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Preface

Le volume 28/11 comprend 11 publications traitant les problemes les plus
divers mais aussi les plus actuels de l'ensemble du domaine des ponts et
charpentes. Les resultats obtenus par les auteurs contribueront immediatement a
l'amelioration des prestations de l'ingenieur praticien grace ä la clarte avec
laquelle les conclusions sont presentees. Nous remercions tres vivement les

auteurs pour leur contribution et souhaitons une large diffusion du volume
28/11 de nos «Memoires» au sein et au dehors de l'AIPC.

Zürich, en decembre 1968.

Le President de l'AIPC:

Prof. Maurice Cosandey
Directeur de l'Ecole Polytechnique de 1'Ulliversite de Lausanne

Les Secretaires Generaux:

Dr sc. techn. Hans von Gunten Dr sc. techn. Pierre Dubas
Pröfesseur a l'Ecole Polytechnique Pröfesseur ä l'Ecole Polytechnique

Federale, Zürich Federale, Zürich

Dr sc. techn. Christian Menn
Coire — Zürich



Vorwort

Band 28/11 umfaßt 11 Arbeiten, welche die verschiedensten, aber auch die
aktuellsten Probleme auf dem Gebiet des Brücken- und Hochbaues behandeln.
Die von den Verfassern erhaltenen Ergebnisse verhelfen dem praktischen
Ingenieur dank der klaren Darstellung der Schlußfolgerungen zu bessern

Leistungen. Wir danken den Verfassern für ihre Beiträge und hoffen, daß
Band 28/11 unserer «Abhandlungen» eine große Verbreitung unter den
Mitgliedern und den Nichtmitgliedern der IVBH finden wird.

Zürich, im Dezember 1968.

Der Präsident der IVBH:

Prof. Maurice Cosandey
Direktor der Technischen Hochschule der Universität von Lausanne

Die Generalsekretäre:

Dr. sc. techn. Hans von Gunten Dr. sc. techn. Pierre Dubas
Professor an der Eidgenossischen Professor an der Eidgenossischen
Technischen Hochschule in Zürich Technischen Hochschule in Zürich

Dr. sc. techn. Christian Menn
Chur — Zürich



Preface

Volume 28/11 comprises 11 papers dealing with the most diverse but also
the most current problems in the field of bridge and structural engineering.
The results obtained by the authors directly contribute to the improvement
of the work of practical engineers thanks to the clear presentation of the
conclusions. We should like to express our gratitude to the authors for their
contributions and hope Volume 28/11 of our «Publications» will have a large
distribution within and outside the IABSE.

Zürich, December 1968.

The President of IABSE:

Prof. Maurice Cosandey
Director of the Institute of Technology of the University of Lausanne

The General Secretaries:

Dr. sc. techn. Hans von Gunten Dr. sc. techn. Pierre Dubas
Professor at the Swiss Federal Institute Professor at the Swiss Federal Institute

of Technology, Zürich of Technology, Zürich
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Chur — Zürich
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The Design and Analysis of Buildings with Light Cladding

Projection et dimensionnement de constructions ä revetements extra-legers

Entwurf und Berechnung von Gebäuden mit leichter Verkleidung

E. R. BRYAN W. M. EL-DAKHAKHNI
M. Sc, Ph. D., Senior Lecturer, B. Sc, Ph. D., Associate Professor,

University of Manchester, England Assuit University, Egypt, U.A.R.

Introduction

It has long been recognised that light cladding makes a contribution to the
stiffness and strength of steel framed buildings but the effect has not been
taken into account in design. This is probably because the cladding has been
regarded as an uncertain element for structural purposes; it can be easily
removed for maintenance and the methods of attachment have been variable
and uncertain. In addition, steel sheets may corrode and the properties of
other types of cladding may deteriorate with the passage of time. Also, no
method has been available for estimating, even approximately, what the
likely stiffening effect of the sheeting would be. Consequently, designers have
tended to regard the effect as a "bonus" in reducing frame stresses and
deflexions to values somewhat below the calculated values. In many cases,
the only conscious use of the sheeting in design has been to allow the sheeting
to provide lateral support to the purlins, but this must be regarded as a purely
local effect which does not affect the overall behaviour of the building.

In recent years, however, a much more positive role for sheeting and decking
has been adopted in the United States [1—4]. Welded floor decking has been
used to provide resistance to wind and seismic forces, and light steel decking
has been used for the shear diaphragms in folded plate roofs. In both these

cases, design Information has been based on the results of füll scale tests.
In the design of industrial shed-type buildings, it has been shown [5] that

the contribution of the sheeting to the frame stiffness and strength can be
calculated provided that the shear behaviour of a panel of sheeting is known.
In this connexion a panel is regarded as being that area of sheeting, complete
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with all attachments, between two adjacent rafters and between the extreme
purlins. Originally, füll scale tests were carried out to determine the shear
behaviour of complete panels, though it was realised that the expense and

delay occasioned by such a procedure could not normally be tolerated in
design practice. More recently [6], a method of calculating the shear behaviour
of complete roof panels has been advanced and satisfactory agreement has
been obtained with experimental results [6, 7].

Before considering in detail the shear behaviour of roof decks and the
analysis of an actual building allowing for the contribution of the decking, it
is important to first consider whether it is safe or even desirable to take this
stiffening effect into account in design.

Safety of Clad Buildings

The prime purpose of most shed-type buildings is to act as an umbrella
to protect the contents from the weather, so that much of the load on the
building frames is dependent on the sheeting (i. e. dead load, wind load and
snow load). If the sheeting were totally removed much of the load would also
be removed. Under such conditions, it is suggested that the effect of the sheeting
should be taken into account in design. If the major part of the load on the
building is derived from other sources, then the argument for allowing for the
sheeting is not so strong.

If cladding is to be taken into account, it must be regarded as a structural
element and proper care must be taken in specifying fixings, etc. For instance,
hook bolts would not suffice, but seif tapping screws or fired pins would be

necessary. There is also the difficulty that sheeting has traditionally been

regarded as an element which can be easily removed for maintenance purposes.
Hence, it could be asked whether unauthorized removal of a number of
sheets in an important part of the building would endanger the structure. It
might also be asked if deterioration of the sheeting could weaken the whole
building rather than cause a local weakness.

The foregoing questions are quite legitimate and contain elements of truth.
Undoubtedly, if the membrane strength of cladding is to be used in design,
then it will be necessary to train engineers to think in terms of the whole
building, rather than in terms of a framework. Nevertheless, this has been
done in the unitary construction of car bodies, in the stressed skin construction
of airframes and in the design of ships' hulls, so there seems no basic reason
why it should not be done in the structural industry, in spite of the special
problems.

Because of the varied workmanship likely to be achieved in the site fixing
of cladding, it is necessary to have proper safeguards. It is also necessary to
ensure that the building is safe at all stages of construction, occupation and
use. It is therefore suggested that the bare steel framework must be strong
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enough to withstand by itself all, the design loads but that the maximum
stress under this condition be allowed to approach the yield stress. After
sheeting, the maximum calculated stress in the clad frame under the design
loads should not exceed the present permissible working stress, and the
calculated deflexions should be acceptable. By conforming to these conditions
the safety of a building would be assured and economy in the design of the
frame would result. It would also mean that the design reflected the true
behaviour of the building rather than the hypothetical behaviour based on
the bare frame.

Shear Tests on Steel Decks

In order that the method proposed for calculating the shear behaviour of
panels of sheeting or decking may be assessed, the results of three sets of
tests are compared with the calculated values. These tests are described more
fully in references [6] and [7]. The method of calculation is given in reference

[6] and illustrated by the example in the present paper.

Test 1. This test was carried out on a panel of steel sheeting 8 ft. wide
X 10 ft. deep with 3 purlins (Fig. 1). The sheeting was 0.024 in. thick, the
pitch of the corrugations was 4 in., the seam bolts were spaced at 12 in. centres
and the sheet-purlin fasteners (seif tapping screws) were spaced at various
centres. Table 1 gives a comparison of the calculated and measured shear
flexibilities and shear strengths.

8 ft

Fig. 1. Panel of sheeting in test 1.

Purlin

Purlin

Purlin

QI

Table 1

No. of fasteners
per sheet

Shear flexibility A\Q in in./ton Shear strength in tons

Calculated Measured Calculated Measured

7

4
3

0.18
0.27
0.40

0.17
0.31
0.38

1.7
1.7
1.4

2.3—2.8
1.6—1.8
1.0—1.6

Test 2. The panel of steel sheeting was 12 ft. X 12 ft. with provision for
either 3 purlins or 5 purlins (Fig. 2). The sheeting was 0.028 in. thick, the pitch
of the corrugations was 63/4 in., the seam fasteners (pop rivets) were generally
at 18 in. centres and the sheet-purlin fasteners (seif tapping screws) were
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fixed in every corrugation or alternate corrugations. Table 2 summarizes the
calculated and observed behaviour.

12 ft
Purlin

JPurlin!
Purlin

(Purlin

Purlin

Q*

Fig. 2. Panel of sheeting in test 2.

Table 2

No. of
purlins

Sheet-purlin
fasteners

Shear flexibility AjQ in in./ton Shear strength in tons

Calculated Measured Calculated Measured

3

5

Every corrug.
Altern, corrug.

Every corrug.
Altern, corrug.

0.060
0.359

0.045
0.305

0.056
0.328

0.050
0.237

3.5 3.4

Test 3. The panel was of steel sheeting 5 m wide x 3 m deep with 4 light
gauge purlins (Fig. 3). The sheet thickness was 0.85 mm, the pitch of the
corrugations was 125 mm, the seam fasteners (pop rivets) and the sheet-

purlin fasteners (seif tapping screws) were spaced at 125 mm or 250 mm
centres. Table 3 summarizes the calculated and observed behaviour of the

original and modified panels.

5m
Purlin

1

Rätter

Purlin k_

£
Purlin ?aft<

' Purlin \

Q'
[ f

Fig. 3. Panel of sheeting in test 3.

Table 3

Spacing of sheet-
purlin fasteners

Spacing of seam
fasteners

Shear flexibility AjQ in in./ton

Calculated Measured

Original
Panel

Modified
Panel

250 mm
125 mm
125 mm
250 mm

250 mm
125 mm
125 mm
125 mm

0.97
0.91

0.10
0.14

1.30
1.36

0.14
0.15
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Summary of Results. The tests show that the calculated values of the shear
flexibilities of the panels tested are generally in satisfactory agreement with
the measured values. The shear strengths in Tests 1 and 2, calculated on the
assumption that failure occurs due to tearing at the sheet fasteners, are also
in approximate agreement with the observed values. A comparison of shear

strengths in Test 3 was not possible as failure did not occur in the above mode.
On the evidence of the above results, and others not quoted, it would appear

that a reasonable estimate of the shear flexibility of panels of steel sheeting
can be made provided that the details of construction do not differ too widely
from the panels tested. Also, an estimate of the shear strength can be made
assuming that failure occurs by tearing at the sheet fasteners (the usual mode).

Analysis of Clad Building

The steel framed building in question was 80 ft. wide, 309 ft. long and
50 ft. high. A diagrammatic representation of the main frames is shown in
Fig. 4 and the plan of the building is given in Fig. 5. It is seen that the trans-

27 ft

i

•E
m

u.

i >*

•
E

ii
•
E

tt

¦o

1 II •
E
*

bü

1
iL

2
E

ii

'S

i
5>
il"" u.

1 _ff -— o
2 -
S—*

i\veraqe sp<icinc\ o f f rames 27.05 ft
•*n<J ft

Fig. 4. Idealized steel frame. Fig. 5. Plan of roof deck.

verse strength of the building depends on the rigid portal frame AB CD in
Fig. 4 and that the outer pinned frames, shown dotted, do not contribute to
this strength. Referring to Fig. 5, there are rigid partition walls across the
building at frames 6 and 11, so that the greatest length of building to be
considered is the portion between these frames. In this portion, there are four
intermediate frames and the average width of a panel of sheeting is 27.05 ft.

Bare Frame Analysis

In the bare frame analysis, the bending moments due to wind loads far
exceeded those due to any other type of loading. In order to simplify the
example, only wind bending moments will therefore be considered. Fig. 6

shows these calculated bending moments in the bare steel frame under working
loads; the calculated sway deflexion is 2.90 in.

Fig. 6. Bare frame bending
moments in ton-ft.

j 49:

Sway deflexion
2 90 in
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Shear Flexibility of Panel of Sheeting

The flexibility of a panel of sheeting will be due to:

1. 1.1. Bending of the corrugation profile.
1.4. Shear strain in the panel.
1.5. Axial strain in the purlins.

2. 2.1. Slip in the sheet/purlin fasteners.
2.3. Slip in the seam fasteners.

3. 3.1. Twisting of the purlin/rafter connexions.

The above sub-heading numbers are those used in reference 6 where an
expression for each effect was separately derived.

1.1. Bending of the corrugation profile. The sheet profile is shown in Fig. 7.

1 U3-8»'|

i 6.75" l Fig. 7. Corrugation profile.

The shear flexibility due to distortion of the profile is given by

\MKhH2
Et3b* -ncfxXlS.S,

where b depth of panel 80 x 12 in.
E modulus of elasticity 13,000 ton/in.2
h height of corrugation 1.375 in.
I width of flat top of corrugation 3.88 in.
t thickness of sheeting 0.028 in.
K constant of sheeting (ref. [7], table 4) 0.145

nc number of corrugations per panel 48

fx reduction factor to allow for the effect of intermediate purlins
(ref. [6], table 1) 0.49

13.8 multiplication factor to allow for fasteners in alternate corruga¬
tions (ref. [7], table 4)

hence cx,x l.Ox 10~3 in./ton (1)

1.4. Shear strain in panel. The shear flexibility due to distortion of the
panel from a rectangle to a parallelogram is given by

__2a(\+v) developed length of profile
1,4 b t E pitch of corrugations
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where a average width of panel 27.05 x 12 in.
v Poisson's ratio 0.25

developed length/pitch =1.26 (ref. [7], table 4)
/2 reduction factor to allow for the effect of intermediate purlins

(ref. [6], table 1) 0.29

hence cXA 0.8 x 10~3 in./ton (2)

1.5. Axial strain in purlins. The shear flexibility due to the tendency of the
purlins to lengthen or shorten under axial stress is given by

2a3
Cl*5 ~ 3b2AEfs'

where A cross sectional area of purlins 2.68 in.2
/3 reduction factor to allow for the effect of intermediate purlins

(ref. [6], table 1) 0.39

hence c15 0.3 X IO"3 in./ton (3)

2.1. Slip in sheetIpurlin fasteners. The shear flexibility due to this cause is

sivenby 2s p
C2.1

a np b2
¦]¦

where p pitch of fasteners 13.5 in.
s slip of fastener per unit load (ref. [6]) 0.10 in./ton
np number of purlins =13

hence c2X 4.2X 10~3 in./ton (4)

2.3. Slip in the seam fasteners. The shear flexibility due to seam slip is given by

c
nshss

2.3

where nsh number of sheet widths per panel 14

ns number of seam fasteners per seam 54

ss slip of seam fastener per unit load
(assumed to have the same value as s) 0.10 in./ton

hence c23 25.9 X 10~3 in./ton (5)

3.1. Twisting of the purlinjrafter connexions. Fig. 8 shows a typical purlin/
rafter connexion at eight of the purlins; the remaining connexions were more

1 ton

Fig. 8. Detail of purlin/rafter connexion.

\
> "

_

Height'
Varies



8 E. R. BRYAN - W. M. EL-DAKHAKHNI

flexible. From tests on other types of connexion (ref. [6]), it can be estimated
that the flexibility per connexion is 0.160 in./ton.

hence c31
' 20.0x IO"3in/ton. (6)

Total Shear Flexibility

From Eqs. (1) to (6), the total shear flexibility is given by

c (1.0 + 0.8 + 0.3 + 4.2 + 25.9 + 20.0) X 10~3 0.052 in./ton.

Modified Bending Moments and Deflexions in Clad Frames

From Fig. 6, the flexibility of a bare frame is

sway deflexion 2.90 „«,_. „k ±
-= ——- 0.315 m/ton,

sway force 9.2

Hence, the relative stiffness factor r is

c 0.052
r - ——— 0.168.

k 0.315

Instead of using the type of design chart derived in reference [5], the Information

is tabulated. It is seen from Table 4 that for a building with 4

intermediate frames and for r 0.168, the maximum value of m is 0.34. This is
used in the expression

Final moment in clad frame
Non sway moment + m X Sway moment of bare frame.

Since only wind bending moments are being considered, the non sway
moment is zero and

Final moment in clad frame 0.34 x Sway moment in bare frame.

This expression applies to the two central frames of the portion considered,
i. e. frames 8 and 9. The relevant factor for frames 7 and 10 is 0.24. For frames
8 and 9 the modified bending moment diagram is given in Fig. 9; the sway
deflexion is 0.34 of the bare frame value.

A
61.5

•f - 9.2 ton (of which 31 ton
is taken by the frame
and 6.1 ton by the
sheeting

Sway deflexion 0.34 x 2 90
1 0 in

Fig. 9. Clad frame bending moments in ton-ft.
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Table 4. Reduction factors to be applied to sway moments in clad buildings with 4 inter¬
mediate frames

Relative stiffness

factor
r

Reduction factor m to be applied

Intermediate Intermediate
frames 1 and 4 frames 2 and 3

0.02 0.04 0.06
0.04 0.07 0.11
0.06 0.10 0.16
0.08 0.13 0.20
0.10 0.16 0.24
0.12 0.19 0.27
0.15 0.22 0.32
0.20 0.27 0.39
0.25 0.31 0.45
0.30 0.35 0.50
0.40 0.41 0.58
0.50 0.46 0.64
0.60 0.49 0.68
0.80 0.56 0.75
1.00 0.60 0.80

Forces on Boof Sheeting

Referring to Figs. 5 and 9, the force on the sheeting at frames 8 and 9 is
(1—0.34) x 9.2 6.1 tons and the force on the sheeting at frames 7 and 10 is
(1 — 0.24) x 9.2 7.0 tons. Hence the total shear force on the sheeting between
frames 6 and 7 and between frames 10 and 11 is 13.1 tons. This represents an
average shear stress in the sheeting of 13.1/80 X 12 x 0.028 0.5 ton/in.2, which
is very small compared with the likely stress due to ordinary flexure of the
sheet.

Ultimate Shear Strength of Panel

The strength of the panel will be calculated on the assumption that failure
occurs due to
1. Tearing at the sheet/purlin fasteners.
2. Failure of the seam fasteners.

1. Tearing at the sheet/purlin fasteners. The normal forces on the fasteners
are assumed to vary linearly along the length of a purlin as shown in Fig. 10.

- t Hph77, ^tfl
$T_ v9l

Fig. 10. Forces acting on a purlin.
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The maximum normal force on a fastener, Fx, can be shown to be given by

Q Q
Fx

np[l +(^ + (^J+...} 13X4.46
0.017 Q.

The force per fastener along the purlin, FH, is given by

Fn=jPfs 0.005 Q.

Hence, the maximum resultant load per fastener is

Fr =iF2 + F£ 0.018 Q.

From tests, the ultimate tearing load per fastener 0.42 tons, so Q 0.42/0.018
23.4 tons which is the maximum shear strength of a panel according to this
criterion.

2. Failure of the seam fasteners. The total shear forces on the purlins give
rise to a moment Qa (Fig. 11) which is resisted by the forces on the sheeting.
Hence the total shear force distribution across the sheeting is as shown in
Fig. 12, the maximum value being f Q.

P=^-Q•^a

P=^Q
' 2

Fig. 11. Total forces acting on purlins.
Fig. 12. Shear force distribution

across sheeting.

Along the central seam there are 40 screws (ultimate tearing load 0.34 ton
each) and 14 seif tapping screws into the purlins (0.42 ton each) so that the
maximum allowable shear force is 40x0.34+14x0.42 19.5 ton. Equating
this to § Q gives the maximum permissible shear strength of a panel as Q 13.0

ton.
From criteria (1) and (2), it is apparent that case (2) dominates. Hence the

maximum shear force, under working loads, in a panel of sheeting, is slightly
greater than that to cause tearing at the seam fasteners (13.1 ton cf. 13.0 ton).

Conclusions

From the calculations for a particular clad building, it is shown that the
sway bending moments and deflexion may be drastically reduced by allowing
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for the effect of sheeting in design. Conversely, it can be said that in analysing
the given building, unless the cladding is taken into account, the calculated
stresses are fictitious.

In the building considered, the seam fasteners in certain panels of roof
decking are on the point of tearing the sheeting, even under working loads.
Obviously this does not endanger the structure, since the steelwork has been
designed on the basis of bare frames, but it could cause trouble in keeping
the cladding watertight. The level of shear stress in the sheeting is so low that
design of the sheeting would be determined by the ordinary flexural require-
ments.

By using the effect of sheeting in design it should be possible to achieve
greater economy than at present without loss of safety, for the design would
be based on the actual behaviour of the building rather than on the hypo-
thetical behaviour of the bare frame.

Acknowledgements

Thanks are due to the Science Research Council for supporting the work
being carried out at the University of Manchester into the stiffening effect of
sheeting in buildings.

References

1. Nilson, A. H.: "Shear diaphragms of light gage steel". J. Struct. Div., Am. Soc. Civ.
Engrs., 86 (ST 11), p. 111—139, November 1960.

2. Ltjttrell, L. D.: "Strength and behaviour of light gage steel shear diaphragms".
Cornell Engineering Research Bulletin No. 67-1, 1967.

3. "Design of light gage steel diaphragms". American Iron and Steel Institute, New York,
1967.

4. Nilson, A. H.: "Folded plate structures of light gage steel". J. Struct. Div., Am. Soc.
Civ. Engrs., 87 (ST 7), p. 215—237, October 1961.

5. Bryan, E. R. and El-Dakhakhni, W. M.: "Behaviour of sheeted portal frame sheds:
theory and experiments". Proc. Instn. Civ. Engrs. vol. 29, p. 743—778, Dec. 1964.

6. Bryan, E. R. and El-Dakhakhni, W. M.: "Shear flexibility and strength of corrugated
decks". J. Struct. Div., Am. Soc. Civ. Engrs. Nov. 1968.

7. Bryan, E. R. and El-Dakhakhni, W. M.: "Shear of corrugated decks: calculated
and observed behaviour". Proc. Instn. Civ. Engrs. Nov. 1968.

Summary

A review is given of recent work on the diaphragm behaviour of light steel
sheeting, with particular reference to shed-type buildings. The safety and
desirability of taking account of the stiffening effect of sheeting in structural
design is then considered.
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A resume is given of three sets of shear tests on steel sheeting and decking
and the results are shown to be in satisfactory agreement with the calculated
values. On the basis of this agreement, a speeimen calculation is made of the
stiffening effect of sheeting on an actual steel framed building. The calculations
show that the actual wind bending moments and transverse deflexions will be

only one third of the bare frame values, and that the seam fasteners in the
end panels of roof decking are stressed to the limit, even though the building
was not designed to take account of the cladding.

Resume

L'auteur commence par un bref apercu sur les travaux recents concernant
le comportement de diaphragmes en panneaux d'aeier minces, oü l'accent est
mis sur les constructions ä sheds. Puis il etudie la securite et l'utilite de la
prise en consideration de la rigidite des panneaux dans le dimensionnement
d'une construction.

II resume trois series de tests de cisaillement faits sur des panneaux de

faeades et de toitures en acier. Leurs resultats se rapprochent de facon satis-
faisante des valeurs calculees. Cette concordance permet de developper un
calcul type pour evaluer l'effet de renforcement du aux panneaux sur une
construction d'aeier ä portiques. Les calculs montrent que les valeurs reelles
des moments de flexion et des deplacements transversaux dus au vent se

reduisent ä un tiers des valeurs calculees sur le squelette nu, et que les fixations
des panneaux exterieurs du toit sont sollicites ä la limite, bien que le bätiment
etait projete en negligeant les revetements.

Zusammenfassung

Die Verfasser geben einen Überblick über die Scheibenwirkung von
Leichtstahlplatten mit besonderer Berücksichtigung von Gebäuden mit Schirmdach
(Shed-Dach).

Sicherheit und Wunsch, dem Steifigkeitseinfluß der Platten Rechnung zu
tragen, werden sodann untersucht. Für drei Schubversuchssätze von
Stahlplatten und -decken wird eine Zusammenfassung angegeben, und es zeigt sich,
daß die Ergebnisse mit den errechneten Werten gut übereinstimmen.

Auf Grund dieser Übereinstimmung wurde eine spezielle Berechnung über
den Steifigkeitseinfluß der Platte für einen gängigen Stahl-Stockwerkrahmen
angestellt. Die Rechnung zeigt uns, daß die wirklichen Windbiegemomente
und Querverschiebungen nur einen Drittel der Werte des baren Rahmens
ausmachen und daß die Saumverbindungen in den Endfeldern der
Dachplatten bis zur Grenze beansprucht sind, als ob das Gebäude ohne Verkleidung

entworfen worden wäre.
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Nous exposerons deux methodes de calcul de la poussee critique de flambement

dans son plan d'un are de section quelconque soumis ä des charges verti-
cales: la methode des approximations successives et la methode de l'energie.
Nous examinerons les divers types d'arcs classiques: are encastre, are a deux
articulations, are ä une seule articulation et are a trois articulations.

II existe une theorie elementaire du flambement des arcs fondee sur l'hypothese

simplificatrice qui consiste ä negliger la composante horizontale du
deplacement d'un point de la fibre moyenne. Cette theorie, qui ramene l'etude
du flambement d'un are a celle d'une poutre droite, n'est valable que pour
des arcs tres surbaisses; des que la fleche de l'arc est notable, la theorie elementaire

donne des valeurs beaueoup trop fortes pour la poussee critique.
II faut done tenir compte de la composante horizontale du deplacement

d'un point de la fibre moyenne. Dans ce cas, il convient de distinguer deux
modes d'application des charges:

A. Charges liees ä Varc: les charges sont appliquees aux points materiels de
l'arc. La ligne d'action d'une charge se deplace done en meme temps que le

point d'application de la charge.
B. Charges liees a Vespace: les lignes d'action des charges sont fixes dans

l'espace. Une charge appliquee initialement ä un point materiel de l'arc, n'est
done plus appliquee au meme point materiel de l'arc apres deformation de l'arc.

Ces deux modes d'application des charges conduisent, pour un are donne,
ä des valeurs legerement differentes de la poussee critique. C'est le cas des

charges liees ä l'arc qui presente evidemment le plus d'interet pour le construc-
teur.
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I. Etüde geometrique des deformations de l'arc

1. Les fonctions considerees dans la deformation d'un are

Les axes Ox et Oy etant reetangulaires, la fibre moyenne AB d'equation
y y(x) vient, apres deformation, en A' B' (fig. 1). Un point materiel P de

«p

Fig. 1.

AB de coordonnees (x,y) vient, apres deformation en un point P' de A'B' de

coordonnees (x + 8x, y + 8y).
L'axe Ox fait avec la tangente en P ä la fibre moyenne 1'angle 6 et avec la

tangente en P' ä la fibre moyenne deformee l'angle 9 + 8 6. Nous poserons:

8x u, 8y v, 86 cp.

Enfin il existe un point P" de A' B' qui a meme abscisse que P. Nous

poserons PP" z.

Les fonctions u, v, cp, z sont des fonctions de x que nous considererons

comme des infiniments petits au premier ordre. Nous allons montrer que la
connaissance de la fonetion v entraine celle des fonctions u, <p, z.

a) Calcul de la fonetion u. Un point Px de A B voisin de P a pour coordonnees

(x + dx,y + dy). Ce point vient en un point Px de A' B' voisin de P' de
coordonnees (x + u + dx + du, y + v + dy + dv).

En ecrivant que PPX P' Px nous obtenons:

dx2 + dy2 (dx + du)2 + (dy + dv)2

soit en designant par y', u' et v' les derivees de y, u et v:

u' + v'y' -\(u'2 + v'2).

uf + v' y' etant du second ordre, nous pouvons, au troisieme ordre, pres, rem-
placer dans le second membre de l'equation precedente u' par —v'y'. Nous
obtenons ainsi:

u' + v'y' -\(\+y'2)v'2. (1)

Lorsqu'on neglige les termes du second ordre, la relation precedente se

reduit a:
u' + v'y'= 0. (2)
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Done, si l'on se donne v(x), la fonetion u(x) a pour expression:

u(x)=u(a)-]v'(£)y'(£)d£ (3)
a

a designant l'abscisse de l'origine A de la fibre moyenne.

b) Calcul de la fonetion cp. Des relations:

tgd y', tg(0 + 9)=-£t£

on deduit sans difficulte, en negligeant les termes d'ordre egal ou superieur
au second, la relation:

cp v'. (4)

c) Calcul de la fonetion z. Au voisinage du point P', les equations para-
metriques de la fibre moyenne deformee s'ecrivent:

X x + u + (l+u')dx + \u"dx2-\
Y y + v + (y' + v')dx + \(y" + v')dx2+ • • •

Dans les expressions precedentes, dx est le parametre variable, x et y sont
les coordonnees du point P, et u, v, u', v', u", v" les valeurs des fonctions u, v

et de leurs derivees au point P.
Le parametre dx du point P" correspond k X x done:

u + (\+u')dx + \u" dx2+ • • • 0

d'oü il resulte que, en negligeant les termes d'ordre superieur du second:

dx —u + uu'.

