + (dy +dv)?
soit en désignant par y’, u’ et v’ les dérivées de y, u et v:
'u/’+'0’y, — ___]é_(u12+,012)-

w +v'y" étant du second ordre, nous pouvons, au troisieme ordre, prés, rem-
placer dans le second membre de 1’équation précédente u’ par —v'y’. Nous
obtenons ainsi:

4oy =—3(1+y'?)o'2 (1)

Lorsqu’on néglige les termes du second ordre, la relation précédente se
réduit a:
w+v'y =0. (2)
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Done, si ’on se donne » (x), la fonction « (x) a pour expression:
w(z) = u(@ =]V Oy € d (3)
a désignant I’abscisse de 1’origine 4 de la fibre moyenne.

b) Calcul de la fonction @. Des relations:
, l+vl
tgh=y, tgl+e) =17

on déduit sans difficulté, en négligeant les termes d’ordre égal ou supérieur
au second, la relation:

=10 (4)

c) Calcul de la fonction z. Au voisinage du point P’, les équations para-
métriques de la fibre moyenne déformée s’écrivent:

X=x+u+(1+u)de+iu"da®+---
Y=y+v+({y' +0v)de+3 @ +v)da?+ - - -
Dans les expressions précédentes, dx est le parameétre variable, x et y sont
les coordonnées du point P, et u, v, u’, v, u”, v" les valeurs des fonctions «, v

et de leurs dérivées au point P.
Le parameétre dx du point P” correspond & X =x donec:

u+(l1+u)de+3iu"da?+--- =0
d’ou il résulte que, en négligeant les termes d’ordre supérieur du second:
dx = —u+uu'.
_ On en déduit immédiatement 1’ordonnée Y de P” et la valeur de z=Y —y.
On trouve ainsi en négligeant les termes d’ordre égal ou supérieur au second:

z=v—uy'. (5)

d) Calcul de la variation de courbure de la fibre moyenne. La courbure de la

1 d , .
fibre moyenne en P est - = d—z et la courbure de la fibre moyenne déformée
1 a0+ ¢) . Py , A
B = g4, puisque les éléments d’arc ont la méme longueur. La

variation de courbure est donec:

1 _ d(p_dqodx

R  ds dxds

en P’ est

= ¢’ cosd.

Si Z est le module d’Young et I le moment d’inertie de la section, le moment
fléchissant résultant de la variation de courbure a donc pour valeur:
1

M=E18R

E I¢' cost.
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En désignant par J=1cosf le moment d’inertie réduit de la section et
P’arc, et par D le produit ¥ J nous avons done:

M = _D(p’ = Dv". (6)

Cette relation peut également étre déduire des formules de Bresse, a con-
dition de négliger les déformations dues & ’effort normal et I’effort tranchant.

2. Conditions aux limites vérifiées par le déplacement vertical

Nous définirons la déformation de ’arc par la fonction v (x). Dans chaque
cas particulier, cette fonction doit vérifier certaines conditions aux limites
que nous allons préciser.

a) Arc encastré. Les axes étant choisis comme il est indiqué sur la fig. 2, la
déformation est définie par la fonction » (x),  étant compris entre 0 et [ portée
de ’arc. La fonction est nulle pour x=0 et x=1/; la formule (4) montre qu’il
en est de méme pour la fonction »’ (z). Enfin % (0) et % (I) sont nuls. Il en résulte
le cinq conditions aux limites:

v(0) =0, v(l) =0,

v' (0) ==lO, v (l)=0, )
fv'y'de =0
0

la derniére résultant de la formule (3).

L Fig. 2.

b) Arc a deux articulations. Les axes étant toujours ceux de la fig. 2, v (2)
est nul pour =0 et x=1I; il en est de méme de v" (x) puisque le moment flé-
chissant est nul aux extrémités de 1’arc. Enfin « (0) et « (I) sont nuls. Nous
avons donc les cinq conditions aux limites:

v(0) =0, v(l) =0,

v (0) =0, o"()=0,
1 (8)
fv'y'de=0.
0
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¢) Arc a une seule articulation. Nous choisirons deux systémes d’axes O, x, ¥,
et 0,2,7, comme il est indiqué sur la fig. 3. La déformation est alors définie
par:
#{z) = {vl (x) pour 0sx=a, (0,4),
vo(x) pour 0<z=a, (0,4)

les fonctions v, (x) et v, (x) devant satisfaire aux huit conditions aux limites:

v;(0) =0, v1(0) =0, vi(a) =0,
v,(0) =0, v, (0) =0, vy (ay) = 0,
o u (9)

n)=n@),  [oyide+fuyide = o.

%1 A Y2

Y2
Y1 Xz 02
0 Xy
ay az Fig. 3.

Les sept premiéres sont évidentes; la derniére exprime, d’aprés la formule
(3), que le déplacement horizontal de 1’articulation 4 est le méme lorsqu’on
considére cette articulation comme appartenant soit & O; 4 soit & 0, 4.

Les fonctions y, et y, sont les ordonnées des arcs de fibre moyenne O; 4

et, 0, A rapportées aux axes O, 2,¥y, et O, 2,7,.

d) Arc a trois articulations. En conservant les axes de la fig. 3, la déformation
est encore définie par:

» (@) = vy(x) pour 0w =a, (0,4),
" |wg(x) pour 0sz=<a, (0,4)

les fonctions v, (x) et v, (x) devant satisfaire aux huit conditions aux limites:

1)1(0) =09 ‘D;{(O)=O, ’vi,(al):O:

v (0) =0, vy (0) =0, vy (ag) = 0,
(10)

a; 253
vla) =v@),  foigide+viyde = 0.
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IL. L’équation fondamentale vérifiée par la composante verticale du déplacement

1. Cas des charges lices a Uarc

Prenons pour origine des axes O x y le centre de gravité de la section d’extré-
mité de gauche (fig. 4), et supposons ’arc funiculaire de la densité de charge
p(x) qui lui est appliquée.

p(x) P

pt P!

x Fig. 4.

Q

Désignons par @ et B les composantes horizontale et verticale de la réaction
d’appui en O et par —A le moment par rapport & 0 (compté positivement
dans le sens trigonométrique) de cette réaction d’appui. En écrivant que le
moment fléchissant au point P de coordonnées (z,y) de la fibre moyenne est
nul, nous obtenons:

m(x)+A+Bzx—Qy =0 (11)

expression dans laquelle m (x) désigne la part du moment fléchissant due a la
densité de charge p (x):

m(x) = ~Ip(€) (w—£) . (12)
Dérivons 1’équation (11) par rapport & x, nous obtenons:
~[p@©de+B-Qy @) = 0. (13)

Une nouvelle dérivation donne la relation classique:

Qy" (x) = —p (2). (14)
Si ’on fait x =0 dans (13), on obtient la relation:
B =Qy’ (0). (15)

Donnons une déformation a 1’arc; le point matériel P de coordonnées (z, y)
vient au point P’ de coordonnées (z +u, y + v). Les quantités 4, B, @ deviennent
A+38A4, B+6B, Q+3¢. Le moment fléchissant M (x) au point P’ de la fibre
moyenne déformée a pour valeur, en désignant par m (x)+8m (x) la part de
ce moment due & la densité de charge p(x):

M () =m(x)+dm(x)+A+84+(B+3B)(x+u)— (Q+8Q) (y+v)
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soit, en tenant compte de (11) et en négligeant les termes du second ordre:
M(x)=8m(x)+Bu—Qv+64+z3B—yd5@Q. (16)

Calculons 8 m (x); puisque les charges sont appliquées aux points matériels de
Uarc, nous avons:

m (@) +8m (x) = — | p (&) [ +u (@) — € —u (£)]dE

0

done, en retranchant membre & membre 1’équation (12) de 1’équation précé-

dente, nous obtenons:
x

om (x) = —Ofp(f) [u (x) —u ()] d€
soit compte tenu de (14):
dm () = Q[ y" (¢) [w(x) —u (£)]d¢.
Une intégration par parties transforme 1’équation précédente en:
S (x) = ~ QU ()u @)+ QY (D (§)d
soit en tenant compte des relations (2) et (15):
dm () = — Bu(e) = QY *(€)v ().
Reportons cette valeur dans 1’expression (16), nous obtenons:
M (@) = = Qo+ [y ()0 ()41 +5 A+25 B—yd Q.

Et, puisque M =Dv", la composante verticale du déplacement est une
- solution de l’équation fondamentale:

Dv"+Qv+,]=84+x6B—y3Q (17)

dans laquelle i, est une fonction de x qui se déduit de la fonction v (x) par
Vopérateur linéaire Ly:

Yo = Ly [v] = fy’2(£)v’ (&) dE. (18)

La solution générale de 1’équation (17) dépend de fagon linéaire et homo-
gene de cinq constants: 6 4, 8 B, 5 @ et deux constantes d’intégration. En effet
v(x) est l'intégrale générale de 1’équation différentielle linéaire du troisiéme
ordre:

Do) +Q(1+y?)v =8B—-y'6¢Q

déduite de 1’équation (18) par dérivation.
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2. Cas des charges lices a ’espace

Conservons les hypotheses et les notations du paragraphe précédent mais
calculons le moment fléchissant M (z) au point P’ (x,y +2) de la fibre moyenne
déformée qui a méme abscisse que P. Puisque les charges ont des lignes d’action
fizes, le moment des charges appliquées par rapport au point P” est égal au
moment m (x) de ces mémes charges par rapport au point P. Nous avons donec:

M@x)=m(x)+A+84+(B+8B)x—(Q+6Q)(y+2)

soit en tenant compte de (11) et en négligeant 1'infiniment petit du second
ordre 286 :

M(x)=8A+23B—ydQ—2Q.
La relation M =D v" nous donne donc 1’équation:
Dv"+Qz=08A+x6B—yb5Q.
En tenant compte des relations (2) et (5) que nous rappelons:
w+v'y =0 z=v—uy'

nous voyons que les fonctions u et v sont des intégrales du systéme différentiel
linéaire du troisieme ordre:

Dv"+Qwv—uy)=38A+x6B-ydQ,
w+v'y =0.
La fonetion v (x) dépend donc de fagon linéaire et homogene de cing cons-
tantes: 6 4, 6 B, 6 @ et deux constantes d’intégration.

Désignons par i, la fonction —uy’; nous voyons que la composante verti-
cale du déplacement est une solution de l’équation fondamentale:

Dv"+Qv+¢,) =34A+x3B—y3dQ (19)
dans laquelle la fonction ¢, est une fonction de x qui se déduit de la fonction

v (x) par Dopérateur linéaire Ly:

dy = Lyv] = o/ <x)f y (€)' (£)dE. (20)

3. Conséquences des résultats précédents

Pour les deux modes d’application des charges envisagés, la composante
verticale v (x) est une solution de 1’équation fondamentale:

D' +Qv+¢] =84A+25B—ysQ (21)

dans laquelle ¢ se déduit de v par I’opérateur linéaire L, dans le cas des charges
liées a 1’arc, et par 1'opérateur L, dans le cas des charges liées a ’espace.

Le terme i est un terme correctif d’autant plus faible que I’arc est plus
surbaissé. Lorsqu’on néglige le terme ¢ ce qui revient & négliger les déplace-
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ments horizontaux de la fibre moyenne, on retrouve 1’équation différentielle
de la théorie élémentaire du flambement des arcs.

a) Méthode théorique de calcul de la poussée critique: Le calcul de la poussée
critique est aisé lorsqu’on sait intégrer formellement 1’équation fondamentale.

Examinons d’abord le cas d’un arc encastré ou d’'un arc a deux articulations
(fig. 2). La donction »(x) dépend de facon linéaire et homogene de cinq cons-
tantes. Les cing conditions aux limites (7) ou (8) fournissent done cing équa-
tions linéaires et homogénes entre ces cing constantes; 1’élimination des cons-
tantes entre ces équations donne une équation en ¢ dont la plus petite racine
positive est la poussée critique.

Dans le cas d’un arc @ une seule articulation ou d’un arc a trois articulations
(fig. 3), nous devons écrire 1’équation fondamentale pour chacun des arcs
0,4 et O, A. Le déplacement vertical dépend donc de facon linéaire et homo-
géne de dix constantes:

5A,,8A4,, 8B,,8B,, 5Q,,5Q,

et quatre constantes d’intégration. Mais ces dix constantes se réduisent & huit,
car les équations d’équilibre de la statique exigent que:

$5Q,=8Q,=5Q, B,=-3B,=35B.

Les huit conditions aux limites (9) ou (10) donnent alors huit équations
linéaires et homogenes entre les huit constantes; I’élimination des constantes
entre ces équations donne une équation en ¢ dont la plus petite racine posi-
tive est la poussée critique.

b) Cas d’un arc non funiculaire: Dans ce cas le moment fléchissant It (x)
dans 1’arc avant déformation n’est pas nul; I’équation (11) est remplacée par:

M@x)=m(x)+A+Br—Qy.

En reprenant les calculs qui nous ont conduit & 1’équation fondamentale,
nous trouvons que v () satisfait a 1’équation:

Do+ Q[v+d] =M ) +04+28B—y8Q.

La solution générale de cette équation s’obtient en ajoutant a la solution
générale de 1’équation fondamentale (21) une solution particuliére de 1’équa-
tion:

Dv" +Qv+4] = M (x).

Les constantes qui interviennent sont, dans chaque cas, déterminées par
les conditions aux limites. On obtient ainsi autant d’équations linéaires que
de constantes, mais ces équations ne sont plus homogénes. La poussée critique
est la plus petite valeur de pour laquelle le déterminant principal du systéme
d’équations précédentes s’annule. Le moment fléchissant IR () n’intervient
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donc pas dans le calcul de la poussée critique. La poussée critique est donc une
caractéristique de U'arc qui ne dépend pas des charges appliquées, mais seulement
de la fagon dont ces charges sont appliquées (charges liées a ’arc ou charges
liées & 1’espace).

III. Méthode des approximations successives

1. Calcul de la poussée critique par approximations successives

Nous allons d’abord définir un opérateur linéaire £2 permettant d’associer,
a toute représentation approchée v,(x) de la déformation au moment du
flambement, une représentation plus précise v, ().

Examinons d’abord le cas dun arc encastré ou d’un arc a deux articulations
(fig. 2). Donnons nous une fonction de départ v, vérifiant les conditions aux
limites (7) ou (8); il lui correspond une fonction i, par ’opérateur L, ou par
I’opérateur L, selon que les charges sont liées & 1’arc ou liées & 1’espace. La
fonction v, est la fonction qui vérifie les conditions aux limites (7) ou (8) et
dont la dérivée seconde a pour expression:

p_ —(Vot+ihy)+3A4+23B—ydQ
Ul = _D .

Il suffit pour déterminer la fonction v, d’intégrer deux fois ’expression
précédente et de déterminer 84, 8 B, 6 et les deux constantes d’intégration
au moyen des conditions aux limites (7) ou (8).

Dans le cas d’un arc & une seule articulation ou d’un arc a trois articulations
(fig. 3), nous nous donnons une fonction v, égale a (v,), sur O; 4 et a (v,), sur
0, A, les fonctions (v;), et (vy), Vérifiant les conditions aux limites (9) ou (10);
I’opérateur linéaire L, (ou L,) associe aux fonctions (v,), et (v,), les fonctions
(P1)o b (fy)y. La fonction v; est égale a (v,); sur O; 4 et & (v,); sur O, 4; les
fonctions (v,); et (v,); vérifient les conditions aux limites (9) ou (10) et ont
pour dérivées secondes:

—[(v1)o+ (f1)o] +6 4, +23 B~y 3@

(V)] = D )
v —[(02)o+ ()] +8 Ay —x 6B~y Q
(Vo)1 = D .

Il suffit pour déterminer les fonctions (v,); et (v,); d’intégrer deux fois les
expressions précédentes et de déterminer 64,, 64, 6B, 6@ et les quatre
constantes d’intégration au moyen des conditions aux limites (9) ou (10).

Nous avons ainsi défini dans tous les cas un opérateur linéaire 2 permettant
de calculer v, connaissant v,:

vy = £[v]. (23)
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On peut donc définir une suite de fonctions vy, v, v,. .. v,, telles que:
v =82[vy], v, =8[vy),..., v,=2[v, 4], ...

Ceci posé, supposons que v, (x) soit, & un facteur pres, la déformation qui
se produit au moment du flambement. Si nous multiplions v, (x) par la valeur
@), de la poussée critique, nous obtiendrons une fonction:

Q[Qc 7]0] = QCQ [Uo] = chl (.’1})

qui doit étre identique a v, (x). Nous aurions done:

Q, = 2@, (24)

vy (%)

Mais, puisque v,(x) n’est qu’une approximation de la déformation au
moment du flambement, le second membre de (24) n’est pas une constante.
On obtiendra cependant une valeur approchée de la poussée critique en
donnant & x dans la formule (24) une valeur particuliére (celle qui correspond
par exemple aux plus grandes valeurs de v, et de v, .

Si I’approximation est jugée insuffisante parce que le second membre de
(24) varie trop, on utilisera un des rapports de la suite:

v (x) vy () L Vp—1 (%)
va (@)’ vg(x)’ vy, (2)
qui tend vers la poussée critique.

11 résulte de ce qui précéde que la poussée critique est la plus petite valeur
propre de 1’équation:

i

v(x) = QL [v(2)]. (25)

Il est possible de montrer, dans chaque cas particulier, que 1’équation (25)
est une équation intégrale de FREDHOLM dont le noyau a généralement une
forme assez complexe.

Des simplifications de calcul sont possibles dans le cas des arcs ayant un
axe de symétrie. On peut dans ce cas distinguer le flambement symétrique et
le flambement antisymétrique correspondant & des déformations au moment
du flambement v (x) paires ou impaires, les abscisses z étant comptées & partir
de ’axe de symétrie.

En général, la poussée critique d’un arc encastré ou d’un arc & deux arti-
culations symétriques correspond au flambement antisymétrique, tandis que
la poussée critique d’un arc & une seule articulation ou d’un are & trois arti-
culations correspond au flambement symétrique.