On en deduit immediatement l'ordonnee Y de P" et la valeur de z=Y — y.
On trouve ainsi en negligeant les termes d'ordre egal ou superieur au second:

z v — uy'. (5)

d) Calcul de la Variation de courbure de la fibre moyenne. La courbure de la

fibre moyenne en P est -=- -r- et la courbure de la fibre moyenne deformee

en P' est ^ puisque les elements d'arc ont la meme longueur. La

Variation de courbure est done:

^
1 dcp dcp dx -
B ds dx ds

Si E est le module d'Young et / le moment d'inertie de la section, le moment
flechissant resultant de la Variation de courbure a done pour valeur:

M EI8-^ EIcp'cos6.
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En designant par J I cos 6 le moment d'inertie reduit de la section et
l'arc, et par D le produit E J nous avons done:

M ZV Dv". (6)

Cette relation peut egalement etre deduire des formules de Bresse, a
condition de negliger les deformations dues ä l'effort normal et l'effort tranchant.

2. Conditions aux limites verifiees par le deplacement vertical

Nous definirons la deformation de l'arc par la fonetion v(x). Dans chaque
cas particulier, cette fonetion doit verifier certaines conditions aux limites
que nous allons preciser.

a) Are encastre. Les axes etant choisis comme il est indique sur la fig. 2, la
deformation est definie par la fonetion v(x), x etant compris entre 0 et l portee
de l'arc. La fonetion est nulle pour x — 0 et x l; la formule (4) montre qu'il
en est de meme pour la fonetion v' (x). Enfin u (0) et u (l) sont nuls. II en resulte
le cinq conditions aux limites:

v(0) 0, v(l) =0,
v'(0) 0, v'(l) 0,

$v'y'dx 0
(V

la derniere resultant de la formule (3).

Fig. 2.

b) Are ä deux articulations. Les axes etant toujours ceux de la fig. 2, v (x)
est nul pour x 0 et x l; il en est de meme de v" (x) puisque le moment
flechissant est nul aux extremites de l'arc. Enfin u(0) et u(l) sont nuls. Nous
avons done les cinq conditions aux limites:

v(0) =0,
w"(0) 0,

v(l) =0,
v"(l) Q,

jv'y'dx 0.
(8)
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c) Are ä une seule articulation. Nous choisirons deux systemes d'axes Oxxxyx
et 02x2y2 comme il est indique sur la fig. 3. La deformation est alors definie

par:

_ jvx(x) pour 0^x^ax (OxA),
V W "" \v2 (x) pour 0 xSa2 (02A)

les fonctions vx(x) et v2(x) devant satisfaire aux huit conditions aux limites:

MO) =0,
v2(0) =0,

<(0) 0, v'{(ax) 0,

v'2(0) 0, vl(a2) 0,

ax a%

vx(ax) v2(a2), \vxyxdx+\v2y2dx 0.
o o

(9)

Vi
/

Vi

^

V2 N.

)fi

x2

32

02

Ol x1

ai Fig. 3.

Les sept premieres sont evidentes; la derniere exprime, d'apres la formule
(3), que le deplacement horizontal de 1'articulation A est le meme lorsqu'on
considere cette articulation comme appartenant soit ä OxA soit a 02A.

Les fonctions yx et y2 sont les ordonnees des arcs de fibre moyenne OxA
et 02 A rapportees aux axes Ox xx yx et 02 x2 y2.

d) Are ä trois articulations. En conservant les axes de la fig. 3, la deformation
est encore definie par:

jvx(x) pour 0f^xf^ax (OxA),
v\x> ~ \v2(x) pour 0<:X^a2 (02A)

les fonctions vx(x) et v2(x) devant satisfaire aux huit conditions aux limites:

MO) =0,
MO) =°>

<(0) 0, v'i(ax) 0,

M0) 0, vl(a2) 0,

a± «a

vL(ax) v2(a2), \vxy\dx+\v'2y'2dx 0.
0 0

(10)
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II. L'equation fondamentale verifiee par la composante verticale du deplacement

1. Cas des charges liees ä Varc

Prenons pour origine des axes Oxyle centre de gravite de la section d'extre-
mite de gauche (fig. 4), et supposons l'arc funiculaire de la densite de charge
p (x) qui lui est appliquee.

P(x)

p« p>

Fig. 4.

Designons par Q et B les composantes horizontale et verticale de la reaction
d'appui en O et par — A le moment par rapport ä 0 (compte positivement
dans le sens trigonometrique) de cette reaction d'appui. En ecrivant que le
moment flechissant au point P de coordonnees (x, y) de la fibre moyenne est
nul, nous obtenons:

m(x)+A + Bx-Qy 0 (11)

expression dans laquelle m (x) designe la part du moment flechissant due a la
densite de charge p (x):

m(x) -fp(£)(z-£)d€. (12)

Derivons l'equation (11) par rapport ä x, nous obtenons:

-?p(£)dg + B-Qy'(x) 0.
o

Une nouvelle derivation donne la relation classique:

Qy"(x) -p(x).
Si l'on fait x 0 dans (13), on obtient la relation:

B Qy'(0).

(13)

(14)

(15)

Donnons une deformation ä l'arc; le point materiel P de coordonnees (x,y)
vient au point P' de coordonnees (x + u,y + v). Les quantites A, B, Q deviennent
A+8A, B + 8B, Q + 8Q. Le moment flechissant M(x) au point P' de la fibre
moyenne deformee a pour valeur, en designant par m(x) + 8m(x) la part de
ce moment due a la densite de charge p(x):

M(x) =m(x) + 8m(x)+A+8A + (B + 8B)(x + u)-(Q + 8Q)(y + v)
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soit, en tenant compte de (11) et en negligeant les termes du second ordre:

M(x) =8m(x) + Bu-Qv + 8A+x8B-y8Q. (16)

Calculons 8m(x); puisque les charges sont appliquees aux points materiels de

Varc, nous avons:
X

m(x) + 8m(x) — J"p (g) [x + u (x) — g — u (g)]dg
o

done, en retranchant membre a membre l'equation (12) de l'equation precedente,

nous obtenons:
X

8 m (x) - J p (g) [u (x) - u (g)] dg
o

soit compte tenu de (14):

8m(x) QSy"(Z)[u(x)-u(£)]d{.
X

/:
0

Une integration par parties transforme l'equation precedente en:

8m(x) -Qy'(0)u(x) + Q$y'(g)u'(g)dg
o

soit en tenant compte des relations (2) et (15):

Sm(x) -Bu(x)-Qfy'*(g)v'(g)d$.
0

Reportons cette valeur dans 1'expression (16), nous obtenons:

M(x) -Q[v + ]y'2(g)v'(g)dg] + 8A+x8B-y8Q.

Et, puisque M Dv", la composante verticale du deplacement est une
Solution de Vequation fondamentale:

Dv" + Q[v + i/jx] 8A+x8B-y8Q (17)

dans laquelle iftx est une fonetion de x qui se deduit de la fonetion v(x) par
VOperateur lineaire Lx:

*i Lx\v\=$y'HZ)v'(S)d£. (18)
ü

La Solution generale de l'equation (17) depend de facon lineaire et homogene

de cinq constants: 8A,8B,8Q et deux constantes d'integration. En effet
v(x) est 1'integrale generale de l'equation differentielle lineaire du troisieme
ordre:

(Dv")' + Q(l+y'2)v' 8B-y'8Q

deduite de l'equation (18) par derivation.
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2. Cas des charges liees ä Vespace

Conservons les hypotheses et les notations du paragraphe precedent mais
calculons le moment flechissant M (x) au point P" (x, y + z) de la fibre moyenne
deformee qui a meme abscisse que P. Puisque les charges ont des lignes d'action
fixes, le moment des charges appliquees par rapport au point P" est egal au
moment m (x) de ces memes charges par rapport au point P. Nous avons done:

M(x) m(x)+A+8A + (B + 8B)x-(Q + 8Q)(y + z)

soit en tenant compte de (11) et en negligeant l'infiniment petit du second
ordre z 8 Q:

M(x) 8A+x8B-y8Q-zQ.
La relation M Dv" nous donne done l'equation:

Dv" + Qz 8A+x8B-y8Q.
En tenant compte des relations (2) et (5) que nous rappelons:

u' + v'y' 0 z v — uy'

nous voyons que les fonctions u et v sont des integrales du Systeme differentiel
lineaire du troisieme ordre:

Dv" + Q(v-uy') =8A+x8B-y8Q,
u' + v'y' 0.

La fonetion v (x) depend done de facon lineaire et homogene de cinq cons-
tantes: 8A, 8B, 8 Q et deux constantes d'integration.

Designons par i/j2 la fonetion —uy'; nous voyons que la composante verticale

du deplacement est une Solution de Vequation fondamentale:

Dv" + Q[v + i/j2] 8A+x8B-y8Q (19)

dans laquelle la fonetion <p2 est une fonetion de x qui se deduit de la fonetion
v(x) par VOperateur lineaire L2:

f* Li[v]=y'(x)]y'(€)v'(€)d€. (20)
0

3. Consequences des resultats precedents

Pour les deux modes d'application des charges envisages, la composante
verticale v(x) est une Solution de l'equation fondamentale:

Dv" + Q[v + i/j] 8A+x8B-y8Q (21)

dans laquelle i/j se deduit de v par 1'Operateur lineaire Lx dans le cas des charges
liees ä l'arc, et par l'operateur L2 dans le cas des charges liees a l'espace.

Le terme ifj est un terme correctif d'autant plus faible que l'arc est plus
surbaisse. Lorsqu'on neglige le terme ifs ce qui revient a negliger les deplace-
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ments horizontaux de la fibre moyenne, on retrouve l'equation differentielle
de la theorie elementaire du flambement des arcs.

a) Methode theorique de calcul de la poussee critique: Le calcul de la poussee
critique est aise lorsqu'on sait integrer formellement l'equation fondamentale.

Examinons d'abord le cas d'un are encastre ou d'un are a deux articulations
(fig. 2). La donetion v(x) depend de facon lineaire et homogene de cinq cons-
tantes. Les cinq conditions aux limites (7) ou (8) fournissent done cinq equations

lineaires et homogenes entre ees cinq constantes; l'elimination des cons-
tantes entre ces equations donne une equation en Q dont la plus petite racine
positive est la poussee critique.

Dans le cas d'un are ä une seule articulation ou d'un are ä trois articulations
(fig. 3), nous devons ecrire l'equation fondamentale pour chaeun des arcs
OxA et 02A. Le deplacement vertical depend done de facon lineaire et homogene

de dix constantes:

8AX,8A2,8BX,8B2,8QX,8Q2

et quatre constantes d'integration. Mais ces dix constantes se reduisent a huit,
car les equations d'equilibre de la statique exigent que:

8QX 8Q2 8Q, 8BX -8B2 8B.

Les huit conditions aux limites (9) ou (10) donnent alors huit equations
lineaires et homogenes entre les huit constantes; l'elimination des constantes
entre ces equations donne une equation en Q dont la plus petite racine positive

est la poussee critique.

b) Cas d'un are non funiculaire: Dans ce cas le moment flechissant 9Jt (x)
dans l'arc avant deformation n'est pas nul; l'equation (11) est remplacee par:

Wl(x) m(x)+A + Bx-Qy.
En reprenant les calculs qui nous ont conduit ä l'equation fondamentale,

nous trouvons que v(x) satisfait ä l'equation:

Dv" + Q[v + ifj] m(x) + 8A+x8B-y8Q.
La Solution generale de cette equation s'obtient en ajoutant ä la Solution

generale de l'equation fondamentale (21) une Solution particuliere de l'equation:

Dv" + Q[v + iP] Wl(x).

Les constantes qui interviennent sont, dans chaque cas, determinees par
les conditions aux limites. On obtient ainsi autant d'equations lineaires que
de constantes, mais ces equations ne sont plus homogenes. La poussee critique
est la plus petite valeur de pour laquelle le determinant prineipal du Systeme
d'equations precedentes s'annule. Le moment flechissant 9K(#) n'intervient
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done pas dans le calcul de la poussee critique. La poussee critique est done une
caracteristique de Varc qui ne depend pas des charges appliquees, mais seulement
de la fagon dont ces charges sont appliquees (charges liees ä l'arc ou charges
liees ä l'espace).

III. Methode des approximations successives

1. Calcul de la poussee critique par approximations successives

Nous allons d'abord definir un Operateur lineaire ü permettant d'associer,
ä toute representation approchee v0 (x) de la deformation au moment du
flambement, une representation plus precise vx (x).

Examinons d'abord le cas d'un are encastre ou d'un are ä deux articulations
(fig. 2). Donnons nous une fonetion de depart v0 verifiant les conditions aux
limites (7) ou (8); il lui correspond une fonetion </r0 par 1'Operateur Lx ou par
l'operateur L2 selon que les charges sont liees ä l'arc ou liees ä l'espace. La
fonetion vx est la fonetion qui verifie les conditions aux limites (7) ou (8) et
dont la derivee seconde a pour expression:

- _ -(vo + h) + hA + xhB-yhQvi- 5 •

II suffit pour determiner la fonetion vx d'integrer deux fois l'expression
precedente et de determiner 8A, 8B, 8Q et les deux constantes d'integration
au moyen des conditions aux limites (7) ou (8).

Dans le cas d 'un are ä une seule articulation ou d 'un are ä trois articulations
(fig. 3), nous nous donnons une fonetion v0 egale ä (vx)0 sur Ox A et ä (v2)0 sur
02A, les fonctions (vx)Q et (v2)Q verifiant les conditions aux limites (9) ou (10);
l'operateur lineaire Lx (ou L2) associe aux fonctions (vx)0 et (v2)0 les fonctions
(ifjx)0 et (i/j2)0. La fonetion vx est egale a (vx)x sur OxA et ä (v2)x sur 02A; les
fonctions (vx)x et (v2)x verifient les conditions aux limites (9) ou (10) et ont
pour derivees secondes:

-[(vx)Q + (i/jx)Q] + 8Ax + x8B-y8Q(*i)i'

(tfa)i

D

[(v2)0 + ^2)o\ + 8A2-x8B-y8Q
D

II suffit pour determiner les fonctions (vx)x et (v2)x d'integrer deux fois les

expressions precedentes et de determiner S^4l5 8A2, 8B, 8Q et les quatre
constantes d'integration au moyen des conditions aux limites (9) ou (10).

Nous avons ainsi defini dans tous les cas un Operateur lineaire Q permettant
de calculer vx connaissant v0:

vx=ü[v0]. (23)
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On peut done definir une suite de fonctions v0, vx, v2. vn telles que:

vx=Q[v0], v2=Q[vx), vn=£2[vn_x]9

Ceci pose, supposons que v0 (x) soit, a un facteur pres, la deformation qui
se produit au moment du flambement. Si nous multiplions v0 (x) par la valeur
Qc de la poussee critique, nous obtiendrons une fonetion:

&[Qcvo\ öcßKl Qcvi(x)

qui doit etre identique ä v0(x). Nous aurions done:

Q,=^. (24)Hc vx(x)
K }

Mais, puisque v0(x) n'est qu'une approximation de la deformation au
moment du flambement, le second membre de (24) n'est pas une constante.
On obtiendra cependant une valeur approchee de la poussee critique en
donnant ä x dans la formule (24) une valeur particuliere (celle qui correspond
par exemple aux plus grandes valeurs de v0 et de vx.

Si 1'approximation est jugee insuffisante parce que le second membre de

(24) varie trop, on utilisera un des rapports de la suite:

Ms) Ms) Vn-1 (%)

v2 (x)' v3(x)' '
vn (x) '

qui tend vers la poussee critique.
II resulte de ce qui precede que la poussee critique est la plus petite valeur

propre de l'equation:
v(x) QQ[v(x)]. (25)

II est possible de montrer, dans chaque cas particulier, que l'equation (25)
est une equation integrale de Fredholm dont le noyau a generalement une
forme assez complexe.

Des simplifications de calcul sont possibles dans le cas des arcs ayant un
axe de symetrie. On peut dans ce cas distinguer le flambement symetrique et
le flambement antisymetrique correspondant ä des deformations au moment
du flambement v (x) paires ou impaires, les abscisses x etant comptees ä partir
de Taxe de symetrie.

En general, la poussee critique d'un are encastre ou d'un are ä deux
articulations symetriques correspond au flambement antisymetrique, tandis que
la poussee critique d'un are ä une seule articulation ou d'un are a trois
articulations correspond au flambement symetrique.

2. Majoration des efforts dans un are non funiculaire

On demontre que l'equation integrale (25) a une infinite de Solutions non
identiquement nulles Vx, V2, Vi, pour une infinite de valeurs crois-
santes de Q: Qx < Q2 < < Qi < dont la plus petite est egale a la poussee
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critique Qc. Les Solutions VX,V2, .,Vt, appelees fonctions fundamentales

verifient done les identites:

VX QXQ[VX], V2 Q2Q[V2],..., Vt-QiQWl...
Ceci pose, reprenons l'equation (22) etablie precedemment

Dv" + Q[v + if;]=Wt(x) + 8A+x8B-y8Q (22)

et soit v0 (x) la deformation calculee par les theories classiques de la Resistance
des Materiaux, en negligeant les deformations pour ecrire les equations d'equi-
libre. Nous avons: Dv"0 3It (x)

et nous pouvons remplacer l'equation (22) par l'equation integrale lineaire:

v(x) v0(x) + QQ[v(x)]. (26)

Developpons v0(x) en serie de fonctions fundamentales:

v0 (x) ax Vx (x) + a2 V2 (x) + +aiVi (x) +
et cherchons v(x) sous forme d'une serie de fonctions fondamentales:

V(x) bxVx(x) + b2V2(x)+ +biVi(x)+
En reportant les expressions precedentes dans l'equation (26), on trouve

sans peine que a#

Qi
de sorte que:

v(x)=-\vx(x) + -^V2(x)+--.+-^Vi(x)+---
1_Öi~ l~Qi l~'Q~i

Les coefficients ai du developpement de v0 (x) sont done multiplies par des

facteurs superieurs a l'unite et tendant vers l'unite lorsque i augmente inde-
finiment.

Le terme ax Vx (x) etant le terme preponderant du developpement de v0 (x),
il en resulte, avec une bonne approximation que:

Dans un are de poussee critique Qc, les efforts et deformations calcules par les

theories classiques de la Resistance des Materiaux doivent etre multiplies par le

facteur ^- pour tenir compte de Vinfluence des deformations.

Qc

IV. Methode de Penergie

Considerons l'arc funiculaire en equilibre sous les charges qui lui sont
appliquees; cet equilibre sera stable si la fibre moyenne revient ä sa position
initiale d'equilibre apres avoir subi une deformation, done si le travail 8% des
forces exterieures est inferieur ä 1'energie 8 W emmagasinee dans l'arc au
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cours de la deformation. La poussee critique s'obtiendra done en ecrivant que
8 % est egal ä 8 W.

1. Cas des charges liees ä l'arc

Nous considerons un are quelconque, et nous lui donnons une deformation
compatible avec les liaisons imposees ä l'arc. Dans chaque cas particulier
etudie, la fonetion v(x) doit done verifier les conditions aux limites qui ont
ete indiquees precedemment.

Nous designerons par $ l'ensemble des fonctions v(x) verifiant les conditions

aux limites.
Calculons 1'energie 8 W emmagasinee dans l'arc au cours de la deformation;

nous avons, les integrales suivantes etant etendues d'une extremite ä l'autre
de l'arc:

_
:L CM2ds

_
1 f M2dx

_
1 r M2dx

2J EI ~2j EJ ~2]~~LT
et, puisque M Dv":

8W iJDv"2dx. (27)

Calculons maintenant le travail 8% des forces exterieures. Supposons l'arc
funiculaire des charges appliquees, ce qui, comme nous l'avons montre
precedemment n'a pas d'influence sur la valeur de la poussee critique. En designant
par p(x) la densite de charge appliquee ä l'arc, nous avons, les integrales qui
figurent dans les formules qui suivent etant etendues d'une extremite ä l'autre
de l'arc:

8% —jpvdx

et, puisque l'arc est funiculaire nous avons Qy" —p done:

8% Q\vy"dx.

Integrons par parties, nous obtenons, v etant toujours nul aux extremites
de l'arc:

8% -Q\v'y'dx
soit, compte tenu de la formule (1):

8% Q$[u' + ±(l+y'2)v'2]dx

et, puisque u est toujours nul aux extremites de l'arc:

8% iQ$(l+y'2)v'2dx. (28)

On remarquera qu'il est necessaire de tenir compte des termes du second
ordre pour calculer le travail des forces exterieures. Si l'on avait utilise 1'expression

(2) au lieu de 1'expression (1), on aurait trouve une valeur nulle pour le
travail des forces exterieures.
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Le flambement a lieu des que 8% depasse S W; il en resulte immediatement
que la poussee critique Qc a pour valeur:

„ _.. f jDv"2dx 1
Qc Minimum -j-— /t>. /e> 7

«5 U(l+y'2)v'2dx\ (29)

Si la deformation v(x), appartenant ä l'ensemble g, n'est pas exactement
celle qui se produit au moment du flambement, la formule (29) donne une
valeur par exces de la poussee critique. On obtiendra une grande precision en
choisissant pour v(x) les fonctions v0 (x), vx (x),. obenues par la methode
des approximations successives exposee precedemment; on utilise ainsi toutes
les valeurs des fonctions calculees.

Le calcul des variations permet de montrer l'equivalence de la methode
des approximations successives et de la methode de 1'energie.

2. Cas des charges liees ä Vespace

Conservons les definitions du paragraphe precedent; le calcul de 1'energie
8 W emmagasinee dans l'arc est inchange, et la formule (27) est encore exacte.

Par contre, le calcul du travail 8 % des forces exterieures souleve des diffi-
cultes parce qu'il est difficile d'imaginer une liaison permettant d'appliquer
ä l'arc, durant la deformation, une densite de charge dont les lignes d'action
sont liees ä l'espace. Par exemple, on pourrait etre tente de prendre pour
valeur de 8%:

8% —jpzdx Q\y" zdx.

Ce resultat est inexact, parce qu'il correspond ä la liaison indiquee sur la
fig. 5; cette liaison donne lieu ä une densite de charge verticale p et a une
densite de charge horizontale py'. Si l'on veut transmettre ä l'arc une densite

C D

py UV

pv1

Fig. 5. Fig. 6.
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de charge verticale au moyen de la liaison indiquee sur la fig. 5, il faut que
cette liaison soit une liaison avec frottement; il est alors necessaire de tenir
compte du travail negatif des forces de frottement dans l'evaluation de 8%.

Pour appliquer au moyen d'un pointeau coulissant verticalement une densite

de charge verticale a l'arc, on peut imaginer (fig. 6) qu'un element inde-
formable horizontal PH a ete soude en P ä la fibre moyenne. Apres deformation

cet element vient en Pr H'; P' est le meme point materiel que P, et P' H'
n'est plus horizontal, mais a une pente cp v'. Le pointeau s'abaissant de
PP'" v — uv' le travail 8X% des forces exercees par le pointeau sur l'arc est

8X% —\p(v — uv')dx.

Mais, au cours de la deformation, si la densite de charge verticale appliquee
ä l'arc reste egale a p, la densite de charge horizontale appliquee ä l'arc varie
(lineairement si la deformation est petite) de 0 a pv'. Le travail 8X% est done
la somme du travail 8% de la composante verticale p (c'est le travail que
nous cherchons), et du travail 82% de la composante horizontale:

82% \\pv' udx.

II en resulte que:

8% 8x%-82% -\p(v-\uv')dx
ou, l'arc etant funiculaire de la densite de charge p:

8% Ql(vy"-\uv'y")dx.
Nous avons montre dans le paragraphe precedent que:

]vy"dx \\v'2(\+y'2)dx

done, nous obtenons finalement:

8% ±Q$[v'2(l+y'2)-uv'y"]dx. (30)

Compte tenu de la valeur (5) de z, l'expression (30) peut egalement s'ecrire:

8% iSv'z'dx.

Dans toutes les formules, les integrales sont etendues d'une extremite a
l'autre de l'arc.

Le flambement a lieu des que 8 % depasse 8 W; il en resulte immediatement
que la poussee critique Qc a pour valeur:

^ ™- •
T \Dv"2dx 1 /rt,xQc Mmuoum [j[(l+y^2_^r]dx\ ¦ (31)

Le calcul des variations permet encore de montrer 1 'equivalence de la
methode des approximations successives et de la methode de l'energie.
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Conclusion

Nous avons donne deux methodes de calcul numerique de la poussee
critique d'un are, tant dans le cas pratique des charges liees ä l'arc que dans le

cas theorique des charges liees ä l'espace. La methode des approximations
successives donne lieu a des calculs d'integration numerique beaucoup plus
longs que la methode de 1'energie; eile parait cependant indispensable pour
trouver une deformation approchee v(x) correcte, et non choisie au hasard,
afin de pouvoir appliquer la methode de l'energie.

Dans le cas particulier d'un are de fibre moyenne quelconque et de loi
d'inertie quelconque, on obtiendra une valeur suffisamment precise de la

poussee critique en operant de la facon suivante:
a) En prenant pour fonetion de depart v0(x) la deformation de la theorie

elementaire de l'arc parabolique d'inertie reduite constante, on determinera,

par integration numerique, la premiere deformation vx (x) de la methode des

approximations successives.

b) On calculera la poussee critique par la methode de l'energie en prenant
pour deformation vx(x).

Nous avons applique les methodes precedentes aux arcs symetriques d'inertie

reduite constante J ä fibre moyenne parabolique. En designant par 2 a la

portee de l'arc et par / sa fleche, la valeur approchee de la poussee critique
peut se mettre dans tous les cas sous la forme:

Qc m
T2EJ

^k&
(32)

m et K etant des constantes donnees dans le tableau suivant:

Type d'Are m
K pour des charges liees

Observations
ä l'arc ä l'espace

Are encastre
Are ä 2 articulations
Are ä 1 articulation
Are ä 3 articulations

2,0458
1

1,1132
0,7527

3,35
6,14
1,15
1,99

4,01
6,95
1,36
2,27

Flambement
antisymetrique
Flambement
symetrique

Resume

La theorie elementaire du flambement des arcs neglige les deplacements
horizontaux des points de la fibre moyenne de l'arc; cette theorie ne donne
de resultats suffisamment precis que pour les arcs tres surbaisses. Des que la
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fleche de l'arc est importante, eile conduit a surestimer beaucoup la poussee
critique de l'arc et de ce fait est dangereuse.

Deux methodes correctes de calcul numerique de la poussee critique sont
donnees: la methode des approximations successives et la methode de l'energie,
tant dans le cas des charges liees a l'arc que dans le cas des charges liees ä
l'espace. Les differentes liaisons pouvant etre imposees ä l'arc ont ete examinees:
are encastre, are a deux articulations, are ä une seule articulation et are ä trois
articulations.

Zusammenfassung

Die elementare Theorie der Knickung von Bogen vernachlässigt die
waagrechten Verschiebungen der Nullachsen-Punkte des Bogens. Diese Theorie
ergibt nur für sehr flache Bogen genügend genaue Ergebnisse. Sobald die
Pfeilhöhe maßgebend wird, führt dies zu einer gefährlichen Überschätzung
des kritischen Horizontalschubes.

Es werden zwei fehlerfreie Methoden der numerischen Berechnung des
kritischen Schubes angegeben: Die fortgesetzte Annäherung sowie die
Energiemethode. Sowohl für den Fall der in der Bogenebene liegenden Belastung als
auch für räumliche Belastung. Verschiedene Bogenausbildungen wurden untersucht,

nämlich den eingespannten, den Eingelenk-, Zweigelenk- und Drei-
gelenkbogen.

Summary

The elementary theory of the buckling of arches neglects the horizontal
movements of the mean fibre of the arch; this theory gives sufficiently aecurate
results only for drop arches. As soon as the rise of the arch becomes
considerable, it leads to a marked overestimation of the critical thrust of the arch
and is therefore dangerous.