2. Majoration des efforts dans un arc non funiculaire

On démontre que 1’équation intégrale (25) a une infinité de solutions non
identiquement nulles V;,V,,...,V,,... pour une infinité de valeurs crois-
santes de @: @, <@y < ... <@, < ... dont la plus petite est égale & la poussée
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critique @,. Les solutions V;,V,,...,V;,... appelées fonctions fondamen-
tales vérifient donc les identités:
Ni=0,2[V], Vo=@QR[Ve),.... Vi=@L[V] ...
Ceci posé, reprenons 1’équation (22) établie précédemment
Dv"+Qv+y] =M (x)+64+23B—-yd¢ (22)

et soit v, (x) la déformation calculée par les théories classiques de la Résistance
des Matériaux, en négligeant les déformations pour écrire les équations d’équi-
libre. Nous avons: D! = M (2)

et nous pouvons remplacer 1’équation (22) par 1’équation intégrale linéaire:
v (@) = v, (®) + QL[ ()] (26)
Développons v, (z) en série de fonctions fondamentales:
vo(x) =a, V(@) +aVa(x)+ ... +a, V(zx)+ ...
et cherchons v (z) sous forme d’une série de fonctions fondamentales:
v(@) =6V, @)+ b V() + ... +6, V() + ...

En reportant les expressions précédentes dans 1’équation (26), on trouve

sans peine que b
i 1“2
Qi
de sorte que:
a a a;
v(@) =—ah@+—gh@+ - +—g i@+
1-ar 1—oo 1-o

Les coefficients a; du développement de v, (z) sont donc multipliés par des
facteurs supérieurs & 'unité et tendant vers 1’unité lorsque 7 augmente indé-
finiment.

Le terme a, V] (x) étant le terme prépondérant du développement de v, (z),
il en résulte, avec une bonne approximation que:

Dans un arc de poussée critique Q,, les efforts et déformations calculés par les
théories classiques de la Résistance des Matériaux doivent étre multipliés par le

1 g Powr tenir compte de Uinfluence des déformations.
1—_2

c

facteur

IV. Méthode de I’énergie

Considérons 1’arc funiculaire en équilibre sous les charges qui lui sont
appliquées; cet équilibre sera stable si la fibre moyenne revient & sa position
initiale d’équilibre apres avoir subi une déformation, donc si le travail § T des
forces extérieures est inférieur & 1’énergie 3 W emmagasinée dans ’arc au
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cours de la déformation. La poussée critique s’obtiendra donc en écrivant que

3T est égal 4 6 W.

1. Cas des charges lices a Uarc

Nous considérons un arc quelconque, et nous lui donnons une déformation
compatible avec les liaisons imposées a 1’arc. Dans chaque cas particulier
étudié, la fonction v (x) doit donc vérifier les conditions aux limites qui ont
été indiquées précédemment.

Nous désignerons par § 1’ensemble des fonctions v (z) vérifiant les condi-
tions aux limites.

Calculons I’énergie 8 W emmagasinée dans 1’arc au cours de la déformation;
nous avons, les intégrales suivantes étant étendues d’une extrémité a 1’autre
de l’arc:

SW——I— M2ds 1 ( M?dx 1 M2dx
~2) EI 2) EJ 2] D

et, puisque M =Dv":
SW =1fDv"2dx. (27)

Calculons maintenant le travail 6 ¥ des forces extérieures. Supposons 1’arc
funiculaire des charges appliquées, ce qui, comme nous ’avons montré pré-
cédemment n’a pas d’influence sur la valeur de la poussée critique. En désignant
par p(x) la densité de charge appliquée & 1’arc, nous avons, les intégrales qui
figurent dans les formules qui suivent étant étendues d’une extrémité a 1’autre
de l'arc:

8% = —fpvdx
et, puisque I’arc est funiculaire nous avons @ y¥” = —p donec:
3T =Qfvy"de.

Intégrons par parties, nous obtenons, v étant toujours nul aux extrémités
de I’arc:

3T =—Qfv'y'dx
soit, compte tenu de la formule (1):
ST =Qf[w+3(1+y'2)v'2)da
et, puisque u est toujours nul aux extrémités de 1’arc:
3T =3Qf(1+y ?)v'2dx. (28)

On remarquera qu’il est nécessaire de tenir compte des termes du second
ordre pour calculer le travail des forces extérieures. Sil’on avait utilisé 1’expres-
sion (2) au lieu de ’expression (1), on aurait trouvé une valeur nulle pour le
travail des forces extérieures.
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Le flambement a lieu dés que 6§ T dépasse 8 W; il en résulte immédiatement
que la poussée critique @, a pour valeur:

. . Dv"2dx
Q, = Mlgleqéum [f(lf—i—y’z) ”,de]. (29)

Si la déformation v(x), appartenant & ’ensemble ¢, n’est pas exactement
celle qui se produit au moment du flambement, la formule (29) donne une
valeur par exces de la poussée critique. On obtiendra une grande précision en
choisissant pour v(z) les fonctions v,(x), v, (z),... obenues par la méthode
des approximations successives exposée précédemment; on utilise ainsi toutes
les valeurs des fonctions calculées.

Le calcul des variations permet de montrer 1’équivalence de la méthode
des approximations successives et de la méthode de 1’énergie.

2. Cas des charges lices a ’espace

Conservons les définitions du paragraphe précédent; le calcul de 1’énergie
6 W emmagasinée dans 1’arc est inchangé, et la formule (27) est encore exacte.

Par contre, le calcul du travail 8 ¥ des forces extérieures souléve des diffi-
cultés parce qu’il est difficile d’imaginer une liaison permettant d’appliquer
a ’arc, durant la déformation, une densité de charge dont les lignes d’action
sont liées & l’espace. Par exemple, on pourrait étre tenté de prendre pour
valeur de 8 T:

3T = —[pzde =Qfy"zdx.

Ce résultat est inexact, parce qu’il correspond & la liaison indiquée sur la
fig. 5; cette liaison donne lieu & une densité de charge verticale p et & une
densité de charge horizontale py’. Si I’on veut transmettre & I’arc une densité

Fig. 5. Fig. 6.
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de charge verticale au moyen de la liaison indiquée sur la fig. 5, il faut que
cette liaison soit une liaison avec frottement; il est alors nécessaire de tenir
compte du travail négatif des forces de frottement dans 1’évaluation de & I.

Pour appliquer au moyen d’un pointeau coulissant verticalement une den-
sité de charge verticale & I’arc, on peut imaginer (fig. 6) qu’un élément indé-
formable horizontal P H a été soudé en P a la fibre moyenne. Apres déforma-
tion cet élément vient en P’ H'; P’ est le méme point matériel que P, et P'H’
n’est plus horizontal, mais a une pente ¢ =v'". Le pointeau s’abaissant de
PP"=v—uv' le travail 6; T des forces exercées par le pointeau sur 1’arc est

5, T=—pw—uv)dx.

Mais, au cours de la déformation, si la densité de charge verticale appliquée
a 1’arc reste égale a p, la densité de charge horizontale appliquée a 1’arc varie
(lindairement si la déformation est petite) de 0 & pv’. Le travail 6, T est donc
la somme du travail % de la composante verticale p (c’est le travail que
nous cherchons), et du travail 8,3 de la composante horizontale:

3, T =L [pv ude.
Il en résulte que:

8T =8,T-8,T =—[pw—}uv)de
ou, I’arc étant funiculaire de la densité de charge p:
3T =Qf(vy" —}uv'y")de.
Nous avons montré dans le paragraphe précédent que:
foy"de =3[v'2(1+y'2)dx
done, nous obtenons finalement: |
3T =1Qfv2(1+y?)—uv y"]dx. (30)
Compte tenu de la valeur (5) de z, ’expression (30) peut également s’écrire:
03X =4 [v2dx.

Dans toutes les formules, les intégrales sont étendues d’une’ extrémité a
I’autre de 1’arc.

Le flambement a lieu deés que 6 T dépasse & W; il en résulte immédiatement
que la poussée critique ¢, a pour valeur:

[ [Dv"2dx

ETererrat &Y

@, = Minimum
vVEF

Le calcul des variations permet encore de montrer 1’équivalence de la
méthode des approximations successives et de la méthode de 1’énergie.
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Conclusion

Nous avons donné deux méthodes de calcul numérique de la poussée cri-
tique d’un are, tant dans le cas pratique des charges liées a 1’arc que dans le
cas théorique des charges liées a 1’espace. La méthode des approximations
successives donne lieu & des calculs d’intégration numérique beaucoup plus
longs que la méthode de 1’énergie; elle parait cependant indispensable pour
trouver une déformation approchée v (z) correcte, et non choisie au hasard,
afin de pouvoir appliquer la méthode de 1’énergie.

Dans le cas particulier d’'un arc de fibre moyenne quelconque et de loi
d’inertie quelconque, on obtiendra une valeur suffisamment précise de la
poussée critique en opérant de la fagon suivante:

a) En prenant pour fonction de départ v,(x) la déformation de la théorie
élémentaire de 1’arc parabolique d’inertie réduite constante, on déterminera,
par intégration numérique, la premiere déformation v, (x) de la méthode des
approximations successives.

b) On calculera la poussée critique par la méthode de 1’énergie en prenant
pour déformation v, ().

Nous avons appliqué les méthodes précédentes aux arcs symétriques d’iner-
tie réduite constante J & fibre moyenne parabolique. En désignant par 2a la
portée de 1’arc et par f sa fléche, la valeur approchée de la poussée critique
peut se mettre dans tous les cas sous la forme:

2EJ 1
T
Q. =m 2 12 (32)
a /
1+ K (—‘,—)
-~ a
m et K étant des constantes données dans le tableau suivant:
K pour des charges liées
Type d’Are m Observations
a l’are a ’espace
Are encastré 2,0458 3,35 4,01 Flambement
Arc & 2 articulations 1 6,14 6,95 antisymétrique
Arc & 1 articulation 1,1132 1,15 1,36 Flambement
Arc a 3 articulations 0,7527 1,99 2,27 symétrique
Résumé

La théorie élémentaire du flambement des arcs néglige les déplacements
horizontaux des points de la fibre moyenne de 1’arc; cette théorie ne donne
de résultats suffisamment précis que pour les arcs tres surbaissés. Des que la
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fléche de I’arc est importante, elle conduit & surestimer beaucoup la poussée
critique de ’arc et de ce fait est dangereuse.

Deux méthodes correctes de calcul numérique de la poussée critique sont
données: la méthode des approximations successives et la méthode de 1’énergie,
tant dans le cas des charges liées & 1’arc que dans le cas des charges liées &
P’espace. Les différentes liaisons pouvant étre imposées a I’arc ont été examinées:
arc encastré, arc a deux articulations, arc & une seule articulation et arc & trois
articulations.

Zusammenfassung

Die elementare Theorie der Knickung von Bogen vernachlissigt die waag-
rechten Verschiebungen der Nullachsen-Punkte des Bogens. Diese Theorie
ergibt nur fiir sehr flache Bogen geniigend genaue Ergebnisse. Sobald die
Pfeilhohe maBgebend wird, fithrt dies zu einer gefihrlichen Uberschitzung
des kritischen Horizontalschubes.

Es werden zwei fehlerfreie Methoden der numerischen Berechnung des
kritischen Schubes angegeben: Die fortgesetzte Annédherung sowie die Energie-
methode. Sowohl fiir den Fall der in der Bogenebene liegenden Belastung als
auch fiir raumliche Belastung. Verschiedene Bogenausbildungen wurden unter-
sucht, ndmlich den eingespannten, den Eingelenk-, Zweigelenk- und Drei-
gelenkbogen.

Summary

The elementary theory of the buckling of arches neglects the horizontal
movements of the mean fibre of the arch; this theory gives sufficiently accurate
results only for drop arches. As soon as the rise of the arch becomes consi-
derable, it leads to a marked overestimation of the critical thrust of the arch
and is therefore dangerous.

Two correct methods of numerical calculation of the critical thrust are
given: the method of successive approximations and the energy method, both
in the case of loads bound with the arch and in the case of loads bound with
space. The different connections that can be imposed on the arch were exam-
ined: fixed arch, two-hinged arch, arch with a single hinge and three hinged
arch.
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Ultimate Strength Tests of Reinforced Concrete Beams in Combined
Torsion, Bending and Shear

Essais de rupture de poutres en béton armé soumises a 'action combinée de la tor-
sion, de la flexion et du cisaillement

Bruchlasttests an Stahlbetontrdgern unter kombinierter Beanspruchung aus Drillung,
Biegung und Schub

HANS GESUND DONALD G. MILLS VICTOR M. MARTIN
University of Kentucky, Lexington, Kentucky

Introduction

The earliest major effort in the study of the behavior of reinforced concrete
members in combined torion, bending and shear was made in Russia. More
recently, important work has been done in the United States, Canada, Australia
and India. The Russian work resulted in a series of publications by CHINENKOV
[1], Lianix [2], Lessic [3, 4] and YUDIN [5, 6]. Some of it was experimental
and some theoretical, with early emphasis placed on combined torsion and
bending moment and combined torsion and shear. YuDIN later combined all
three types of loading, but the experiments were conducted on rather small
specimens (3.5 by 6.4 inches in cross section). He reported failure modes which
were also observed in some of the specimens to be reported on here, namely that
the failures were ‘. . . typical of tearing the center part of the beam from the
end sections”. A similar phenomenon may be observed in NYLANDER’S [7]
report on tests of frames in which one member, reinforced both longitudinally
and transversely, was subjected to torsion.

More recently, PANDIT and WARWARUK [8] tested sixteen specimens in
combined torsion, bending and shear. These were larger than the Russian
specimens (6 by 12 inches in cross section), but the sequence of loading was
different. Whereas the Russians, and apparently all other investigators to
date, have increased the torsional, bending and shear loads simultaneously
in proportion, PANDIT and WARWARUK subjected their specimens first to some
predetermined load level in transverse bending and shear alone, and then
twisted them to failure.
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Test results from several of their specimens will be checked against the
torsional strength predicted by a rational equation to be developed in this
paper.

A number of specimens were also tested under combined loading by WaLsH,
CorLLins, ARCHER and HALL [9], who then developed semi-empirical formulae
[10] to predict the strengths of members subjected to the combined loading.
The failures observed in these tests were similar to most of those to be described
here, i.e. they occurred by rotation of sections of the specimens about hinges
which formed near one face after inclined cracks had formed on the other faces.
All reinforcement in this series consisted of round, undeformed, mild steel bars.
The same type of reinforcement was used in tests conducted by RAMARKRISHNAN
and VIJAYARANGAN [11, 12], whose results will also be checked against the
theory to be developed here.

Almost all of the above mentioned work contained restrictions on specimen
size, method of application or sequence of loading, type of reinforcement,
and/or strength of concrete, which affected the results of the tests. Furthermore,
reinforcement strains were measured only in some of the Russian tests and by
PanpiT and WARWARUK. Other investigations into the effects of combined
loading have concerned themselves with prestressed concrete beams and with
reinforced concrete beams of cross section other than solid rectangular.
Consequently it seemed advisable to extend the earlier work on rectangular
reinforced concrete specimens conducted at the University of Kentucky [13,
14]. The results of this had indicated that a member subjected to combined
torsion and bending, without shear, would fail by rotation about a hinge in the
compression face of the member if the specimen were square in cross section
and contained longitudinal reinforcement only or if it were square or rectangular
and contained transverse reinforcement, but that it would fail by rotation about
a hinge in one of the sides if it were rectangular and only reinforced longitud-
inally. Since most actual beams may be expected to be subjected to combined
torsion, bending and shear, it was decided to study square specimens containing
only longitudinal reinforcement and rectangular specimens containing both
longitudinal and transverse reinforcement subjected to the triple loading.

Description of the Specimens

Ten beams were loaded in combined torsion, bending and shear. The first
six were eight inches by eight inches in cross section and contained essentially
only longitudinal reinforcement. The other four were six inches by twelve
~ inches in cross section and contained both longitudinal and transverse reinforce-
ment. An overall view of the test specimens and the loading scheme is given in
figure 1. Various ratios of bending moment to torque could be obtained by
changing the lengths of the arms. The ratio of shear to bending moment was
kept constant by making the total lengths of all specimens equal. The loading
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and support arms in all specimens were reinforced with three no. 4 bars on the
tension side and two no. 4 bars on the compression side. The steel was detailed
so that in all arms the two outside tension bars were bent around the beam
reinforcement and back into the arm to provide compression reinforcement.
The third tension bar was hooked around the bottom beam reinforcement for
anchorage. Shear reinforcement in the form of no. 3 or no. 4 closed ties,
spaced three inches center to center, was also provided in all arms.

TOP
BACK

AD SUPPORT
Lo T/’ ARM
SUPPORTS

5

LOADING ARM
Fig. 1. Specimens and
loading scheme.

SUPPORTS

The longitudinal reinforcement in the test sections of all specimens consisted
of three no. 4 bars on the bottom and two no. 4 bars on the top. The test sections
of specimens 1 through 6 were reinforced only with the longitudinal steel,
except for two no. 3 closed ties placed three inches center to center from each
other and from the arm reinforcement at each end of each test section to prevent
local failure due to stress concentrations. The test sections of specimens 7
through 10 also contained transverse reinforcement. This consisted of no. 3
closed ties, spaced three inches center to center throughout the test sections
except for the first three ties at each end, which were placed at two inches
center to center, again in an attempt to prevent local failure. For further details
see table I and figure 2.

All reinforcement consisted of intermediate grade deformed bars meeting
the requirements of ASTM specifications A-15 and A-305. Yield stresses of the
various bars used are given in table I. The concrete for all specimens was
commercially obtained transit mix with the following composition: 5 bags
cement, 1545 pounds sand, 1890 pounds stone (¥ inch to 3/ inch chips), 11}
pounds Pozzolith and, nominally, 37 gallons of water per cubic yard. Since it
was considered desirable to have some variation in concrete strength, strict
control was not exercised over the mix. The mixing water was added in the
truck at the laboratory, but workability of the concrete rather than the precise
quantity of water added was used as the controlling factor.

After being cast, the beams were cured at room temperature under wet
burlap for seven days and the left to air dry in the laboratory. All specimens
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Table I. Beam Properties

Specimen Nominal!) | Cross Section | f, Longitudinal Transverse Je?)
Number M|T ratio (inches) Reinf. (psi) Reinf. (psi) (psi)
1 1 8x 8 43,000 — 6,025
2 2 8x 8 43,000 — 6,025
3 3 8x 8 43,000 — 4,350
4 4 8x 8 43,000 — 4,350
5 5 8x 8 46,250 — 5,100
6 6 8x 8 46,250 — 5,100
7 1 6x12 45,500 50,000 5,460
8 2 6x12 45,500 50,000 5,500
9 4 6x12 45,500 50,000 5,500
10 8 6x12 45,500 50,000 5,460

1) The ratios of the actual values varied slightly from this. See table II.
2) Average of three cylinders, obtained at time of test of associated specimen.
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cross sections.
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were tested between thirty and sixty days after being cast. The accompanying
cylinders were tested at the same time as the specimens. Strengths are recorded
in table I.

SR-4 type A-7 strain gages were attached to the reinforcement at many
points and type AR-1 rosettes were later attached to the concrete at locations
where maximum tensile stresses were expected. It was thus possible to monitor
the strains in the reinforcement and the concrete during the conduct of the
tests and to deduce some information regarding the mode of failure later.

Conduct of Tests and Results

The general test setup is shown in figure 1. The load was applied to the center
of each specimen in one to two thousand pound increments, the smaller incre-
ments being used near failure. After each increase, the load was held constant
for a period of from five to twenty minutes while all strain gage readings and
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loads were recorded and the crack patterns sketched and photographed. Except
for the last one or two increments before failure, recheck of the strain gages
showed that little creep occurred during the observation periods.

The behavior of the two sets of specimens was quite similar at relatively
low loads, but differed markedly as the loading proceeded. Their final failure
modes bore very little relationship to each other. Within each set, however, the
response to the loading changed very little from specimen to specimen, though
one could easily observe the differences caused by the changes in the moment/
torque ratio. For example, in the set of six beams which contained only longitud-
inal reinforcement, it was possible to see the gradual changes in the crack
patterns as the moment/torque ratio progressed from 1 to 6. In beam 1, the
initial crack pattern consisted of cracks on all surfaces except the back (see
figure 1 for the designations of the surfaces), inclined at between 37 and 45
degrees to the beam axis. This pattern had formed by the time a load equal to
80 percent of the failure load had been reached. Continued loading produced no
remarkable deformations until, suddenly, a mechanism formed in one of the
test sections, in which two segments of the beam rotated with respect to each
other about an S-shaped hinge which formed on the back of the specimen,
approximately at mid-height. At the same time, a piece of concrete was spalled
off the bottom of the beam. Upon close examination it was found that this
piece of concrete was a parallelopiped whose boundaries were : the bottom of the
beam, the longitudinal bottom reinforcing bars, and parallel diagonal cracks
approximately four inches apart, intersecting the front and back faces of the
beam. Specimen 2 behaved very similarly. In this beam the first cracks were
noticed when the load had reached approximately 38 percent of the failure
load.

Specimen 3 showed considerable influence of bending. The cracks on the
bottom made a larger angle with the axis of the beam and the early cracks
on the front and back were almost vertical. Specimen 4 appeared to behave
as though it were being loaded only in bending, with the classical bending
crack pattern, until it suddenly collapsed with the formation of the S-shaped
hinge on the back and the spalling of the parallelopiped from the bottom.
The major failure crack pattern seemed to partially override the bending
cracks and was almost identical with that formed in the previous three speci-
mens. It is shown in figure 3. Specimens 5 and 6 behaved like specimen 4,
but some crushing of the top surface and considerable widening of the bottom
tension cracks was noticeable before the sudden torsional failure occurred.
The strain gage readings indicated that all three bottom reinforcing bars of
specimen 6 had yielded before the collapse.

Figure 4 shows a plot of bending moment versus strain for the longitudinal
reinforcement in specimen 2. The strains were measured 12 inches from the
face of the loading arm but the recorded moments are those at the face of the
loading arm. The bending moments at the locations of the gages were approx-
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Fig. 3. Failure crack pattern of specimen 4.

imately 809, of those indicated. They are typical of the readings observed in
specimens 1 through 6, and clearly indicate that the specimens were bent
laterally, convex to the front, to such an extent that the front bars were sub-
jected to an appreciable additional tensile strain. This additional strain caused
the front bottom bar to yield long before the ordinary bending moment would

have done so. The strain readings on specimens 7 through 10 also indicated

more tension in the front than the rear bottom bars, but the differences were
much smaller and the top bars were not consistent in this respect. The strain

readings for specimen 5 appeared to indicate a reversal of this curvature, but

Table II. Test Results

= : . : Torque at Failure?) Theoretical Ultimate ; ‘[ herpkien D“\,H)l
Speci- | Bending |  Shear o ik et gl Maesent CACT Codiid Torque about Hinge
men Moment1) | at (meh-kaps} ailkeut: R (. .”( €7 in back (inch-kips)
Num- | at Failure | Failure (inch-kips) for Crack Spacing
ber (in. kips) i (kips) Center Hinge in = : —
| Line back Beam Load Arm = Predicted Actual
1 75.1 1.18 62.5 67.2 157 171 47.1 58.0
2 113.8 1.78 43.3 50.4 157 171 47.1 43.5
3 105.2 1.60 43.3 49.6 155 168 40.0 43.0
4 153.1 2.40 36.4 46.0 155 168 40.0 36.8
5 179.0 2.80 44.6 | 55.8 169 182 43.2 38.4
6 194.0 3.03 36.5 | 48.6 169 182 43.2 38.4
7 77.6 ; 1. 17 78.5 82.0 307 ‘ 322 59.5 79.3
b} 231 } 3.50 120.3 | 2623) 307 ‘ 322 - —
9 281 L 4.26 73.2 | 1723) 307 ‘ 322 - o
10 306 4.64 44.6 | 108%) 307 | 322 : -
|

)
2)
)
1)

Taken about the edge of the loading arm rather than about the center of the beam.
Caleculated from the reactions of the test section which failed.
Calculated as load applied to specimen times length of loading arm to back of beam.

With ¢ set equal to 1.

— No values are reported here because it was not possible to predict the failure
torque for the observed mode of failure.
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there is a possibility that the gage wiring was transposed between the front
and back bars in this specimen, and it is assumed that this happened.

Table IT summarizes the test results. It should be noted that the bending
moments at failure were calculated at the edge of the loading arm, i.e. at the
ends of the test sections. Since the bending moment varied throughout each test
section, it was decided to report only its maximum value. This does not mean,
necessarily, that the failure always occurred adjacent to the loading arm. In
fact, in specimens 2 and 3 it occurred nearer the supports, and in specimens 1,
4 and 5 the ties next to the loading arm apparently bounded the failure region.
In specimen 6 the failed zone intruded on the tied region with some top
surface crushing. The mode of failure of specimens 7 through 10 will be discussed
later.

TOP - BOTTOM
g \ REAR
j———— BOTTOM REAR BAR ’I" 60
- TOP REAR BAR ~/ ,—— BOTTOM CENTER BAR g
z TOP FRONT BAR / BOTTOM FRONT BAR %
2 ~ -
2 w00 W40
® g STRAIN GAGES WERE PLACED
g 5 AD THE MIDDLE OF EACH
z = LEG OF THE TIE
@y 50 ALL GAGES WERE I2"FROM FACE o 20
25 OF LOADING ARM w
Z =)
E g
2z - + = E s f
500 1000 1500 500 1000
STRAIN - MICROINCHES PER INCH STRAIN ~ MICROINCHES PER INCH

Fig. 4. Strain gage readings for specimen 2.  Fig. 5. Strains in one tie of specimen 7.

The shear was essentially constant throughout the test sections of all
specimens, as was the torque. Two different torques are given in table II. The
first one is the torque in each test section about the central axis of the beam,
and the other is the torque in each test section about the hinge which formed in
the back. Both were calculated from the support reactions, except in the case
of specimens 7 through 10. It will be noticed that the torques about the hinge
reported for these specimens were calculated as the product of the applied load
and the length of the loading arm, measured to the back of the beam. This was
done because this total applied torque is more relevant to the mode of failure
observed in specimens 7 through 10. The theoretical ultimate bending strengths
of both the beam sections and the loading arms are also given. These were
calculated from equation 16-1 of the ACI Building Code with the capacity
reduction factor, ¢, set equal to 1. Equation 16-3 was not applicable since the
compression reinforcement could not reach its yield stress. The last section of
the table contains values of predicted torsional strength. These will be discussed
later.

The behavior of specimen 7, the first of the rectangular, transversely rein-
forced beams, resembled that of specimens 1 and 2. The first cracks occurred at
approximately 50 percent of the failure load. They were inclined at approx-
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imately 45 degrees to the longitudinal axis of the beam and were initially
observed on all faces except the top. The failure was of essentially the same form
as in the earlier specimens, with a hinge forming on the back and a piece of
concrete being forced out of the bottom. A small crack was also observed on the
top face, at the junction of the loading arm and the main body of the specimen,
as though the loading arm were suffering some bending distress at that point.
The strain gages on the ties, some of which were attached on all sides, indicated
that all the ties were in tension, but that none had reached the tensile yield
strain prior to failure. The torque/strain graphs also showed a definite decrease
in slope at the cracking load. See figure 5, which gives a rather typical plot of
the strain readings.

Specimens 8, 9 and 10 behaved quite differently and their mode of failure
is rather difficult to interpret. In all three, combined bending-torsional cracking,
similar to that previously described for the square specimens, took place at
lower loads. At failure, however, instead of large rotation in one test section. a
failure surface formed on both sides of, and close to, the loading arms of speci-
mens 8 and 9, with subsequent torsional rotation about hinges on the back,
connecting the two failure surfaces in each member. At the same time the two
surfaces were also connected by cracks across the top faces of the loading arms
at their junctions with the beams. In fact, the total appearance of the failures
was one in which the loading arms failed in tension at the top, simultaneously
tearing out a piece of the adjacent beams. See figure 6, which shows specimen
9 after failure. In this case the hinge formed on the back just below the tops
of the visible cracks.

These two specimens were also greatly influenced by the bending moments,
since the strain readings showed that the tension reinforcement had yielded

Fig. 6. Failure crack pattern of specimen 9.
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prior to failure and, in the case of specimen 9, no torsional cracks appeared
on the top surface. Specimen 10 was even more affected by the bending moment.
Most cracks prior to failure seemed to be ordinary bending cracks which opened
quite wide before the ultimate load was reached. No torsional type cracks
appeared on the top surface. There was, however, a very marked crack again
across the top of the loading arm and evidence, on the front of the specimen,
that the arm had been torn out, taking with it a part of the beam. The tension
reinforcement had again passed the yield point before collapse occurred.
Strangely enough, the strain gages attached to the ties did not indicate that
the ties yielded in any of these members.

Analysis

An analysis of the results observed in these tests requires consideration
of three different phenomena. The first is the mode of failure of the square
specimens containing only longitudinal reinforcement, the second is the mode of
failure of the rectangular specimens containing both longitudinal and transverse
reinforcement, and the third is the phenomenon of lateral bending, which may
be a part of or may contribute to the other two effects.

Examining these in turn, one finds that the failure of the square specimens
can be analysed in the light of a torsional dowel action theory of failure proposed
in an earlier paper [13], for members failing by torsional rotation about a hinge
in one side. In this, the equilibrium of a parallelopiped of concrete on the bottom
of a member, similar to those tested here, was studied. The boundaries of this
solid were assumed to be the bottom surface of the specimen, the plane contain-
ing the center lines of the longitudinal bottom reinforcement, and two parallel
cracks on the bottom surface, spaced a distance, e, apart. The direction of these
cracks was, at that time, assumed to be perpendicular to the axis of the member,
in order to simplify the derivations and calculations. This agreed fairly well,
also, with the test data then available. The forces acting on the top plane of the
parallelopiped were then assumed to be the dowel forces from the longitudinal
reinforcement, which has to resist most of the torque once the cross section is
cracked, and vertical tensile stresses in the concrete which would tend to keep
the parallelopiped from being spalled out of the beam. Since no other forces
could act on it, the resultants of the vertical components of the dowel forces
and the vertical tensile stresses in the concrete had to be in equilibrium. There-
fore, analysing the parallelopiped as a biaxially eccentrically loaded tension
member, the following equation was obtained for the maximum dowel resisting
force the concrete could exert on the critical bar:

fieb
[1+6(K,—K,)] (sin ¢c+§;§ri singbi),

F, = (1)
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where F, is the maximum bearing force the concrete can exert on a bar
designated as the “critical”’ one; f, is the modulus of rupture of the concrete;
e is the distance between cracks measured parallel to the axis of the beam; b
is the width of the beam; K, and K, are constants of proportionality such that
K, e is the perpendicular distance from a bending crack to the resultant of the
vertical components of the dowel foreds and K, b is the perpendicular distance
from the side containing the hinge to the same resultant; r is the radial per-
pendicular distance from the hinge to the center of a longitudinal reinforcing
bar, with the subscript ¢ denoting distance to the bar designated as ‘“‘critical”
and the subscript ¢ denoting the distances to the other bars; ¢ with the appro-
priate subscript is the angle any radius » makes with the vertical side of the
beam containing the hinge; and Z indicates summation over the bottom bars
only. b

Once F, was known, the total possible dowel resisting torque about the
hinge could be expressed as

T =ﬁ;(rc+;1—2r%), (2)

where now the summation extended over all bars except the “critical”’ one and
T. consequently represented the total resisting torque which could be provided
by all bars.

As was mentioned above, the cracks were assumed to be perpendicular to
the beam axis in the original derivation. This was not found to be the case
in all specimens in this investigation. Consequently, equation 1 was modified
to the more general form for the biaxially eccentrically loaded tension member

R = h , 3)
Q(sin ¢C+T—Zrisin¢i)
¢
where Q =;11—+;“—X+;—”Y. (4)

vy xx

A is the cross sectional area of the top surface of the parallopiped; the co-
ordinate system is based on the principal axes of inertia of the parallelogram
formed by this surface; e, and e, are the coordinates of the resultant of the
vertical components of the dowel forces and X and Y are the coordinates of the
corner of the parallelogram expected to sustain the maximum tensile stress,
all measured within this coordinate system. I, and I,, are the principal
moments of inertia about the indicated axes. e, and e, may be found by
assuming, as before, that the dowel force exerted on the surrounding concrete
by a bar will be proportional to its perpendicular distance from the hinge of
rotation and that it will act a distance K, e along the bar away from the bending

crack. For calculation purposes, a value of K, =—11—2 gave good results previously

and was therefore used here again.
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As a matter of interest, the value of ¥, was calculated for specimens 1
through 6, once with the assumption that the cracks were perpendicular to
the beam axis, i.e. using equation 1, and then again with the assumption that
they made an angle of 60 degrees with the beam axis, which required use of
equation 3. The results of the calculations differed by 3.2 percent, which is
quite insignificant, given the physical assumptions on which these equations
are based. This then indicates that it is not necessary to be able to predict the
orientation of the cracks on the bottom surface accurately in order to apply the
equations to a member.

Equations 2 and 3 were used to predict the dowel torional strengths of
members 1 through 6 which contained no transverse reinforcement. They were
also used to check the dowel strength of member 7 which failed in the same
manner; even though transverse reinforcement was present. The results are
presented in the last two colums of table II. (Here it should be noted that the
torques are taken about the hinge on the back face of the specimen.) The
theoretical torsional dowel strength is obviously directly proportional to the
crack spacing. The work of BrRoms and LuTz [15, 16] indicated that the average
crack spacing to be espected at high reinforcement stresses is approximately
twice the effective cover. Based on this, the average crack spacing for members
1 through 6 should have been 31} inches. In the case of member 7 one would
expect the spacing of the transverse reinforcement to be reflected in the crack
spacing, which would cause it to be 3 inches. In this member, also, the dowel
effect of the ties crossing the cracks had to be included. These figures were used
to calculate the torques listed in the next-to-the-last column of table II. In the
last column are the dowel torques predicted by the equations when the actual
distances between the bending cracks bounding the failure parallelopipeds were
used. B

The moduli of rupture used in the calculations were taken to be = 9 l/fg. Some
modulus of rupture specimens had been tested with the control cylinders, but
the scatter of the data did not warrant identification of individual control
beams with the torsional specimens. Despite the uncertainty of the tensile
strength of the concrete and the other assumptions involved, it will be noted
that the correlation between the theoretical dowel and the actual failure torques
is quite good. The predicted strengths are, in every case, less than those
obtained experimentally. This is to be expected, since the theory presented
above does not take into account the resistance to rotation which will be pro-
vided by the uncracked concrete in the vicinity of the hinge. The dowel
torsional strength should thus be a lower bound on the total torsional strength.

The method of analysis was also applied to specimens tested by others
under similar loading conditions. The results are shown in table III. The crack
spacing used for PAxDIT and WARWARUK’S specimens was twice the cover,
i.e. 31/, inches, while that for RAMARRISHNAN’S and VIJAYARANGAN’S speci-
mens was 41/, inches, which seemed to be approximately the average in the
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Table 111. Results of Tests by Others

Torque at Failurel) Predicted Dowel?)
. : : . redicted Dowe
Investigation Slgeclmen (inch-kips) about: Torque about Hinge
umber . . .
) . in back (inch-kips)
Center Line | Hinge in back
PanNpIT and F-1 58 86 73
WARWARUK [8] F-2 83 102 73
F-3 89 99 70
G-1 73 104 70
G-2 92 111 70
G-3 103 113 72
Cis 23 37 23
RAMAKRISHNAN and C, 22 37 23
VIJAYARANGAN [11] C, 20 33 22
C; 23 38 23
Ces 22 34 22

1) Torque about the hinge was calculated by adding the product of the shear times half the
width to the reported center line torque.

2) Using equations 1 and 2, with f;=9 Vf; and, where necessary, with f; equal to 809, of the
cube strength.

figures shown in that paper. BRoms’ work would probably not be applicable
to the latter specimens, since the reinforcement consisted of plain round bars.
There were several factors which would cause inaccuracy. One of these,
obviously, is the different sequence of loading used by PAxNpiT and WARWARUK.
Another is the fact that their specimens did contain some transverse rein-
forcement, though relatively little in the examples chosen. (Specimens F
contained no. 3 ties at 8 inches center to center and specimens G contained
no. 2 ties spaced 3!/, inches center to center.) Nevertheless, one would expect
that the ties would have some dowel effect, which was neglected in these
calculations and would tend to increase the torsional strength above that
predicted. RAMAKRISHNAN and VIJAYARANGAN used very low strength concrete
and reported its cube strength. There is, therefore, some question regarding the
accuracy of the calculation of the tensile strength.