Two correct methods of numerical calculation of the critical thrust are
given: the method of successive approximations and the energy method, both
in the case of loads bound with the arch and in the case of loads bound with
space. The different connections that can be imposed on the arch were examined:

fixed arch, two-hinged arch, arch with a single hinge and three hinged
arch.
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Ultimate Strength Tests of Reinforced Concrete Beams in Combined

Torsion, Bending and Shear

Essais de rupture de poutres en beton arme soumises ä Vaction combinee de la tor¬
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Bruchlasttests an Stahlbetonträgern unter kombinierter Beanspruchung ausDrillung,
Biegung und Schub

HANS GESUND DONALD G. MILLS VICTOR M. MARTIN
University of Kentucky, Lexington, Kentucky

Introduction

The earliest major effort in the study of the behavior of reinforced concrete
members in combined torion, bending and shear was made in Russia. More
recently, important work has been done in the United States, Canada, Australia
and India. The Russian work resulted in a series of publications by Chinenkov
[1], Lialin [2], Lessio [3, 4] and Yitdin [5, 6]. Some of it was experimental
and some theoretical, with early emphasis placed on combined torsion and
bending moment and combined torsion and shear. Yfdin later combined all
three types of loading, but the experiments were conducted on rather small
specimens (3.5 by 6.4 inches in cross section). He reported failure modes which
were also observed in some of the specimens to be reported on here, namely that
the failures were ". typical of tearing the center part of the beam from the
end sections". A similar phenomenon may be observed in Nylander's [7]
report on tests of frames in which one member, reinforced both longitudinally
and transversely, was subjected to torsion.

More recently, Pandit and Warwaruk [8] tested sixteen specimens in
combined torsion, bending and shear. These were larger than the Russian
specimens (6 by 12 inches in cross section), but the sequence of loading was
different. Whereas the Russians, and apparently all other investigators to
date, have increased the torsional, bending and shear loads simultaneously
in proportion, Pandit and Warwaruk subjected their specimens first to some
predetermined load level in transverse bending and shear alone, and then
twisted them to failure.
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Test results from several of their specimens will be checked against the
torsional strength predicted by a rational equation to be developed in this
paper.

A number of specimens were also tested under combined loading by Walsh,
Collins, Archer and Hall [9], who then developed semi-empirical formulae
[10] to predict the strengths of members subjected to the combined loading.
The failures observed in these tests were similar to most ofthose to be described
here, i.e. they occurred by rotation of sections of the specimens about hinges
which formed near one face after inclined cracks had formed on the other faces.

All reinforcement in this series consisted of round, undeformed, mild steel bars.
The same type of reinforcement was used in tests conducted by Ramakrishnan
and Vuayarangan [11, 12], whose results will also be checked against the
theory to be developed here.

Almost all of the above mentioned work contained restrictions on speeimen
size, method of application or sequence of loading, type of reinforcement,
and/or strength of concrete, which affected the results of the tests. Furthermore,
reinforcement strains were measured only in some of the Russian tests and by
Pandit and Warwaruk. Other investigations into the effects of combined
loading have concerned themselves with prestressed concrete beams and with
reinforced concrete beams of cross section other than solid reetangular.
Consequently it seemed advisable to extend the earlier work on reetangular
reinforced concrete specimens conducted at the University of Kentucky [13,
14]. The results of this had indicated that a member subjected to combined
torsion and bending, without shear, would fail by rotation about a hinge in the
compression face of the member if the speeimen were square in cross section
and contained longitudinal reinforcement only or if it were square or reetangular
and contained transverse reinforcement, but that it would fail by rotation about
a hinge in one of the sides if it were reetangular and only reinforced longitud-
inally. Since most actual beams may be expected to be subjected to combined
torsion, bending and shear, it was deeided to study square specimens containing
only longitudinal reinforcement and reetangular specimens containing both
longitudinal and transverse reinforcement subjected to the triple loading.

Description of the Specimens

Ten beams were loaded in combined torsion, bending and shear. The first
six were eight inches by eight inches in cross section and contained essentially
only longitudinal reinforcement. The other four were six inches by twelve
inches in cross section and contained both longitudinal and transverse reinforcement.

An overall view of the test specimens and the loading scheme is given in
figure 1. Various ratios of bending moment to torque could be obtained by
changing the lengths of the arms. The ratio of shear to bending moment was
kept constant by making the total lengths of all specimens equal. The loading
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and support arms in all specimens were reinforced with three no. 4 bars on the
tension side and two no. 4 bars on the compression side. The steel was detailed
so that in all arms the two outside tension bars were bent around the beam
reinforcement and back into the arm to provide compression reinforcement.
The third tension bar was hooked around the bottom beam reinforcement for
anchorage. Shear reinforcement in the form of no. 3 or no. 4 closed ties,
spaced three inches center to center, was also provided in all arms.

?+
(e

\V&.
<%TOP

SUPPORTLOAD
BACK ARM

•vR SUPPORTS

BOTTOM
FRONT\y

SUPPORT
ARM

SUPPORTS

LOADING ARM

Fig. 1. Specimens and
loading scheme.

The longitudinal reinforcement in the test sections of all specimens consisted
of three no. 4 bars on the bottom and two no. 4 bars on the top. The test sections
of specimens 1 through 6 were reinforced only with the longitudinal steel,
except for two no. 3 closed ties placed three inches center to center from each
other and from the arm reinforcement at each end ofeach test section to prevent
local failure due to stress concentrations. The test sections of specimens 7

through 10 also contained transverse reinforcement. This consisted of no. 3

closed ties, spaced three inches center to center throughout the test sections
except for the first three ties at each end, which were placed at two inches
center to center, again in an attempt to prevent local failure. For further details
see table I and figure 2.

All reinforcement consisted of intermediate grade deformed bars meeting
the requirements of ASTM specifications A-15 and A-305. Yield stresses of the
various bars used are given in table I. The concrete for all specimens was
commercially obtained transit mix with the following composition: 5 bags
cement, 1545 pounds sand, 1890 pounds stone (% inch to % mcn chips), 1/4
pounds Pozzolith and, nominally, 37 gallons of water per cubic yard. Since it
was considered desirable to have some Variation in concrete strength, strict
control was not exercised over the mix. The mixing water was added in the
truck at the laboratory, but workability of the concrete rather than the precise
quantity of water added was used as the Controlling factor.

After being east, the beams were cured at room temperature under wet
burlap for seven days and the left to air dry in the laboratory. All specimens
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Table I. Beam Properties

Speeimen Nominal1) Cross Section fy Longitudinal Transverse fc2)
Number MjT ratio (inches) Reinf. (psi) Reinf. (psi) (psi)

1 1 8x 8 43,000 6,025
2 2 8x 8 43,000 — 6,025
3 3 8x 8 43,000 — 4,350
4 4 8x 8 43,000 — 4,350
5 5 8x 8 46,250 — 5,100
6 6 8x 8 46,250 — 5,100
7 1 6x12 45,500 50,000 5,460
8 2 6x12 45,500 50,000 5,500
9 4 6x12 45,500 50,000 5,500

10 8 6x12 45,500 50,000 5,460

*) The ratios of the actual values varied slightly from this. See table II.
2) Average of three cylinders, obtained at time of test of associated speeimen.

8"

ALL LONGITUDINAL
BARS ARE #4
SPECIMENS 1-6

o o o I'*'

LONGITUDINAL

BARS #4
SPECIMENS

//3TIES
3Hc.c.

y

!•+¦

K Fig. 2. Speeimen
cross sections.

were tested between thirty and sixty days after being east. The accompanying
cylinders were tested at the same time as the specimens. Strengths are recorded
in table I.

SR-4 type A-7 strain gages were attached to the reinforcement at many
points and type AR-1 rosettes were later attached to the concrete at locations
where maximum tensile stresses were expected. It was thus possible to monitor
the strains in the reinforcement and the concrete during the conduet of the
tests and to deduce some Information regarding the mode of failure later.

Conduet of Tests and Results

The general test setup is shown in figure 1. The load was applied to the center
of each speeimen in one to two thousand pound increments, the smaller
increments being used near failure. After each increase, the load was held constant
for a period of from five to twenty minutes while all strain gage readings and
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loads were recorded and the crack patterns sketched and photographed. Except
for the last one or two increments before failure, recheck of the strain gages
showed that little creep occurred during the Observation periods.

The behavior of the two sets of specimens was quite similar at relatively
low loads, but differed markedly as the loading proceeded. Their final failure
modes bore very little relationship to each other. Within each set, however, the
response to the loading changed very little from speeimen to speeimen, though
one could easily observe the differences caused by the changes in the moment/
torque ratio. For example, in the set of six beams which contained only longitudinal

reinforcement, it was possible to see the gradual changes in the crack
patterns as the moment/torque ratio progressed from 1 to 6. In beam 1, the
initial crack pattern consisted of cracks on all surfaces except the back (see

figure 1 for the designations of the surfaces), inclined at between 37 and 45

degrees to the beam axis. This pattern had formed by the time a load equal to
80 percent of the failure load had been reached. Continued loading produced no
remarkable deformations until, suddenly, a mechanism formed in one of the
test sections, in which two segments of the beam rotated with respect to each
other about an S-shaped hinge which formed on the back of the speeimen,
approximately at mid-height. At the same time, a piece of concrete was spalled
off the bottom of the beam. Upon close examination it was found that this
piece of concrete was a parallelopiped whose boundaries were: the bottom of the
beam, the longitudinal bottom reinforcing bars, and parallel diagonal cracks
approximately four inches apart, intersecting the front and back faces of the
beam. Speeimen 2 behaved very similarly. In this beam the first cracks were
noticed when the load had reached approximately 38 percent of the failure
load.

Speeimen 3 showed considerable influence of bending. The cracks on the
bottom made a larger angle with the axis of the beam and the early cracks
on the front and back were almost vertical. Speeimen 4 appeared to behave
as though it were being loaded only in bending, with the classical bending
crack pattern, until it suddenly collapsed with the formation of the S-shaped
hinge on the back and the spalling of the parallelopiped from the bottom.
The major failure crack pattern seemed to partially override the bending
cracks and was almost identical with that formed in the previous three specimens.

It is shown in figure 3. Specimens 5 and 6 behaved like speeimen 4,
but some crushing of the top surface and considerable widening of the bottom
tension cracks was noticeable before the sudden torsional failure occurred.
The strain gage readings indicated that all three bottom reinforcing bars of
speeimen 6 had yielded before the collapse.

Figure 4 shows a plot of bending moment versus strain for the longitudinal
reinforcement in speeimen 2. The strains were measured 12 inches from the
face of the loading arm but the recorded moments are those at the face of the
loading arm. The bending moments at the locations of the gages were approx-
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Fig. 3. Failure crack pattern of speeimen 4.

imately 80 % of those indicated. They are typical of the readings observed in
specimens 1 through 6, and clearly indicate that the specimens were bent

laterally, oonvex to the front, to such an extent that the front bars were
subjected to an appreciable additional tensile strain. This additional strain caused

the front bottom bar to yield long before the ordinary bending moment would
have done so. The strain readings on specimens 7 through 10 also indicated

more tension in the front than the rear bottom bars, but the differences were
much smaller and the top bars were not consistent in this respect. The strain

readings for speeimen 5 appeared to indicate a reversal of this curvature. but

Table II. Test Results

Speeimen

Number

Bending
Moment1)
at Failure
(in. kips)

Shear
at

Failure
(kips)

Torque at Failure2)
(inch-kips) about:

Theoretical Ultimate
Moment (ACI Code)4)

(inch-kips)

Theoretical Dowel
Torque about Hinge
in back (inch-kips)

Center
Line

Hinge in
back Beam Load Arm Predieted Actual

1

2
3
4
5
0
7

8
9

10

75.1
113.8
105.2
153.1
179.0
194.0
77.6

231
281
306

1.18
1.78
1.60
2.40
2.80
3.03
1.17
3.50
4.26
4.64

62.5
43.3
43.3
36.4
44.6
36.5
78.5

120.3
73.2
44.6

67.2
50.4
49.6
40.0
55.8
48.6
82.0

2623)
1723)
1083)

157
157
155
155
169
169
307
307
307
307

171
171
168
168
182
182
322
322
322
322

47.1
47.1
40.0
40.0
43.2
43.2
59.5

58.0
43.5
43.0
36.8
38.4
38.4
79.3

1) Taken about the edge of the loading arm rather than about the center of the beam.
2) Calculated from the reactions of the test section which failed.
3) Calculated as load applied to speeimen times length of loading arm to back of beam.
4) With <j> set equal to 1.

— No values are reported here because it was not possible to predict the failure
torque for the observed mode of failure.
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there is a possibility that the gage wiring was transposed between the front
and back bars in this speeimen, and it is assumed that this happened.

Table II summarizes the test results. It should be noted that the bending
moments at failure were calculated at the edge of the loading arm, i.e. at the
ends of the test sections. Since the bending moment varied throughout each test
section, it was deeided to report only its maximum value. This does not mean,
necessarily, that the failure always occurred adjacent to the loading arm. In
fact, in specimens 2 and 3 it occurred nearer the supports, and in specimens 1,

4 and 5 the ties next to the loading arm apparently bounded the failure region.
In speeimen 6 the failed zone intruded on the tied region with some top
surface crushing. The mode of failure of specimens 7 through 10 will be discussed
later.

BOTTOM REAR BAR
BOTTOM CENTER BAR
BOTTOM FRONT BAR

150
TOP REAR BAR /
TOP FRONT BAR /

g 100

m</> 50

55gl

-TOP v- BOTTOM
FRONT

ALL GAGES WERE 12" FROM FACE
OF LOADING ARM

60

40
STRAIN GAGES WERE PLACED
AD THE MIDDLE OF EACH
LEG OF THE TIE

500
STRAIN -

1000 1500

MICROINCHES PER INCH
500 1000

STRAIN - MICROINCHES PER INCH

Fig. 4. Strain gage readings for speeimen 2. Fig. 5. Strains in one tie of speeimen 7.

The shear was essentially constant throughout the test sections of all
specimens, as was the torque. Two different torques are given in table II. The
first one is the torque in each test section about the central axis of the beam,
and the other is the torque in each test section about the hinge which formed in
the back. Both were calculated from the support reactions, except in the case

of specimens 7 through 10. It will be noticed that the torques about the hinge
reported for these specimens were calculated as the produet of the applied load
and the length of the loading arm, measured to the back of the beam. This was
done because this total applied torque is more relevant to the mode of failure
observed in specimens 7 through 10. The theoretical ultimate bending strengths
of both the beam sections and the loading arms are also given. These were
calculated from eqaation 16-1 of the ACI Building Code with the capacity
reduction factor, </>, set equal to 1. Equation 16-3 was not applicable since the
compression reinforcement could not reach its yield stress. The last section of
the table contains values of predicted torsional strength. These will be discussed
later.

The behavior of speeimen 7, the first of the reetangular, transversely
reinforced beams, resembled that of specimens 1 and 2. The first cracks occurred at
approximately 50 percent of the failure load. They were inclined at approx-
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imately 45 degrees to the longitudinal axis of the beam and were initially
observed on all faces except the top. The failure was of essentially the same form
as in the earlier specimens, with a hinge forming on the back and a piece of
concrete being forced out of the bottom. A small crack was also observed on the
top face, at the junction of the loading arm and the main body of the speeimen,
as though the loading arm were suffering some bending distress at that point.
The strain gages on the ties, some of which were attached on all sides, indicated
that all the ties were in tension, but that none had reached the tensile yield
strain prior to failure. The torque/strain graphs also showed a definite decrease
in slope at the Cracking load. See figure 5, which gives a rather typical plot of
the strain readings.

Specimens 8, 9 and 10 behaved quite differently and their mode of failure
is rather difficult to interpret. In all three, combined bending-torsional Cracking,
similar to that previously described for the square specimens, took jalace at
lower loads. At failure, however, instead of large rotation in one test section. a
failure surface formed on both sides of, and close to, the loading arms of specimens

8 and 9, with subsequent torsional rotation about hinges on the back,
connecting the two failure surfaces in each member. At the same time the two
surfaces were also connected by cracks across the top faces of the loading arms
at their junetions with the beams. In fact, the total appearance of the failures
was one in which the loading arms failed in tension at the top, simultaneouslv
tearing out a piece of the adjacent beams. See figure 6, which shows speeimen
9 after failure. In this case the hinge formed on the back just below the tops
of the visible cracks.

These two specimens were also greatly infiuenced by the bending moments,
since the strain readings showed that the tension reinforcement had yielded
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Fig. (i. Failure crack pattern of speeimen 9.
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prior to failure and, in the case of speeimen 9, no torsional cracks appeared
on the top surface. Speeimen 10 was even more affected by the bending moment.
Most cracks prior to failure seemed to be ordinary bending cracks which opened
quite wide before the ultimate load was reached. No torsional type cracks
appeared on the top surface. There was, however, a very marked crack again
across the top of the loading arm and evidence, on the front of the speeimen,
that the arm had been torn out, taking with it a part of the beam. The tension
reinforcement had again passed the yield point before collapse occurred.
Strangely enough, the strain gages attached to the ties did not indicate that
the ties yielded in any of these members.

Analysis

An analysis of the results observed in these tests requires consideration
of three different phenomena. The first is the mode of failure of the square
specimens containing only longitudinal reinforcement, the second is the mode of
failure of the reetangular specimens containing both longitudinal and transverse
reinforcement, and the third is the phenomenon of lateral bending, which may
be a part of or may contribute to the other two effects.

Examining these in turn, one finds that the failure of the square specimens
can be analysed in the light of a torsional dowel action theory of failure proposed
in an earlier paper [13], for members failing by torsional rotation about a hinge
in one side. In this, the equilibrium of a parallelopiped of concrete on the bottom
of a member, similar to those tested here, was studied. The boundaries of this
solid were assumed to be the bottom surface of the speeimen, the plane containing

the center lines of the longitudinal bottom reinforcement, and two parallel
cracks on the bottom surface, spaced a distance, e, apart. The direction of these
cracks was, at that time, assumed to be perpendicular to the axis of the member,
in order to simplify the derivations and calculations. This agreed fairly well,
also, with the test data then available. The forces acting on the top plane of the
parallelopiped were then assumed to be the dowel forces from the longitudinal
reinforcement, which has to resist most of the torque once the cross section is
cracked, and vertical tensile stresses in the concrete which would tend to keep
the parallelopiped from being spalled out of the beam. Since no other forces
could act on it, the resultants of the vertical components of the dowel forces
and the vertical tensile stresses in the concrete had to be in equilibrium. Therefore,

analysing the parallelopiped as a biaxially eccentrically loaded tension
member, the following equation was obtained for the maximum dowel resisting
force the concrete could exert on the critical bar:

Fe !** (1)
[1 + 6 (Z8 - #a)] (sin &+ £;>>, sin &)'
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where Fc is the maximum bearing force the concrete can exert on a bar
designated as the ''critical" one; ft is the modulus of rupture of the concrete;
e is the distance between cracks measured parallel to the axis of the beam; b

is the width of the beam; Kx and K2 are constants of proportionality such that
Kx e is the perpendicular distance from a bending crack to the resultant of the
vertical components of the dowel forcds and K2 b is the perpendicular distance
from the side containing the hinge to the same resultant; r is the radial
perpendicular distance from the hinge to the center of a longitudinal reinforcing
bar, with the subscript c denoting distance to the bar designated as "critical"
and the subscript i denoting the distances to the other bars; </> with the appro-
priate subscript is the angle any radius r makes with the vertical side of the
beam containing the hinge; and ^ indicates summation over the bottom bars

only. b

Once Fc was known, the total possible dowel resisting torque about the
hinge could be expressed as

Tr Fc{rc + ±Zri), (2)

where now the summation extended over all bars except the "critical" one and
Tr consequently represented the total resisting torque which could be provided
by all bars.

As was mentioned above, the cracks were assumed to be perpendicular to
the beam axis in the original derivation. This was not found to be the case

in all specimens in this investigation. Consequently, equation 1 was modified
to the more general form for the biaxially eccentrically loaded tension member

Fc -7 r o (3)

#(sin<k + ;r2>*sin&)

where Q ^+ -^X +^Y. (4)
-"• -Lyy ^xx

A is the cross sectional area of the top surface of the parallopiped; the
coordinate system is based on the prineipal axes of inertia of the parallelogram
formed by this surface; ex and ey are the coordinates of the resultant of the
vertical components of the dowel forces and X and Y are the coordinates of the
corner of the parallelogram expected to sustain the maximum tensile stress,
all measured within this coordinate system. Ixx and Iyy are the prineipal
moments of inertia about the indicated axes. ex and ey may be found by
assuming, as before, that the dowel force exerted on the surrounding concrete
by a bar will be proportional to its perpendicular distance from the hinge of
rotation and that it will act a distanceKxe along the bar away from the bending

crack. For calculation purposes, a value of Kx =Th gave good results previouslyI Zi

and was therefore used here again.
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As a matter of interest, the value of Fc was calculated for specimens 1

through 6, once with the assumption that the cracks were perpendicular to
the beam axis, i.e. using equation 1, and then again with the assumption that
they made an angle of 60 degrees with the beam axis, which required use of
equation 3. The results of the calculations differed by 3.2 percent, which is
quite insignificant, given the physical assumptions on which these equations
are based. This then indicates that it is not necessary to be able to predict the
orientation of the cracks on the bottom surface accurately in order to apply the
equations to a member.

Equations 2 and 3 were used to predict the dowel torional strengths of
members 1 through 6 which contained no transverse reinforcement. They were
also used to check the dowel strength of member 7 which failed in the same
manner, even though transverse reinforcement was present. The results are
presented in the last two colums of table II. (Here it should be noted that the
torques are taken about the hinge on the back face of the speeimen.) The
theoretical torsional dowel strength is obviously directly proportional to the
crack spacing. The work of Broms and Lutz [15, 16] indicated that the average
crack spacing to be espected at high reinforcement stresses is approximately
twice the effective cover. Based on this, the average crack spacing for members
1 through 6 should have been 3% inches. In the case of member 7 one would
expect the spacing of the transverse reinforcement to be reflected in the crack
spacing, which would cause it to be 3 inches. In this member, also, the dowel
effect of the ties crossing the cracks had to be included. These figures were used
to calculate the torques listed in the next-to-the-last column of table II. In the
last column are the dowel torques predicted by the equations when the actual
distances between the bending cracks bounding the failure parallelopipeds were
used.

_The moduli of rupture used in the calculations were taken to be 9 if'c. Some
modulus of rupture specimens had been tested with the control cylinders, but
the scatter of the data did not Warrant identification of individual control
beams with the torsional specimens. Despite the uncertainty of the tensile
strength of the concrete and the other assumptions involved, it will be noted
that the correlation between the theoretical dowel and the actual failure torques
is quite good. The predicted strengths are, in every case, less than those
obtained experimentally. This is to be expected, since the theory presented
above does not take into account the resistance to rotation which will be
provided by the uncracked concrete in the vicinity of the hinge. The dowel
torsional strength should thus be a lower bound on the total torsional strength.

The method of analysis was also applied to specimens tested by others
under similar loading conditions. The results are shown in table III. The crack
spacing used for Pandit and Warwaruk's specimens was twice the cover,
i.e. 31/2 inches, while that for Ramakrishnan's and Vijayarangan's specimens

was 41/2 inches, which seemed to be approximately the average in the
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Table III. Results of Tests by Others

Investigation Speeimen
Number

Torque at Failure1)
(inch-kips) about: Predicted Dowel2)

Torque about Hinge
in back (inch-kips)

Center Line Hinge in back

Pandit and F-l 58 86 73
Warwaruk [8] F-2

F-3
83
89

102
99

73
70

Gl 73 104 70
G-2 92 111 70
G-3 103 113 72
Ci 6 23 37 23

Ramakrishnan and c3 22 37 23
VlJAYARANGAN [11]

c5
20
23

33
38

22
23

C65 22 34 22

*) Torque about the hinge was calculated by adding the produet of the shear times half the
width to the reported center line torque.

2) Using equations 1 and 2, with/$ 9 )fje and, where necessary, with f'c equal to 80% of the
cube strength.

figures shown in that paper. Broms' work would probably not be applicable
to the latter specimens, since the reinforcement consisted of piain round bars.
There were several factors which would cause inaecuraey. One of these,
obviously, is the different sequence of loading used by Pandit and Warwaruk.
Another is the fact that their specimens did contain some transverse
reinforcement, though relatively little in the examples chosen. (Specimens F
contained no. 3 ties at 8 inches center to center and specimens G contained
no. 2 ties spaced 31/2 inches center to center.) Nevertheless, one would expect
that the ties would have some dowel effect, which was neglected in these
calculations and would tend to increase the torsional strength above that
predicted. Ramakrishnan and Vijayarangan used very low strength concrete
and reported its cube strength. There is, therefore, some question regarding the

accuracy of the calculation of the tensile strength.
Another faetor which should be taken into account in these comparisons

is the stress in the tensile reinforcement at the time of torsional failure. If the
applied bending moment is small compared to the moment capacity of the
beam, the tensile stresses in the reinforcement will be low. It must then be

expected that, for monotonically increasing loading, the crack spacing will be

considerably larger than that indicated by Broms' and lutz' work for high
reinforcement stresses [17]. This will then, obviously, have the effect of increasing

the torque capacity of the specimens. Unfortunately, no valid expressions
seem to have yet been devised to relate steel stress and crack spacing under
this type of loading condition. However, it seems obvious that in an actual
structure one must assume that eventually the crack spacing will reach the
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minimum predicted by Broms and Lutz. If a correction factor for Variation
of crack spacing with steel stress could be applied to Pandit's and Warwaruk's,
and Ramakrishnan's and Vijayarangan's test results, the predicted dowel
torques of the specimens with lower bending moments would be increased
considerably, leading to higher lower bounds and to better correlations in
table III.

It was not possible to analyse the mode of failure observed in specimens 8

through 10. As is evident from table II, the loading arms should have been

sufficiently strong to prevent bending failure at their intersections with the
beam portions of the specimens. Instead, the development of the tension
cracks at the intersections clearly indicated that the arm reinforcement was
yielding long before final collapse occurred. By dividing the bending moment
in the loading arm at failure by the product of the cross sectional area of the
arm reinforcement and the yield strength of that reinforcement, it was
determined that the centroid of compression for each arm must have been
located vertically between the hinge in the back and the usual location of this
centroid.

Analyses of this phenomenon were also attempted by taking the moments
of the dowel forces of all reinforcement crossing the failure surface about the
hinge and also by summing the moments of the axial forces in all the transverse
reinforcement crossing the failure surface, but both types of calculations gave
predictions of torsional strengths quite different from those actually observed.
The type of analysis used for specimens 1 through 7 could not validly be applied
to these members since the mode of failure was obviously different. It is appa-
rent, therefore, that the problem of the connections of a member in torsion to
its supports must be studied further. In the mean time designers should be

very careful and conservative in their detailing of such connections.
The last major phenomenon requiring discussion is the lateral bending

which was observed in all specimens. As can be seen from figure 4, there were
large differences in the strains observed in the various longitudinal bars. The
result was that the front bottom bar yielded at a relatively low transverse
bending moment. This behavior can be explained by reference to figure 7,

which shows part of a speeimen with everything past the failure surface
removed. Also shown are the applied loads and reactions, and the horizontal
and vertical components of the dowel forces. It is then evident that these
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horizontal components will form a couple tending to rotate the free-body
about a vertical axis. The resisting couple can only be supplied by the
reinforcement, aided perhaps by shearing stresses in the uncracked concrete near
the hinge. The magnitude of the applied lateral moment can be found,
approximately, by calculating the horizontal components of the dowel forces applied
to the concrete by the individual bars both on top and on the bottom, finding
the resultant of each set of horinzontal components (note that they will not be

equal, which means that some of the horizontal force must be taken in shear

by the concrete at the hinge) multiplying each by half the horizontal distance
between them and adding the two moments.

Using the same assumptions as those which were used to derive equations
1 through 3, one can find that the horinzontal component of dowel force in the
"critical" bar at failure is

FcII Fccoscf>c (5a)

and the horizontal component of dowel force in any other bar at failure is

FiH Ft cos & Fc f^j cos ^. (5 b)

If the cracks on the top, bottom and front of each speeimen were all inclined
at 45 degrees to the beam axis and if the resultant horizontal force acted at the
center of each bar group, the horizontal distance between the resultants would
be equal to the width of the speeimen plus the height, minus the top and bottom
cover. Actually, it will be somewhat less than that since some of the cracks
will make angles greater than 45 degrees with the axis and since the centroids
of the horizontal forces will not be at the centers of the top and bottom
surfaces. For calculation purposes it will be convenient to let the length of the
lever arm be Ks (b + h), where h is the overall height of the member.

It is now possible to write an approximate expression for the lateral bending
moment:

'77. mMLat. Fc (cOS <f>c +y £] f, COS fa

where the summation extends over all bars except the "critical" one. Equation
6 can be rewritten by solving equation 2 for Fc and substituting this into
equation 6:

Kz Tr (b + h) (cos 4>c + ^Zri cos &)
MLaL } j—^r '-. (7)

If desired, this equation can be simplified somewhat before the numerical
calculations are carried out. The value of K3 was taken as 0.7 for specimens 1

through 6, which made MLat =\Tr for these specimens.
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It is then possible to check whether the longitudinal reinforcement is

really resisting the lateral moments, by calculating the lateral moment couple
set up in the top and bottom reinforcement by the differences in strain between
the front and rear bars on the top and on the bottom. This was done for specimens

1 through 6, and the results are presented in table IV. The correspondence
between the last two columns of the table is quite striking. Unfortunately it
was not possible to make a comparison for speeimen 7, since the strain gage on
the bottom front bar failed at the beginning of the test. The rest of the specimens

exhibited a different mode of failure and no comparison was attempted.
As a matter of interest it might be noted that for specimens 7 through 10,

MLat±0.9Tr.

Table IV. Check of Lateral Bending Moments

Speeimen
Number

Strain difference1)
(micro-inches/inch) Lateral Bar

Moment
(inch-kips)

y2 Predicted
Theoretical Dowel

Torque3) (inch-kips)
Top bars Bottom bars

1

2
3
4
5
6

50
30

-200
40

650
-30

600
820
820
650
200
1302)

18.0
23.5
17.1
19.0
23.4

9.52)

23.5
23.5
20.0
20.0
21.6
21.6

x) Just prior to failure.
2) All bottom reinforcement had yielded prior to collapse.
3) For the predicted crack spacing, from table II.
- The minus sign indicates that the front bar was subjected to a smaller tensile or larger

compressive strain than the rear bar. This would tend to cause a lateral moment opposite to that
of the other bars.

The vertical components of the dowel forces create an upward shear which,
in the case of these specimens, was actually larger than the vertical shearing
forces. This will simply have the effect of reversing the vertical shearing stresses

in the uncracked concrete near the hinge.
In many of the specimens the top surface was crossed by cracks. It was

further noticed that in most cases the compression reinforcement was either
in tension or contained a very low compression strain at the time of failure,
even though the bending moments were considerable. This would lead one to
believe that the centroid of compression must have shifted. However, the lever
arms of the tension reinforcement, as calculated from observed bending
moments and average steel strains at or near failure, were of approximately
the magnitude to be expected in pure bending. It is not possible, therefore, to
draw any conclusions regarding the effect of torsion on the bending moment
capacities of these specimens.
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Conclusions

The following conclusions may be drawn from the foregoing:
1. Reinforced concrete beams subjected to combined torsion, bending and

shear are likely to fail in torsion by rotation about a hinge on the vertical side

on which the shearing stresses due to vertical shear and those due to the torque
subtract from each other.

2. When the members contain only longitudinal reinforcement, they are
able to resist torsion beyond the cracking load because of the dowel action of
the reinforcement. Analysis of this dowel action provides a lower bound on the
torsional strength of such members.

3. Interaction between shear and torque is based on the total torsion of the
applied loading and the resisting dowel action about the hinge of rotation, for
members containing only longitudinal reinforcement. The interaction between
bending moment and torsional resistance for such members must be based on
the Variation in flexural crack spacing with stress in the tension reinforcement.

4. The dowel action will cause lateral bending moments which must be
resisted by a rearrangement of the stresses in the reinforcement. The stresses
involved are by no means negligible and can cause yielding in some bars at
loads much lower than those which would cause yielding in ordinary bending.

5. When the members contain both longitudinal and transverse reinforcement,

their connections to supporting or loading members appear to be much
weaker than would have been suspected from conventional theory. It is therefore

necessary to design such connections for much higher moments than those
expected to be applied.

6. No conclusion could be drawn regarding the effect of torsion on the bending

moment capacity of a member subjected to combined torsion, bending and
shear, though there is some evidence that the lever arm of the tension
reinforcement was not appreciably reduced by the torsional effects.
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Summary

Ten reinforced concrete beams were tested in combined torsion, bending and
shear. Six of the beams were eight inches by eight inches in cross section and
contained only longitudinal reinforcement. The other four were six inches by
twelve inches in cross section and contained both longitudinal and transverse
reinforcement. The prineipal variable was the bending moment to torque ratio.
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The strains in the members and their modes of failure were examined. Two
different modes of failure were observed and a theoretical model for predicting
a lower bound on the strengths of the members was developed for one of them.
This model was also applied to a limited number of test results reported by
others. The correlation was considered to be fairly good. It was discovered that
the reinforcement, in resisting torsion, created lateral bending moments in the
members. These changed the distribution of stress in the reinforcement, and led
to the early yielding of some bars. A theoretical model was also developed to
analyse this phenomenon. It agreed well with the test results.

Resume

Dix poutres en beton arme ont ete testees ä la torsion, la flexion et le cisaillement

combines. Six de ces poutres avaient une section de 8 X 8 inches et n'etaient
armees qu'en longueur. Les autres quatre avaient une section de 6x 12 inches
et etaient armees en longueur et en largeur. La principale variable etait le

rapport de la flexion ä la torsion. On a examine les tensions et le mode de
rupture. Deux types de rupture ont ete observes et pour Tun des deux, un modele

theorique a ete developpe, permettant de determiner la limite inferieure des

tensions de rupture. Ce modele a ete eontröle avec un certain nombre de tests
fait par d'autres, et Ton peut dire que la correspondance est assez bonne. On a
decouvert en outre que l'armature soumise ä la torsion, produit des moments
de flexion lateraux, ce qui mene ä un changement de la repartition des tensions
dans l'armature et a Pecoulement prematuree dans certaines barres. Pour
analyser ce phenomene, on a developpe un deuxieme modele, correspondant tres
bien avec les resultats des experiences.

Zusammenfassung

Es wurden zehn Stahlbetonträger untersucht, bei gleichzeitiger Torsions-,
Biegungs- und Schubbeanspruchung. Darunter hatten sechs einen Querschnitt
von 8x8 Zoll und waren nur längsarmiert. Die vier andern hatten einen
Querschnitt von 6x12 Zoll und waren sowohl längs- als auch querarmiert. Die
wichtigste Unabhängige dabei war das Verhältnis der Biegung zur Torsion.
Beobachtet wurden die Spannungen und die Bruchart. Dabei stellte man zwei

Bruchtypen fest. Für einen dieser Typen wurde ein Modell entwickelt, das die
rechnerische Ermittlung der unteren Grenze der Bruchspannungen erlaubt.
Dieses theoretische Modell wurde an verschiedenen fremden Tests geprüft und
zeigte eine ziemlieh gute Übereinstimmung mit den Meßresultaten. Man stellte
fest, daß die torsionsbeanspruchte Stahlbewehrung Biegemomente in
Querrichtung hervorruft. Dies änderte die SpannungsVerteilung in der Bewehrung
und führte bei einigen Bewehrungsstäben zum vorzeitigen Fließen. Um diese

Erscheinung zu analysieren, wurde ein zweites Modell entwickelt, das gut mit
den Meßwerten übereinstimmt.



The Finite Element Method in Application to Plane Stress

La methode des elements finis appliquee ä des contraintes bi-dimensionnelles

Das Verfahren der Endlichen Elemente in der Anwendung auf ebene

Spannungszustände

A. HRENNIKOFF
Sc. D., Research Professor of Civil Engineering, The University of British Columbia,

Vancouver, B.C., Canada

General

The differential equations of the theory of elasticity governing the
conditions of plane stress are based on statics, continuity of the material and its
elasticity, in accordance with the constants E and /jl. The assumption of
continuity implies that the intermolecular spacing is an infinitesimal of a higher
order compared to the dimensions dx and dy of the element analyzed.

With clear realization of these assumptions of the rigorous theory consider

a model of a plate made of polygonal cells of repeating pattern, joined to each

other at the nodes and possessing such properties as to make the nodes in the
model and the plate move identically in conditions of any arbitrary uniform
stress. If lürthermore the size of mesh is visualized as an infinitesimal of a

higher order than dx and dy, the equations of elasticity describing the action
of the prototype should be equally applicable to the model which thus becomes

in effect a simplified representation of the molecular structure of the plate.
This reasoning is a demonstration of the proposition, sometimes questioned,
that the finite element Solution involving proper cells, would converge to the
true values on infinite reduction of the size of mesh, provided of course that
the rounding off errors of the Computer Solution are negligible.
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Types of Finite Element Cells

Two kinds of cells are used in the finite element Solution of plane stress
problems: the framework cells, made of elastic bars1)2) and the no-bar cells3)4).
The former represent true elastic structures which may be actually constructed
and sometimes even experimented with physically. The no-bar cells on the
other hand are mathematical abstractions suitable for calculation but unsus-
ceptible to physical reproduction.

The nature of the no-bar cells may be explained in the following manner.
Imagine a plate of wide extent subjected to a simple stress condition such as

uniform unidimensional strain ex or shearless bending in X direction. Isolate
from this plate a polygonal area of the shape of the assumed finite element,
holding it in equilibrium by the appropriate peripheral stresses. Assume now
that the edge stresses are replaced by proper statically equivalent corner
forces without affecting by this Operation the corner displacements. This
transforms the given piece of plate into the finite element proper which is in
effect a body, whose corners move through the same distances as the same

points in the plate when acted upon by corner forces statically equivalent to
the edge stresses. The finite element must behave in such manner under several

simple stress conditions. By combining these conditions in proper proportions
it is possible to effect the separate x or y displacements of the corners of the
cell and through that to find the stiffness matrix of the element relating its
corner forces to the displacements.

There are certain ambiguities associated with the transformation of the
edge stresses into the corner forces, for illustration of which it is necessary
to consider in detail a specific example — a cell in the form of an equilateral
trapezoid (Fig. 1).

k,a

Fig. 1.

u ct
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A. Hrennikoff: "Solution of Problems of Elasticity by the Framework Method".
Journal of Applied Mechanics, ASME, New York, Vol. 63, December 1941.

2) A. Hrennikoff: "Framework Method and its Technique for Solving Plane Stress
Problems". Publications of International Association for Bridge and Structural
Engineering, Zürich, Switzerland, Vol. 9, 1949.

3) M. J. Turner, R. W. Clough, H. C. Martin and L. J. Topp: "Stiffness and Deflection

Analysis of Complex Structures". Journal of the Aeronautical Sciences, Vol. 23,
No. 9, September 1956.

4) R. W. Clough: "The Finite Element Method in Plane Stress Analysis". Proceedings
of ASCE 2nd Conference on Electronic Computation, Pittsburgh, September, 1960.
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Statics Type Stiffness Matrix of Equilateral Trapezoid

A quadrilateral cell has eight degrees of freedom with regard to u and v
displacements of its four corners along the x and y axes. Single corner
displacements may be effected by a combination of three rigid body movements
in the plane of the cell and five basic stress conditions which may be assumed

as follows:

A. Unilateral unit strain in x direction, ex (Fig. 2).
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Fig. 2.

B. Unilatera unit strain in y direction, ey (Fig. 3).
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Fig. 3.

C. Unit shear strain yxy (Fig. 4).

Cl Ypi AC 1 HC

y\
2~~~U

ATYclx \ Y -"¦"---—-ii
Xc

.- El 'Cf—

„ §cxt E Aq
c 2k(l+p)

Yn

Ac

(k + \)tEAc
4jfc(l+/i)

pc(l+/x)fca
tE

Fig. 4.
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D. Shearless bending with stresses in x direction (Fig. 5).
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E. Shearless bending with stresses in y direction (Fig. 6).
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Fig. 6.
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Other suitable conditions may be used in place of D and E but the three
uniform conditions A, B and C, or their equivalents, the uniform stresses,

orx, oy and rxy, are compulsory.
The simplest way to determine the statically equivalent corner forces in the

cell is to transfer its edge stresses to the adjacent corners by the law of the
lever. This Operation satisfies statics and at the same time carries the stresses

only to the corners situated in the immediate vicinity of the edges in question.
A weakness of this procedure will be pointed out later. The corner forces found
by this method in all five stress conditions considered here are stated in
Figs. 2—6.

The combination of the conditions A, C and D with AA 1/2 ux, Ac 1/4 ux,
and AD= l/4:Ux results in a vertical displacement ux of the corner 1, with zero
vertical displacements of the three other corners. However the condition D
causes some unequal horizontal movements of the corners which must be
cancelled by a horizontal rigid body movement and a horizontal displacement
of the top edge to the left of the bottom edge by a shear condition C through

a shear angle y
*"

2 ux. The corresponding corner forces are proportional

to the ones shown in Fig. 4. The summation of the four sets of corner forces

gives the stiffness matrix coefficients corresponding to the vertical movement
ux of the corner 1.

The horizontal displacement vx of the same corner may be accomplished
by the combination of the conditions B and E with AA=AE l/4:Vx and C,
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involving a horizontal displacement Ac=\j2vx of the bottom edge to the right
of the top edge, with the shear strain ^^—. Since the condition E moves the

corners of the top edge down towards the bottom edge this displacement must

be corrected by addition of the condition A with AA (k^-l)V!
8kk±

The

combination of these four conditions gives another set of stiffness matrix coefficients.
The corner forces produced by the displacements of the node 2 may be

found by symmetry with the node 1, and the ones brought about by the
movement of the top corners — by replacement of the parameters k and kx

with Ijk and kx\k respectively, in the corresponding expressions of forces
caused by the bottom corner movements.

The force-displacement relation of the trapezoidal cell is given by Eq. (1)

px
py
Pi
pyr2
px

py
px
py.4

Xf1Xl1X\>2 x%lxz* -X%1X^X^X^ Xf"X¥ _XV&^2
Y1uiY1vlYx^2 ym yv2 —~x2 Xl — y^iyu3 yvZ Yu4: _Y^s Yv4: yvs12

X%1Xl1X%2 X%1Xl* -Xl*Xi*Xl* Z|4 Xf*Xp -J58
yui yvi Yu2 -Yul Yv2 y«iyw3 YvZ Yu4:12 2 2 _Y u 3 Y v 4 Y±V3

X$1X%1X%* Yul TTv2 —^4 ^3 ~ -xpx^xi* x%*= X%*XV3* -ZI8
yui yv1 Yu2 _yui yv2 — Yviyu3Yv3Yu^ yu% yv4: —1 4 ^3 — yvs^4

x%ixilxz* x%1xi*= -Xv31Xt3Xl3X^ x%*xi±= -XvS^3
ym yvi yu2 —-*4 ^4 ^4 ~ yui yv2 —i3 i± — yvi yus yvs yu± _J3 J4 24 24 — yuz yvi —X3 ^4 ~ yv33

U-,

Ur

uA

(1)

and the explicit expressions of the stiffness coefficients X and Y are presented
in Table 1. The system adopted in their nomenclature involves one digit
subscripts and two digit superscripts. The former indicate the node at which
the force in question is applied, and the latter — the corner moved and the
kind of the unit movement u — 1 or v 1 creating the nodal force.

An important characteristic of this stiffness matrix is the absence of
symmetry about the prineipal diagonal. Thus for example the coefficients F^1
and X^1 are not equal. The asymmetry of the matrix leads to results violating
the Betti's reeiprocal theorem thus evincing a theoretical deficiency of the
matrix.

If the trapezoidal cell is transformed into a rectangle by making the
parameter k equal to unity the matrix becomes symmetrical. Apparently its lack
of symmetry reflects the asymmetry of the cell itself about the horizontal axis.

Energy Type Stiffness Matrix of Equilateral Trapezoid

Most of the authors employ a different stiffness matrix which is derived
from the energy considerations5). Its commonly used implicit expression in

5) H. H. Gallacher: "A Correlation Study of Methods of Matrix Structural Analysis".
A Pergammon Press Book, the MacMillan Company, New York.
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the form of a product of several component matrices is convenient for
Computer work, but is apt to conceal some of its peculiarities and defects. This

energy type matrix will be presented here explicitly, and it will be correlated
with the matrix found by statics.

As explained above the stress condition of a cell corresponding to a unit
displacement of one of its nodes may be described by combination of several
stress conditions A to E. This makes it possible to express the stresses and
displacements in the plate in terms of the particular node displacement. When
all nodes are moved simultaneously, the stresses and displacements in the cell,
including the values along the periphery, become linear funetions of eight
corner displacements ux,vx,u2, etc.

Imagine eight nodal forces Pf, Pxy, Pg, etc. statically equivalent to the
edge stresses aL (normal) and r (tangential) and apply them in reversed directions,

as the equilibrants of the edge stresses. The application of these corner
forces does not affect the peripheral stresses a± and r. Give one of the corners,
such as #1, a displacement dux and equate to zero the Virtual work of the
system corresponding to this displacement. As is well known, the work of
deformation of a plate may be expressed either as an area integral or a line
integral taken along the periphery, and the latter Version will be used here.

Of the eight corner forces only Pf does the Virtual work.
Calling the Virtual displacements developed on the edges of the cell A±-

normal and An- tangential, and the thickness of the plate t, the work equation
may be stated in the following form:

Pfdux t\vLdl^dux + t\Tdl^±dux. (2)
ir\ vux Z/~^ öux

The increment dux may be cancelled and the partial derivatives may be viewed
as the edge displacements produced by the unit movement of the corner ux 1

!^«Ar* and !^ Ag-i.
dux cux x

Then Pf tj <jx Af=1 dl + tj r Ag-1 dl. (3)
irs ins

This equation defines the terms in the first row of the stiffness matrix. Its
individual terms are expressed thus:

XI1 t^a^X^ + r^X^dl, (4)

XI1 ^(afA^ + T*1 \#)dl etc. (5)

The terms in the other rows of the matrix are found in a similar manner, for
example:

Yxul t^a^X^ + r^^dl. (6)
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The significance of the subscript and the superscript Symbols in X and Y
was explained before. The edge stresses and displacements under the integral
signs are produced by the unit displacements of one of the nodes. The stresses

a± a,nd t correspond to unit displacement of the corner indicated by the superscript

in X or Y, while the displacements A± and An are produced by the unit
displacements stated in their superscript, which matches the subscript of the
term X or Y.

For simplicity of calculation the line integrals along the sloping sides of
the cell 1—3 and 2—4 may be expressed through the X and Y components
of the stresses and displacements rather than through the normal and tangential

components, in accordance with the relation

S((J1X1 + rXxx)dl jaxXxdy + jayXydx + jrxyXydy + jrxyXxdx.

Care must be taken in using proper signs of stresses and displacements in
these expressions.

Although the expressions X and Y (Eqs. 4, 5, 6) are extensively used
(sometimes in a modified form) they are incorrect, because they imply that
the Virtual work of deformation of the material within the cell subjected to a
simultaneous action of the edge stresses and the opposing corner forces is zero.
This supposition is erroneous. Even though the corner forces and the edge
stresses are balanced the internal stresses within the cell are still extant and
there is no reason for their Virtual work to be zero should the nodes be
displaced.

The edge stresses brought about by any two single corner displacements,
such as ux 1 or vx 1, are of course mutually balanced by themselves without
the addition of the corner forces and so the magnitudes of the work done by
the edge stresses of one of these conditions on the edge deformations of the
other must be equal. The two sides of this work equation are the integral
expressions of the matrix terms Xf1 and Yxul in Eqs. (5) and (6). This signifies
the equality of these as well as of other symmetrically situated terms in the
stiffness matrix. The symmetry of the energy type matrix is an advantage
over the unsymmetrical matrix (Table 1) since it simplifies the Computer work.
The energy type matrix involves however some inconsistency to be pointed
out presently.

Comparison of the Matrices

A comparison of the two types of stiffness matrix discussed here would
clarify some of their peculiarities. In the stiffness matrix found by statics the
edge stresses are assembled into the corner forces at the two adjacent corners
by the law of the lever, while in the energy type matrix the same edge stresses
are multiplied by the edge displacements produced by the movement of the
corner and then added up. For a specific comparison take the term X\x (Eq. (5)).
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The edge stresses ct^1 and rvl in its expression are produced by the displacement
vx=l, and the edge displacements A^1 and A^1 — by the displacement ux= 1.

The diagrams of A^1 and Ag1 may be viewed as the influence lines by whose
ordinates the stresses a± and t created by any unit corner movement (vx 1 in
this case) must be multiplied and then summed up in order to form the force
Xx produced by the given movement (ux 1 in this case). Of the eight corner
displacements seven are equal to zero and only one, ux= 1, is distinct from zero.

Taking as an example a reetangular cell imagine as a possibility that the
edge displacements corresponding to ux=l are all linear (Fig. 7). This means

U 3

y,v

X
2U 1

Xu

Fig. 7.

that of all edge displacements only A± on the edge 1—2 and An on the edge
1—3 are distinct from zero. Employment of the influence lines of the type
of A± and An in Fig. 7 for calculation of Xx is obviously equivalent to the
application of the law of the lever. Under the stated conditions the terms Xx
found by the two methods should then be identical.

The linearity of the edge displacements was however used in this reasoning
only as a tentative supposition, true for the uniform strain conditions A, B,
and C but false for the flexural conditions D and E. Thus the condition D
required for the displacement of ux=l, results in parabolic normal displacements

on the edges 1—3 and 2—4 directed inward on one edge and outward
on the other. Parabolically distributed tangential displacements are present
also on the edges 1—2 and 3—4. It so happens however that in all five basic
stress conditions A to E the edge stresses on the opposite sides of the rectangle
are equal, which results in mutual cancellation of the energy terms corresponding

to the non-linear displacements. This makes the statics and the energy
matrices for a reetangular cell identical, as well as symmetrical about the
prineipal diagonal.

The Situation is however different in the case of a trapezoidal cell. When
such a cell is subjected to bending condition D its side edges become curved,
and under the condition E its all four edges are curved. The diagrams of the
edge displacements thus become non-linear, making the matrix terms,
determined by the two methods, different. It is significant that a single corner
displacement, such as ux=l, produces displacements on the non-adjacent
edges 2—4 and 4—3, as well as on the adjacent ones 1—2 and 1—3. This
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means that the terms Xx and Yx are contributed to partly by the stresses on
the non-adjacent edges. The presence of such contributions appears logically
unsound and must be viewed as a defect of the energy matrix.

Correlation of the Matrices

The two matrices may be correlated by finding the complementary terms
whose addition to the terms of the statics type matrix transforms them into
the terms of the energy matrix.

It was pointed out that integration of the edge stresses over the linear parts
of the edge displacements, such as the ones in Fig. 7, produces the terms of
the stiffness matrix found by statics. Then the complementary terms may be
found by integration of the products of the edge stresses over the non-linear
parts of the edge displacements with zero values at the corners. The nonlinear
displacements are produced exclusively by the flexural conditions D and E,
and their shape always conforms to the second order parabola with the
ordinates measured from the chords passing through the ends. The ordinates of
these parabolas are fully described by the midlength values.

Influence Lines of Complementary Terms Xx

The edge displacements considered here correspond to the corner movement
ux \ (Fig. 8). Only the condition D is effective in producing the non-linear
components of the edge displacements.

^TPI ,*yz ~
/vx

4^=0 3

k-\X„ ——^— u, — Xv7~Sk +y
+ x2 A±=Ch

\y1

\kx jx(k-l)
y L8& %2kkx

_ jxk
Ayl~ skxUl

A„o P
y*~ Skk^1

Fig. 8.

Edge 1—2. The normal displacements are linear. The nodes 1 and 2 move to
11 i/* 11 H*

the left (Fig. 5) the amount ~-AD wj-ux, while the mid-point
remains at rest. The relative tangential displacement of the mid-

point in relation to the ends is XyX +^rr%.
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zero. Then the dis-
Jfe-1

Edge 3—4. Similarly, the mid-point displacements are A± 0, Xy2 + ux.

Edge 1—3. The vertical displacements of the corners 1 and 3 are +1/4% and

— jr respectively, and of the mid-point
placement of the mid-point in relation to the ends is up A^

The horizontal displacements are produced by two effects: the
curvature and the \x effect.

By the elementary flexure formula, -^ -^ -^ j^^
and the horizontal corner displacement to the left with reference

%x.to the mid-point is ^j? SkU
The horizontal displacements to the left of the corners 1 and 3

and of the mid-point produced by /x effect are respectively —
ku\

This makes the relative displacement of the<*Mi flrir| Mfc+l)2^i
8kk! 8kki '

mid- point in relation to the straight line through the ends

}jlux\ fi(k+l)2ux fjb(k-l)2

8 k!

1 / fjikux
2\ Skx

+ Skkx ÖZ tC rC-t dA fc JCX

The total horizontal displacement of the mid-point of the side 1-

is

i)2kx p(k-+ 8l%+ Z2kkx u,

Edge 2—4. The displacements are equal in magnitude and opposite in sign
compared to the ones on the edge 1—3.

The edge displacements determined here are shown in Fig. 8. If the quantity
ux is made unity the curves become the influence lines of the complementary
terms Xx and X2 of the energy stiffness matrices. They are valid for Xx and
X2 produced by unit displacements u or v of any of the four corners. These
influence lines are antisymmetrical about the vertical axis X.
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Fig. 9.
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The influence lines of the terms Yx and — Y2 corresponding to the
displacement vx= 1 are shown in Fig. 9. They are brought about by the flexural
condition E with AE — \\kvx. These lines are symmetrical about the vertical
axis.

Complementary Term XJ\ Energy Type Matrix Terms

The use of the influence lines of Figs. 8 and 9 is illustrated on the example
of'the complementary factor X^1 whose combination with the factor
determined by statics produces the term X^1 of the energy stiffness matrix.

The displacement vx 1 which creates the edge stresses used in calculation
of Xl1, is made up of the stress conditions A, B, C and E of which only the
stresses of the condition C are capable of making the products with the edge
displacements of Fig. 8 distinct from zero, since the stresses of the condition C
and the displacements are both antisymmetrical about the X axis. On the
other hand the stresses of the condition A, B and E are symmetrical about
the X axis, and the integral of their products with the ordinates of Fig. 8 is

zero.
The edge stresses of the condition C are constant along all edges and they

must be multiplied by the appropriate length of the edge and the mean
displacement equal to 2/3 of the maximum ordinate of the parabolic influence
line.

t TP

The unit shear force in condition C corresponding to ux 1 is ,—.
Then the values of the complementary terms of Xl1 are as follows (Fig. 8).

™ o Et 2 fik 7 fik2Et
Edge 1-2: 777^X^*iV^4(l+/x,)fc1a3 8*! 48(l + /x,)/fef

^ n A Et 2 ii LiEt
Edge 3—4: -— -=—_-_p_a= ^

4(l+fi)kxa 3 8*^ 48{l+[i)kk*'
Edges 1—3 and 2—4 are replaced with stepped lines made up of infinitesimal
horizontal and vertical steps.

2Et (2(k-l)7 2[2 (k-l), 2\k^ fi(k-l)2l (k-l)a)
xa{3 8k ia + 3|_8Ä;+ ±8kkx j 2 j*4(1+/*)*!

Adding these up. The complement to

fc-11 EtY"i [Mfc + iHfc2-1-) fe-i] '
1 L §±kk\ 16JfcJ(l-+ /*)*

The procedure described here allows determination of all complementary terms.
Combination of the complementary terms with the statics type matrix terms
(Table 1) results in the energy type stiffness matrix whose terms are presented
in Table 2. As was pointed out earlier this matrix is symmetrical about its
prineipal diagonal.
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Table 2. No-bar Trapezoidal Cell Energy Type Stiffness Matrix (Symmetrical)

,u1 YU3 YU3 YVt YVl X„V3 X,V3
3ul „«3J*4_. \%f V^,iX4 XVYv1 y*£ JJWl

—Y, Y4 A"^%-Au3=i 4 3V ^ T4 ß 3\~V~*Y»v3
h k,a

ka ,m\Yl Y2 /2Jly2u1 A, k° AY1
Y«u1 I T*^^ 1yu3X2 I Y.ul J *Xj>

_Av3 y£!4_ \ \ vv' vv3/ iUv3
lx;3 lx2vl x^1 Jx2v3 x,v3J

£ plate thickness L ^
4(l-/x2)

*H^+!i ^2) (&+1) (F+2) + ^l -/x) (k+ l)lcx

+

12 k2kx 4P
/*(1-/*)(**-1)(i + l) [8A}+/*(ifea-l)]'

\64 k2 k\

_ \(n+l)(k + l) [2 +^(l-f,)](B-l)(k+l))
1 ~\ 4k + 16kkf P'

y«i lk+1 (l-H-)(Jc+l)kx (l-^)(k + l)(k*+l)
2 \2kx 4F 12 P^

M(l-At)(fc2-l)(Ä;+l)[8Ä;2+/i(P-l)])
64F&? J

'

_ f(l-3^)(fc+l) [2-^(1 -,*)](*»-!)(*+!))
2 ~| 4fc 16&&2 j '

3 t 2fc,
k+i (i-n)(k+i)kx (i-fj,2)(k + i)(k2 + i)H— 4Ä;

/,2(i-M)(P-i)2(& + i;
64fc/fcf

12 kkx

?'-{-i -3/x /zfc l-/x [2fc + ju(l-/*)](fc2-l)(fc+r-+ 4& 16Ä:^f }*•

4 l 2fcx

fc+1 (l-^)(k+l)kx+(l--^)(k+l)(kz+l)

+

4fc 12/fcifc!