Another factor which should be taken into account in these comparisons
is the stress in the tensile reinforcement at the time of torsional failure. If the
applied bending moment is small compared to the moment capacity of the
beam, the tensile stresses in the reinforcement will be low. It must then be
expected that, for monotonically increasing loading, the crack spacing will be
considerably larger than that indicated by Broms’ and ruTz’ work for high
reinforcement stresses [17]. This will then, obviously, have the effect of increas-
ing the torque capacity of the specimens. Unfortunately, no valid expressions
seem to have yet been devised to relate steel stress and crack spacing under
this type of loading condition. However, it seems obvious that in an actual
structure one must assume that eventually the crack spacing will reach the
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minimum predicted by Broms and Lutz. If a correction factor for variation
of crack spacing with steel stress could be applied to PANDIT'S and WARWARUK’S,
and RAMAKRISHNAN’S and VIJAYARANGAN'S test results, the predicted dowel
torques of the specimens with lower bending moments would be increased
considerably, leading to higher lower bounds and to better correlations in
table I1I.

It was not possible to analyse the mode of failure observed in specimens 8
through 10. As is evident from table II, the loading arms should have been
sufficiently strong to prevent bending failure at their intersections with the
beam portions of the specimens. Instead, the development of the tension
cracks at. the intersections clearly indicated that the arm reinforcement was
yielding long before final collapse occurred. By dividing the bending moment
in the loading arm at failure by the product of the cross sectional area of the
arm reinforcement and the yield strength of that reinforcement, it was
determined that the centroid of compression for each arm must have been
located vertically between the hinge in the back and the usual location of this
centroid.

Analyses of this phenomenon were also attempted by taking the moments
of the dowel forces of all reinforcement crossing the failure surface about the
hinge and also by summing the moments of the axial forces in all the transverse
reinforcement crossing the failure surface, but both types of calculations gave
predictions of torsional strengths quite different from those actually observed.
The type of analysis used for specimens 1 through 7 could not validly be applied
to these members since the mode of failure was obviously different. It is appa-
rent, therefore, that the problem of the connections of a member in torsion to
its supports must be studied further. In the mean time designers should be
very careful and conservative in their detailing of such connections.

The last major phenomenon requiring discussion is the lateral bending
which was observed in all specimens. As can be seen from figure 4, there were
large differences in the strains observed in the various longitudinal bars. The
result was that the front bottom bar yielded at a relatively low transverse
bending moment. This behavior can be explained by reference to figure 7,
which shows part of a specimen with everything past the failure surface
removed. Also shown are the applied loads and reactions, and the horizontal
and vertical components of the dowel forces. It is then evident that these

CRACK PATTERN

COMPONENTS OF DOWEL
FORCES

FAILURE SURFACE

LONGITUDINAL — %
REINFORCEMENT A SUPPORTS

Fig. 7. Development s

of lateral Moman. - _ZCOMPONENT OF DOWEL FORCES
LATERAL FORCE COUPLE ™
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horizontal components will form a couple tending to rotate the free-body
about a vertical axis. The resisting couple can only be supplied by the rein-
forcement, aided perhaps by shearing stresses in the uncracked concrete near
- the hinge. The magnitude of the applied lateral moment can be found, approx-
imately, by calculating the horizontal components of the dowel forces applied
to the concrete by the individual bars both on top and on the bottom, finding
the resultant of each set of horinzontal components (note that they will not be
equal, which means that some of the horizontal force must be taken in shear
by the concrete at the hinge) multiplying each by half the horizontal distance
between them and adding the two moments.

Using the same assumptions as those which were used to derive equations
1 through 3, one can find that the horinzontal component of dowel force in the
“critical” bar at failure is

ELH = IPCCOSgﬁC (53’)

and the horizontal component of dowel force in any other bar at failure is

Fyg = Feosgy = B (") coss. (5)
[

If the cracks on the top, bottom and front of each specimen were all inclined
at 45 degrees to the beam axis and if the resultant horizontal force acted at the
center of each bar group, the horizontal distance between the resultants would
be equal to the width of the specimen plus the height, minus the top and bottom
cover. Actually, it will be somewhat less than that since some of the cracks
will make angles greater than 45 degrees with the axis and since the centroids
of the horizontal forces will not be at the centers of the top and bottom sur-
faces. For calculation purposes it will be convenient to let the length of the
lever arm be Kj (b + k), where A is the overall height of the member.

It is now possible to write an approximate expression for the lateral bending
moment:

)K3(b+h)

1
MLat. = Ivc (COS qsc +7 Z r; COS ¢i 9 ’ (6)

c

where the summation extends over all bars except the “‘critical” one. Equation
6 can be rewritten by solving equation 2 for F, and substituting this into
equation 6:

1
K, T.(b+h) (cos¢c+72 T cosqS@-)

2(7‘c+%2r3) ¥

MLal. =

If desired, this equation can be simplified somewhat before the numerical
calculations are carried out. The value of K; was taken as 0.7 for specimens 1
through 6, which made M, =17, for these specimens.
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It is then possible to check whether the longitudinal reinforcement is
really resisting the lateral moments, by calculating the lateral moment couple
set up in the top and bottom reinforcement by the differences in strain between
the front and rear bars on the top and on the bottom. This was done for speci-
mens 1 through 6, and the results are presented in table IV. The correspondence
between the last two columns of the table is quite striking. Unfortunately it
was not possible to make a comparison for specimen 7, since the strain gage on
the bottom front bar failed at the beginning of the test. The rest of the speci-
mens exhibited a different mode of failure and no comparison was attempted.
As a matter of interest it might be noted that for specimens 7 through 10,
My =09T..

Table 1V. Check of Lateral Bending Moments

Strain difference?) Lateral B 1, Predicted

i micro-inches/inch ateral bar 2 Fredicve
Specimen ( / ) Moment Theoretical Dowel
Number . . . .

(inch-kips) Torque?) (inch-kips)
Top bars Bottom bars
|

1 50 600 18.0 23.5

2 30 820 23.5 23.5

3 —200 820 17.1 20.0

4 40 650 19.0 20.0

5 650 200 23.4 21.6

6 -30 1302) 9.52) 21.6

1) Just prior to failure.

2) All bottom reinforcement had yielded prior to collapse.

3) For the predicted crack spacing, from table II.

— The minus sign indicates that the front bar was subjected to a smaller tensile or larger com-
pressive strain than the rear bar. This would tend to cause a lateral moment opposite to that
of the other bars.

The vertical components of the dowel forces create an upward shear which,
in the case of these specimens, was actually larger than the vertical shearing
forces. This will simply have the effect of reversing the vertical shearing stresses
in the uncracked concrete near the hinge.

In many of the specimens the top surface was crossed by cracks. It was
further noticed that in most cases the compression reinforcement was either
in tension or contained a very low compression strain at the time of failure,
even though the bending moments were considerable. This would lead one to
believe that the centroid of compression must have shifted. However, the lever
arms of the tension reinforcement, as calculated from observed bending
moments and average steel strains at or near failure, were of approximately
the magnitude to be expected in pure bending. It is not possible, therefore, to
draw any conclusions regarding the effect of torsion on the bending moment
capacities of these specimens.
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Conclusions

The following conclusions may be drawn from the foregoing:

1. Reinforced concrete beams subjected to combined torsion, bending and
shear are likely to fail in torsion by rotation about a hinge on the vertical side
on which the shearing stresses due to vertical shear and those due to the torque
subtract from each other.

2. When the members contain only longitudinal reinforcement, they are
able to resist torsion beyond the cracking load because of the dowel action of
the reinforcement. Analysis of this dowel action provides a lower bound on the
torsional strength of such members.

3. Interaction between shear and torque is based on the total torsion of the
applied loading and the resisting dowel action about the hinge of rotation, for
members containing only longitudinal reinforcement. The interaction between
bending moment and torsional resistance for such members must be based on
the variation in flexural crack spacing with stress in the tension reinforcement.

4. The dowel action will cause lateral bending moments which must be
resisted by a rearrangement of the stresses in the reinforcement. The stresses
involved are by no means negligible and can cause yielding in some bars at
loads much lower than those which would cause yielding in ordinary bending.

5. When the members contain both longitudinal and transverse reinforce-
ment, their connections to supporting or loading members appear to be much
weaker than would have been suspected from conventional theory. It is there-
fore necessary to design such connections for much higher moments than those
expected to be applied.

6. No conclusion could be drawn regarding the effect of torsion on the bend-
ing moment capacity of a member subjected to combined torsion, bending and
shear, though there is some evidence that the lever arm of the tension rein-
forcement was not appreciably reduced by the torsional effects.
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Summary

Ten reinforced concrete beams were tested in combined torsion, bending and

shear. Six of the beams were eight inches by eight inches in cross section and
contained only longitudinal reinforcement. The other four were six inches by
twelve inches in cross section and contained both longitudinal and transverse
reinforcement. The principal variable was the bending moment to torque ratio.
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The strains in the members and their modes of failure were examined. Two
different modes of failure were observed and a theoretical model for predicting
a lower bound on the strengths of the members was developed for one of them.
This model was also applied to a limited number of test results reported by
others. The correlation was considered to be fairly good. It was discovered that
the reinforcement, in resisting torsion, created lateral bending moments in the
members. These changed the distribution of stress in the reinforcement, and led
to the early yielding of some bars. A theoretical model was also developed to
analyse this phenomenon. It agreed well with the test results.

Résumé

Dix poutres en béton armé ont été testées a la torsion, la flexion et le cisaille-
ment combinés. Six de ces poutres avaient une section de 8 X 8 inches et n’étaient
armées qu’en longueur. Les autres quatre avaient une section de 6 x 12 inches
et étaient armées en longueur et en largeur. La principale variable était le
rapport de la flexion & la torsion. On a examiné les tensions et le mode de rup-
ture. Deux types de rupture ont été observés et pour I'un des deux, un modéle
théorique a été développé, permettant de déterminer la limite inférieure des
tensions de rupture. Ce modéle a été controlé avec un certain nombre de tests
fait par d’autres, et ’on peut dire que la correspondance est assez bonne. On a
découvert en outre que ’armature soumise & la torsion, produit des moments
de flexion latéraux, ce qui méne a un changement de la répartition des tensions
dans 'armature et & 1’écoulement prématurée dans certaines barres. Pour
analyser ce phénoméne, on a développé un deuxiéme modéle, correspondant trés
bien avec les resultats des expériences.

Zusammenfassung

Es wurden zehn Stahlbetontridger untersucht, bei gleichzeitiger Torsions-,
Biegungs- und Schubbeanspruchung. Darunter hatten sechs einen Querschnitt
von 8 X 8 Zoll und waren nur lingsarmiert. Die vier andern hatten einen Quer-
schnitt von 6x 12 Zoll und waren sowohl ldngs- als auch querarmiert. Die
wichtigste Unabhéngige dabei war das Verhéltnis der Biegung zur Torsion.
Beobachtet wurden die Spannungen und die Bruchart. Dabei stellte man zwei
Bruchtypen fest. Fiir einen dieser Typen wurde ein Modell entwickelt, das die
rechnerische Ermittlung der unteren Grenze der Bruchspannungen erlaubt.
Dieses theoretische Modell wurde an verschiedenen fremden Tests gepriift und
zeigte eine ziemlich gute Ubereinstimmung mit den MeBresultaten. Man stellte
fest, daf3 die torsionsbeanspruchte Stahlbewehrung Biegemomente in Quer-
richtung hervorruft. Dies dnderte die Spannungsverteilung in der Bewehrung
und fiihrte bei einigen Bewehrungsstiaben zum vorzeitigen Fliefen. Um diese
Erscheinung zu analysieren, wurde ein zweites Modell entwickelt, das gut mit
den MeBwerten iibereinstimmt.
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General

The differential equations of the theory of elasticity governing the con-
ditions of plane stress are based on statics, continuity of the material and its
elasticity, in accordance with the constants E and u. The assumption of con-
tinuity implies that the intermolecular spacing is an infinitesimal of a higher
order compared to the dimensions dz and dy of the element analyzed.

With clear realization of these assumptions of the rigorous theory consider
a model of a plate made of polygonal cells of repeating pattern, joined to each
other at the nodes and possessing such properties as to make the nodes in the
model and the plate move identically in conditions of any arbitrary uniform
stress. 1f furthermore the size of mesh is visualized as an infinitesimal of a
higher order than dx and dy, the equations of elasticity describing the action
of the prototype should be equally applicable to the model which thus becomes
in effect a simplified representation of the molecular structure of the plate.
This reasoning is a demonstration of the proposition, sometimes questioned,
that the finite element solution involving proper cells, would converge to the
true values on infinite reduction of the size of mesh, provided of course that
the rounding off errors of the computer solution are negligible.
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Types of Finite Element Cells

Two kinds of cells are used in the finite element solution of plane stress
problems: the framework cells, made of elastic bars?!)2) and the no-bar cells?)*).
The former represent true elastic structures which may be actually constructed
and sometimes even experimented with physically. The no-bar cells on the
other hand are mathematical abstractions suitable for calculation but unsus-
ceptible to physical reproduction.

The nature of the no-bar cells may be explained in the following manner.
Imagine a plate of wide extent subjected to a simple stress condition such as
uniform unidimensional strain e, or shearless bending in X direction. Isolate
from this plate a polygonal area of the shape of the assumed finite element,
holding it in equilibrium by the appropriate peripheral stresses. Assume now
that the edge stresses are replaced by proper statically equivalent corner
forces without affecting by this operation the corner displacements. This
transforms the given piece of plate into the finite element proper which is in
effect a body, whose corners move through the same distances as the same
points in the plate when acted upon by corner forces statically equivalent to
the edge stresses. The finite element must behave in such manner under several
simple stress conditions. By combining these conditions in proper proportions
it is possible to effect the separate x or y displacements of the corners of the
cell and through that to find the stiffness matrix of the element relating its
corner forces to the displacements.

There are certain ambiguities associated with the transformation of the
edge stresses into the corner forces, for illustration of which it is necessary
to consider in detail a specific example — a cell in the form of an equilateral
trapezoid (Fig. 1).

e — |
(A 3 f
p e h=ka
2AK X oAl
.L ka . Fig. 1.

1) A. HRENNIKOFF: “Solution of Problems of Elasticity by the Framework Method™.
Journal of Applied Mechanics, ASME, New York, Vol. 63, December 1941.

2) A. HRENNIKOFF: “‘Framework Method and its Technique for Solving Plane Stress
Problems’. Publications of International Association for Bridge and Structural Engi-
neering, Zurich, Switzerland, Vol. 9, 1949.

3) M. J. Tur~ER, R. W. Croucgsr, H. C. MArTIN and L. J. Torp: “Stiffness and Deflec-
tion Analysis of Complex Structures”. Journal of the Aeronautical Sciences, Vol. 23,
No. 9, September 1956.

4) R. W. CrouGH: “The Finite Element Method in Plane Stress Analysis”’. Proceedings
of ASCE 2nd Conference on Electronic Computation, Pittsburgh, September, 1960.
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Statics Type Stiffness Matrix of Equilateral Trapezoid

A quadrilateral cell has eight degrees of freedom with regard to w and v
displacements of its four corners along the x and y axes. Single corner dis-
placements may be effected by a combination of three rigid body movements
in the plane of the cell and five basic stress conditions which may be assumed
as follows:

A. Unilateral unit strain in x direction, ¢, (Fig. 2).

X _(I+k)tEA4,
4 4ky (1—p?)
Y=o
A _pa(—-p? ka
4 tE
Fig. 2
B. Unilatera unit strain in y direction, ¢, (Fig. 3)
I A B B B S bVt EA
Op {Xg  Xgl Bs & X zf"( +1) B
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:Pa / y \\ Pa: Y =k1tEAB
/ r ! BT —u?)
“Ya/ /2 X N\Ve ™ 5
— 1 Ba Rl ~ 4 _pp(l-p’ka
| Xg HPs {Xs B 2t E
I A
Fig. 3
C. Unit shear strain y,, (Fig. 4)
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D. Shearless bending with stresses in « direction (Kig. 5).

_(lc+1)tEA1,
L0=""6kk,
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4p = 4t E

E. Shearless bending with stresses in y direction (Fig. 6).
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Other suitable conditions may be used in place of D and E but the three
uniform conditions 4, B and C, or their equivalents, the uniform stresses,
o,, 0, and 7,,, are compulsory.

The simplest way to determine the statically equivalent corner forces in the
cell is to transfer its edge stresses to the adjacent corners by the law of the
lever. This operation satisfies statics and at the same time carries the stresses
only to the corners situated in the immediate vicinity of the edges in question.
A weakness of this procedure will be pointed out later. The corner forces found
by this method in all five stress conditions considered here are stated in
Figs. 2—6.

The combination of the conditions A, C'and D with 4 ,=1/2u,, do=1/4u,,
and 4,,=1/4wu, results in a vertical displacement u, of the corner 1, with zero
vertical displacements of the three other corners. However the condition D
causes some unequal horizontal movements of the corners which must be
cancelled by a horizontal rigid body movement and a horizontal displacement

of the top edge to the left of the bottom edge by a shear condition C through
k2—1
to the ones shown in Fig. 4. The summation of the four sets of corner forces
gives the stiffness matrix coefficients corresponding to the vertical movement
u, of the corner 1.
The horizontal displacement v, of the same corner may be a.ccomphshed

by the combination of the conditions B and ¥ with 4 ,=4,=1/4v, and C,

a shear angle y = u, . The corresponding corner forces are proportional
Y 1
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involving a horizontal displacement 4,=1 / 2 v, of the bottom edge to the right

of the top edge, with the shear strain ;-——. Since the condition ¥ moves the

2 k
corners of the top edge down towards the bottom edge this displacement must
be corrected by addition of the condition 4 with 4, = % The com-

bination of these four conditions gives another set of stiffness matrix coefficients.
The corner forces produced by the displacements of the node 2 may be
found by symmetry with the node 1, and the ones brought about by the
movement of the top corners — by replacement of the parameters k£ and &,
with 1/k and k,;/k respectively, in the corresponding expressions of forces
caused by the bottom corner movements.
The force-displacement relation of the trapezoidal cell is given by Eq. (1)

Pﬂ 'XulelXu2_ X“lX”2=—X”1X“3X”3X“4— Xu3X®4__X1J3’ 'uﬂ
])13/ YulY'LlYu2__Yu1Y1J2_ leYu3Yv3Yu4=__Yu3Yv4_ Y1J3 vy
P2z XulelXu2__ Xule2____X'ulXu3X'v3Xu4_ Xu3Xv4_ Xv3 ’“2
sz Yul leyuz___yul sz._ YUIYM3Y”3YM4=~Y“3YU4— YvB vy
P31) XulelXu2 Xulez___leXu3Xv3Xu4_ Xu3X®4__X'v3 ‘ Uy °
B{'ll YulelYuz___Yu1Y'u2_ Y?JlYM3YU3Yu4__Yu3Y'v4_ Yv3 223
P4x XulelXu2_ Xulezz_leXu3Xv3Xu4_ Xu3Xv4__Xv3 Uy
Blyj kYu1Y1>1Yu2__Yu1YL2._ leYuSYv3Yu4___Yu3Y®4_ Y3 [v%

(1)
and the explicit expressions of the stiffness coefficients X and Y are presented
in Table 1. The system adopted in their nomenclature involves one digit
subscripts and two digit superscripts. The former indicate the node at which
the force in question is applied, and the latter — the corner moved and the
kind of the unit movement =1 or v=1 creating the nodal force.