64 fc kl '}'•

^4 ~\ 4 2 4& + \2h-li(\-lL)\(k*-l)(k+\)
16&/fc2

7,rfll l3(2-^)kkx + (2 + ^)kx (k*-y.)(k+l) (k*-l)*(k + l)\
1 \ 6*» 4Pi;1 + 32FÄ:? J '

zs* =-r,«1,
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yvl _, 3(2-tM*)kkx + (2 + ^)k1{ [(l-2)g)P + /x](Ä;+l)/vi J
—-12 \ Gk* 4Fi,
(k*-i)*(k + l)\

32&afcf

Yvi _ ik+1 M(3 + ^) ix [2+^(l-ft)fc](fc2-l)(fc+l)]
As ~\ 4 4 2k löifcjfcj J '

_ ((2 + ^)^+1)^ (1-M)(fc+1) (fc2-l)2(fc+l)|
3 ~\ 6& 4fcx 32>fcÄ;f J '

Y„i— fMfc-1) ft fe+l [2-M(l-M)fc](fc2-l)(fc+l)K
4 ~\ 4 2A 4 16££g J '

f (2+ft»)(fc+l)fc1 (1-M)(Ä;+1) (fc«-l)»(fe+l)|
24 ~\ 6fc 4fcx + 32kBx J '

Z|2 Zf1, r2»2 -r1«1, X|2 zii, x%* xt\ r4«2 -r3«1,

v«2 _ ffc+l uk a(k-l) [2k-n(l-n)](k*-l)(k + )}
3 ~\ 4ifc 2 4fc 16&&2 / '

V^2 _ yui Yv2 __ _ yvi yv2 _ yui

r«a - l-3ft u (l-^)fe [2+/x(l-/,)fc](fc2-l)(fc+l))
4 ~{ 4 2jfc 4

"1" 16W2 / '

_ \(2+^)(k+l)kx (l-/x)(fc + l) (fc2-l)2(fc+l))
^4 ~\ 6Ä; 4^ 32kkl J '

t«3 - ffc + 1 (l-ft2)(fc + l)(fc2+l), (l-^Cfc + l)^A3 ~\ 2*! + 12 fei
+ 4

M(l-M)(fc»-l)(fe+l)[8Ä;g-M(t»-l)3|
64 fc3 J '

YuZ _ f[2 + /x(l-M)](fc2-!)(&+!) (1+M)(Ä;+1)|
13 ~\ 16kf 4 I

y«3 _ ffc+1 (l-M)(fe+l)fe! (l-M2)(fc+l)(P+l)
4 \ 2kx 4 12^

/*(!-/*) (k*-l) (k+1) [Skl-n(&- 1)]\+t__—^13—,—J}l,64&3

_ f (l-3^)(fc+l) [2-M(l-M)](fc2-l)(fc+l)|
4 _\ 4 16&2 J '

_ [3 (2-^)^+ (2+^)^ (l-^Hfc+l) (fe2-l)2(fc+l)|
23 ~\ 6 + 4kx + 32kl ] '

y„, f 3 (2-^)^+ (2 +^)^ (ä;+1)(1-2^ + ^ä:2) (k*-l)*(k+\)\
'4 ~\ 6 + 4kx 32kl I '

Xl3 - F4»3, X«4 X^3, 7»4 - 73«3, 7/4 Yp.
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Intercell Continuity

The continuity of displacements of the neighbouring cells in the finite
element model is preserved at the nodes, but not necessarily along the intercell

boundaris and there is a difference of opinion with regard to the significance
of this discontinuity. Some authors maintain firmly that the displacements
must be continuous across the boundaries if the Solution of the model is to
converge to the true Solution of the structure. This view has apparently been

prompted by the use of the Rayleigh-Ritz principle for the derivation of the

energy stiffness matrix.
For this purpose a grid of reference points is established over the plate

under investigation with the interspaces between the nodes having the shape
of the finite elements. The values of the displacements of these points, con-
verging to the exact values on reduction of mesh, may be determined by the
Rayleigh-R/itz principle, whose application results in the same energy type
matrix as the one found above. The necessary condition for the applicability
of the principle is continuity of the displacements along the internodal lines.

It follows from this discussion that the displacement continuity along the
intercell boundaries is a sufficient condition for the validity of the finite element
method, but not the necessary condition. Irrespective of the edge continuity
the finite element method is valid because of the identity of the differential
equations of elasticity in application, on the one hand, to the solid plate and
on the other — to the finite element model of proper deformability with
infinitesimal mesh size.

It may be pointed out that the edge continuity has no meaning in application

to the bar cells, which by their very nature are joined only at the nodes.

Triangulär no-bar cells preserve edge continuity under all conditions, while
the reetangular do not. Yet the precision of the results obtained with the
reetangular cells has been found invariably much better than with the triangulär

ones of comparable size.

Appraisal of Imperfections of Stiffness Matrices

The existence of two different stiffness matrices of unsymmetrical no-bar
finite elements calls for their comparison. No fault can be detected in the
derivation of the statics type matrix, yet its asymmetry violates the basic
structural principle of reeiprocity. The inconsistency must be charged against
the inexaet nature of the method of no-bar finite element.

The energy type matrix may appear more attractive in view of its symmetry,
but the error committed in its derivation in neglecting a part of the Virtual
work speaks against it. Furthermore the inclusion of certain edge stresses into
the corner forces on the opposite side of the cell is contrary to common sense.
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The defects discussed here do not apply to a reetangular no-bar cell or to a
cell in the form of a triangle of any kind. It may be observed that the matrix
of a quadrilateral framework cell is free from the faults of its no-bar counter-
part because unlike the latter it is an actual structure and as such it is subject
to the law of reeiprocity.

The practical significance of the defects of the unsymmetrical no-bar cells
should not, however, be exaggerated. On reduction of the size of cells the
state of stress in the neighbourhood of the individual units approaches uni-
formity, diminishing by that the effect of the flexure conditions D and E,
responsible for the inconsistencies of both types of the no-bar matrix. This
means that the errors induced by the defects of the matrices tend to disappear
on reduction of the size of mesh.

Comparison of the modeis made of bar and no-bar cells is worthy of comment.
The stiffness matrix of the former is based on the uniform stress conditions,
and of the latter — on the uniform conditions assisted by shearless bending.
At first glance one might expect better results with the no-bar cells in view of
their seemingly better conformity to the actual state of stress in the prototype.
The present author himself at one time held this view6). However, the actual
results have not confirmed the expeetation, apart from some cases (like that
of an end loaded wide cantilever beam), favouring the no-bar cells. It appears
that the non-uniform components of the actual stresses in the prototype are
normally not of the nature of shearless bending of conditions D and E, and
for this reason they are not described any better by the matrix of the no-bar
cell than by the one of the framework cell.

Conclusions

1. On infinite reduction of the size of the mesh the finite element Solution
of a plane stress problem converges to the true Solution, provided the rounding
off errors of the Computer are negligible. This is true with regard to both the
bar cells and the no-bar cells of a proper pattern.

2. Two types of stiffness matrix are available for the unsymmetrical no-bar
cells, the statics type and the energy type. They are mutually related by the
"complementary" terms which may be found by the use of influence lines.

3. Both types of the no-bar stiffness matrix contain some theoretical defects
reflecting the inexaet nature of the method utilizing cells of finite size. The
framework cells are free from comparable defects.

4. The stiffness matrix of the framework cell and the energy type matrix
of the no-bar cell are symmetrical about their prineipal diagonals, and so they

6) A. Hrennikoff and S. Tezcan: "Analysis of Cylindrical Shells by the Finite
Element Method". International Conference on Shell Structures, Leningrad, U.S.S.R.,
1966.
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have an advantage in the Computer work over the statics matrix of the no-bar
cell, which does not possess the symmetry.

5. The continuity of the displacements on the intercell boundaries is not
compulsory for the validity of the method.

6. The precision of the results obtained with the three matrices is not
greatly different for the same shape and size of cells.

Appendix. Notation

a small base of a trapezoidal cell
E modulus of elasticity
h height of a trapezoidal cell
k ratio of bases of a trapezoid
kx ratio of height to base of a trapezoid
l distance along boundary of cell
t plate thickness

u, v displacements along x and y axes, nodal displacements
x, y coordinates, coordinate axes
X, Y nodal forces, terms of stiffness matrix
oc base angle in a trapezoidal cell
€ normal strain
y shearing strain
er, cr± normal stress, normal stress on cell boundary
r shearing stress, shearing stress on cell boundary
A±, An displacements on cell boundary perpendicular and parallel to it
A^., A^ displacements on cell boundary parallel to x and y axes

[i Poisson's ratio
A nodal displacement

Summary

The purpose of this paper is clarification of some aspects of the Finite
Element method which so far have not been studied sufficiently closely.

Two kinds of cells used in the analysis of plane stress by the Finite Element
method, framework cells and the no-bar cells, are examined in detail. Two
distinct types of stiffness matrix associated with the latter are presented in
explicit form for a cell having the shape of an equilateral trapezoid. Some
inconsistencies inherent in these matrices are pointed out and their effect on
the results is discussed.
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Resume

Ce papier a pour but de mettre plus de clarte dans quelques aspects de la
methode des elements finis, qui n'ont pas encore ete etudies a fond jusqu'ä ce

jour.
Deux elements utilises par la methode des elements finis dans l'analyse de

contraintes bi-dimensionnelles, sont examines en detail: l'element de barre et
l'element de plaque. Deux types distincts de matrice associee avec ces elements
sont presentes explicitement pour un element ayant la forme d'un trapeze
equilateral. L'attention est tiree sur quelques irregularites inherentes ä ces

matrices, et leur effet sur le resultat est discute.

Zusammen fassung

Zweck dieser Schrift ist, verschiedene Auffassungen des Endlichen-Elemen-
ten-Verfahrens zu klären, derart wie es bis jetzt in seinem Umfange noch
nicht geschehen ist.

Zwei Zellenarten, die in der Analyse der ebenen Spannungen vom Endlichen -

Elementen-Verfahren angewandt werden, nämlich Stabwerkszelle und
Scheibenelement, werden genau untersucht. Zwei verschiedene Steifigkeitsmatrizen,
mit letzteren verbunden, werden explizit für ein Trapezelement aufgeführt.
Auf einige innewohnenden Unstetigkeiten dieser Matrizen wird hingewiesen
und der Einfluß auf das Ergebnis untersucht.



Leere Seite
Blank page
Page vide



The Response of Beam and Slab Bridges to Moving Forces
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Introduction

The dynamic response of a Highway bridge under moving loads is usually
studied by treating the bridge as a beam. Such a treatment would be satis-

factory if the span/width ratio of the bridge is large. It is known that a good
majority of the highway bridges may have spans comparable to the widths.
For such bridges, the beam theory is not adequate and a suitable two-dimensional

theory will have to be adopted to consider the influence of the transverse

flexibility of the bridge on its response.
There have been a few publications in the literature, which take the transverse

flexibility of the bridge into account while studying its response. Alfaro
and Veletsos [1] have conducted some experimental studies on the response
of an aluminium bridge model subjected to a moving sprung load. Later,
Oran and Veletsos [2] developed an analytical Solution to predict the response
of the bridge under moving sprung loads, taking the two-dimensional behaviour
of the bridge into consideration. In their analysis, the beam and slab highway
bridge has been considered as a plate continuous over the beams. Lagrange's
equations of motion have been derived and they have been solved numerically
using the Newmark-ß procedure.

In this paper the beam and slab Highway bridge is analysed as an orthotropic

plate simply supported at two opposite edges. The orthotropic plate
approximation is often used while studying the static load distribution effects
in beam and slab bridges. It is believed that the extension of the orthotropic
plate theory to the dynamic bridge problem would be instructive. This approach
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is feit to be more convenient for numerical studies than the plate-over-beams
analysis used by Oran and Veletsos.

The response of a Highway bridge to moving vehicles is usually studied by
treating the vehicle as a sprung load. Sometimes the vehicle is also represented
by a moving force ignoring its dynamic characteristics. Although the sprung
load analysis is more realistic, this paper confines itself to the problem of the
bridge under moving force for several reasons. The study of the bridge response
under moving force yields useful Information on two aspects. Firstly, the
study isolates the influence of the speed parameter and secondly it reveals the
degree of participation of the various modes in the response.

Analysis

An orthotropic plate bridge simply supported at the edges x 0 and a,
and free at the edges y= ±6/2, will now be considered (Fig. 1). A force P is
considered to move with uniform velocity 'V in the X-direction along the
line y c. P is assumed to be distributed over a square of side 2 e.

S.S

X

Free

2e
2e

Free

d vt
X -nttm

b

-2-A

S.S

w
Section AA

Fig. 1. The orthotropic plate under moving force.

The bridge will be assumed to possess no damping in the following analysis.
Foster and Oehler [3] and Oehler [4] have reported some typical values of
damping in actual bridges. Their measurements have shown that the damping
values are of the order of 1 per cent of the critical. The neglect of damping
appears to be quite reasonable because of the low damping capacity of Highway
bridges. The equation of motion of the bridge under the moving force may
now be written as

D*177 + 2H
xp8x28y2

n 8*W d*w _,.
v dy* 8 t2

(1)

Dx, Hxy and Dy are the orthotropic plate rigidities and W (x, y, t) is the dynamic
deflection of the bridges. F (x, y, t) represents the moving force-distribution
function. p is the mass per unit area of the bridge. The deflection W will now
be separated into two parts:
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W(x,y,t)=W(x,y,t)+U(x,y,t), (2)

where W satisfies the equation

D*^ + 2H«8*8? + D'Wr F{X'V't)- (3)

W represents the deflection of an orthotropic plate whose mass is neglected,
under the action of a moving force P. This deflection can be obtained by static
analysis and is dependent only on the position of the moving force on the

bridge and not on its speed. W will be referred to as the "crawl Solution".
Combining Eqs. (1), (2) and (3),

x dx* + xydx2dy2^ v dy* +P dt2 p dt2 ' }

It may be observed that it is easier to solve Eqs. (3) and (4) separately, than
the composite Eq. (1). The difficulty in solving (1) arises due to the concentra-
tion in the force P. Eq. (4) is free from this difficulty since the inertia force

d2 W
P~?iW~ *s we^ distributed over the bridge surface. The problem of the concen-

tration of the force still persists in Eq. (3) but it is handled with far greater
convenience since the time dependence of W is known beforehand from the
time dependence of F(x,y,t). The Solution of Eq. (4) does not present any
problem. U(x,y,t) will be referred to as the "inertia force Solution".

The Solutions of Eqs. (3) and (4) will now be obtained by using the charac-
teristic funetions of the orthotropic plate. These funetions have been studied
in detail by Sundara Raja Iyengar and Narayana Iyengar [5, 6]. The

various characteristic funetions are presented in Appendix. Let Ymn (y) Sin——

represent the deflection shape of the orthotropic plate in one of its modes. Let
Pmn De ^he circular frequency of Vibration for the same mode. The orthogonal

property of the characteristic funetions Ymn Sin can be made use of in

expanding arbitrary funetions by a series of these funetions.
The function F (x, y, t) may be defined as

P_
4e2

0 if. x <d — e or >d + e and y<c — eor >c + e,

where d vt.
This function may now be expanded by a double series. The series assumes
the form:

00 OO ryyi _ ry.

F(x,y,t)= 2 2 bmn(t)Ymn(y) Sin--p. (6)
m=l,... n=l,... ^

Hence, bmn (t) J J Y2n Sin2^-^dxdy P Sin ^^- fmn,
0 -&/2 a a

F(x,y,t) -j-g if, d — e<x<d + e and c — e<y<c + e,
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Cj. IIVTTV C_J-e
oin i /•

where fmn —^7- — J Ymndy.

a c-e
(L -tu] ii 771, TT X

Putting Kmn ab=j J Y2n Sin2 —— dx dy;
0 -5/2 «

bmn(t) =/%Sin^. (7)
Kmnao a

Now W (x,y,t) may also be expanded by a series in terms of 5^nSin——.
OO OO TT) TT T

W(x,y,t)= 2 2 aMB(0rm„Sin^-. (8)
m=l,... w l,... **

Combining (3), (6) and (8)

n m _
Pa2 a fmn q. ^^* mx

where A - p^mnCi

This equation is a consequence of the fact that Ymn Sin —— is a characteristic

function of the orthotropic plate. Hence

00 00

f= Pa2 a \^ ST* f^ o,. m tt v t ^T ~. ra 7r a?If E I ^Sin^^Sin^. (10)
¦^-'aj ° m=l ...n l ...mn-^mn

The Solution of Eq. (4) may now be taken in the form

00 00 ryyi TT T
U(x,y,t)= 2 2 qmn(t)YmnSm^-. (11)

m=l,... w=l,... tt

Combining Eqs. (4), (10) and (11),

n +m* a
Pa* a fmn m2 tt2 V2 m tt V t

<lmn^Pmn<lmn ^ fc XmnKmn O2 a ' K '

m 1, 2 w 1, 2

The Solution of this set of equations is quite straightforward and can be com-
pleted if the initial conditions are known. In this paper, the bridge will be

considered to be at rest initially. Accordingly,

W(x,y}0) 0 (13a)

dW
and -gy-(*,y,0) 0. (13b)

These equations lead to the relations,
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U(x,y,0) -W(x,y,0)
dU dW

and —(x,y,0) —— (x,y,0)

or, qmn (0) 0 and qmn (0)

where

Pa2 a fn

±Jx u nmn xv mn

rriTTV
aw

a

The Solution of (12) can now be finally expressed as,

gmn(*) ^f fyH- (^ "JL (sin^f-^Sinp^f) (14)
±Jx u /y-mnJYmn \Pmn am/ l am

Computation of Amplification Factors

From (2), it follows that
oo oo

rX^Vf I I 7f-*-s™°7v _.,,¦"^a? L v m=l,...n=l,..7 mn mn yrmn ^m)

•fsina^-^Sinzw} (15)

where 8,, - £ £ _^Sinam*7mTOSin^. (16)
m l,... n=l,... mn Is^mn a

SD can be computed by summing the series in (16). Since the speed does not
influence the values of 8^ directly, the values can be obtained for closely
spaced load positions after setting vt d. The resulting influence line can be
used to compute the values of S^ for any load position by interpolation,
irrespective of the speed of the moving force. The dynamic amplification
factor for deflection may now be defined as

ÄFD r^L.- (17)

The expression for the moment amplification factor may be deduced in a
similar manner.

d2W
Now, Mx -DxT^

neglecting the Poisson's ratio effect.

L m=l,... n=l,... mnx^mn \Fmn <*m/

.{sin«m*-^Sin^7mwSin^], (18)
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where BM £ £ £ /?-_ Sin «^ m2 tt2 YwwSin^. (19)
m=l,... n=l,... mn ^mn a

The computation of 8^ can be carried out for various load positions irrespective
of the speed of the moving force. The amplification factor for Mx now takes
the form,

AFM= f* (20)

The computation of the maximum amplification factors for deflection and
moment requires the values of Wmax and Mxmax. These are to be obtained
from the expressions (15) and (18) respectively. To this end, the deflection and
moment are calculated at closely spaced values of "t" and the maximum
values are picked out from the history curves so obtained.

Numerical Studies

The values of the amplification factors for deflection and moment can be

computed by considering a suitable number of terms in the series (15) and (18).
The results of the numerical studies are presented in two forms — (a) The
amplification spectra and (b) The history curves. The amplification spectra
are the plots of maximum amplifications of deflection and moment against the

vT
speed parameter. The speed parameter may be defined as a ^— where "v"
is the speed of the force and T is the fundamental period of the bridge. The

history curves reveal the time Variation of the bridge deflection and moment
at a particular point as the force crosses the bridge with a definite speed.

The most important variable besides the speed parameter, is the transverse
position of the moving force. In this study, two values of the transverse position

are considered by taking c 0.456 and c 0.0. The former corresponds
to the eccentrically loaded case and the latter to the concentrically loaded
case. It is not feasible to consider c 0.5b for the eccentric loading since the
force is considered to be distributed over a finite area. In all the computations
ejb is taken to be 0.05.

The values of 8^ and SM are first computed for fixed locations of the moving
force. The values of these coefficients for any position of the moving force

may then be found by interpolation. The determination of the dynamic deflection

and the moment now requires the summation of series in (15) and (18).
This may be carried out by considering a finite number of terms depending
on the rapidity of convergence of the series. The time Variation of the deflection
and moment at any point in the bridge has to be studied by selecting a definite
time interval. This interval naturally depends on the highest frequency
appearing in the series. In what follows, the computation has been carried out
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by selecting the time interval to be one-tenth the period of the highest mode
considered. The maximum values of the deflection and the moment can also
be picked out while studying the time Variation of these quantities. These
values may then be used to compute the maximum amplification factors.

The results of the various numerical studies are presented in the following
sections. The entire procedure has been programmed in Fortran to work on
the CDC-3600 Computer at the Tata Institute of Fundamental Research,
Bombay. The dynamic deflection and moment have been computed only for
points at midspan. Five points at midspan have been considered: y ± 0.45 fe;

y +0.2256 and y 0.0. All the dynamic quantities are presented as ratios
of the maximum static effects at the point under study.

Two typical Highway bridges are considered for detailed numerical investigation.

The dimensions and the properties of the two bridges are presented
in Table A.

Table A. Details of bridges considered

No. Bridge Type Span a\b DxIDy j/Z)x(kg-™)1/2 p kg • sec2/m3Hl]/DxDy

1

2
Slab
Beam and

Slab

5 m

20 m

1.0

2.0

1.0

100.0

1.0

0.4

2500.0

25000.0

60.0

90.0

It is believed that the two bridges are representative of a good majority of
Highway bridges where two-dimensional effects are prominent.

Convergence of the Solution

The convergence of the series in (15) and (18) are studied by considering
different number of terms. The time histories for AFD and AFM for various
number of terms considered are presented in Figs. 2 to 5. In all these figures
a maximum of three modes are considered and the highest mode corresponds
to m l and n 3. The Solutions by considering lesser number of terms are
also plotted to study the convergence.

Fig. 2 shows the behaviour of AFD for the beam and slab bridge under
eccentric loading, the speed parameter being 0.193. The figure shows that the
difference between the 2-mode Solution and the 3-mode Solution is small. The
Solutions for four modes and five modes were also computed and the resulting
AFD's were found to coincide with the 3-mode Solution on the graph. The
figure also shows that the substantial component of the response consists of
the first three modes of Vibration of the bridge.

Fig. 3 shows the Variation of AFM for the beam and slab bridge under
eccentric loading. The speed parameter is again equal to 0.193. The con-
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Fig. 2. Influence of various modes on the
midspan deflection in the beam and slab
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Fig. 3. Influence of various modes on the
midspan moment (Mx) in the beam and

slab bridge.
Force along y 0.45; a 0.193.

vergence of the dynamic moment is seen to be quite satisfactory. Consideration
of higher modes did not cause any appreciable change in the values of AFM
and the first three modes may be considered to dominate the response. Fig. 4

shows the AFM Variation for the beam and slab bridge under concentric
loading. Because of the concentric loading, the second mode does not partici-
pate in the response and only the first mode and the third mode affect the
moment and deflection values. The convergence of the values is again seen to
be satisfactory with the first three modes. Consideration of more terms did
not lead to any change in the graphs presented in Fig. 4.

Fig. 5 shows the behaviour of AFM for the slab bridge under eccentric
loading, the speed parameter being 0.197. The consideration of modes more
than three again did not introduce any noticeable changes in the history
curves. Although the Figs. 4 and 5 consider the convergence of AFM, the
convergence for AFD for the same cases was also found to be quite
satisfactory. Comparison of the two series in (15) and (18) shows that the terms
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Fig. 5. Influence of various modes on the
midspan moment (Mx) in the slab bridge.

Force along y 0.45 6; a 0.197.

are practically identical and the same rapidity of convergence may be expected
for both AFM and AFD.

The convergence studies made in the above considered only terms with
m 1. Some sample calculations were made including the term corresponding
to m 3 and n l. It was found that the addition of this term did not alter

any of the history curves presented. The influence of modes with m greater
than unity may therefore be safely neglected for the midspan response. Modes

with m 2 need not be considered for midspan response as such modes will
have a nodal line at the midspan. These modes would be of importance while
considering the response of points away from the midspan.

The Amplification Spectra

The maximum dynamic amplification of any response quantity of the
bridge under a moving force may be conveniently studied by drawing spectral
curves. In this study the maximum amplification factors for deflection and
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moment (Mx) at midspan are plotted against the speed parameter a. Three

points at midspan are considered: y ±0.45 6 and y 0.0. The spectra are
drawn for (a) the eccentrically loaded case (c 0.45 fe) and (b) the concentrically
loaded case (c 0.0). The slab bridge and the beam and slab bridge considered
earlier are analysed for the spectral curves. All the computations are made

taking 5 modes (m=l for all modes) into consideration.
The spectra are presented in Figs. 6 to 9. Figs. 6 and 7 refer to the concentric

loading of the slab bridge and the beam and slab bridge respectively. In each

figure, the spectral curves by the simple beam theory are also inserted for
comparison. The two figures show that the amplification factors for y 0 and

x a/2 in concentrically loaded bridges follow much the same pattern found
in the midspan of a beam. The amplifications of y 0 and x a/2 in the two
bridges are somewhat lesser in magnitude than the amplifications at the
midspan of a beam. The amplification factors are larger at the edges than at y 0

and x al2. The (AFM)max and (AFD)max values at the edges are practically
identical in both the bridges. The amplifications at the edges of the beam and
slab bridge are quite large and reach values of the order of 1.5 for the higher
speeds.

Figs. 8 and 9 show the (AFM)max and (AFD)max values in the slab bridge
and the beam and slab bridge respectively, due to eccentric loading. The

amplification factors at the loaded edge (y 0A5b) do not closely follow the

y=0.45b

— AFD max
— AFM maxAFDmax 2 12

— AFM y=0.45bmax
5 1.2

y=0.0
< 1.1

\ y=0.0 «1J0

Orthotropic plate theory<0S
Orthotropic plate theoryP0.9

77
Beam theory Beam theory0.90.9

0.05 0.10 0.5 0.20 0.05 0.10 0.15 0.20

Fig. 6. Amplification spectra for the slab
bridge with concentric moving force.

Force along y — 0.0.

Fig. 7. Amplification spectra for the beam
and slab bridge with concentric moving

force. Force along y 0.0.
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Fig. 8. Amplification spectra for the slab bridge
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Fig. 9. Amplification spectra for the
beam and slab bridge with eccen¬

tric moving force.
Force along y 0.45 b.

pattern found in beams. The disparity between the beam theory and the two-
dimensional theory is greater for the beam and slab bridge. The unloaded edge
(y — 0.45 fe) experiences quite large amplifications. There are considerable
differences between the behaviour of the slab bridge and the beam and slab
bridge with reference to the response of the unloaded edge. The beam and
slab bridge shows pronounced oscillations at the unloaded edge in contrast
to the slab bridge.

When the beam and slab bridge is subjected to eccentric loading, the
unloaded edge experiences amplifications of the order of 5.0 for the higher
speeds of the moving force.

The Transverse Distribution of Dynamic Effects

Fig. 10 shows the profile Variation of the midspan deflection and moment
in the beam and slab bridge as the force moves along, the speed parameter
being 0.193. The figure refers to concentric loading (c 0.0). The dynamic
profiles are plotted in bold lines for various positions of the force along the
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bridge. The static deflection profile at midspan, when the force is also at
midspan, is shown in dotted lines along with each profile sketch.

The dynamic deflection profile is seen to be dominated by the contribution
of the fundamental and the second Symmetrie modes. The change in the
profile as the force moves from d — 0.552 a to d 0.69 a clearly indicates the
partieipation of the second Symmetrie mode. Fig. 10b) shows the dynamic
moment Variation (Mx) at midspan. Unlike the maximum static moment at
midspan, the dynamic moment is more uniformly distributed across the width
of the bridge. This may be attributed to the distributing effect of the inertia
forces of the bridge.

Fig. IIa) shows the midspan deflection profile of the beam and slab bridge
as the force moves eccentrically along y +0.45fe. The speed parameter is
again 0.193. The partieipation of the various modes is more complex in eccentric
loading than what is found in concentric loading. Fig. IIb) shows the midspan
moment (Mx) Variation across the width for eccentric loading of the beam and
slab bridge. The dynamic distribution of the deflection and the moment Mx
are both seen to be more uniform than the maximum static profiles.
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History Curves

The history curve for any response quantity shows the quantity as a function

of time as the force crosses the bridge. Some typical history curves for
the deflection and moment at midspan of the two bridges are presented here.
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Fig. 12. History curves for the midspan
deflection and moment amplifications in

the slab bridge.
Force along y 0.0; a 0.197.
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Fig. 13. History curves for the midspan
deflection and moment amplifications in

the beam and slab bridge.
Force along y 0.0; a 0.193.