An important characteristic of this stiffness matrix is the absence of sym-
metry about the principal diagonal. Thus for example the coefficients Y*?!
and X3! are not equal. The asymmetry of the matrix leads to results violating
the Betti’s reciprocal theorem thus evincing a theoretical deficiency of the
matrix.

If the trapezoidal cell is transformed into a rectangle by making the para-
meter k equal to unity the matrix becomes symmetrical. Apparently its lack
of symmetry reflects the asymmetry of the cell itself about the horizontal axis.

Energy Type Stiffness Matrix of Equilateral Trapezoid
Most of the authors employ a different stiffness matrix which is derived
from the energy considerations®). Its commonly used implicit expression in

5) R. H. GALnACHER: “A Correlation Study of Methods of Matrix Structural Analysis’’.
A Pergammon Press Book, the MacMillan Company, New York.
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the form of a product of several component matrices is convenient for com-
puter work, but is apt to conceal some of its peculiarities and defects. This
energy type matrix will be presented here explicitly, and it will be correlated
with the matrix found by statics.

As explained above the stress condition of a cell corresponding to a unit
displacement of one of its nodes may be described by combination of several
stress conditions 4 to K. This makes it possible to express the stresses and
displacements in the plate in terms of the particular node displacement. When
all nodes are moved simultaneously, the stresses and displacements in the cell,
including the values along the periphery, become linear functions of eight
corner displacements u,, v;, u,, etc.

Imagine eight nodal forces PF, PY, Pg, etc. statically equivalent to the
edge stresses o, (normal) and 7 (tangential) and apply them in reversed direc-
tions, as the equilibrants of the edge stresses. The application of these corner
forces does not affect the peripheral stresses o, and 7. Give one of the corners,
such as #1, a displacement du, and equate to zero the virtual work of the
system corresponding to this displacement. As is well known, the work of
deformation of a plate may be expressed either as an area integral or a line
integral taken along the periphery, and the latter version will be used here.
Of the eight corner forces only Pg does the virtual work.

Calling the virtual displacements developed on the edges of the cell A, -
normal and A, -tangential, and the thickness of the plate ¢, the work equation
may be stated in the following form:

Pedu, = tfaldlaa—?iudul+tf7dl M s, . (2)
I/ 1

[y ouy

The increment du, may be cancelled and the partial derivatives may be viewed
as the edge displacements produced by the unit movement of the corner u, =1

8AJ— — \u1=1 8/\11 — ui=1
Tuy Ap=1 and Fuy Ag=L.
Then P =tfo, X=tdl+£[ r X4=1dl. (3)
[VAN [ 7N

This equation defines the terms in the first row of the stiffness matrix. Its
individual terms are expressed thus:

Xyt = tf (A + 0 d, ®)
[N

Xv1 =t (o3I Ne1 41 0 dl  eto. (5)
(VAN

The terms in the other rows of the matrix are found in a similar manner, for

example:
Yt =if (ot Ayt 7t gf)dl. (6)

(7N
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The significance of the subsecript and the superseript symbols in X and ¥
was explained before. The edge stresses and displacements under the integral
signs are produced by the unit displacements of one of the nodes. The stresses
o, and 7 correspond to unit displacement of the corner indicated by the super-
seript in X or Y, while the displacements A, and A;; are produced by the unit
displacements stated in their superseript, which matches the subsecript of the
term X or Y.

For simplicity of calculation the line integrals along the sloping sides of
the cell 1-—3 and 2—4 may be expressed through the X and Y components
of the stresses and displacements rather than through the normal and tangen-
tial components, in accordance with the relation

fo A +7An)dl = [ o, A dy +[ o, A da+[ 7, A, dy + [ 7y Ay dec.

xy Y

Care must be taken in using proper signs of stresses and displacements in
these expressions.

Although the expressions X and Y (Eqs. 4, 5, 6) are extensively used
(sometimes in a modified form) they are incorrect, because they imply that
the virtual work of deformation of the material within the cell subjected to a
simultaneous action of the edge stresses and the opposing corner forces is zero.
This supposition is erroneous. Even though the corner forces and the edge
stresses are balanced the internal stresses within the cell are still extant and
there is no reason for their virtual work to be zero should the nodes be dis-
placed.

The edge stresses brought about by any two single corner displacements,
such as u; =1 or v; =1, are of course mutually balanced by themselves without
the addition of the corner forces and so the magnitudes of the work done by
the edge stresses of one of these conditions on the edge deformations of the
other must be equal. The two sides of this work equation are the integral
expressions of the matrix terms X3! and Y*! in Eqgs. (5) and (6). This signifies
the equality of these as well as of other symmetrically situated terms in the
stiffness matrix. The symmetry of the energy type matrix is an advantage
over the unsymmetrical matrix (Table 1) since it simplifies the computer work.
The energy type matrix involves however some inconsistency to be pointed
out presently.

Comparison of the Matrices

A comparison of the two types of stiffness matrix discussed here would
clarify some of their peculiarities. In the stiffness matrix found by statics the
edge stresses are assembled into the corner forces at the two adjacent corners
by the law of the lever, while in the energy type matrix the same edge stresses
are multiplied by the edge displacements produced by the movement of the
corner and then added up. For a specific comparison take the term X¥! (Eq. (5)).
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The edge stresses o}! and %1 in its expression are produced by the displacement
v,=1, and the edge displacements A%! and A}l — by the displacement u;=1.
The diagrams of A¥! and A}l may be viewed as the influence lines by whose
ordinates the stresses ¢, and 7 created by any unit corner movement (v; =1 in
this case) must be multiplied and then summed up in order to form the force
X, produced by the given movement (%, =1 in this case). Of the eight corner dis-
placements seven are equal to zero and only one, u, =1, is distinct from zero.

Taking as an example a rectangular cell imagine as a possibility that the
edge displacements corresponding to u, =1 are all linear (Fig. 7). This means

b 3
Y,V

e

X A
2| 1 11
U

~ |
)\ ~ Fig. 7.
L 1X4 )

that of all edge displacements only A, on the edge 1—2 and A;; on the edge
1—3 are distinct from zero. Employment of the influence lines of the type
of A, and Aj; in Fig. 7 for calculation of X, is obviously equivalent to the
application of the law of the lever. Under the stated conditions the terms X,
found by the two methods should then be identical.

The linearity of the edge displacements was however used in this reasoning
only as a tentative supposition, true for the uniform strain conditions 4, B,
and C but false for the flexural conditions D and E. Thus the condition D
required for the displacement of u,=1, results in parabolic normal displace-
ments on the edges 1—3 and 2—4 directed inward on one edge and outward
on the other. Parabolically distributed tangential displacements are present
also on the edges 1—2 and 3—4. It so happens however that in all five basic
stress conditions A4 to E the edge stresses on the opposite sides of the rectangle
are equal, which results in mutual cancellation of the energy terms correspond-
ing to the non-linear displacements. This makes the statics and the energy
matrices for a rectangular cell identical, as well as symmetrical about the
principal diagonal.

The situation is however different in the case of a trapezoidal cell. When
such a cell is subjected to bending condition D its side edges become curved,
and under the condition £ its all four edges are curved. The diagrams of the
edge displacements thus become non-linear, making the matrix terms, deter-
mined by the two methods, different. It is significant that a single corner
displacement, such as u;=1, produces displacements on the non-adjacent
edges 2—4 and 4—3, as well as on the adjacent ones 1—2 and 1—3. This
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means that the terms X, and Y] are contributed to partly by the stresses on
the non-adjacent edges. The presence of such contributions appears logically
unsound and must be viewed as a defect of the energy matrix.

Correlation of the Matrices

The two matrices may be correlated by finding the complementary terms
whose addition to the terms of the statics type matrix transforms them into
the terms of the energy matrix. :

It was pointed out that integration of the edge stresses over the linear parts
of the edge displacements, such as the ones in Fig. 7, produces the terms of
the stiffness matrix found by statics. Then the complementary terms may be
found by integration of the products of the edge stresses over the non-linear
parts of the edge displacements with zero values at the corners. The nonlinear
displacements are produced exclusively by the flexural conditions D and Z,
and their shape always conforms to the second order parabola with the ordi-
nates measured from the chords passing through the ends. The ordinates of
these parabolas are fully described by the midlength values.

Influence Lines of Complementary Terms X,
The edge displacements considered here correspond to the corner movement

u; =1 (Fig. 8). Only the condition D is effective in producing the non-linear
components of the edge displacements.

Ay2 }é

Ax I Ax [k p(E—1)?
4\7\J_=0 3 )\y_ 8k+ 32k ky ]%1
-1 _ kE
Ax: Sk Uy )\y 0 xy 7\y"‘ )\yl_gklul
2 Ap =0y [*X 1 =
: L= Uy l A2 Skklul
Fig. 8.

Edge 1—2. The normal displacements are linear. The nodes 1 and 2 move to

. k k
the left (Fig. 5) the amount 2%?141 b= é”—k:

remains at rest. The relative tangential displacement of the mid-

u,, while the mid-point

. . . wk
point in relation to the endsis A ; = + 57, Y
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Edge 3—4.

Edge 1—3.

Edge 2—4.
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k.

Similarly, the mid-point displacements are A, =0, A, = + §Ti 1

The vertical displacements of the corners 1 and 3 are +1/4u, and
respectively, and of the mid-point — zero. Then the dis-
k—1
8k

The horizontal displacements are produced by two effects: the
curvature and the u effect.

4k

placement of the mid-point in relation to the endsis up A, = (I

1 M _ 20 _ Ui
By the elementary flexure formula, & ===4=7 T

and the horizontal corner displacement to the left with reference
(h/2)2 _ K1

2R ~ 8k I

The horizontal displacements to the left of the corners 1 and 3
,u.k'u1

8k ’
. This makes the relative displacement of the

to the mid-point is

and of the mid-point produced by p effect are respectively

B UL p(k+1)2u
55k 2 " grm
mid- point in relation to the straight line through the ends

%( pk—1)2

32kk, -
The total horizontal displacement of the mid-point of the side 1—3
is

pkouy
8k,

plk+1)2u
32kk,

P %y

skkl)"

ky
8k

p(k—1)2

A 32k k,

y =+

= Uy + Uyq .
The displacements are equal in magnitude and opposite in sign

compared to the ones on the edge 1—3.

The edge displacements determined here are shown in Fig. 8. If the quantity
%, is made unity the curves become the influence lines of the complementary
terms X; and X, of the energy stiffness matrices. They are valid for X; and
X, produced by unit displacements « or v of any of the four corners. These
influence lines are antisymmetrical about the vertical axis X.

i
A2 +
Ax t;? A

Ay =< AR . v [k, =12
1178k, 1 T |8k T 32kk, | *

v A +y A k-1
Ao = =55 Y y A, = ——
127 8Lk, 2 /=0 |*X 1 v Y

I |

Fig. 9.

:
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The influence lines of the terms Y, and —Y, corresponding to the dis-
placement v, =1 are shown in Fig. 9. They are brought about by the flexural
condition ¥ with Az =1/4v;. These lines are symmetrical about the vertical
axis.

Complementary Term X7'. Energy Type Matrix Terms

The use of the influence lines of Figs. 8 and 9 is illustrated on the example
of"the complementary factor Xy! whose combination with the factor deter-
mined by statics produces the term X3! of the energy stiffness matrix.

The displacement v, =1 which creates the edge stresses used in calculation
of X%, is made up of the stress conditions 4, B, C and £ of which only the
stresses of the condition C' are capable of making the products with the edge
displacements of Fig. 8 distinct from zero, since the stresses of the condition C
and the displacements are both antisymmetrical about the X axis. On the
other hand the stresses of the condition 4, B and £ are symmetrical about
the X axis, and the integral of their products with the ordinates of Fig. 8 is
zero.

The edge stresses of the condition (' are constant along all edges and they
must be multiplied by the appropriate length of the edge and the mean dis-
placement equal to 2/3 of the maximum ordinate of the parabolic influence
line.

The unit shear force in condition C' corresponding to u, =1 is mt—%k—m.
Then the values of the complementary terms of X%1 are as follows (Fig. 8).
) Et 2 pk B kK Et
Edge 1—2: Tt Fha3sh "~ WUtk
Edge 3—4: At 2 p o pHI

T4tk a38kk, T 48(1+p)kk2

Edges 1—3 and 2—4 are replaced with stepped lines made up of infinitesimal
horizontal and vertical steps.

2Bt (2 (k—1) 20k, pk—1)2% (k—1)a
'4(1+;L)lc1a{§ 8k kl“‘s’[é’%*’ 48kk1] 2 }

Adding these up. The complement to

p(k+1)(k2—1) k—l] Bt

vl — e e
Xy [ 64 k k2 16k | (14+p)

The procedure described here allows determination of all complementary terms.
Combination of the complementary terms with the statics type matrix terms
(Table 1) results in the energy type stiffness matrix whose terms are presented
in Table 2. As was pointed out earlier this matrix is symmetrical about its
principal diagonal.
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Table 2. No-bar Trapezoidal Cell Energy Type Stiffness Matrix ( Symmetrical )
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Intercell Continuity

The continuity of displacements of the neighbouring cells in the finite
element model is preserved at the nodes, but not necessarily along the inter-
cell boundaris and there is a difference of opinion with regard to the significance
of this discontinuity. Some authors maintain firmly that the displacements
must be continuous across the boundaries if the solution of the model is to
converge to the true solution of the structure. This view has apparently been
prompted by the use of the Rayleigh-Ritz principle for the derivation of the
energy stiffness matrix.

For this purpose a grid of reference points is established over the plate
under investigation with the interspaces between the nodes having the shape
of the finite elements. The values of the displacements of these points, con-
verging to the exact values on reduction of mesh, may be determined by the
Rayleigh-Ritz principle, whose application results in the same energy type
matrix as the one found above. The necessary condition for the applicability
of the principle is continuity of the displacements along the internodal lines.

It follows from this discussion that the displacement continuity along the
intercell boundaries is a sufficient condition for the validity of the finite element
method, but not the necessary condition. Irrespective of the edge continuity
the finite element method is valid because of the identity of the differential
equations of elasticity in application, on the one hand, to the solid plate and
on the other — to the finite element model of proper deformability with
infinitesimal mesh size.

It may be pointed out that the edge continuity has no meaning in applica-
tion to the bar cells, which by their very nature are joined only at the nodes.

Triangular no-bar cells preserve edge continuity under all conditions, while
the rectangular do not. Yet the precision of the results obtained with the
rectangular cells has been found invariably much better than with the trian-
gular ones of comparable size.

Appraisal of Imperfections of Stiffness Matrices

The existence of two different stiffness matrices of unsymmetrical no-bar
finite elements calls for their comparison. No fault can be detected in the
derivation of the statics type matrix, yet its asymmetry violates the basic
structural principle of reciprocity. The inconsistency must be charged against
the inexact nature of the method of no-bar finite element.

The energy type matrix may appear more attractive in view of its symmetry,
but the error committed in its derivation in neglecting a part of the virtual
work speaks against it. Furthermore the inclusion of certain edge stresses into
the corner forces on the opposite side of the cell is contrary to common sense.
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The defects discussed here do not apply to a rectangular no-bar cell or to a
cell in the form of a triangle of any kind. It may be observed that the matrix
of a quadrilateral framework cell is free from the faults of its no-bar counter-
part because unlike the latter it is an actual structure and as such it is subject
to the law of reciprocity.

The practical significance of the defects of the unsymmetrical no-bar cells
should not, however, be exaggerated. On reduction of the size of cells the
state of stress in the neighbourhood of the individual units approaches uni-
formity, diminishing by that the effect of the flexure conditions D and Z,
responsible for the inconsistencies of both types of the no-bar matrix. This
means that the errors induced by the defects of the matrices tend to disappear
on reduction of the size of mesh.

Comparison of the models made of bar and no-bar cells is worthy of comment.
The stiffness matrix of the former is based on the uniform stress conditions,
and of the latter — on the uniform conditions assisted by shearless bending.
At first glance one might expect better results with the no-bar cells in view of
their seemingly better conformity to the actual state of stress in the prototype.
The present author himself at one time held this view®). However, the actual
results have not confirmed the expectation, apart from some cases (like that
of an end loaded wide cantilever beam), favouring the no-bar cells. It appears
that the non-uniform components of the actual stresses in the prototype are
normally not of the nature of shearless bending of conditions D and E, and
for this reason they are not described any better by the matrix of the no-bar
cell than by the one of the framework cell.

Conclusions

1. On infinite reduction of the size of the mesh the finite element solution
of a plane stress problem converges to the true solution, provided the rounding
off errors of the computer are negligible. This is true with regard to both the
bar cells and the no-bar cells of a proper pattern.

2. Two types of stiffness matrix are available for the unsymmetrical no-bar
cells, the statics type and the energy type. They are mutually related by the
“complementary’’ terms which may be found by the use of influence lines.

3. Both types of the no-bar stiffness matrix contain some theoretical defects
reflecting the inexact nature of the method utilizing cells of finite size. The
framework cells are free from comparable defects.

4. The stiffness matrix of the framework cell and the energy type matrix
of the no-bar cell are symmetrical about their principal diagonals, and so they

6) A. HRENNIKOFF and S. TrzcanN: “Analysis of Cylindrical Shells by the Finite
Element Method”. International Conference on Shell Structures, Leningrad, U.S.S.R.,
1966.
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have an advantage in the computer work over the statics matrix of the no-bar
cell, which does not possess the symmetry.

5. The continuity of the displacements on the intercell boundaries is not
compulsory for the validity of the method.

6. The precision of the results obtained with the three matrices is not
greatly different for the same shape and size of cells.

Appendix. Notation

small base of a trapezoidal cell

modulus of elasticity

height of a trapezoidal cell

ratio of bases of a trapezoid

ratio of height to base of a trapezoid

distance along boundary of cell

plate thickness

displacements along x and y axes, nodal displacements
coordinates, coordinate axes

nodal forces, terms of stiffness matrix

base angle in a trapezoidal cell

normal strain

shearing strain

normal stress, normal stress on cell boundary

shearing stress, shearing stress on cell boundary
displacements on cell boundary perpendicular and parallel to it
displacements on cell boundary parallel to x and y axes
Poisson’s ratio

nodal displacement
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Summary

The purpose of this paper is clarification of some aspects of the Finite
Element method which so far have not been studied sufficiently closely.

Two kinds of cells used in the analysis of plane stress by the Finite Element
method, framework cells and the no-bar cells, are examined in detail. Two
distinct types of stiffness matrix associated with the latter are presented in
explicit form for a cell having the shape of an equilateral trapezoid. Some
inconsistencies inherent in these matrices are pointed out and their effect on
the results is discussed.
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Résumé

Ce papier a pour but de mettre plus de clarté dans quelques aspects de la
méthode des éléments finis, qui n’ont pas encore été étudiés a fond jusqu’a ce
jour.

Deux éléments utilisés par la méthode des éléments finis dans I’analyse de
contraintes bi-dimensionnelles, sont examinés en détail: 1’élément de barre et .
P’élément de plaque. Deux types distincts de matrice associée avec ces éléments
sont présentés explicitement pour un élément ayant la forme d’un trapéze
équilatéral. L’attention est tirée sur quelques irrégularités inhérentes & ces
matrices, et leur effet sur le résultat est discuté.

Zusammenfassung

Zweck dieser Schrift ist, verschiedene Auffassungen des Endlichen-Elemen-
ten-Verfahrens zu klaren, derart wie es bis jetzt in seinem Umfange noch
nicht geschehen ist.

Zwei Zellenarten, die in der Analyse der ebenen Spannungen vom Endlichen-
Elementen-Verfahren angewandt werden, namlich Stabwerkszelle und Schei-
benelement, werden genau untersucht. Zwei verschiedene Steifigkeitsmatrizen,
mit letzteren verbunden, werden explizit fiir ein Trapezelement aufgefiihrt.
Auf einige innewohnenden Unstetigkeiten dieser Matrizen wird hingewiesen
und der EinfluB auf das Ergebnis untersucht.
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Introduction

The dynamic response of a Highway bridge under moving loads is usually
studied by treating the bridge as a beam. Such a treatment would be satis-
factory if the span/width ratio of the bridge is large. It is known that a good
majority of the highway bridges may have spans comparable to the widths.
For such bridges, the beam theory is not adequate and a suitable two-dimen-
sional theory will have to be adopted to consider the influence of the trans-
verse flexibility of the bridge on its response.

There have been a few publications in the literature, which take the trans-
verse flexibility of the bridge into account while studying its response. ALFARO
and VELETS0s [1] have conducted some experimental studies on the response
of an aluminium bridge model subjected to a moving sprung load. Later,
OraN and VELETSOs [2] developed an analytical solution to predict the response
of the bridge under moving sprung loads, taking the two-dimensional behaviour
of the bridge into consideration. In their analysis, the beam and slab highway
bridge has been considered as a plate continuous over the beams. Lagrange’s
equations of motion have been derived and they have been solved numerically
using the Newmark-$ procedure.

In this paper the beam and slab Highway bridge is analysed as an ortho-
tropic plate simply supported at two opposite edges. The orthotropic plate
approximation is often used while studying the static load distribution effects
in beam and slab bridges. It is believed that the extension of the orthotropic
plate theory to the dynamic bridge problem would be instructive. This approach
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is felt to be more convenient for numerical studies than the plate-over-beams
analysis used by OraN and VELETSOS.

The response of a Highway bridge to moving vehicles is usually studied by
treating the vehicle as a sprung load. Sometimes the vehicle is also represented
by a moving force ignoring its dynamic characteristics. Although the sprung
load analysis is more realistic, this paper confines itself to the problem of the
bridge under moving force for several reasons. The study of the bridge response
under moving force yields useful information on two aspects. Firstly, the
study isolates the influence of the speed parameter and secondly it reveals the
degree of participation of the various modes in the response.

Analysis

An orthotropic plate bridge simply supported at the edges x = 0 and a,
and free at the edges y= +6/2, will now be considered (Fig. 1). A force P is
considered to move with uniform velocity ‘“v’’ in the X-direction along the
line y =c. P is assumed to be distributed over a square of side 2 e.

a

Free 1 |
> % L d=vt
(2e é b 2 a 2
N 2e N S I 'Y W
: Free S.S Section A-A
Iy

Fig. 1. The orthotropic plate under moving force.

The bridge will be assumed to possess no damping in the following analysis.
FosteEr and OEHLER [3] and OEHLER [4] have reported some typical values of
damping in actual bridges. Their measurements have shown that the damping
values are of the order of 1 per cent of the critical. The neglect of damping
appears to be quite reasonable because of the low damping capacity of Highway
bridges. The equation of motion of the bridge under the moving force may
now be written as

4 4 4 2
D8W+2H 8W+D3W 2w

g ™V G %2 5y Vo +p 92 F(x,y,t). (1)

D,, H,, and D, are the orthotropic plate rigidities and W (x,y, t) is the dynamic
deflection of the bridges. F (x,y,t) represents the moving force-distribution
function. p is the mass per unit area of the bridge. The deflection W will now
be separated into two parts:
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W(.’E,y,t) = _W'(x,y,t)+U(x,y,t), (2)
where W satisfies the equation

AW a T AW
W allid +D W=F(x,y,t). (3)

Doz T2 ey gamgmt Du gy

w represents the deflection of an orthotropic plate whose mass is neglected,
under the action of a moving force P. This deflection can be obtained by static
analysis and is dependent only on the position of the moving force on the

bridge and not on its speed. W will be referred to as the “‘crawl solution’’.
Combining Egs. (1), (2) and (3),

AU aU AU U 2w
+D —

Dot ¥ 2 Hagmgnt Dugua TP = —P g (4)

It may be observed that it is easier to solve Eqgs. (3) and (4) separately, than
the composite Eq. (1). The difficulty in solving (1) arises due to the concentra-
tion in the force P. Eq. (4) is free from this difficulty since the inertia force

ewW
P e
tration of the force still persists in Eq. (3) but it is handled with far greater

is well distributed over the bridge surface. The problem of the concen-

convenience since the time dependence of W is known beforehand from the
time dependence of F (x,y,t). The solution of Eq. (4) does not present any
problem. U (x,y,t) will be referred to as the “inertia force solution’’.

The solutions of Eqgs. (3) and (4) will now be obtained by using the charac-
teristic functions of the orthotropic plate. These functions have been studied

in detail by SunparRA Raja IvENGAR and NARAYANA IYENGAR [5, 6]. The
mmTx
a
represent the deflection shape of the orthotropic plate in one of its modes. Let
Pmn De the circular frequency of vibration for the same mode. The orthogonal
mnax
a
expanding arbitrary functions by a series of these functions.

The function F (x,y,t) may be defined as

various characteristic functions are presented in Appendix. Let Y, (y)Sin

property of the characteristic functions Y,,, Sin can be made use of in

F(x,y,t) if, d—e<x<d+e and c—e<y<c+e,

T 4e?
=0 if, x<d—eor >d+e and y<c—eor >c+e,

where d =vt.

This function may now be expanded by a double series. The series assumes
the form:

i mmx

F(x: Y, t) = Z bmn (t) ymn (y) Sin_"—' (6)
m=1,... n=1,... a
a +b/2
Hence, by (] [ Y2, 802" 7% dpdy = PSin mavt,
* 0 —b/2
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Sin 227 ¢ gte

where fmn = *“7;’:—#‘6—“ %e fymn dy
a c—e
. a +b/2 o—

Putting K,,ab=[ [Y2 Sin? dxdy ;

0 —b/2

_ Plun . mmot
by (B) = T ab Sin pa— (7)

mn

mmx

Now W (x,y,t) may also be expanded by a series in terms of ¥, Sin

W@yt = 5 5 ap 0T sin "7 ®)
Combining (3), (6) and (8)
By (1) };jz%zz,,{fﬁmns cakdy (9)
where Apn, = PP I’z)"” ot

This equation is a consequence of the fact that ¥, Sin— is a characteristic

function of the orthotropic plate. Hence

[e o}

. Pa®a Y fmn . mmot . muwx
W = Z Z Sin Y .. Sin P (10)

mn
Dﬂﬂ b m=1,...n=1,...AmnKmn .

The solution of Eq. (4) may now be taken in the form

Ulx,y,t) = éo —1§ Qonn ) Yoo, Smmwx. (11)
Combining Eqgs. (4), (10) and (11),
2 2 2 92
Pa?a f,, mrr?v Sinmwvt, (12)

a? a

Goun + Dion I = 5~ 7
m=12..., n=12.,
The solution of this set of equations is quite straightforward and can be com-

pleted if the initial conditions are known. In this paper, the bridge will be
considered to be at rest initially. Accordingly,

W(x>y:0) =0 (13&)
and 3;:/ (x,y,0) = 0. (13b)

These equations lead to the relations,
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U(x,y,0) = — W(x,y, 0)

oU oW
and -é—t—(x, y,0) = —_87(96’ y,0)
y Pa? a mn
o Tmn (0) =0 and Dmn (0) =~ D Z A fK X s
z mn > mn
where o, = mmv
a

The solution of (12) can now be finally expressed as,

2 2
_Pa’a [, o2,

Tn ) =D " X Ko, o — a2,)

{Sin oyt — Pmn giy D t} (14)

m

Computation of Amplification Factors

From (2), it follows that

Pa? a N 5 fonn . mmx o2,
W=_”'|:8D+"E Z Z ——Y, . Sin

D, m=1,...n=1,...>‘mnKmn a  (Phn—om)
1
-{Sinamt—pm" Sinpmnt}], (15)
%m
where  8p = Y oy %’E—SinathmnSinmﬂx (16)
m=1,...n=1,,..," mn""mn

3, can be computed by summing the series in (16). Since the speed does not
influence the values of 8, directly, the values can be obtained for closely
spaced load positions after setting v¢=d. The resulting influence line can be
used to compute the values of &, for any load position by interpolation,
irrespective of the speed of the moving force. The dynamic amplification
factor for deflection may now be defined as

WD,

R I

(17)
The expression for the moment amplification factor may be deduced in a
similar manner.
02
Now, M,=—-D id

T oux?

neglecting the Poisson’s ratio effect.

- > 2 )2, 2
Hence, M, = P [8 +£ fmn o, mem
- * YT m;n=1Z,Amn Kmn (pgnn_“’rzn)

.{Sinumt—i—m’iSinpmnt}YmnSinmWx], (18)
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max

where Sy =% Z Z —j’”—”—Si]flocmMrL27r2 Y, Sin (19)
=T

o<1 Amn K
The computation of 6;, can be carried out for various load positions irrespective
of the speed of the moving force. The amplification factor for M, now takes

the form,
M

— 4 ¢
ArH P(SM)max (20)
The computation of the maximum amplification factors for deflection and
moment requires the values of W,,, and M,,,,.. These are to be obtained
from the expressions (15) and (18) respectively. To this end, the deflection and
moment are calculated at closely spaced values of ‘4’ and the maximum
values are picked out from the history curves so obtained.

Numerical Studies

The values of the amplification factors for deflection and moment can be
computed by considering a suitable number of terms in the series (15) and (18).
The results of the numerical studies are presented in two forms — (a) The
amplification spectra and (b) The history curves. The amplification spectra
are the plots of maximum amplifications of deflection and moment against the

XV

speed parameter. The speed parameter may be defined as « = % where “v

is the speed of the force and 7T is the fundamental period of the bridge. The
history curves reveal the time variation of the bridge deflection and moment
at a particular point as the force crosses the bridge with a definite speed.

The most important variable besides the speed parameter, is the transverse
position of the moving force. In this study, two values of the transverse posi-
tion are considered by taking ¢=0.456 and ¢=0.0. The former corresponds
to the eccentrically loaded case and the latter to the concentrically loaded
case. It is not feasible to consider ¢=0.5b for the eccentric loading since the
force is considered to be distributed over a finite area. In all the computations
e/b is taken to be 0.05.

The values of &, and 3,, are first computed for fixed locations of the moving
force. The values of these coefficients for any position of the moving force
may then be found by interpolation. The determination of the dynamic deflec-
tion and the moment now requires the summation of series in (15) and (18).
This may be carried out by considering a finite number of terms depending
on the rapidity of convergence of the series. The time variation of the deflection
and moment at any point in the bridge has to be studied by selecting a definite
time interval. This interval naturally depends on the highest frequency
appearing in the series. In what follows, the computation has been carried out
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by selecting the time interval to be one-tenth the period of the highest mode
considered. The maximum values of the deflection and the moment can also
be picked out while studying the time variation of these quantities. These
values may then be used to compute the maximum amplification factors.

The results of the various numerical studies are presented in the following
sections. The entire procedure has been programmed in Fortran to work on
the CDC-3600 computer at the Tata Institute of Fundamental Research,
Bombay. The dynamic deflection and moment have been computed only for
points at midspan. Five points at midspan have been considered: y = + 0.45b;
y = +0.225b and y=0.0. All the dynamic quantities are presented as ratios
of the maximum static effects at the point under study.

Two typical Highway bridges are considered for detailed numerical investi-
gation. The dimensions and the properties of the two bridges are presented
in Table A.

Table A. Details of bridges considered

No. | Bridge Type| Span alb D.|Dy |HVD D, VD, (kg-m)1/2| p kg-sec?/m3
1 Slab 5m 1.0 1.0 1.0 2500.0 60.0
2 Beam and
Slab 20 m 2.0 100.0 0.4 25000.0 90.0

It is believed that the two bridges are representative of a good majority of
Highway bridges where two-dimensional effects are prominent.

Convergence of the Solution

The convergence of the series in (15) and (18) are studied by considering
different number of terms. The time histories for A D and AF M for various
number of terms considered are presented in Figs. 2 to 5. In all these figures
a maximum of three modes are considered and the highest mode corresponds
to m=1 and n=3. The solutions by considering lesser number of terms are
also plotted to study the convergence.

Fig. 2 shows the behaviour of AFD for the beam and slab bridge under
eccentric loading, the speed parameter being 0.193. The figure shows that the
difference between the 2-mode solution and the 3-mode solution is small. The
solutions for four modes and five modes were also computed and the resulting
AFD’s were found to coincide with the 3-mode solution on the graph. The
figure also shows that the substantial component of the response consists of
the first three modes of vibration of the bridge.

Fig. 3 shows the variation of AFM for the beam and slab bridge under
eccentric loading. The speed parameter is again equal to 0.193. The con-
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vergence of the dynamic moment is seen to be quite satisfactory. Consideration
of higher modes did not cause any appreciable change in the values of 4 F M
and the first three modes may be considered to dominate the response. Fig. 4
shows the AFM variation for the beam and slab bridge under concentric
loading. Because of the concentric loading, the second mode does not partici-
pate in the response and only the first mode and the third mode affect the
moment and deflection values. The convergence of the values is again seen to
be satisfactory with the first three modes. Consideration of more terms did
not lead to any change in the graphs presented in Fig. 4.

Fig. 5 shows the behaviour of 4AFM for the slab bridge under eccentric
loading, the speed parameter being 0.197. The consideration of modes more
than three again did not introduce any noticeable changes in the history
curves. Although the Figs. 4 and 5 consider the convergence of A¥M, the
convergence for AFD for the same cases was also found to be quite satis-
factory. Comparison of the two series in (15) and (18) shows that the terms
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are practically identical and the same rapidity of convergence may be expected
for both AFM and AFD.

The convergence studies made in the above considered only terms with
m=1. Some sample calculations were made including the term corresponding
to m=3 and n=1. It was found that the addition of this term did not alter
any of the history curves presented. The influence of modes with m greater
than unity may therefore be safely neglected for the midspan response. Modes
with m =2 need not be considered for midspan response as such modes will
have a nodal line at the midspan. These modes would be of importance while
considering the response of points away from the midspan.

The Amplification Spectra

The maximum dynamic amplification of any response quantity of the
bridge under a moving force may be conveniently studied by drawing spectral
curves. In this study the maximum amplification factors for deflection and
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moment (M,) at midspan are plotted against the speed parameter «. Three
points at midspan are considered: y = +0.456 and y=0.0. The spectra are
drawn for (a) the eccentrically loaded case (¢ =0.450) and (b) the concentrically
loaded case (¢ =0.0). The slab bridge and the beam and slab bridge considered
earlier are analysed for the spectral curves. All the computations are made
taking 5 modes (m =1 for all modes) into consideration.

The spectra are presented in Figs. 6 to 9. Figs. 6 and 7 refer to the concentric
loading of the slab bridge and the beam and slab bridge respectively. In each
figure, the spectral curves by the simple beam theory are also inserted for
‘comparison. The two figures show that the amplification factors for y =0 and
x=a/2 in concentrically loaded bridges follow much the same pattern found
in the midspan of a beam. The amplifications of y=0 and x=a/2 in the two
bridges are somewhat lesser in magnitude than the amplifications at the mid-
span of a beam. The amplification factors are larger at the edges than at y=0
and x=a/2. The (4FM),,,, and (4FD),,,. values at the edges are practically
identical in both the bridges. The amplifications at the edges of the beam and
slab bridge are quite large and reach values of the order of 1.5 for the higher
speeds.

Figs. 8 and 9 show the (4FM),,,, and (AFD), . values in the slab bridge
and the beam and slab bridge respectively, due to eccentric loading. The
amplification factors at the loaded edge (y=0.45b) do not closely follow the
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pattern found in beams. The disparity between the beam theory and the two-
dimensional theory is greater for the beam and slab bridge. The unloaded edge
(y = —0.45b) experiences quite large amplifications. There are considerable
differences between the behaviour of the slab bridge and the beam and slab
bridge with reference to the response of the unloaded edge. The beam and
slab bridge shows pronounced oscillations at the unloaded edge in contrast
to the slab bridge.