Figs. 12 and 13 show the history curves for the slab bridge and the beam
and slab bridge respectively, when the moving force is concentric. The speed

parameter is 0.197 for the slab bridge and 0.193 for the beam and slab bridge.
There are considerable differences between the moment (Mx) and deflection
curves for ^/ 0.0. This may be attributed to the differences between the
static influence lines for the two quantities. The influence line for Mx at y 0

and x 0.5a has a very sharp peak at the centre. The deflection influence line
for the same point happens to be a much smoother curve. Even after adding
the inertia effects, the differences between the time Variation of the two
quantities show up in the history curves. It is also seen that the maximum
dynamic moment for y 0.0 occurs when the force is very close to midspan if
not at the midspan. The maximum dynamic deflection at y 0.0 may oceur
even when the force is well removed from midspan. The Situation is somewhat
different for midspan points at y ±0.45fe, wherein the moment and deflection

amplifications follow each other very closely. In contrast to the point
y 0.0, the inertia effects are comparable to the static effects at the points
y ±0.45fe.

Figs. 14 to 16 show the history curves for eccentrically loaded bridges.
Fig. 14 refers to the slab bridge subjected to an eccentric moving force, the
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speed parameter being 0.197. Figs. 15 and 16 refer to the beam and slab bridge
under eccentric moving force, the speed parameter values being 0.097 and
0.193 respectively. The history curves for y +0.45 6 and x 0.5a follow
much the same trend followed by the curves for the midspan point at y 0.0
in the case of concentric loading. The inertia effects dominate the response
as points farther away from the line of loading are considered. This is especially
true for the beam and slab bridge, where the edge y — 0.45 fe reveals an
interesting feature. The point at midspan of this bridge corresponding to
y — — 0.45 fe, executes a beating type motion as the force moves along the
edge y +0.45fe. The dynamic effects in this case are far in excess of the
static response values. Large amplifications are obtained and the maximum
amplification may occur when the force is nearing the support x a (Fig. 16).
This beat phenomenon is observed for both the values of the speed parameter
(a 0.097 and 0.193) considered in Figs. 15 and 16. This behaviour may be

directly attributed to the frequency distribution existing in the beam and
slab bridge. In Table B the frequencies of the two bridges described in Table A,
are tabulated. The Table shows that the first two frequencies of the beam
and slab bridge are quite close. This closeness of the frequencies causes the
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beat type phenomenon at the unloaded edge. The frequencies of the slab

bridge are quite sparsely distributed and the unloaded edge of this bridge does

not show the beating motion for eccentric loading.

Table B. Frequencies of the bridges

Type
Frequencies in cjs (m 1 for all modes)

Fundamental I Asymmetrie II Symmetrie II Asymmetrie

Slab
Beam and Slab

20.27
10.34

36.73
12.09

80.57
18.98

159.3
33.88

Conclusions

Some general conclusions may be drawn from the results obtained for the
two typical bridges. The conclusions may be summarised as follows:

a) The midspan response of the Highway bridge is influenced mostly by the
first three modes of Vibration. Although this conclusion has been drawn with
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reference to two bridges, it may be extended to other bridges where the
frequencies of the first three modes are clustered together. It has been shown

by Sundara Raja Iyengar, Jagadish and Narayana Iyengar [7] that the
frequencies of most of the Highway bridges follow this pattern.

b) When a bridge is subjected to a concentric moving force, the
amplification factors for points below the moving force follow the trend found in
beams. The values of the amplifications found by the orthotropic plate theory
are smaller than the values found by the beam theory. When the bridge is
under eccentric moving force, the amplifications for points below the moving
force do not closely follow the trend found in beams.

c) For a point underneath the moving force the maximum moment occurs
when the force is at the point or very close to it. The maximum deflection at
the point ean occur even when the force has moved away from the point.

d) The maximum amplification increases as points away from the line of
loading are considered. The largest amplifications are realised at the unloaded
edge of a bridge under eccentric loading. This effect is more pronounced in
the beam and slab bridge than in the slab bridge. If the first two frequencies
of a bridge are very close, the unloaded edge executes a beating type motion,
when the bridge is under eccentric moving force.

Notations

Amplification factor for deflection
Amplification factor for moment
Span of the bridge
Width of the bridge
y-eo-ordinate of the moving force
x-co-ordinate of the moving force at any instant
Orthotropic plate constants
Half the side of the square distributing the force over the bridge
surface
Circular frequency of the orthotropic plate
Inertia force Solution
Speed of the force
Dynamic deflection of the plate
Crawl Solution
Parameters in the plate characteristic function

Crossing frequency

Speed parameter
Influence coefficients for static deflection and moment
Frequency parameter
Mass per unit area of the orthotropic plate

AFD
AFM
a
b

c

d vt
Dx ,Dy,H,
e

Pmn
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Appendix

The expressions for Ymn (y) are presented in this appendix. The funetions

FmwSin—— happen to be the shape funetions of an orthotropic plate with
two opposite edges simply-supported and the other two free. The expressions
for the funetions may be easily obtained by a free-Vibration analysis of the
plate.

Modes Symmetrie in y — n is odd

(I) Dx + 0,

L (y)
Cosh QCmny 2 Dl m2?r2fo2 pn„fi™>ny

b °Cmn Dy a2 b
+

Cosh^
' ^g m££ Cos/^

where ocmn and ßmn satisfy the equations,

tan%*
Z ^mn

ß2 +rmn ^
Di m27r262'
~Dy Ö2

OL**mn n
Dx m27r2/

a2

tanhẑ

2Hxym2rr2b2
iL a2 P\2

mn 'and

(II) Dx 0,
Yml(y) i

and ßml =0.

For values of n greater than unity, expressions of (I) may be used.

Modes antisymmetric in y — n is even

Sinh«
Ymn (y) — +

Sinh^p

2 _ Dl m2 "* b*~

Pmn "t"
Di m27T262

Wy Ö2
_

Sin %mny

Sin^p
'

where <xmn and ßmn satisfy the equations,

9 Di m27r262'
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Summary

The dynamic response of simple-span beam and slab Highway bridges
subjected to a moving concentrated force is studied. The Highway bridge is
treated as an orthotropic plate, and the normal mode method is used in the

response analysis. Numerical results are presented for typical cases in the
form of amplification spectra and history curves.

Resume

L'auteur etudie le comportement dynamique de ponts d'autoroute en dalle,
ä une seule ouverture, sous une force mobile concentree. La methode normale
est employee pour l'analyse du comportement, le pont etant assimile ä une
dalle orthotrope. Pour les cas-types, des valeurs numeriques sont donnees

sous forme de spectres amplificateurs et de courbes d'hysteresie.

Zusammenfassung

Der Autor behandelt das dynamische Verhalten von einfachen Platten-
und Balkenbrücken für Autobahnen unter einer konzentrierten, beweglichen
Kraft. Die Brücke wird als orthotrope Platte behandelt und die Rechenwerte
mit der normalen Methode ermittelt. Für typische Fälle sind numerische
Werte angegeben in der Form von Vergrößerungsspektren und Hysteresis-
kurven.



Die Verschiebungsmethode in der Theorie der dünnwandigen Stäbe und
ein neues Berechnungsmodell des Stabes mit in seinen Ebenen

deformierbaren Querschnitten

Displacement-Method in the Theory of Thin-Walled Members, and a New Calcu-
lation-Model for the Thin- Walled Bars with Deformable Contours

La methode des deplacements dans la theorie des membres ä parois minces et un
nouveau modele de calcul pour des membres ä parois minces avec contour deformable

CURT F. KOLLBRUNNER NIKOLA HAJDIN
Dr. sc. techn., Dr. h. c, Zollikon, Dr. sc. techn., Professor an der

Zürich Universität Beograd

1. Einleitung

Vor über fünf Jahren begannen wir die Theorie der dünnwandigen Stäbe
systematisch zu bearbeiten.

Bisher hat sich unsere Arbeit auf die Probleme der linearen Theorie
beschränkt und ist in den Publikationen [1] bis [6] erschienen. In der Folge
beabsichtigen wir, mit unserer Arbeit weitere wesentliche Bereiche, welche mit
dem Gebiet der dünnwandigen Stäbe und ihrer Anwendung im Bauwesen
zusammenhängen, zu erfassen1).

In den letzten Jahren wurde die lineare Theorie durch eine ganze Anzahl
von Verfassern eingehend behandelt. Der Hauptzweck unserer bisherigen
Arbeit war eine Zusammenfassung und Vereinheitlichung der auf diesem
Gebiete gewonnenen Erkenntnisse unter besonderer Berücksichtigung ihrer
praktischen Anwendung zu schaffen.

Einige Ergebnisse dieser in den erwähnten Monographien behandelten
Arbeit stellen unseres Erachtens nach einen Beitrag zur Theorie dieser
Konstruktionen dar:

In der Arbeit [3] ist die Statik der Systeme dünnwandiger Stäbe mit offenem
Profil als eine Erweiterung der Lehren der klassischen Statik gebracht. Der

x) Ein Teil dieser Probleme wurde im Artikel [7] erwähnt.
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Aufbau der Theorie erfolgt in erster Linie durch die konsequente Anwendung
des Prinzips der virtuellen Arbeit bei der Variation der Spannungen sowie
durch die Entwicklung der verallgemeinerten Kraftgrößenmethode.

Eine sehr ausführliche Übersicht und Darlegungen der einzelnen Methoden
für die praktische Berechnung dünnwandiger Stäbe mit geschlossenem Profil
wurde in der Publikation [4] gebracht.

In dieser Veröffentlichung wurde ein besonderes Gewicht auf die
Erläuterung der Verfahren von Benscoter [7], Umanski [8] und Heilig [9],
sowie auf den Vergleich derselben mit der genaueren Theorie von Wlassow
[10] gelegt.

Die Ergebnisse dieser Vergleiche sind vom praktischen Standpunkt aus
interessant, doch können wir an dieser Stelle nicht näher auf sie eingehen.

Eine ausführliche kritische Darlegung des Berechnungsverfahrens von
Kubitzki, welches auf dem sog. Schubfeldschema beruht, wurde im letzten
Kapitel der Publikation [4] gebracht.

Die Theorie des langen prismatischen Faltwerks bzw. des dünnwandigen
Stabes mit in seinen Ebenen deformierbaren Querschnitten unter Anwendung
der Verschiebungsmethode wurde eingehend in der Arbeit [5] behandelt. Die
in dieser Publikation dargelegte Theorie konnte in einer genügend allgemeinen
Form entwickelt werden, so daß in ihr als Sonderfälle die sogenannten Theorien
des steifknotigen und des gelenkigen Faltwerks sowie die klassische Theorie
der Wölbkrafttorsion enthalten sind.

Abgesehen von diesen Sonderfällen ist es, unabhängig von der für die
Analyse angewendeten Methode, außerdem noch möglich zwei Berechnungsmodelle

aus dem allgemeinen Berechnungsmodell zu gewinnen.
Das erste kann als eine Erweiterung der klassischen Theorie der Wölbkrafttorsion

auf Querschnitte, deren Wandstärke nicht ausgesprochen klein im
Vergleich zu seinen übrigen linearen Abmessungen ist, angesehen werden2).

In diesem Beitrag wird das zweite Berechnungsmodell behandelt, welches
eine Theorie des Faltwerkes unter Berücksichtigung auch der Torsionsmomente
ermöglicht.

2. Verformung des Stabes

Wir betrachten einen geraden dünnwandigen Stab mit offenem Querschnitt.
Die beliebig geformte Profilmittellinie ersetzen wir durch einen Polygonzug.
Die Wandstärke t zwischen zwei Knoten sei konstant.

Die Lage eines beliebigen Punktes auf der Mittelfläche ist durch die Koordinaten

s und z bestimmt. Die Koordinate s ist die längs der Profilmittellinie
gemessene Entfernung des Punktes von einer vorher bestimmten Erzeugenden

2) Siehe die Arbeit [5], Kapitel 10.
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und z dessen Abstand von einem beliebigen Querschnitt, gemessen längs der
Stabachse (Fig. 1).

m=6

P(xp,yP)

ynp

Fig. 1.

Den Abstand eines beliebigen, nicht auf der Mittelfläche gelegenen Punktes
von derselben gemessen in Richtung der inneren Normalen bezeichnen wir
mit e.

Außer dem Koordinatensystem s, z und e führen wir das Kartesische
Koordinatensystem x, y und z ein, wobei wir, der Einfachheit halber, für die
Achsen x und y die Hauptträgheitsachsen des Querschnitts wählen.

Die Verschiebungen der Punkte der Mittelfläche in den Richtungen s und z

bezeichnen wir mit v und w und die Verschiebungskomponenten in den

Richtungen x und y mit | und rj.
In bezug auf die Verformung der Mittelfläche des Stabes treffen wir die

folgenden Voraussetzungen:

1. Die den Stab bildenden Platten erleiden in der Querrichtung keine

Dehnungen, d.h. €s 0.

2. Die Gleitverzerrung yzs in der Mittelfläche des Stabes wird vernachlässigt.

Die erste Voraussetzung besagt, daß die Verschiebungen der Knoten der
Profilmittellinie in der Ebene des Querschnittes gleich sind den entsprechenden
Verschiebungen von Knoten einer kinematischen Kette, deren einzelne Glieder

aus in diesen Knoten gelenkig miteinander verbundenen Stäben bestehen,
deren Achsen mit den Seiten der polygonalen Profilmittellinie zusammenfallen.

Die Zahl der voneinander unabhängigen Verschiebungen Vi Yi (z)

(i 1, 2. .n) ist gleich dem Freiheitsgrad der kinematischen Kette.
Wir wählen für die ersten drei unabhängigen Parameter die Verschiebungen

des Querschnitts in den Richtungen x und y und dessen Verdrehung um den

beliebigen Punkt P (Fig. 1):

*Wo> V2 V0> K cpp. (1)
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Die übrigen n — 3-Verschiebungen beschreiben die Formänderung des
Querschnittes in seiner Ebene (siehe z.B. das Verschiebungsdiagramm in der

Fig. 2 a) für den Fall, daß wir die vollkommene Starrheit der Platten in der
Querschnittsebene und ihre gelenkige Verbindung in den Knoten voraussetzen.

b)y< =i- mr6
m=6

i>3
a) 60

c 4P

k=1

;=7

Fig. 2.

Die Verschiebung des beliebigen Punktes in Richtung der Tangente an die
Profilmittellinie können wir in der folgenden Form ausdrücken:

v(z,s)= 2 Vi(z)v^(s).
i l

Die Funktion v^ stellt die Verschiebungen v für Vi= 1 dar (Fig. 2 a).
Insbesondere ist:

i/D — sina, #(2) eosa, v^ — hV̂p,

(2)

(3)

wo a der Winkel ist, welchen die positive y-Achse mit der Profilmittellinie
einschließt und hp der Abstand der Tangente an die Profilmittellinie von P ist.

Aus der zweiten Voraussetzung folgt:

dw dv
—-=-—- bzw. w (z,
ds dz -^~ds+W0(z).

Durch Einsetzen des Ausdrucks (2) für v erhalten wir:

w(z,s) -Z V!(z)^(s)
i 0

,(0) i, w(i) J f/f> ds und 70' -W0 (z)
o

wo:

sind. Insbesondere ist:
s

cü(1) x, o0 y, o>(3) — §hPds o)p.
o

Wir wählen ein System orthogonaler Funktionen aj(£(s), i 0,1,2. .n:

(4)

(5a,b,c)

«2>=i>

und
i-l

X,

e

™%) y

<*><§ o>«> + 2 ßijco$, i 3,±...n.
j=0

(6)

(7)

(8)
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Aus der Orthogonalitätsbedingung erhalten wir:

jta)<f>w(gd8
ßiJ SSt[a>$]2ds> (9)

s

wobei sich die bestimmten Integrale im Zähler und Nenner über die gesamte
Länge der Profilmittellinie erstrecken.

Statt v^ erhalten wir:

v^ v^, für i =1,2

und «#> v^ + V ß.. v%\ für i 3, 4. n.

Den neu eingeführten Funktionen entsprechen die neuen, verallgemeinerten
Parameter @i (z):

&i Vt, für i l,2

und ®i=Vi + %Ilßij®ii> für i 3,4...n.
i=i

Man kann leicht ersehen, daß oj{$=Q sie sog. normierte sektorielle Koordinate
und v{Z) h der Abstand der Tangente an die Profilmittellinie vom
Schubmittelpunkt D ist.

Mit den neu eingeführten Funktionen erhalten wir statt der Ausdrücke
(2) und (4) für v und w:

n
v(z,s) I ©«(«)«»(«), (12)

i 0

«> (*,*) -2 e; (2) «$(«), (i3)

wobei v® =0 ist. (14)

Die Parameter &i bestimmen vollständig die Verschiebungen der Knoten
k(k= 1, 2. .n) in der Ebene des Querschnittes, wobei wir auch die Enden der
Profilmittellinie zu den Knoten zählen (siehe Fig. 1).

Für die Verschiebung u in Richtung der inneren Normalen zur Mittelfläche
führen wir eine Näherungslösung von der Form ein:

n in
u(z,s) Z®i^)^(s)+Z^k(z)u%Hs) + up(z,s). (15)

i=0 fc=l

In diesem Ausdruck bedeuten &k die unbekannten, durch die Formänderung
des Querschnittes hervorgerufenen Knotenverdrehungen und u($ sowie u(£>

bekannte, durch die folgenden Ausdrücke bestimmte Funktionen:

u^ 0, u™ cos oc, u(2) sin a, u(® hne 0 @ 0
m K N '

^) 2 2>$<r), » 4,5...»,
k=lr=l
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und

r=l
R

Up 2j ukr,p '

(17)

(18)

Die in den Ausdrücken (15) bis (17) neu eingeführten Bezeichnungen haben
die folgende Bedeutung:

hn: Abstand der Normalen zur Mittelfläche vom Schubmittelpunkt D;
affil : Projektion der Verschiebung des Knotens k in Richtung der Normalen

auf die Platte kr, welche die Knoten k und r verbindet, für den Zustand
6^ 1, (i 4,5...n);

uffi: definiert die elastische Fläche des unendlich langen, an den Rändern
k und r (Fig. 3) eingespannten Plattenstreifens für den Fall, daß die
Kante k die Einheitssenkung erleidet.

u^) _ frk \

Kr L
1

skr(Skr~~Srk)

Kr
(19)

B: Gesamtzahl, r 1, 2. R der an den Knoten k angeschlossenen Platten.

Die im Ausdruck (17) angeführte Funktion

u{^\ definiert die elastische Fläche des unendlich langen, an den Rändern k
und r eingespannten Plattenstreifens für den Fall, daß die Kante k

(Fig. 4) die Einheitsverdrehung erfährt.

w(kr) —
Skr srk

0 h2°kr
(20)

Die Funktion

ukr definiert die elastische Fläche des erwähnten Plattenstreifens zufolge
der in der Richtung der Normalen zur Mittelfläche wirkenden, gegebenen
Belastung pn.

Dur bkr

(kr)
$k=1

A
(kr)

bkr -^m— bk(kr)

Fig. 4.

Jj>kr
r.(kr) Fig. 3
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3. Schnittkräfte. Gleichgewichtsbedingungen. Grundlegende Differential¬
gleichungen des Problems und Randbedingungen

Hinsichtlich der Schnittkräfte wollen wir folgende Vereinfachungen annehmen:

a) Die Biegungsmomente mz in der Längsrichtung werden vernachlässigt,
ebenso wie der Einfluß der Krümmung u" in der Längsrichtung auf die
Biegungsmomente ms in der Querrichtung.

b) Die Torsionsmomente mzs zwischen je zwei Knoten mögen konstant und
proportional der spezifischen Verdrehung der diese Knoten verbindenden
Sehne sein.

Für die Schnittkräfte nz, mzs und ms erhalten wir, unter Berücksichtigung
dieser Vereinfachungen sowie der Voraussetzungen über die Verformung des
Stabes und des Hookesehen Gesetzes:

t3 fi
nz E'tw', mzs E'~(1-v)<> ^s ~Efj^ü, (21)

wo ü0 die Verdrehung der Sehne zwischen zwei benachbarten Knoten und

W -^-ä ist.

Durch Einsetzen der Ausdrücke (15) und (13) für u und w in die Gleichung
(21) erhalten wir:

n

'.= -^(l-')E»Hfl.. (22)
*-Zi y — ni=0

E' t3 I n\ I n m \
- 2 8^+Z«-\i 0 k=l *7

m R
™ Ä§>0 «g,o «8,o 0, Äg>0=l, <0=2 2«Sg«gJ (23)

ft lr=l
t3

und w8iP=-E, — ü,p (24)

bedeuten. Für ü(^ (Fig. 3) erhalten wir:

ükr

Wir schneiden aus dem Stabe ein durch die Querschnitte z0 und z0 + dz begrenztes

Element heraus und lassen auf dasselbe die entsprechenden Kräfte wirken
(Fig. 5). Die beliebige Belastung mit den Komponenten pz, ps und pn greift
in den Punkten der Mittelfläche an.
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Die Gleichgewichtsbedingungen stellen wir unter Anwendung des Prinzips
der virtuellen Verschiebungen auf:

W+Ü 0, (26)

wo W die Arbeit der äußeren und U die Arbeit der inneren Kräfte bei den
gegebenen virtuellen Verschiebungen der Punkte des Elementes sind.

pr

mzsds

rucds
rvnds\ nzds(ms dz)dsm2S

nz+nzdz)ds^7^

(run+n^ndzids Fig. 5.
(n2S + nzsdz)ds

Die Punkte der Profilmittellinie des Querschnittes z z0 erfahren die
virtuellen Verschiebungen ü, v und w. Für den Querschnitt z z0 + d z betragen
diese Verschiebungen ü + ü'dz, v + v' dz und w—w'dz.

Für die Arbeiten W und U, bezogen auf die Einheit der Stablänge, erhalten
wir:

W — j(nznü + nzsv + nzw — mzsü)fds + j(pnü + psv + pzw)ds,
s s

U — J (nzwf — 2 mzs ü' + ms ü) ds.
s

Durch Einsetzen dieser Ausdrücke in die Gleichung (26) erhalten wir:

l (nznü + n'zsv + n'zw — mzs ü + nzn ü' + nzs v' + mzs u' +msü)ds
s

+ J (Vn ü + Ps v + Vz w) ds 0
(27)

Für die virtuellen Verschiebungen ü, v und w wählen wir Ausdrücke von
der gleichen Form wie die Ausdrücke (12), (13) und (15) für up 0, jedoch
führen wir statt ©i und <Pk die Parameter ®i und @k als beliebige Funktionen
der Koordinate z ein. Diese sind, allgemein genommen, unabhängig von der
wirklichen Belastung des Stabes.

Auf diese Weise erhalten wir:

X ®i U Kn u<§ + n'zs t$ - mfzs ü<§ + ms £g>) ds + J (ps v$ + pn u<§) ds]
i=0 s s

n _
+ 2 ®'i tJ" (- K «$ + nzn u<§ + nzs t# + mzs ü'§) ds - J ps dg ds]

i 0 s s

m
+ 2 #* [/ (Kn «g? - m'zs ü<£> + ms ü$) ds + J pn «g> ds]

fc=l s s

m
+ 2 *'*CK.«g? + nmuf]ds 0.

fc l 8

(28)
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Die Befriedigung dieser Gleichung erfordert, daß die vier Ausdrücke in den

eckigen Klammern für jedes i (i 0,1, 2. .n) und für jedes k(k 1,2. .m)
Null sein müssen.

Die Nullsetzung dieser Ausdrücke ergibt, nach dem Einsetzen der
Gleichungen (22) für die Größen nz, mzs und ms, das folgende System von
Gleichungen :

n m

j (n'zn v$ + n'zs t%) ds E'[Z (b« &} - 2 Kb% ©/) + 2 c„$j\
S 7=0 1=1

- J (Ps *§ + Pn «$ + ™s,p ü'g) ds,
s

n
J (nzn <+ nzs eg>) da W [ - au &'! + 2 K 2 b% 0'}] + J pz dg ds,

s 7 0 s

i 0, \,2...n, (29a—d)
7i m

j<„ «g> cfe #' [ 2 %• e, + 2 d„0j\ - /k, «g>+pB««?) <b,
s 7=0 Z=l s

1»,»*^* =0>
s

k 1,2.. .m.

In diesen Gleichungen bedeuten:

K W a ti=jt[o>g)*da, h-=±jt*ügü%0 ^J^>0^>, (30a-c)
S SSh-Jzfpvßüe**' Cii=^jt3ü(gü®ds, (30d,e)

%• ^ jpugtigda, d„ ±jfiü$ü%da. (30f,g)

Die bestimmten Integrale der Ausdrücke (30b-g) erhalten wir, unter
Berücksichtigung der Gleichungen (16), (23) für i 4:,5...n sowie (17) als
lineare Kombinationen von Größen (Fig. 3 und 4):

f Mn! Ünl d8 -l V,™ iß*> ds T-1
J 00 00 J ©0 00 qkr

Sü^u^da - Jfig?«g»d* ~,ukr

J fig« fig* <fe - J fig* fi<|*) <fe - J fi^> fig» ds= -~,®kr

(31)

J fig»-) vt*>da -£-, J* fig* ü«j*> ds= -£-,
°kr °kr

wobei die bestimmte Integration in den Grenzen s&r 0 und skr bkr ausgeführt

wurde.
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Durch Elimination erhalten wir aus dem Gleichungssystem (29):

««ÖT ^r^o. für » 0,1, 2

und

(32)

(33)

(34)

««®7 + 2 (-4kb%©'! + bti0j) + 2 z«*t w,Ai0,
3 1=1 &

n m \2hjfy+ 2 ^0, -=-,Bk0,
7 3 1=1 &

i 3,4:...n, k=l,2...m,
wo: Ai0 Jmsp^)^+J(^n^) + ^^) + ^>^)^

s s

und Bk 0 J* msp ä|> cfe + f pn^ ds
s s

sind.
Es kann gezeigt werden, daß sich diese Glieder auch in der folgenden Form

ausdrücken lassen3):
m R

AiO=Z ZPkr^+S(Ps^0+P>0)d^
k=lr=l s (35)

R '
Bk0 =Xmk>

r=l
wo (Fig. 6) pkr die Knotenlast im Knoten k und mkr das Einspannmoment des

Plattenstreifens kr in diesem Knoten zufolge der gegebenen Belastung pn sind.

muM
(kr)

Pn

C- L_I

t "Pkr ¦Or
Fig. 6.

In Hinblick auf die Bedeutung der Parameter Vi @i für i 0,1 und 2

[Gleichungen (1)] sowie unter Berücksichtigung der Werte a>(0), a>(1) und a/2)

[Gleichungen (5a) und (6)], ferner, weil zufolge Gleichung (5c) V0' — W0(z)

ist, können wir die Gleichungen (32) in der folgenden Form anschreiben:

E'FW0* -p„ E'Ixxft Vx + mx, E'IvyV': py + m'y, (36)

wo: pz §pzds, px /(— pnsinoi + pseos(x)ds, mx $pzxds,
s s s (37)

Py j(pncosoc-pssina)ds, my \pzyds
s s

sind.
Die Gleichungen (36) sind offenbar die Differentialgleichungen für die Axial-

3) Siehe [5], Kapitel 4.
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und Biegungsbeanspruchung des dünnwandigen Stabes mit in ihren Ebenen
nichtdeformierbaren Querschnitten.

Die Randbedingungen für das Gleichungssystem (34) können durch
Verschiebungen, durch Kräfte oder durch beide Arten von Einwirkungen gegeben
sein.

Die Verschiebungen der Stabenden müssen in der gleichen Form gegeben
sein wie die Verschiebungen u, v und w der Punkte der Mittelfläche. Die
Randbedingungen können auf die Ausdrücke:

6t =0f, ©;. 6>r (38)

zurückgeführt werden, wobei @f und &f' Parameter sind, welche durch die
gegebenen Verschiebungen der Punkte des Endquerschnitts bestimmt werden.

Die Randbedingungen durch die Kräfte stellen wir unter Anwendung des

Prinzips der virtuellen Verschiebungen auf:

J[Kn~<n) u + Ks~n*)v + (nz -n?)w- W* - m*s )u\ds 0.

Die Größen n*n, n*s und n* sind die äußeren, am Endquerschnitt angreifenden
Kräfte und m% ist das äußere, verteilte Torsionsmoment.

Durch Einsetzen der Ausdrücke (22) für nz und mzs und Verwendung
derselben Ausdrücke für die virtuellen Verschiebungen wie vorher, erhalten wir,
nach der Elimination der Kräfte nvn und n„„:

1

*ii07-±Klib*8i -1jnQtE' a«9l E-,m

wo: Qi - J Pz o>{$ *? + j" «n u@o + nts v$ ~ m* Uq o) ds,

Mf $n*aj$,(«/ sind.

(39)

(40)

Die Lösung des Problems wird auf die Integration des Systems der
Differentialgleichungen (34) zurückgeführt.