When the beam and slab bridge is subjected to eccentric loading, the
unloaded edge experiences amplifications of the order of 5.0 for the higher
speeds of the moving force.

The Transverse Distribution of Dynamic Effects

Fig. 10 shows the profile variation of the midspan deflection and moment
in the beam and slab bridge as the force moves along, the speed parameter
being 0.193. The figure refers to concentric loading (c=0.0). The dynamic
profiles are plotted in bold lines for various positions of the force along the
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bridge. The static deflection profile at midspan, when the force is also at
midspan, is shown in dotted lines along with each profile sketch.

The dynamic deflection profile is seen to be dominated by the contribution
of the fundamental and the second symmetric modes. The change in the
profile as the force moves from d=0.552a to d=0.69a clearly indicates the
participation of the second symmetric mode. Fig. 10b) shows the dynamic
moment variation (M,) at midspan. Unlike the maximum static moment at
midspan, the dynamic moment is more uniformly distributed across the width
of the bridge. This may be attributed to the distributing effect of the inertia
forces of the bridge.

Fig. 11a) shows the midspan deflection profile of the beam and slab bridge
as the force moves eccentrically along y = +0.45b. The speed parameter is
again 0.193. The participation of the various modes is more complex in eccentric
loading than what is found in concentric loading. Fig. 11b) shows the midspan
moment (M) variation across the width for eccentric loading of the beam and
slab bridge. The dynamic distribution of the deflection and the moment M,
are both seen to be more uniform than the maximum static profiles.



THE RESPONSE OF BEAM AND SLAB BRIDGES TO MOVING FORCES 81
History Curves

The history curve for any response quantity shows the quantity as a func-
tion of time as the force crosses the bridge. Some typical history curves for
the deflection and moment at midspan of the two bridges are presented here.
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Figs. 12 and 13 show the history curves for the slab bridge and the beam
and slab bridge respectively, when the moving force is concentric. The speed
parameter is 0.197 for the slab bridge and 0.193 for the beam and slab bridge.
There are considerable differences between the moment (M,) and deflection
curves for y=0.0. This may be attributed to the differences between the
static influence lines for the two quantities. The influence line for M at y=0
and x=0.5a has a very sharp peak at the centre. The deflection influence line
for the same point happens to be a much smoother curve. Even after adding
the inertia effects, the differences between the time variation of the two
quantities show up in the history curves. It is also seen that the maximum
dynamic moment for y = 0.0 occurs when the force is very close to midspan if
not at the midspan. The maximum dynamic deflection at ¥y =0.0 may occur
even when the force is well removed from midspan. The situation is somewhat
different for midspan points at y = + 0.45b, wherein the moment and deflec-
tion amplifications follow each other very closely. In contrast to the point
y=0.0, the inertia effects are comparable to the static effects at the points
y = +0.45b.

Figs. 14 to 16 show the history curves for eccentrically loaded bridges.
Fig. 14 refers to the slab bridge subjected to an eccentric moving force, the
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speed parameter being 0.197. Figs. 15 and 16 refer to the beam and slab bridge
under eccentric moving force, the speed parameter values being 0.097 and
0.193 respectively. The history curves for y = +0.456 and x=0.5a follow
much the same trend followed by the curves for the midspan point at y=0.0
in the case of concentric loading. The inertia effects dominate the response
as points farther away from the line of loading are considered. This is especially
true for the beam and slab bridge, where the edge y = —0.45b reveals an
interesting feature. The point at midspan of this bridge corresponding to
y = —0.45b, executes a beating type motion as the force moves along the
edge y = +0.45b. The dynamic effects in this case are far in excess of the
static response values. Large amplifications are obtained and the maximum
amplification may occur when the force is nearing the support x =a (Fig. 16).
This beat phenomenon is observed for both the values of the speed parameter
(=0.097 and 0.193) considered in Figs. 15 and 16. This behaviour may be
directly attributed to the frequency distribution existing in the beam and
slab bridge. In Table B the frequencies of the two bridges described in Table A,
are tabulated. The Table shows that the first two frequencies of the beam
and slab bridge are quite close. This closeness of the frequencies causes the
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beat type phenomenon at the unloaded edge. The frequencies of the slab
bridge are quite sparsely distributed and the unloaded edge of this bridge does
not show the beating motion for eccentric loading.

Table B. Frequencies of the bridges

Frequencies in ¢/s (m =1 for all modes)
Type
Fundamental I Asymmetric II Symmetric IT Asymmetric
Slab 20.27 36.73 80.57 159.3
Beam and Slab 10.34 12.09 18.98 33.88
Conclusions

Some general conclusions may be drawn from the results obtained for the
two typical bridges. The conclusions may be summarised as follows:

a) The midspan response of the Highway bridge is influenced mostly by the
first three modes of vibration. Although this conclusion has been drawn with
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reference to two bridges, it may be extended to other bridges where the
frequencies of the first three modes are clustered together. It has been shown
by SUNDARA RaJA IYENGAR, JAcADISH and NARAYANA IYENGAR [7] that the
frequencies of most of the Highway bridges follow this pattern.

b) When a bridge is subjected to a concentric moving force, the ampli-
fication factors for points below the moving force follow the trend found in
beams. The values of the amplifications found by the orthotropic plate theory
are smaller than the values found by the beam theory. When the bridge is
under eccentric moving force, the amplifications for points below the moving
force do not closely follow the trend found in beams.

¢) For a point underneath the moving force the maximum moment occurs
when the force is at the point or very close to it. The maximum deflection at
the point can occur even when the force has moved away from the point.

d) The maximum amplification increases as points away from the line of
loading are considered. The largest amplifications are realised at the unloaded
edge of a bridge under eccentric loading. This effect is more pronounced in
the beam and slab bridge than in the slab bridge. If the first two frequencies
of a bridge are very close, the unloaded edge executes a beating type motion,
when the bridge is under eccentric moving force.

Notations
AFD Amplification factor for deflection
AFM Amplification factor for moment
a Span of the bridge
b Width of the bridge
c y-co-ordinate of the moving force
d=vt x-co-ordinate of the moving force at any instant
D,,D, H,, Orthotropic plate constants
e Half the side of the square distributing the force over the bridge
surface
Ponn Circular frequency of the orthotropic plate
U Inertia force solution
v Speed of the force
w Dynamic deflection of the plate
w Crawl solution
%n s Bn Parameters in the plate characteristic function
%, =m;v Crossing frequency
o =%§ Speed parameter
D> O Influence coefficients for static deflection and moment

Frequency parameter
Mass per unit area of the orthotropic plate
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Appendix

The expressions for Y, (y) are presented in this appendix. The functions
Y. n Sinm—;rf happen to be the shape functions of an orthotropic plate with

two opposite edges simply-supported and the other two free. The expressions
for the functions may be easily obtained by a free-vibration analysis of the
plate.

Modes symmetric in y —n is odd

(I) D, +0,
mn D 2 72h2 mn
Cosh? 5 4 afnn—ﬁ{ ma2 Cos? 5 Y
Yon(y) = Dy m2 a2 b2 Bmn
Xmn 2 1 ™ mn
Cosh =5 an-f-;Dy = Cos—

where «,,, and B, satisfy the equations,

D; m2a2b27]2

Btk T
o mn © J), 2 o
tan B ;’m = — _mn DJ mza,,z 5 tanh ——gm
an az __1
— mn D?I a2

_2H,, min?b?

and o2 D, PP + B2,
I) D, =0,

le(y) =1
and Bni = 0.

For values of n greater than unity, expressions of (I) may be used.

Modes antisymmetric in y —n is even

. Sinhg‘i"—gﬁ —a,z,m—~% m 2(;;2 6% Sin A "Z'y
O h o " Bt | Sinfpr
where «,,, and §,,, satisfy the equations,
ﬁ B ) a?nn - i’?i mz(l;z bz_ 2 o
tan ;’m = am" Y w5 tanh%”

D,
mn | B+ D, @
2H,, m?n?b?
and al, = —2 + B
2 mn
D, a
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Summary

The dynamic response of simple-span beam and slab Highway bridges
subjected to a moving concentrated force is studied. The Highway bridge is
treated as an orthotropic plate, and the normal mode method is used in the
response analysis. Numerical results are presented for typical cases in the
form of amplification spectra and history curves.

Résumé

I’auteur étudie le comportement dynamique de ponts d’autoroute en dalle,
a une seule ouverture, sous une force mobile concentrée. La méthode normale
est employée pour I'analyse du comportement, le pont étant assimilé & une
dalle orthotrope. Pour les cas-types, des valeurs numériques sont données
sous forme de spectres amplificateurs et de courbes d’hystérésie.

Zusammenfassung

Der Autor behandelt das dynamische Verhalten von einfachen Platten-
und Balkenbriicken fiir Autobahnen unter einer konzentrierten, beweglichen
Kraft. Die Briicke wird als orthotrope Platte behandelt und die Rechenwerte
mit der normalen Methode ermittelt. Fiir typische Falle sind numerische
Werte angegeben in der Form von Vergroferungsspektren und Hysteresis-
kurven.



Die Verschiebungsmethode in der Theorie der diinnwandigen Stibe und
ein neues Berechnungsmodell des Stabes mit in seinen Ebenen
deformierbaren Querschnitten

Displacement-Method in the Theory of Thin-Walled Members, and a New Calcu-
latvon-Model for the Thin-Walled Bars with Deformable Contours

La méthode des déplacements dans la théorie des membres a parois minces et un
nouveaw modeéle de calcul pour des membres & parois minces avec contour déformable

CURT F. KOLLBRUNNER NIKOLA HAJDIN
Dr. sc. techn., Dr. h. c., Zollikon, Dr. sc. techn., Professor an der
Zurich Universitdt Beograd

1. Einleitung

Vor iiber funf Jahren begannen wir die Theorie der diinnwandigen Stabe
systematisch zu bearbeiten.

Bisher hat sich unsere Arbeit auf die Probleme der linearen Theorie be-
schrinkt und ist in den Publikationen [1] bis [6] erschienen. In der Folge
beabsichtigen wir, mit unserer Arbeit weitere wesentliche Bereiche, welche mit
dem Gebiet der diinnwandigen Stiabe und ihrer Anwendung im Bauwesen
zusammenhéingen, zu erfassen?).

In den letzten Jahren wurde die lineare Theorie durch eine ganze Anzahl
von Verfassern eingehend behandelt. Der Hauptzweck unserer bisherigen
Arbeit war eine Zusammenfassung und Vereinheitlichung der auf diesem
Gebiete gewonnenen Erkenntnisse unter besonderer Beriicksichtigung ihrer
praktischen Anwendung zu schaffen.

Einige Ergebnisse dieser in den erwdhnten Monographien behandelten
Arbeit stellen unseres Erachtens nach einen Beitrag zur Theorie dieser Kon-
struktionen dar:

In der Arbeit [3] ist die Statik der Systeme diinnwandiger Stabe mit offenem
Profil als eine Erweiterung der Lehren der klassischen Statik gebracht. Der

1) Ein Teil dieser Probleme wurde im Artikel [7] erwéahnt.
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Aufbau der Theorie erfolgt in erster Linie durch die konsequente Anwendung
des Prinzips der virtuellen Arbeit bei der Variation der Spannungen sowie
durch die Entwicklung der verallgemeinerten KraftgroBBenmethode.

Eine sehr ausfiihrliche Ubersicht und Darlegungen der einzelnen Methoden
fiir die praktische Berechnung diinnwandiger Stdbe mit geschlossenem Profil
wurde in der Publikation [4] gebracht.

In dieser Veroffentlichung wurde ein besonderes Gewicht auf die Erldu-
terung der Verfahren von BENSCOTER [7], UmanskI [8] und HEerrie [9],
sowie auf den Vergleich derselben mit der genaueren Theorie von Wrassow
[10] gelegt.

Die Ergebnisse dieser Vergleiche sind vom praktischen Standpunkt aus
interessant, doch konnen wir an dieser Stelle nicht naher auf sie eingehen.

Eine ausfiihrliche kritische Darlegung des Berechnungsverfahrens von
Kusirzki, welches auf dem sog. Schubfeldschema beruht, wurde im letzten
Kapitel der Publikation [4] gebracht.

Die Theorie des langen prismatischen Faltwerks bzw. des diinnwandigen
Stabes mit in seinen Ebenen deformierbaren Querschnitten unter Anwendung
der Verschiebungsmethode wurde eingehend in der Arbeit [5] behandelt. Die
in dieser Publikation dargelegte Theorie konnte in einer geniigend allgemeinen
Form entwickelt werden, so daB in ihr als Sonderfille die sogenannten Theorien
des steifknotigen und des gelenkigen Faltwerks sowie die klassische Theorie
der Wolbkrafttorsion enthalten sind.

Abgesehen von diesen Sonderfillen ist es, unabhéingig von der fiir die
Analyse angewendeten Methode, auflerdem noch méglich zwei Berechnungs-
modelle aus dem allgemeinen Berechnungsmodell zu gewinnen.

Das erste kann als eine Erweiterung der klassischen Theorie der Wolbkraft-
torsion auf Querschnitte, deren Wandstérke nicht ausgesprochen klein im
Vergleich zu seinen iibrigen linearen Abmessungen ist, angesehen werden 2).

In diesem Beitrag wird das zweite Berechnungsmodell behandelt, welches
eine Theorie des Faltwerkes unter Beriicksichtigung auch der Torsionsmomente
ermoglicht.

2. Verformung des Stabes

Wir betrachten einen geraden diinnwandigen Stab mit offenem Querschnitt.
Die beliebig geformte Profilmittellinie ersetzen wir durch einen Polygonzug.
Die Wandstédrke ¢ zwischen zwei Knoten sei konstant.

Die Lage eines beliebigen Punktes auf der Mittelfliche ist durch die Koordi-
naten s und z bestimmt. Die Koordinate s ist die lings der Profilmittellinie
gemessene Entfernung des Punktes von einer vorher bestimmten Erzeugenden

2) Siehe die Arbeit [5], Kapitel 10.
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und z dessen Abstand von einem beliebigen Querschnitt, gemessen lings der
Stabachse (Fig. 1).

4 |

1. |
i

i Fig. 1.
P ty

hn,

Den Abstand eines beliebigen, nicht auf der Mittelfliche gelegenen Punktes
von derselben gemessen in Richtung der inneren Normalen bezeichnen wir
mit e.

AuBler dem Koordinatensystem s, z und e fihren wir das Kartesische
Koordinatensystem z, ¥ und z ein, wobei wir, der Einfachheit halber, fiir die
Achsen x und y die Haupttrigheitsachsen des Querschnitts wihlen.

Die Verschiebungen der Punkte der Mittelfliche in den Richtungen s und 2
bezeichnen wir mit » und w und die Verschiebungskomponenten in den Rich-
tungen z und y mit £ und 7.

In bezug auf die Verformung der Mittelfliche des Stabes treffen wir die
folgenden Voraussetzungen:

1. Die den Stab bildenden Platten erleiden in der Querrichtung keine Deh-
nungen, d.h. ¢,=0.

2. Die Gleitverzerrung v, in der Mittelfliche des Stabes wird vernachlissigt.

Die erste Voraussetzung besagt, dafl die Verschiebungen der Knoten der
Profilmittellinie in der Ebene des Querschnittes gleich sind den entsprechenden
Verschiebungen von Knoten einer kinematischen Kette, deren einzelne Glie-
der aus in diesen Knoten gelenkig miteinander verbundenen Stidben bestehen,
deren Achsen mit den Seiten der polygonalen Profilmittellinie zusammenfallen.

Die Zahl der voneinander unabhéngigen Verschiebungen V, = V;(z)
(t=1,2...n) ist gleich dem Freiheitsgrad der kinematischen Kette.

Wir wihlen fiir die ersten drei unabhingigen Parameter die Verschiebungen
des Querschnitts in den Richtungen x und v und dessen Verdrehung um den
beliebigen Punkt P (Fig. 1):

Vl=§0> Vz=’70> V= op. (1)
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Die iibrigen n— 3-Verschiebungen beschreiben die Forménderung des Quer-
schnittes in seiner Ebene (siche z.B. das Verschiebungsdiagramm in der
Fig. 2a) fir den Fall, daBl wir die vollkommene Starrheit der Platten in der
Querschnittsebene und ihre gelenkige Verbindung in den Knoten voraussetzen.

m=6 "\,‘—'-‘1" b) M=k
i>3 i

a)

Fig. 2.

Die Verschiebung des beliebigen Punktes in Richtung der Tangente an die
Profilmittellinie konnen wir in der folgenden Form ausdriicken:

v(s) = 3 V@) ¥0(s). (2)

Die Funktion +® stellt die Verschiebungen v fiir V;=1 dar (Fig. 2a).
Insbesondere ist:

D = —gin«, v® = cos o, v® = hp, (3)

wo « der Winkel ist, welchen die positive y-Achse mit der Profilmittellinie
einschlieBt und %, der Abstand der Tangente an die Profilmittellinie von P ist.

Aus der zweiten Voraussetzung folgt:
S

ow ov ow
= bzw. w(z,s)=——fa—8d8+WI)(2)-
0

Durch Einsetzen des Ausdrucks (2) fiir v erhalten wir:

n
w(z,8) == 2 V/ (2) 0@ (s) (4)
i=0 ‘
wo: ow® =1, w® = fsv(i)ds und V) = — W, (?) (5a,b,c)
0

sind. Insbesondere ist:

ol =g, w? =y, w(3)=j§hpds = wp. (6)
0

Wir withlen ein System orthogonaler Funktionen @ (s), 1=0,1,2...7n:

w(@°)= 1, w‘é)=x, wg)=y (7)

i—1
und wg) = w(’)—}— Z B’L] w(j), 9 = 3, 4...n. (8)
7=0



VERSCHIEBUNGSMETHODE IN DER THEORIE DER DUNNWANDIGEN STABE 91

Aus der Orthogonalitdtsbedingung erhalten wir:
f tw® wdds

Bi; = st (9)

wobei sich die bestimmten Integrale im Zahler und Nenner iiber die gesamte
Lénge der Profilmittellinie erstrecken.
Statt @ erhalten wir:

@) — @) fir ¢=12
Vg = ir ¢ =1, (10)

und (l)—fu(’b)+218 v, fur i=3,4...n.