Die unbekannten Größen ©i und &k werden als Komponenten der
Spaltenvektoren 0 und 0 aufgefaßt:

0

®3

e.

# $2

0̂m

(41)

Aus den Koeffizienten au bilden wir die Diagonalmatrix A und aus den
Koeffizienten b^ und b^ die quadratischen Matrizen B° und B von der
Ordnung n — 2. Ferner bilden wir aus den Koeffizienten cü die Rechtecksmatrix C
mit n — 2 Zeilen und m Spalten und aus den Koeffizienten dkl die quadratische
Matrix D von der Ordnung m.

Das Gleichungssystem können wir nun in der folgenden Form schreiben:

AB" ±kB«0' + BO+C$ ^,Ao, CO + D$ WB0, (42)
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wo C die transponierte Matrix von C ist und

^30 B10

A ^40
B0

B20

An0 Bm0
sind.

ir-4\.Durch Elimination aus dem System (42) erhalten wir4)

A0 -±KB<>0' + H0 ^rHo,
E

wo

sind.

H=B-CD * C und H0 A0-CD^B0

Die Randbedingungen (38) und (39) lauten in Matrizenform:

0 0*, 0=0*'
und A0"-±kB«0' =-i-ö*? Ae* ~M*,
wo Q* und M* Vektoren mit den Komponenten Qf und Mf sind.

(43)

(44)

(45)

(46)

(47)

b

e

h

K
ms, mz

™sz

™>z ,my
ns, ns

nzs

nsn > nzn

Pn, Ps'Pz
Px, PyPz
s

t

u

Liste der Bezeichnungen

Breite der einzelnen Platte
Abstand von der Mittelfläche in Richtung der Normalen
Abstand der Tangente zur Profilmittellinie von der Drehachse
Abstand der Normalen zur Profilmittellinie von der Drehachse

Biegemomente der einzelnen Platte
Torsionsmoment der einzelnen Platte
Äußere verteilte Biegemomente
Normalkräfte der einzelnen Platte
Schubkraft der einzelnen Platte
Querkräfte der einzelnen Platte
Flächenbelastungen in den Richtungen n, s, z

Linienbelastungen in den Richtungen x, y, z

Koordinate der Profilmittellinie
Wandstärke
Verschiebung der Punkte der Mittelfläche in Richtung zu
ihrer Normalen
Verschiebung der Punkte der Mittelfläche in Richtung
der Tangente zur Profilmittellinie

4) Die allgemeine Lösung dieser Gleichung wird in der Publikation [5], Kapitel 5,

gezeigt.
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w Verschiebung in Richtung der Stabachse

x, y, z Kartesische Koordinaten der Punkte der Mittelfläche
C Schwerpunkt
D Schubmittelpunkt
E Elastizitätsmodul
F Querschnittsfläche
G Schubmodul
Ixx $x2tds Flächenträgheitsmoment

F
Iyy §y2tds Flächenträgheitsmoment

F
U, V, W, @ Verschiebungsparameter
U Arbeit der virtuellen inneren Kräfte
W Arbeit der virtuellen äußeren Kräfte
oc Winkel
yzs Gleitung im Punkte der Mittelfläche

en, e6, ez Dehnungen der Mittelfläche
v Poissonsche Zahl
|, 7] Verschiebungskomponenten in den Richtungen x und y
cp Verdrehung des Stabes

co Sektorielle Koordinate, Einheitsverwölbung
Q Normierte sektorielle Koordinate
0 Verdrehung des Knotens
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Zusammenfassung

Der Artikel bezieht sich auf die Theorie des Faltwerks, in welcher außer
den Biegemomenten in der Querrichtung zum Unterschied der klassischen
Faltwerkstheorie auch die Torsionsmomente berücksichtigt werden.

Dank des Umstandes, daß für die grundlegenden Unbekannten die

Verschiebungsparameter eingeführt werden, ermöglicht diese Theorie eine relativ
einfache Berechnung.

Im Unterschied zum in der Faltwerkstheorie üblichen Verfahren der
Zerlegung des Systems in die einzelnen Platten, wird in der gebrachten Theorie
die Deformation der Stab-Schale einheitlich für das ganze Tragwerk beschrieben.

Man erhalt schließlich ein System von Differentialgleichungen, welches
ebenso wie die Randbedingungen in Matrizenform dargestellt wird.

Summary

The article treats the theory of folded structures which, contrary to the
classical theory, takes into account also the torsional moments, besides the
transversal bending moments.

This theory permits a relatively easy calculation in introducing for the
basic unknowns the deflection parameters.

Contrary to the ordinary procedure of decomposing the system into
individual plates, the present theory explains the deformation of the beam-shell

uniformly for the whole structure. Thus, we receive finally a system of differential

equations which can be written in form of matrices in the same way as

the boundary conditions.

Resume

L'article traite de la theorie des voütes polygonales qui, contrairement ä la
theorie classique, tient egalement compte du moment de torsion en plus du
moment de flexion transversal.

Cette theorie permet un calcul relativement facile, en introduisant pour les

inconnues de base les parametres de deplacement.
Contrairement au procede habituel de decomposition des voütes polygonales

en plaques isolees, la presente theorie decrit la deformation de la poutre-
coque uniformement pour toute la construction. On obtient ainsi finalement
un Systeme d'equations differentielles, qui peut etre mis sous la forme de

matrice, tout comme les conditions de bord.
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Introduction

The inelastic behavior of multi-story frameworks can be appreciably
influenced by stability effects. An approximate method for Computing the
maximum load carrying capacity of inelastic frames has been proposed by
Merchant [1]. In this method the maximum capacity as influenced by stability
effects, Pm, is related to the rigid-plastic collapse load, Pp, and the elastic
critical load, Pc.

111p- F + p. (1)
x m •*¦ p x c

Hörne has shown that the empirical relationship has some theoretical justi-
fication for frames bent into a double curvature configuration that is similar
to the mode shape for sidesway buckling [2]. Therefore, the prediction is
generally valid for frames subjected to appreciable horizontal loads. The
available experimental results indicate that the Merchant formula reasonably
describes the maximum load carrying capacity of one and two story frames [3].

For the usually encountered framework, the elastic critical load is very
much larger than the rigid-plastic collapse load. Consequently, Hörne has
noted that the accuracy of Eq. (1) can be maintained without the necessity
of having ''exact" elastic critical loads [4]. By using approximate buckling
loads, the computational work required to use the Merchant formula is
considerably reduced and the method becomes more practical to employ.

The object of this paper is to compare the results obtained from the
Merchant prediction with the collapse loads obtained by the more accurate method
of computerized elastic-plastic analysis. The elastic and collape load behavior
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of eight multi-story frames, with and without stability effects, has already
been described by this author [5]. The previously reported research is used to
compute crude estimates of the elastic critical loads. In addition, the exact
critical loads are computed and used to demonstrate that the Merchant
prediction remains virtually unaltered by the use of approximate buckling loads.

Computation of Critical Loads

The determination of "exact" elastic critical loads requires considerable
computational effort. Critical loads have been obtained by several methods:
moment distribution, stiffness matrix techniques and eigenvalue computations.
The latter two methods are suitable for the computerized investigations of
large frameworks, but require the Performance of repeated analyses. Stevens
and Schmidt have presented additional techniques based on the amplification
of artificially introduced components of the buckled shape [6]. Their methods
utilize the Southwell plot in order to obtain initial estimates of the critical
load. Improvements of the estimated critical load are obtained by iterative
techniques. The process can be terminated prematurely if approximate critical
loads are all that is needed.

A few researchers have reported methods for Computing approximate critical

loads to be specifically used in the Merchant formula. Hörne has used

rigid-plastic-rigid analysis to derive approximate elastic critical loads [4].
Stevens has used energy techniques for the same purpose [7]. The approach
used by Stevens results in the definition of the maximum allowable horizontal
structure sway as a function of the elastic critical load. In either case, the
approximation requires the Performance of some sort of analysis, although
the work is considerably reduced from that required for an exact computation
of critical load.

Approximate Critical Loads by Elastic Analyses

The results of elastic analyses can be used to approximate critical loads by
the following procedure.

Assume that the deformations obtained from the usual first order, linear -

elastic frame analysis are denoted by the vector y (see Fig. 1). Let the vector
be described in terms of all of the i mode shapes of the frame, yi, associated
with all of the i critical loads, Pi.

y a1y1 + a2y2 + a^yz+ atyi9 (2)

where, ai represents the partieipation of the ith mode in the description of the
deflected shape. Furthermore, assume that the deformations given by a second
order analysis (stability effects included) are y* Then the relationship between
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H^
Y SHAPE

Y* SHAPE

i
Frame and loading First order anaiy»^

Second order analysis
Deformed shapes

Fig. 1. Elastic frame deformations.

the amplified y% deformations and the first order deformations is given by

y* a^i + «2 2/2
+

1-Pl 1-,
+ a>iVi

1 P_
(3)

where, P represents the vertical load set imposed on the structure.
If the loads are such that the first order deformations an entirely those of

the first mode, then the ratio of the second and first order deflections would
be a constant value throughout the frame. Denoting the ratio of y* to axyr by
a, and using Ac to represent the proportional multiplier of the loads P needed
to cause the first critical load set, Px,

1

1-
(4a)

Solving for Ac, A, - (4b)

Although Eqs. (4) are true only for a very special case, the behavior of a frame
subjected to appreciable horizontal loads is such that the structure primarily
deforms into the double curvature configuration similar to that of the most
critical sidesway buckling mode. Since only approximate critical loads are
needed for use in the Merchant prediction, Formula (4b) can be utilized.
Furthermore, oc can be approximated by the ratio of second order to first
order horizontal sway at the top of the frame. With reference to Fig. 1, this
ratio is given by A2/A1. Therefore, the approximate critical load can be directly
obtained from first and second order elastic frame analyses. It is to be noted
that this method is essentially the starting point for the more accurate iterative
computation of critical loads presented by Stevens and Schmidt [6]. They
have also suggested that the ratio a be taken as the average of the deformation
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ratios at all of the stories of the frame. For the particular application considered
here, the refinement will be shown to be unnecessary.

Second order elastic analysis has been programmed by Harrison [8] and
has been used by several other researchers as an integral part of elastic-plastic
Computer programs. For the computation of approximate critical loads, it is

advantageous to unify first and second order analysis in a single program.
One convenient method can be based on the slope deflection equations with
stability funetions that have been presented by Bleich [9]. In this method,
the slope deflection equations have coefficients dependent on the axial loads

acting on the members. For a member subjected to axial load, T, and having
stiffness and length of EI and L respectively, the stability factor, 0, deter-
mines the slope deflection coefficients. The factor 0 is given by,

0 U] (5)

When 0 is set equal to zero, the coefficients for the usual linear analyses are
obtained. Thus, it is possible to obtain both first and second order analyses
by formulating a second order analysis by an iterative procedure starting
from the assumption that all 0 values are zero. The first computation describes
the linear-elastic behavior of the frame. As the values of 0 are continually
refined to account for more precise axial loads, the iteration quickly converges
to yield second order deformations. The process is described by the flow chart
shown in Fig. 2.

Frames and Loadings

The dimensions, properties and loadings for the eight frames that have
been analyzed are shown in Figs. 3 through 6. Modulus of elasticity, yield
stress, column length and girder length (E, fy, Lc and Lg respectively) are
shown for each frame. The wide flange sections that have been used are also

2-*

10 20
i 1

10
1

top story

10 20 10

other
stories

All members are tictitious

/ 144 in.4

Mv 160ft.k.
A 11.75 in.2

E 30,000 ksi

fy 36 ksi
Lc 25 ft.

Fig. 3. Frame 4—1.
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Note: Frame 6—1 shown. Frame 6—2 is identical except for half vertical loads in

girder spans marked [1].
Fig. 4. Six story frames.

indicated on the figures. Where fictitious or approximate members have been

used, the fully plastic moment, Mp, the moment of inertia, I, and the area,

A, are also indicated. Frame designation is given by a numeral indicating the

number of stories, followed by an identification number after a dash. Thus

8 — 2 indicates the second of the eight story frames to be considered.

The working loads are indicated on the figures. Horizontal forces are

applied at each story and a three point concentrated load system has been

applied on each girder. The three point system (1/4 of the total load at each

girder end and 1/2 at the center of the girder) is used to simulate uniform
loads. In several cases, the loadings are given in ton units (1 ton 2.24 kips)

for frames obtained from the British literature.
Frame 4-1 has been chosen to illustrate a frame particularly susceptible

to stability effects. The six-story, two-bay frames are identical with respect

to members, configuration and horizontal loadings. Frame 6—1 is subjected
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Fig. 5. Eight story frames.

to füll vertical loads, wheras the companion, 6 — 2, has vertical loads applied
in a "cheekerboard pattern" of füll and half loading. All of the eight story
frames are identical in dimensions and vertical loading. Frames 8 — 1, 8 — 2,

and 8 — 3 also have identical horizontal loadings, their only difference being
in the proportions of the members. Frame 8 — 4 is identical to 8 — 3, except
that only half of the horizontal forces are applied. Frame 15 — 1 is the most
slender of the structures considered, having a height-to-width ratio of 10.5
to 1. For a more complete description of the source of the frames, the reader
is referred to Reference [5].

Results of the Analyses

The results of all the exact and approximate calculations are summarized
in Table 1. Previously performed elastic-plastic analyses have been used to
furnish values of the amplification factors at working loads and the first and
second order collapse load factors (a, Xp and A2 respectively). The elastic-
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Fig. 6. Frame 15—1.

plastic analyses include the effects of bending deformations only, since axial
deformations had negligible effects on the maximum frame capacity [5], In
all cases, monotonically increasing proportional loads were applied up to the
maximum frame capacity. The plastic moment capacity of each member was
continually for existing axial load in accprdance with the bi-linear formula
of the A.I.S.C. [10].
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Table 1. Critical loads and collapse loads

109

From Elastic-Plastic Elastic Critical Merchant Loads, Xm,
Analysis, Reference 5 Loads, Af Formula 1 5) Exact

Frame Am

a1) Ap2) V) Exact Approx.
4)

Approx.
-r Exact Exact Approx. Approx.

~ Exact
"äT

4—1 1.2961 2.067 1.286 4.00 4.38 1.10 1.36 1.40 1.03 1.06
6—1 1.1021 1.571 1.367 9.89 10.8 1.09 1.36 1.37 1.01 0.99
6—2 1.0750 1.719 1.524 13.2 14.3 1.08 1.52 1.53 1.01 1.00
8—1 1.0267 1.649 1.414 33.5 38.5 1.15 1.57 1.58 1.01 1.10
8—2 1.0273 1.511 1.424 30.6 37.6 1.23 1.44 1.45 1.01 1.01
8—3 1.0244 1.814 1.646 37.1 42.0 1.13 1.73 1.74 1.01 1.05
8—4 1.0243 2.905 2.836 37.1 42.2 1.14 2.69 2.76 1.03 0.95

15—1 1.0779 1.632 1.403 12.2 13.8 1.13 1.44 1.46 1.01 1.03

x) öl A2IA± Amplification of top sway at working loads.
2) Xp — Load factor for rigid-plastic collapse.
3) A2 Load factor at collapse, second-order elastic-plastic analysis.
4) Approximate critical loads computed from Formula 4b.
5) Exact and approximate Xm values are based on exact and approximate critical loads

respectively.

Mpc Mp (PIPy^O.15),
Mpc 1.18Mp[l-P/Py] (P/Pv> 0.15).

(6)

Here, the reduced and fully plastic moments are given by Mpc and Mp
respectively. The existing axial load in the member is P, and the fully yielded
capacity of the section is denoted by Py. It is to be noted that Information
for calculating oc was automatically obtained by the Performance of first and
second order elastic-plastic analysis.

The critical loads, Ac, were computed by two methods. Exact values were
calculated by formulating the slope deflection equations with stability funetions

and equating the determinant of the resulting stiffness matrix to zero [9].
For this purpose, each in-span girder load was replaced by two equal loads

acting over the adjacent columns. Trial values of load factor were chosen and
the determinant of the stiffness matrix was calculated. By means of inter-
polation, aecurate values of the critical loads were obtained. Approximate
critical loads were obtained by substituting the previously determined values
of a into Eq. (4b). Exact and approximate Merchant loads were obtained by
using the values of Ap in conjunetion with the exact and approximate critical
loads.

The approximately calculated critical loads were anywhere from 8 to 23

percent higher than the true critical loads. Thus, the approximations are
considered to be crude. Improved estimates of Ac could have been obtained
by averaging the values of oc obtained at each story level of the frame. In the
case of Frame 4 — 1, the values of oc from the top to the bottom story were
1.2961, 1.3161, 1.3398 and 1.3375 respectively. By using any one of the stories
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to describe oc, the greatest Variation in Ac would have been from 3.94 to 4.38.
The value of Ac would have been 4.10 if averaging were employed. However,
the crude value of Ac is seen to be entirely adequate when employed in the
already empirical Merchant formula. The approximate Merchant load is at
worst 3% higher than the exact Merchant load.

For the frames in question, the Merchant formula gave reasonable estimates
of the maximum frame capacity. At worst, the empirical prediction was 5%
low or 10% high. The predictions for Frames 6 — 1, 6 — 2 and 8 — 2 were almost
identical to the values obtained by second order elastic-plastic analysis.
However, the virtue of the Merchant formula is seen to be its ability to describe
the correct trends of frame behavior. Frame 4 — 1 lost 38 percent of its potential

load carrying capacity due to stability effects — Formula 1 predicted a
37 percent loss. All of the other frames were relatively insensitive to stability
effects, losing at most 14 percent of their rigid-plastic capacity. Here, the
Merchant prediction tended to considerably underestimate stability effects.
Yet, when Eq. (1) denoted insignificant frame stability effects, the effects were
indeed insignificant. In no case did the Merchant prediction describe an incor-
rect trend of frame behavior. It is to be noted that the Merchant formula has
been used here in conjunction with reduced plastic moments. The validity of
using reduced plastic moments is justified solely by the correctness of the
empirical results.
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Summary

A method for Computing crude estimates of elastic critical loads has been
utilized in the empirical predictions of maximum frame capacity. The crude
estimates have been shown to be more than adequate when used solely for
the Merchant prediction. Furthermore, the empirical Merchant prediction
described the correct general trends of carrying capacity that were obtained
by second order elastic-plastic analysis.

Resume

Pour obtenir une prevision empirique des capacites de charges maximales
de huit portiques plans, a plusieurs etages, rectangulaires et non entretoises,
on s'est servi d'une methode permettant une estimation grossiere des charges
elastiques critiques. Or pour la «prevision Merchant», cette estimation grossiere

se montre plus que süffisante. Un des avantages de la methode proposee
est qu'elle permet de controler le comportement elastique des portiques.

Les capacites maximales des portiques, trouvees avec la «prevision
Merchant» ont ete comparees aux resultats obtenus par un calcul elasto-plastique
du second ordre. Dans tous les cas, la relation empirique donne l'allure generale

correcte de la capacite de charge. Ainsi, on a tout interet a se servir de la
formule de Merchant, avec des charges critiques approximees et des charges
de rupture rigide-plastique estimees, pour detecter d'eventuels portiques
particulierement sensibles ä des instabilites.
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Zusammenfassung

Ein Verfahren zur groben, schätzenden Berechnung elastischer, kritischer
Lasten ist für die empirische Voraussage maximaler Tragfähigkeit von acht
mehrstöckigen, unversteiften, rechteckigen und ebenen Stockwerkrahmen
angewandt worden. Die grobe Schätzung ist durch die Merchant-Voraussage
(Merchant prediction) mehr als genügend. Ein Vorteil der vorgeschlagenen
Methode besteht darin, daß das elastische Rahmenverhalten für Prüfungen
verwendbar ist. Die maximale Tragfähigkeit der Merchant-Voraussage ist mit
den Ergebnissen der elasto-plastischen Analyse zweiter Ordnung verglichen
worden. In allen Fällen beschreibt die empirische Beziehung die genaue Richtung

der Tragfähigkeit. Demgemäß möge der Gebrauch der genäherten,
kritischen Lasten und die geschätzten Traglasten in den Merchant-Formeln für
Rahmen verwendet werden, die möglicherweise empfindlich auf große
Stabilitätseinflüsse sind.
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1. Introduction

The behavior of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to arbitrary end loading which
causes bending in addition to axial compression is investigated. The
interaction curves for tapered cantilever columns are obtained numerically
neglecting any torsional-flexural behavior. Approximate equations for these
curves are presented to facilitate the determination of the load carrying
capacity of simply supported columns.

Numerous analytical studies have been made of the elastic buckling of
axially loaded tapered columns [1-6]. The elastic stability of tapered columns
subjected to combined bending and thrust has been treated by several investigators

[7-11]. While the inelastic buckling of axially loaded tapered columns
has been studied [12-14], little work has been done on the inelastic stability
of tapered columns subjected to eccentric loading although columns of uniform
cross section under such loading have been analyzed [15-18].

2. Assumptions

The present analysis is based on the following assumptions; the material is

elastic-perfectly plastic as shown in Fig. 1; the material is homogeneous and
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isotropic in both the elastic and plastic states; plane sections remain plane
during bending; deflections, slopes, and curvatures are small and are confined
to the plane of the web; the effect of the shear stresses on yielding and
curvature is neglected; residual stresses and strain reversal are not considered;

instability of snap through type occurs in the plane of web which coincides
with the plane of loading; and the idealized section is characterized by an
jff-shape, where the flange thickness is very small but finite.

c
i

r

Ob

f ¦i «0

-ob

Fig. 1. Idealized stress-
strain relationship.

3. Tapered Columns

The column considered herein is symmetrically and linearly tapered along
its length by varying the depth of the web but keeping the flange width and
thickness constant. The taper slope, denoted by a and defined as the change
of the half-depth per unit length of the column, may assume positive or
negative values depending on whether the larger or the smaller section is

chosen as the reference section. To facilitate the analysis that follows, a

reetangular coordinate system is introduced as shown in Fig. 2.

For the reference section where the origin is located, designate the radius
of gyration about the strong axis by rQ, the half-depth by b0, the web area

by Aw0, and the flange-web area ratio, Af/Aw0 by R0. The nondimensional
distance from the origin and the deflection of the centroidal axis are defined

respectively, as

±\M«x :f :
Jy ^X

'M

Fig. 2. Tapered wide-flange cantilever column under arbitrary end loads.
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The following expressions are readily derived for any section.

b =b(x) =b0(l-Xx),
Aw — Aw (x) Aw0 (1 — Ax),
A =A(x) Aw0(R0+l-Xx),

E R (x)

I I(x)
s 8(x)
z Z(x)

1 — Xx'

Aw0bl(l-\x)*[R{j + ii(l-\x)-\,
Aw0b0(l -\x)[B0 + ± (1 -Xx)],
Av,0b0(l-\x)[B0 + l(l-\x)],

r(x) =6.(1-A*))^|— Xx)
-Xx

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where b, Aw, A, R, I, S, Z and r are respectively, the half-depth, the web

area, the total area, the flange-web area ratio, the moment of inertia, the
elastic section modulus, the plastic section modulus, and the radius of gyration.
Setting £ 0 in Eq. 11 and substituting into Eq. 3 leads to

-im- (12)

4. Stress Zones

When a wide-flange section shown in Fig. 3 (a) is subjected to a compressive
axial force P and a bending moment M, one of the three stress distributions,
referred to as elastic, primary plastic, and secondary plastic, as shown in
Figs. 3(b), (c), and (d) will result.

Fig. 3. Cross section and
stress distribution due to
bendmg and compression.

nnn
Af/2

2 b SI£b

Af/2 iz-J
uuu

(a) (b) Elastic (c) Primary
Plastic

(d) Secondary
Plastic
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The nondimensional axial force and moment are defined, respectively, as

P

and

in which
and

p p(x)

m m(x)

P0(x)

M(x)
M0(x)'

P0(x) =a0A(x)
M0(x) v0Z(x),

(13)

(14)

(15)

(16)

where a0 denotes the yield stress of the material.
Referring to Fig. 3 (d), the condition l/</> 0, where cf> denotes the non-

dimensional curvature, defines the limit of statical admissibility. The plastic
moment is given by

R0+l-Xx l-Xx

mpi(x) 1-

B0 + i{l-\x)
[(R0+l-Xx)p(x)]2

R0+l—Xx~

for 0£p(x)£ p 1~A^ (17b)(2R0+l-Xx) (l-Xx) ~^v '~R0+1-Xx'
Referring to Fig. 3 (b), the condition of initial yield, which defines the boundary
between the elastic and the primary plastic zones, gives

R0 + ±(l-Xx)ri
m^x)=R0 + l(l-Xx)[l-^x)]' (18)

The boundary between the primary and the secondary plastic zones is given
by the condition /? 2/</> in Fig. 3 (c) and is expressed by

/yyi* R0 + $(1-Ax)
B0 + $(l-\x) B0+1-Xx1+ 1-Äx ~V{X)

— Ax(Bo+l-Xx y]\-2[ l-Xx P{x))\j-

3ress

by Eqs. 17, 18, and 19 in a p-m plane shown in Fig. 4.

(19)

-Xx

The admissible domain and the boundaries for each stress zone are described

• Constant
a
x

-Eq. f7a

-Primary Plastic Zone

p(x) Eq. 18

Elastic Zone \ \p
Eq.l9-V

m(x) LO

Secondary Plastic
Zone

Eq.l7b Fig. 4. Stress zones.
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5. Curvature Functions

The nondimensional curvature at any section is defined as

*=£, (20)

where 0 is the actual curvature, 0O e0/6 is the curvature at initial yield due
to pure bending, and e0 is the strain at yield point. The function <f> (m, p) for
each stress zone can be readily expressed as follows.

In the elastic zone,
Rq + \ (l-Xx)

*=Rl + \(l-Ax)m(x)> (21)

in the primary plastic zone,

t-l (Ü,+ 1-Ax)[l-„W1
9 MH^t[^f*ÄI

i-i tt B0 + i{l—\x) m(x)
m which U l jt~^—^—i ~T^>R0+l-Xx l-p(x)
while in the secondary plastic zone,

(22b)

6 (23)

Mis7y^-^-{s7y^T
Eqs. (21), (22), and (23) are derived for positive moment, hence the absolute

value of m must be used and </> replaced by (—</>) in cases where the moment
is negative.

6. Equilibrium Equations

When the tapered cantilever column is subjected to an axial force P, a
shear force Q, and a bending moment M at the free end as shown in Fig. 2,

the conditions of equilibrium require that

TO(X)
[i?o + |(l-Ax)3(l-Ax)[^ + ^^-}/(J?»+1)(i?» + ^^y + g^)]'(24)

in which pf P/P0{0)9 qf QIP0(0), mf MfIM0(0), and Mf the fixed end
moment. The relation between p (x) and pf is given by

p{x)=lL+lX-\zP'- (25)
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7. Differential Equation

From the small deflection theory and Eqs. 2 and 20, it follows that

s-y=T+' <*>

in which prime denotes differentiation with respect to x. Introducing Eqs. (3),
(4) and (12) in Eq. (26) leads to

Substitution of Eqs. (24) and (25) into the appropriate curvature function,
i.e., Eq. (21), (22), or (23), and the results into Eq. (27) yields the differential
equation for each stress zone.

The boundary conditions

y(0) y'(0) 0 (28)

being both specified at one end of the column make this an initial-value
problem.

8. Numerical Integration

The numerical Solution of the initial value problem defined by Eqs. (27) and
(28) is obtained by a step-by-step integration procedure. Let the subscript i
denote the discrete stations evenly spaced along the #-axis such that xi (i-l) A x,
i= l, 2, 3. Approximating the second derivative in Eq. (27) by a three-term
central difference formula, upon application of the boundary conditions,
Eq. (28), leads to

2/2 le0(J^]/^±i^ (29)

and in general

«^'T^fm*' + 2!"->"-' for*' 2' (30)

For given values of pf, qf, and mf, the values of mt and pi can be obtained
from Eqs. (24) and (25), respectively. Having determined the stress zone from
Eqs. (17), (18), and (19), the appropriate curvature function <f>i, Eqs. (21), (22)
or (23), is chosen. The value ofyi+1 can then be computed by means of Eq. (30).

9. Equilibrium Curves

By means of the marching procedure described above, the values of m can
be plotted against x for various values of mf as shown in Fig. 5 (a), provided
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the values of e0, R0, a, pf, and qf are specified. The m-x curves are referred to
as equilibrium curves of the tapered cantilever column.

If \m\ nowhere exceeds me, the column is entirely elastic. In some of the
equilibrium curves, me < \m\ <mpl in a portion of the column. For some values
of mf, the equilibrium curves intersect the curves m ± mpl at some point x.
Beyond this point, the equilibrium curve is statically inadmissible and need
not be considered.

elopeuppe

x*.m1

pu

constant

..m

dm 0
dm

¦¦ -m

lower envelope
(a) (b)

Fig. 5. Moment equilibrium curves and envelopes.