Den neu eingefiihrten Funktionen entsprechen die neuen, verallgemeinerten
Parameter O, (z):

fir ¢=1,2

I

O (11)
e

I

V;
i1

U.Ild I/’l:+ZB’L]@]7 fﬁI‘ 7;=3,4:...n.

i=1
Man kann leicht ersehen, daB @) =12 sie sog. normierte sektorielle Koordinate
und v®=h der Abstand der Tangente an die Profilmittellinie vom Schub-
mittelpunkt D ist.

Mit den neu eingefithrten Funktionen erhalten wir statt der Ausdriicke
(2) und (4) fir » und w:

v(z,8) = Z @z (2) ’Ug) (s), (12)
i=0
w(z,8) = —Z 0; (2) WP (s), (13)
wobei e =0 ist. (14)

Die Parameter @; bestimmen vollstindig die Verschiebungen der Knoten
k(k=1,2...n) in der Ebene des Querschnittes, wobei wir auch die Enden der
Profilmittellinie zu den Knoten zihlen (siehe Fig. 1).

Fiir die Verschiebung « in Richtung der inneren Normalen zur Mittelfliche
fithren wir eine Naherungslosung von der Form ein:

u(z,8) = Z O, (2) u@ (s)+ Z Dy, () wP(s) +uy (2,8). (15)

In diesem Ausdruck bedeuten @, die unbekannten, durch die Forménderung
des Querschnittes hervorgerufenen Knotenverdrehungen und u@ sowie u{)
bekannte, durch die folgenden Ausdriicke bestimmte Funktionen:

ug =0, u8)=COSoc, uQ =sine, ud="h,,
(16)
m

um_z Z“mu%") 1=4,5...n,
k=1r=1
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(& & e
— T ~
(i —~r§1u¢) (17)

R
u, =r§1u,ﬂ,p. (18)

Die in den Ausdriicken (15) bis (17) neu eingefithrten Bezeichnungen haben
die folgende Bedeutung:

h, :

n
D) .
ockr .

(kr) -
’LL@ :

(kr) .
u¢ .

Uker, p

Abstand der Normalen zur Mittelfliche vom Schubmittelpunkt D;
Projektion der Verschiebung des Knotens k£ in Richtung der Normalen
auf die Platte kr, welche die Knoten £ und r verbindet, fiir den Zustand
0,=1, (i=4,5...n);

definiert die elastische Fliche des unendlich langen, an den Réndern
k und r (Fig. 3) eingespannten Plattenstreifens fiir den Fall, daB die
Kante k die Einheitssenkung erleidet.

kry . Srk Ster (Ster — Syte)
ubr)‘”r_[l_”l—b,%‘r— , (19)

Gesamtzahl, r=1,2... R der an den Knoten & angeschlossenen Platten.

Die im Ausdruck (17) angefiihrte Funktion

definiert die elastische Flache des unendlich langen, an den Réndern k
und r eingespannten Plattenstreifens fiir den Fall, dafl die Kante k
(Fig. 4) die Einheitsverdrehung erfdhrt.

8y, 82
(kr) — __ Zkr°rk (20)
(/) = —_——.
@ blzcr

Die Funktion

definiert die elastische Fldche des erwidhnten Plattenstreifens zufolge
der in der Richtung der Normalen zur Mittelfliche wirkenden, gegebenen
Belastung p,, .
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3. Schnittkriifte. Gleichgewichtsbedingungen. Grundlegende Differential-
gleichungen des Problems und Randbedingungen

Hinsichtlich der Schnittkrafte wollen wir folgende Vereinfachungen anneh-
men:

a) Die Biegungsmomente m, in der Léngsrichtung werden vernachlissigt,
ebenso wie der Einflul der Kriimmung %" in der Léngsrichtung auf die
Biegungsmomente m, in der Querrichtung.

b) Die Torsionsmomente m,, zwischen je zwei Knoten mogen konstant und
proportional der spezifischen Verdrehung der diese Knoten verbindenden
Sehne sein.

Fiir die Schnittkrafte n,, m,, und m, erhalten wir, unter Beriicksichtigung
dieser Vereinfachungen sowie der Voraussetzungen iiber die Verformung des
Stabes und des Hookeschen Gesetzes:

I4 ! ! t3 */ I4 t3
n, = H'tw, mzs=EiTZ(1—V)uo> my=—K Y (21)
wo u, die Verdrehung der Sehne zwischen zwei benachbarten Knoten und

E = ist.

1—»2

Durch Einsetzen der Ausdriicke (15) und (13) fiir v und w in die Gleichung
(21) erhalten wir:

n, =—E't Z 0] i),

E' -
Mes =~ 3 (I—V)Z_: @iu@m (22)
E' B3{n
mg = Z@ u“)+Z€D u‘k))+m
m
wo Sy = Py =uF, =0, aP =1, ud, —kzl % o) udn (23)
und Mg, = E'12 y, (24)
bedeuten. Fiir %" (Fig. 3) erhalten wir:
. 1
WD = ——. (25)
bkr

Wir schneiden aus dem Stabe ein durch die Querschnitte z, und z,+ dz begrenz-
tes Element heraus und lassen auf dasselbe die entsprechenden Kréfte wirken
(Fig. 5). Die beliebige Belastung mit den Komponenten p,, p, und p,, greift
in den Punkten der Mittelfliche an.
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Die Gleichgewichtsbedingungen stellen wir unter Anwendung des Prinzips
der virtuellen Verschiebungen auf:

W+U=0, (26)

wo W die Arbeit der duBeren und U die Arbeit der inneren Kriifte bei den
gegebenen virtuellen Verschiebungen der Punkte des Elementes sind.

(mzs +mzs dz)ds

(ny+n} dZ)d)S/ -
(nn+nzndz)ds

9/ {n;s +nls dz)ds

Die Punkte der Profilmittellinie des Querschnittes z =z, erfahren die vir-
tuellen Verschiebungen %, ¥ und w. Fiir den Querschnitt z=z,+d 2 betragen
diese Verschiebungen u+u'dz, v+7 dz und w=w'"dz.

Fiir die Arbeiten W und U, bezogen auf die Einheit der Stablinge, erhalten
wir:

Fig. 5.

W= jnznu-i-nzsv-i-nw m,, ) ds+[ P+ P 0+ p,w)ds,
— [ (n, @ —2m, u' +m,u)ds.
S

Durch Einsetzen dieser Ausdriicke in die Gleichung (26) erhalten wir:

[ (0L, T+ N T+ 0 —m u+n,, @ +n,, 0 +m, u +m,i)ds @)
s
+f PuU+ D0+ P, W)ds = 0.

Fiir die virtuellen Verschiebungen %, ¥ und w wéahlen wir Ausdriicke von
der gleichen Form wie die Ausdriicke (12), (13) und (15) fiir u,=0, jedoch
fithren wir statt @, und @, die Parameter @, und @, als beheblge Funktionen
der Koordinate z ein. Diese sind, allgemein genommen, unabhingig von der
wirklichen Belastung des Stabes.

Auf diese Weise erhalten wir:

9

i [ (0, @ + 1 v —my ul) + m ul) ds +f (Ps VG + Py, uG) ds]

8

~.

|

(—n;w‘g)>+n u(1)+n v(z)+m u(@z) dé‘—fp, mds]

)

+
Mz gMS M=
-

‘Scl

(28)
L[ (g, wE) —m ul) +mg i) ds+fp ul) ds]
S

??‘
I
[

+
DMz

L [+, u] ds = 0.
S

&
I
=
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Die Befriedigung dieser Gleichung erfordert, dafl die vier Ausdriicke in den
eckigen Klammern fiir jedes ¢(1=0,1,2...n) und fiir jedes k(k=1,2...m)
Null sein miissen.

Die Nullsetzung dieser Ausdriicke ergibt, nach dem Einsetzen der Glei-
chungen (22) fiir die Gréflen n,, m,, und m,, das folgende System von Glei-
chungen:

[ () 4 + Ly 00) ds = B’ | z By O; — 26b,07) + 3 6D
=1

8

f(p v‘“+p u@ +myg , i) ds,

8

. n
j(nznu(é)_*_nzsv((:))) ds = B [—aii@;;,+2’<_z @ ]+J.pzwm
:;=

s

1=0,1,2...n, (29a—d)
n m
sf n;n u%“) ds = E, [y;o ij @] + Z§1 dkl @l] —sf (m;s,p ’a(ql;:) + ﬁnug;)) ds 5
f 7, upds =0,
S
k=1,2...m

In diesen Gleichungen bedeuten:

G . s 1 1
= . (@) = 0 _ (@)
K= Ay ——ft [w@]2ds, by, = 12J‘t3u(é)u@0 T8 ftau((‘;)ou(g')o ds, (30a—c)

s S

by = 13 £ u“’u((f))ds Ca =15 [t?' ug udds, (30d,e)
s s

“ _1_ 335 7 (,')d d . 1 1358 50 4

Cep = 15 | 1 Ugp g S u =g | Uy Ugds. (30f, g)

s

Die bestimmten Integrale der Ausdriicke (30b-g) erhalten wir, unter
Beriicksichtigung der Gleichungen (16), (23) fir 1=4,5...n sowie (17) als
lineare Kombinationen von Groflen (Fig. 3 und 4):

. 1
(k1) k0 g — (k1) 4 (rR) g —
[ g o ds = — gy UgedS = =
bkr
[ gk de = — [ &) k) g — E
770 O R T by’
(31)
Jugnugnds = — fugnughds = — [ufnigods = — by’
r
[ 4D uden ds = 4 1kr) 108 g — 2
o U U5 = ps JiigPughds = — 5=,
kr kr

wobei die bestimmte Integration in den Grenzen s,,=0 und s, =b,, ausge-
fithrt wurde.
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Durch Elimination erhalten wir aus dem Gleichungssystem (29):

1 .
07 = A — A0, fire=0,1,2 (32)
’ n . . m . 1
i=3 =1 E
. N ) (33)
2 6y 05+ 2 diy Py = 27 Byeo,
7=3 1=1
1=3,4...n, k=1,2...m
OF Ay = [mg i@ ds + [ (P, uld) + ps v 4+ p,wf) ds
s s (34)
und Byo = [mg, 4P ds+ [P, up ds
S S
sind.

Es kann gezeigt werden, daBl sich diese Glieder auch in der folgenden Form
ausdriicken lassen3):

m R
AiO = Z Z Prer O‘(lgf)' +f(ﬁs”g)+?;w(§)) d8>
k=1r=1 s (35)

R
By = Zlmk:
r=

wo (Fig. 6) p,, die Knotenlast im Knoten £ und m,, das Einspannmoment des
Plattenstreifens kr in diesem Knoten zufolge der gegebenen Belastung p,, sind.

/bn
< ol “
% ¥ 1 17
.
(kr)
Up

m
kr
ﬂfm S

? = Pyr t ~Prk

In Hinblick auf die Bedeutung der Parameter V,=0), fir +=0,1 und 2

[Gleichungen (1)] sowie unter Beriicksichtigung der Werte @, w® und «»®

[Gleichungen (5a) und (6)], ferner, weil zufolge Gleichung (5¢) V' = — W, (2)
ist, konnen wir die Gleichungen (32) in der folgenden Form anschreiben:

E,FWO,,='p57 E,Iac.zé:g”_px_’_mx’ E Iz/y 8”'—py+m (36)

Wo: P, = [P, ds, p,=[(—p,sina+p,cosa)ds, m, = [p,xds,
8 8 S (37)

P, = [ (P, coso—p,sina)ds, m, = [p,yds
8

S

Fig. 6.

sind.
Die Gleichungen (36) sind offenbar die Differentialgleichungen fiir die Axial-

'3) Siche [5], Kapitel 4.
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und Biegungsbeanspruchung des diinnwandigen Stabes mit in ihren Ebenen
nichtdeformierbaren Querschnitten.

Die Randbedingungen fiir das Gleichungssystem (34) konnen durch Ver-
schiebungen, durch Krifte oder durch beide Arten von Einwirkungen gegeben
sein.

Die Verschiebungen der Stabenden miissen in der gleichen Form gegeben
sein wie die Verschiebungen u, v und w der Punkte der Mittelfliche. Die Rand-
bedingungen konnen auf die Ausdriicke:

0,=0f,  0;=06} (38)
zuriickgefithrt werden, wobei @F und @}’ Parameter sind, welche durch die
gegebenen Verschiebungen der Punkte des Endquerschnitts bestimmt werden.

Die Randbedingungen durch die Krifte stellen wir unter Anwendung des
Prinzips der virtuellen Verschiebungen auf:

([ = 135) WA (Mo — 05) B+ (my — 0F) W — (g —m%) u] ds = 0.
S

Die GroBen n , nX und n} sind die dulleren, am Endquerschnitt angreifenden
Krifte und mj} ist das dullere, verteilte Torsionsmoment.

Durch Einsetzen der Ausdriicke (22) fiir n, und m,, und Verwendung der-
selben Ausdriicke fiir die virtuellen Verschiebungen wie vorher, erhalten wir,

nach der Elimination der Krifte n,, und n,:

" o 7 ’ 1 " 1
WO! Q;k = —jpz w(@%) ds+ j (njn u%)0+n§<s U%)—m:; d@o) ds: (40)
8 S
M} = [nfo@ds sind.
s

Die Losung des Problems wird auf die Integration des Systems der Diffe-
rentialgleichungen (34) zuriickgefiihrt.

Die unbekannten GroBlen ©, und @, werden als Komponenten der Spalten-
vektoren @ und @ aufgefalit:

0, 2,
o= @,4, b = ?2 : (41)
0, P,

Aus den Koeffizienten a;; bilden wir die Diagonalmatrix 4 und aus den
Koeffizienten b.% und b'ﬁ die quadratischen Matrizen B® und B von der Ord-
nung n— 2. Ferner bilden wir aus den Koeffizienten ¢;, die Rechtecksmatrix C
mit n— 2 Zeilen und m Spalten und aus den Koeffizienten d,, die quadratische
Matrix D von der Ordnung m.

Das Gleichungssystem koénnen wir nun in der folgenden Form schreiben:
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wo C die transponierte Matrix von C ist und

sind.

A30 B10
Ao = A.m ’ Bo = B.20 (43)
Ano Bmo

Durch Elimination aus dem System (42) erhalten wir#?):

WO

sind.

AO"-4xkB'@"+HO = -El—,HO, (44)
H=B-CD'¢ uwd H,=A4,-CDB, (45)

Die Randbedingungen (38) und (39) lauten in Matrizenform:

und

AQ 4B O =%Q*, 40" =

0 = 0%, o' = 0¥ (46)
1

El M* > (47)

wo Q* und M* Vektoren mit den Komponenten Q¥ und M¥ sind.

b

e

h

b,

mg, My,
Mg,

My, My,
ng, N,

Nos

U nzn
i)vw ﬁw ﬁz
P> Py> P
S

t

u

v

Liste der Bezeichnungen

Breite der einzelnen Platte

Abstand von der Mittelfliche in Richtung der Normalen
Abstand der Tangente zur Profilmittellinie von der Drehachse
Abstand der Normalen zur Profilmittellinie von der Drehachse
Biegemomente der einzelnen Platte

Torsionsmoment der einzelnen Platte

AuBere verteilte Biegemomente

Normalkrifte der einzelnen Platte

Schubkraft der einzelnen Platte

Querkrifte der einzelnen Platte

Fliachenbelastungen in den Richtungen =, s, z
Linienbelastungen in den Richtungen z, y, 2

Koordinate der Profilmittellinie

Wandstirke

Verschiebung der Punkte der Mittelfliche in Richtung zu
ihrer Normalen

Verschiebung der Punkte der Mittelfliche in Richtung
der Tangente zur Profilmittellinie

4) Die allgemeine Losung dieser Gleichung wird in der Publikation [5], Kapitel 5,

gezeigt.
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w Verschiebung in Richtung der Stabachse
x, Y, 2 Kartesische Koordinaten der Punkte der Mittelfliche
C Schwerpunkt
D Schubmittelpunkt
E Elastizitdtsmodul
¥ Querschnittsfliche
G Schubmodul
L= Jx%tds Flachentragheitsmoment
F

1,, =1£ y2tds Flachentragheitsmoment

u, v, w,e Verschiebungsparameter

U Arbeit der virtuellen inneren Krifte

W Arbeit der virtuellen duBeren Krifte

o Winkel

Vs Gleitung im Punkte der Mittelfliche

€ €55 €, Dehnungen der Mittelfliche

v Poissonsche Zahl

& Verschiebungskomponenten in den Richtungen « und y
® Verdrehung des Stabes

w Sektorielle Koordinate, Einheitsverwolbung
Q Normierte sektorielle Koordinate

0 Verdrehung des Knotens
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Zusammenfassung

Der Artikel bezieht sich auf die Theorie des Faltwerks, in welcher auller
den Biegemomenten in der Querrichtung zum Unterschied der klassischen
Faltwerkstheorie auch die Torsionsmomente beriicksichtigt werden.

Dank des Umstandes, daf3 fiir die grundlegenden Unbekannten die Ver-
schiebungsparameter eingefiihrt werden, ermdoglicht diese Theorie eine relativ
einfache Berechnung.

Im Unterschied zum in der Faltwerkstheorie iiblichen Verfahren der Zer-
legung des Systems in die einzelnen Platten, wird in der gebrachten Theorie
die Deformation der Stab-Schale einheitlich fiir das ganze Tragwerk beschrie-
ben. Man erhilt schlieBlich ein System von Differentialgleichungen, welches
ebenso wie die Randbedingungen in Matrizenform dargestellt wird.

Summary

The article treats the theory of folded structures which, contrary to the
classical theory, takes into account also the torsional moments, besides the
transversal bending moments.

This theory permits a relatively easy calculation in introducing for the
basic unknowns the deflection parameters.

Contrary to the ordinary procedure of decomposing the system into indi-
vidual plates, the present theory explains the deformation of the beam-shell
uniformly for the whole structure. Thus, we receive finally a system of differen-
tial equations which can be written in form of matrices in the same way as
the boundary conditions.

Résumé

L’article traite de la théorie des votites polygonales qui, contrairement a la
théorie classique, tient également compte du moment de torsion en plus du
moment de flexion transversal.

Cette théorie permet un calcul relativement facile, en introduisant pour les
inconnues de base les parameétres de déplacement.

Contrairement au procédé habituel de décomposition des voites polygonales
en plaques isolées, la présente théorie décrit la déformation de la poutre-
coque uniformément pour toute la construction. On obtient ainsi finalement
un systéme d’équations différentielles, qui peut étre mis sous la forme de
matrice, tout comme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>