It is of interest to observe that all the elastic equilibrium curves pass
through a common point (x*,m*). For the inelastic equilibrium curves, the
value of x corresponding tom* are always smaller than x*. The existence of
the common point (#*,m*), of the elastic equilibrium curves implies that x*
and m* are both independent of mf. If qf vanishes, all the elastic equilibrium
curves meet at (#*,0). Thus, x* is the nondimensional elastic buckling length
or Euler length.

10. Elastic Tapered Columns

Elasting Buckling Length x*. Consider an elastic cantilever column
subjected to an axial force P at the free end. The differential equation for the
centroidal axis of the slightly bent column is

(C1x* + C2x2 + Czx + Ci)y" + Cby C5§, (31)
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in which C± X^, C2= -3X2(R0 + l), 03 3X(2R0+l), C4=-(3JR0+1), C5

— (3 R0 + 1), e0pf and 8 is the arbitrary deflection at the free end. The boundary
conditions are

y(0) =0, (32a)

V'(0) =0, (32b)

y(x*)=8. (32c)

Examining the coefficient function of Eq. (31) indicates that x 0 is an ordinary
point and x (3 R0+l)/X and x=l/X are both regulär singulär points. The
complementary function takes the form of an infinite power series which
converges uniformly for 0 ^ x < |1/A|.

Taking the Solution of the boundary value problem defined by Eqs. (31)
00

and (32) in the form t/= S + ]T aÄa;fc and demanding the nontrivial Solution

lead to the elastic buckling criterion

Z «*(**)* 0> (33)
k=0

in which

a0 -8, (34a)

«i 0, (34b)

a2 -jcr> (34c)

+ ak_3 (Jc-3) (k-4) CJ, h 3, 4, 5,
(34d)

For a given value of pf, the smallest positive real root x* of Eq. (33) is the
elastic buckling length of the cantilever column.

The Euler length x* can also be obtained with excellent accuracy by inter-
secting any elastic equilibrium curve for qf 0 with the #-axis by means of
the numerical integration procedure. It must be pointed out that if a < 0, the
Euler length is obtainable from Eq. (33) for #* < |1/A|, whereas the numerical
Solution is always valid. The x* — pf curves for various taper slopes are
presented in solid lines in Fig. 6.

Determination of m*. Consider the cantilever column subjected to general
loading at the free end as shown in Fig. 2. Assuming that the column is entirely
elastic, the differential equation may be obtained by combining Eqs. (21),
(24), and (27) as

(C1x* + Czx2 + Czx + C,)y" + C,y Ch \ ,2R» + \ N - l&)x] (35)
V2i(Rö+ l)Cß0 + i) XPtl W J



INELASTIC STABILITY OF TAPERED WIDE-FLANGE COLUMNS

I60r

140

120

100

121

Fig. 6. Euler lengths of tapered
cantilever columns.

x 80

xa
40App Eqsrox
46

00
25

60
°e

025

t.40
/X

P*l

20

0 2 0.4 0.6 0.8 1.0

The boundary conditions are
y(0) =0,
y'(o) o.

(36a)

(36b)

The homogeneous equation corresponding to Eq. (35) is identical to that
corresponding to Eq. (31).

Solving the initial value problem defined by Eqs. (35) and (36) and
substituting the Solution into Eq. (24) leads to the equation of the elastic
equilibrium curve

m(x)
[R0 + ±(l-Xx)] (l-Xx) {(R» + \)mf-i(R,+ l)(R, + \)pfZckx*}, (37)

k=l
in which

2i(R{
2R0+1 IniA

0+l)(i?0 + i) Ur
c, = Îf

Vt

(2E0+l)eo
4/(i?0+l)(i?0 + i)fvm"

(38a)

(38b)

(38c)
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k -k{1c_l)Ci{ck-.i(k-l)(k-2)C3 + ck_2l(k-2)(lc-3)C2 + C5]

(38d)
+ ck_t(k-3)(k-4)C1}, k 3,4,5,.

Since the common point (x*,m*) of elastic equilibrium curves is independent

of mf, it is appropriate to set mf 0 in Eqs. (37) and (38) to obtain the
expression for m* in the form

l/(R0+l)(R0 + l)m* — m(x*) — [iWU-A**)](i-A**r'*=iPf 2 ck(x*)k. (39)

It is important to observe that the coefficients, ck,k= 1, 2, 3,. hence m*
are linear funetions of qf.

The expression for m* given by Eq. (39) is valid only when #*<|1/A|.
However, the value of m* can always be obtained numerically as the value
of m for any elastic curves at x x*. The m*—pf curves for various taper
slopes are presented in solid lines for a particular value of qf as shown in Fig. 7.

The values of m* for other values of qf can be obtained by linear proportioning.
Insensitivity of x* and m* to R0. It is observed that the values of x* and m*

are insensitive to the Variation of the parameter R0. The following approximate
expressions for x* and m* are derived on the basis of iü0 3.25.

-Exact
Approx. Eq.47

€0=0.00I2
R0S3.25

0.5 0.10

App rox
0.080.4

001
25
00 0010.060.3

005
025 0040.2

01502
015

005 0.02
Z70.02

0.025

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0

(b)a

Fig. 7. Variation of m* with pf and a.

11. Approximate Expressions for x* and m*

The values of x* and m* for i?0 3.25 and e0 0.0012, corresponding to
A 36 steel, for taper slopes in the ränge — 0.025 ^ a ^ 0.025 may be approximated
by the following expressions.
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For O^aS0.025,

x- =- * - - 48Lla°>9647
(40)

/0.0048 p, ^0.9953/(101-14«)]'

m* -qf{10[^totßm)-*] + AmH(pfc-pf)}, (41)

in which
am 7.480 + 9.20« 1

0<a<00125 (*2a)
/3M 0.02816+1.495 a

*°r °^a^00125 (42b)

am 7.414+14.50« J 00125<a<0025
<43a>

/3m 0.03229+1.165a }
tOT °-0125^a^0-025

(43b)

(a/0.015)7-85

Tp//0.30)

2^=-0.2625 + 32.5« (45)

and -ff denotes the Heaviside unit function, i.e., H(r)) 0 for ij<0 and

H(r)) l for t? > 0.

For -0.025^«^0

* » +
«88-1 (-«)"¦" (46)

y'0.004823/ pri.ooT/ao0-5"«)!
'

s* -y/Xl 0[a»,<P/^m>-61, (47)

am 7.469 + 9.20« 1

_0025<«<-0 0125 (48a)

^ 0.02695 + 0.867« j
tOT 0-025*S« 00125

(48b)

«m 7.480+10.10« |
for _0.0125^0 (49a)

in which

ßm 0.02816 + 0.964a J
' (49b)

The approximate Euler lengths obtained from Eqs. (40) and (46) are plotted
as dashed lines in Fig. 6. The approximate values of m* obtained from Eqs. (41)
and (47) are plotted as dashed lines in Fig. 7. It is seen that, in both cases,
the approximation is satisfactory for practical purposes.

12. Interaction Curves

For a given set of e0, R0, a, pf, and qf, a family of equilibrium curves, as
shown in Fig. 5 (a), can be constructed. From this family of curves, an m — mf
curve can be plotted for a given value of x such as shown in Fig. 5 (b). At
point a or b where the slope of the m — mf curve vanishes, i.e.,

3m=0 (50)
dmf
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the column is in the state of neutral equilibrium. Thus, Eq. (50) defines the
limit of stability and is used as the inelastic stability criterion. The loci of all
maximum points such as a and minimum points such as 6 corresponding to
different values of x represent, respectively, the upper and lower envelopes

i

0.6 ^^0=2.5
«0=0.0012
o 0.01

0.4 .^=4.0**"^ Pf 0.5

qf= 0.002

0.2

0 20 40 \ 60

-0.2 "

-0.4 /Ro=4.0^
-0.6 r^^R0=2.5

*0=0.00I2
a -0.0l
pf 0.5

qf 0.002

06
Ro=2 5

04 Ro=4

0.2

20 40 60 80

-0.2 h

-0.4- /Ros4.0

R„=2.50.6-

Fig. 8. Influence of i?o on interaction curves.

Exact
Approx

«0 0 00I2
R0 3 25
a =0.015
qf 0 002

Exact
i.o- Approx

Pf 0 2 €o=O.OOI2 p =020.80.8 Ro=3.250 3 0.3 sa =0015 0.60.6 0 4 qf=0 ^0 4
!T>

0.40.4 06

0.20.2
\

x rn 0
i6040 100 100

-0.2-0.2

0.40.4

0.6 06

0.8 -0.8a)
b)

—Exocr
Approx

«0=000l2
R0 3 25
o -0 0015
q,= 0 002

Exacl
Approx. Pf 0 2P. =0 2^ R 3 25

0015 04^

0 2*

Fig. 9. Interaction curves.
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of the family of equilibrium curves as shown in Fig. 5 (a). The envelopes are
referred to as interaction curves and define the ultimate strength of the tapered
cantilever column under various end loading conditions.

It is found that the interaction curve is insensitive to the parameter R0 as
shown in Fig. 8. Typical interaction curves are presented in Fig. 9.

Let qf and qf * be the values of qf which satisfy, respectively,

m*

m*

-m;

-m'pi>

where mf and m*t are, respectively, the values of me and mpl at x x*
qf—Pf and qf*~Pf curves for various taper slopes are shown in Fig. 10.

(51)

(52)

The

0 02-

"f

001

025

002

005

005
00100

02
0202

02 0 4 0 6 08 0 2 04 06 0 8 10

o) (b)

Fig. 10. g* and g**—p/ curves.

The intersection of the upper and lower envelopes is the same as the common
point (x*9m*) of the elastic equilibrium curves as long as qj^qf- When qf
exceeds q*, neither the elastic equilibrium curve nor the common point exists.
However, the numerical value of m* can still be computed as if the column
were infinitely elastic. For qf <qf^qf*, it can be shown that the point
(x*,m*) still defines the intersection of the envelopes.

For qf^qf, the —mpl(x) curve, which is independent of qf, completely
governs the lower envelope and the intersection, denoted by (#**,m**), shifts
along the lower envelope toward the negative ;r-direction as qf increases.
Therefore, the maximum admissible length #** is smaller than the Euler
length x*. The computed (x*,m*), which lies outside of the admissible domain,
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will be used in the next section as a fictitious end point of the upper envelope
for obtaining approximate interaction equations. The point (x**,m**) can
be located numerically by intersecting the upper and lower envelopes.

13. Approximate Interaction Equation

The actual interaction curves constructed for R0 3.25 and e0 0.0012 for
taper slopes in the ranges 0.005 *g \a\ ^0.025 may be approximated by the
following expressions.

The upper envelope is approximated by

m m + (m* - m) £ + p [10 - 10 (a - 0.0l)H (a - 0.01)] (53)

and the lower envelope by

m -m + (m*+m)| + /z[10-10(a-0.01)#(a-0.01)] for 0^qf^qf*, (54a)

m —m + (m^l+m) for qf^qf*, (54b)

in which m mpl(0), m*T=mpl(x*), % x\x*, x* is obtained from Eq. (40) or
Eq. (46), ra* from Eq. (41) or Eq. (47) and

n
2f2

C ^-

^ =c(i-t)(2£-er

for |^0.5,

2(1-?)2

C
(l-f)(2|-f:2\n

for ^0.5.

(55 a)

(55b)

(55 c)

(56a)

(56b)

(56 c)

The new variables £ and p, in Eqs. (55) and (56) are funetions of a, pf, and qf
and defined as follows:

For 0.005 ^a^ 0.025,

f 0.5254 X 10t8-31«+^/-°-4)^ - (23 pf + l)qf, (57)

ß 3.743 a°'6057-(pf -0.4) 02+ 1641000 a2-685 (2 pf)~^qf (58)

for the upper envelope, and

| 0.5254 x W*Ma+(Pf-»Mü + [22 -38.44 x lO~B5^a+ (pf-0A)if;3]qf, (59)

ß - 3.743 a0-6057- (pf-0A)ifj2 + 8.464 x 1048-74a (2.5 pfyl>* qf (60)
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for the lower envelope, in which

0X 0.4354a-°-1401-l for pf^0A, (61a)

0X -4.242 a0-9247 for p/= 0.4, (61b)

02 -21.47 a0-6888 for Pf^OA and a^0.02, (62a)

02 -1.45 for pj^OA and a^0.02, (62b)

02 -17.48 a0-785 for p^0.4, (62c)

03 -35 for p^OA, (63a)

03 -15 for pf^0A, (63b)

04== -0.931 XlO15-49« for Pf^OA, (64a)

04 - 0.2644 X1027-67« for ^^0.4. (64b)

For -0.025^a^ -0.005

l 0.1012(-a)-0-3544Xl0^-°-4>^ + (i.4-15j9/)g/, (65)

/Z 06 - 6.705 ^°-4949 qf (66)

for the upper envelope, and

l 0.1012 (-a)-°-3544XlO^-°-4)^ + [0.0153 (-a)"1-750^-337-l]g/? (67)

ß 06-6.705 p/-°-4949g/ (68)

for the lower envelope, in which

05 0.2 - 5 a for pf S 0.4, (69)

05 0.1875 for pf^ 0.4, (70)

06 11.52(-a)°-7619Xl0-0-3745(-a)-°-331p/ for pf^0.ß, (71a)

06 11.52(-a)0-7619Xl0-t0-2247(-«)~0-331 + 2^-1.2] for pf^0.ß. (71b)

The curves defined by Eqs. (53) and (54) are plotted in dashed lines along-
side the actual interaction curves in Fig. 9 and show reasonably close approximation.

Being insensitive to the parameter R0, the interaction curves in Fig. 9

or the approximate expressions given by Eqs. (53) and (54) may be applied
for practical purposes to tapered wide-flange cantilever columns made of
A 36 steel for 2.5 ^ R0 ^ 4.0.

In the case where qf exceeds qf*, the intersection of the upper and lower
envelopes, i.e., (x**,m**), is readily located by solving Eqs. (53) and (54b)
simultaneously.

It should be pointed out that the interaction equations presented above
do not apply for the ränge — 0.005<a<0.005. In practice, tapered columns
in this ränge are hardly used.
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14. Simply Supported Columns

The approximate interaction equations, Eqs. (53) and (54), derived for
cantilever columns can be extended to the treatment of the simply supported
tapered column shown in Fig. 11 (a). The column is subjected to axial force P

® ® ®
Mi M2=KM
-*- -*=

(a)

37 ==Pv Ke,

(b)

Mi ^o<0
H 3

Q>0 M2

}r- i-Fp

(c)
X2 —\Q

Fig. 11. Simply supported
tapered columns.

and unequal end moments M1 and M2 where M2 KM1, for -l^K^l. The
simply supported column of length L may be considered as two cantilever
columns of lengths Xx and X2 with the fixed end located at section 0 as shown
in Fig. 11 (c). The taper slopes of the two cantilever columns are of the same
magnitude but of opposite sign and the fixed end is taken as the reference
section.

Referring to Fig. 11 (c), the right segment X2 is subjected to the same
type of loading as the cantilever column of Fig. 2. However, the shear force Q

acting on the left segment X1 is opposite in sense to that shown in Fig. 2.

Therefore, the corresponding interaction curves for the left segment must be
turned upside down as shown in Fig. 12 where the x1-axis is directed toward
the left for convenience in the combined m — x1 and m — x2 planes.

IX,.!«,) (X2,m2)

(x,,-mr 3L/r0

x2%m$ Fig. 12. Interaction curves for a
simply supported tapered column.

The values of xx and x2 at the point where the column becomes unstable
are not known a priori. However, the relation

X-i "T~ Xn (72)
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must hold true and the points (x±, mx) and (x2, m2) must both lie on the
interaction curves. In other words, the Solution of the stability problem is reduced
to solving three simultaneous algebraic equations by a trial-and-error procedure
outlined in the following.

Suppose px and K are specified for a given column, and the critical value
of m1 is to be determined. Referring to Fig. 11, let R1 and rx be the flange-Web
area ratio and the radius of gyration, respectively, of section 1 and Ax

ai(R1+lj3)j(R1+l) in which a assumes a positive value. A trial reference
section 0 is located by assuming a value of X^r^. The relation

777m[l-"u
is readily established in view of Eq. (11), and xx and x2 are then obtained,
respectively, from / r \ / \*-(W- (74a)

£-m-
The nondimensional axial force with reference to section 0 is given by

Vi ~ jxz Vi ¦ (75)

*i+i-M-l)
Knowing pf, the corresponding x* for the right and left segments are computed,
respectively, from Eqs. (40) and (46). The value of m*x for each segment are
obtained from Eq. (41) or (47).

Next assume a trial value of mx, corresponding to which

m2 Kmx (76a)

where k 7 (B)t®r Tt^K, (76b){^ymvyzti
the nondimensional shear force is given by

_ mx (R1 + ^)(l-K)

®imi«^-m
The value of m*, which is a function of qf, for the right segment is obtained
from Eq. (41). In the case where m* < — m*z, the intersection of the upper
and lower envelopes, (x**,m**), must be computed by the method described
in Section 13. For the left segment, m* corresponding to Q acting in the direction

opposite to that shown in Fig. 11 (c) is obtained from Eq. (47).
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Table 1. Classification of Interaction Equations

Case Left Segment, a<0, x xx Right Segment, a>0, x=x2

la
lb
lc
ld
2a
2b
2c
2d

Q^qf^qf*
i. e.,
0 ^ m* ^ -m%i

0^qf^qf*
i.e.,
0 ^ m* ^.-m*i

mx ^ —m*

m1 ^ —m*

m1 ^ —m*

Eqs. 54a, 67, 68

Eqs. 53, 65, 66

Eqs. 54a, 67, 68

Eqs. 53, 65, 66

0^qf^q}*
i. e.,
0^m*^-mj*

i. e.,
m* ^-nipi

m2^ra* Eqs. 53, 57, 58

m2^m* Eqs. 54a, 59, 60
m2>m* Eqs. 53, 57, 58

m2^m* Eqs. 54a, 59, 60

m2;>m**Eqs. 53, 57, 58
m2<m** Eqs. 54b
m2^m**Eqs. 53,57, 58

m2^m** Eqs. 54b

Note: m is replaced by -m when Eqs. 53 and 54 are applied to the left segment.
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The value of qf determines which set of the approximate interaction curves
is to be used for the Solution of a given problem. Two cases, each contains
four subcases, thus arise and are listed in Table 1.

Once the appropriate set of interaction equations is chosen for the particular

case listed in Table 1, the values of the interaction curves at xx and x2
can be computed and compared with the trial values of mx and m2, respec-
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tively. The trial value of mx is varied until the interaction equation for each

segment is satisfied. However, the two interaction equations may not be

satisfied for the same trial value of mx. It is necessary to vary the trial value
of X1jr1 and to repeat the above-mentioned process until both interaction
equations are satisfied simultaneously. The corresponding value of m1 gives
the critical end moment.
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The trial-and-error procedure described above, taking into account all the
cases shown in Table 1, is built into a Computer program.

15. Column Curves

Column curves, i.e., mx — L\rx curves, are prepared for A36 steel in Fig. 12

for various combinations of the parameters a, px, and K. These curves can be
used to solve for ultimate loads of A 36 steel wide-flange columns subjected
to various end loading conditions.

It is of interest to observe that for the case where K=l, i. e., Figs. 13 (a),
(e), and (i), the carrying capacity of the columns is governed entirely by
instability. For 0^iT<l, the ultimate load carrying capacity is governed
either by yielding of the large end section for short columns or by instability
for longer columns, and the demarcation line between these two regions is
shown by the dashed line in Figs. 13 (b), (c), (f), (g), (j) and (k). When K<0,
there are three different regions, separated by the dashed lines shown in Fig.
13 (d), (h), and (1), representing, from left to right, yielding of the large end
section, yielding of the small end section, and instability.

16. Illustrative Examples

A few examples illustrating the use of the approximate interaction equations

as well as the column curves are given in the following.

Example 1. A tapered wide-flange cantilever column made of A 36 steel is
loaded as shown in Fig. 2. Find the critical values of the applied end moment
mit Llr0 35, R0 3.25, a 0.015, pf 0.5, and ^ 0.002.

Eqs. (40) and (41) give, respectively, x* 47.88 and m*= —0.1586. Setting
x 0 in Eq. (17a) yields m 0.5667 and, referring to Fig. 10, it is found that
0<qf<qf* in this case.

Upper limit: Substituting a, pf, and qf into Eqs. (57) and (58) give £ 0.6491
and ß 0.2710 for which w 0.6866 is obtained from Eq. (55b) and (7 0.6079
from Eq. (55c). Substituting £=35/47.88 into Eq. (55a) gives p 0.2629.

Finally Eq. (53) yields m 0.2863 which is the upper limit of m.
Lower limit: Substituting a, pf, and qf into Eqs. (59) and (60) give £ 0.7045

and ß= —0.1513, respectively, for which n 0.5073 is obtained from Eq. (55b)
and G= -0.3041 from Eq. (55c). Substituting £ 35/47.88 into Eq. (55a)
yields /x= —0.1508. Finally, Eq. (54a) yields m= -0.4117, which is the lower
limit of m.

As long as — 0.4117 <m<0.2863, the column is stable. The values obtained
from the actual interaction curves, Fig. 9(b), are -0.422 <m< 0.304.

Example 2. A tapered wide-flange column made of A36 steel is simply
supported and eccentrically loaded as shown in Fig. 11 (b). Find the critical
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value of px at which the column passes from stable to unstable equilibrium
if i/r1 40, R1 2.5, a 0.015, e2jex 0.5. and e[ e1A1IZ1 m1/p1 0.8.

From Fig. 13 (f), an m1 — p1 curve for i>/rx 40 is constructed as shown in
Fig. 14. The Solution is obtained by intersecting this curve with the straight
line m1 0.Sp1. This gives ^ 0.442 as the critical value for which mt
p1e[ 0.353ß.

Using £>i 0.442 in solving the approximate interaction equations for m1,
by means of the trial-and-error procedure described in Section 14, yields
m± 0.3547 which verifies the graphical Solution.
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Fig. 14. Graphical Solution of
example 2.
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(b) m. - a Curve

Fig. 15. Graphical Solution of example 3.

Example 3. A simply supported tapered wide-flange column made of A 36

steel, as shown in Fig. 11 (a), is subjected to the end moment at the left end
in addition to the axial force, i.e., K 0. Find the maximum value of the end
moment for which the column remains stable if L/r1 50, Rx 2.5, a 0.0125,
and ^ 0.45.

From Figs. 13 (c), (g), and (k), the m1 — p1 curves for Ljr1 50 are plotted
for three different values of a as shown in Fig. 15 (a). From these curves, read
off the values of m1 at px 0.45 and plot them against a as shown in Fig. 15 (b)
from which m1 0.465 is obtained for a 0.0125. The value obtained from the
approximate interaction equations is mx 0.472.

17. Conclusions

The method presented above leads to a more realistic evaluation of the
strength of tapered columns than is possible either from a consideration of
elastic behavior only, or from the elementary treatment of columns concentrically

loaded into the plastic ränge.
The curvature funetions, expressed in closed form, are also valid for box

sections provided the stress-strain relationship and cross sections are idealized
the same way.
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The excellent agreement between the exact Solution and the numerical
Solution for x* and m* assures the applicability of the latter which is straight-
forward and less time-consuming. It is observed that the interaction curves
are insensitive to the parameter R0. For practical purposes, R0 3.25 is used
to derive the approximate interaction equations. It schould be pointed out
that for materials other than A36 steel, the approximate expressions must
be rederived.

The carrying capacity of simply supported columns is governed by inelastic
instability, yielding at the large end, or yielding at the small end depending
on the combination of the parameters a, K and px.

With appropriate modifications in the formulations, the present method
can be extended to investigate the inelastic stability of columns of nonlinear
taper, or elastic-strain hardening materials.

18. References

1. Dinnik, A. N.: Design of Columns of Varying Cross Section. Transactions, ASME,
Vol. 51, APM-51-11, 1929, p. 105—114, and Vol. 54, APM-54-16, 1932, p. 165—171.

2. Timoshenko, S. P., and Gere, J. M.: Theory of Elastic Stability. 2nd ed., McGraw-
Hill Book Co., Inc., New York, 1961, p. 125—132.

3. Nakagawa, H.: Buckling of Columns with Tapered Part. Transactions, Japan Society
of Mechanical Engineers, Vol. 3, No. 11, May, 1937, p. 111—119.

4. Miesse, C. C.: Determination of the Buckling Load for Columns of Variable Stiffness.
Transactions, ASME, Vol. 71, 1949, p. 406—410.

5. Bleich, F.: Buckling Strength of Metal Structures. McGraw-Hill Book Co., Inc.,
New York, 1952, p. 186—192.

6. Gere, J. M. and Carter, W. O.: Critical Buckling Loads for Tapered Columns.
Journal of the Structural Division, ASCE, Vol. 88, No. ST 1, Proc. Paper 3045,
February, 1962, p. 1—11.

7. Gatewood, B. E.: Buckling Loads for Beams of Variable Cross Section under
Combined Loads. Journal of the Aeronautical Sciences, Vol. 22, No. 4, April, 1955,

p. 281—282.
8. Fogel, C. M. and Ketter, R. L.: Elastic Strength of Tapered Columns. Journal of

the Structural Division, ASCE, Vol. 88, No. ST 5, Proc. Paper 3301, October 1962,

p. 67—106.
9. Bttlter, D. J. and Anderson, G. B.: The Elastic Buckling of Tapered Beam-

Columns. Welding Journal, Vol. 42, 1963, p. 29-S—36-S.
10. Lee, G= C and Kawai. T.: Elastic Stability of Tapered Members. Civil Engineering

Project Report No. 44, Department of Civil Engineering, State University of New
York at Buffalo, Buffalo, N. Y., April, 1967.

11. Culver, C. G. and Preg, S. M., Jr.: Elastic Stability of Tapered Beam-Columns.
Journal of the Structural Division, ASCE, Vol. 94, No. ST 2, Proc. Paper 5796,
February, 1968, p. 455—470.

12. Young, D. H.: Inelastic Buckling of Variable Section Columns. Transactions, ASME,
Vol. 67, 1945, p. A-166-169.

13. Goldberg, J. E., Bogandoff, J. L. and Lo, H.: Inelastic Buckling of Nonuniform
Columns. Transactions, ASCE, Vol. 122, 1957, p. 722—730.



136 K. H. LIN - E. C. ROSSOW - S. L. LEE

14. Appl, F. J. and Smith, J. O.: Buckling of Inelastic, Tapered, Pin-Ended Columns.
Journal of the Engineering Mechanics Division, ASCE, Vol. 94, No. EM 2, Proc.
Paper 5897, April, 1968, p. 549—558.

15. Hörne, M. R.: The Elastic-Plastic Theory of Compression Members. Journal of the
Mechanics and Physics of Solids, Vol. 4, 1956, p. 104—120.

16. Hauck, G. F. and Lee, S. L.: Stability of Elasto-Plastic Wide-Flange Columns.
Journal of the Structural Division, ASCE, Vol. 89, No. St 6, Proc. Paper 3738,
December, 1963, p. 297—324.

17. Lee, S. L. and Hauck, G. F.: Buckling of Steel Columns under Arbitrary End Loads.
Journal of the Structural Division, ASCE, Vol. 90, No. ST 2, Proc. Paper 3872,

April, 1964, p. 179—200.
18. Lee, S. L. and Anand, S. C.: Buckling of Eccentrically Loaded Steel Columns.

Journal of the Structural Division, ASCE, Vol. 93, No. ST 2, Proc. Paper 4796,

April, 1967, p. 351—370.

Summary

The stability of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to combined bending and
axial loads is investigated. Torsional-flexural behavior is not considered.

Approximate interaction equations are derived for cantilever columns. These
interaction equations are used to determine the load carrying capacity of
simply supported columns subjected to arbitrary end loading conditions.
Column curves for A 36 steel are prepared. Numerical examples are given to
illustrate the use of the approximate interaction equations as well as the
column curves.

Resume

Des etudes de stabihte sous sollicitation combinee flexion-compression ont
ete faites sur des colonnes emincees symetriquement et lineairement, ä larges
ailes et en un materiau elastoplastique. Les effets de torsion de flexion ont ete

negliges. Pour les colonnes encastrees, on a developpe des equations d'interaction

approximees, qui servent ä determiner la charge de rupture de colonnes

simples, soumises ä des conditions de charge arbitraires. Des courbes pour
colonnes en acier A36 sont en preparation. Des valeurs numeriques sont
donnees pour illustrer l'emploi des equations et des courbes.

Zusammenfassung

Symmetrisch und linear verjüngte Breitflanschstützen aus elastoplasti-
schem Material wurden unter einer gleichzeitigen Biege- und Druckbeanspruchung

auf ihre Stabilität untersucht. Das Biegedrillverhalten wurde dabei
nicht berücksichtigt. Für eingespannte Stützen wurden Näherungsgleichungen
entwickelt, mit deren Hilfe man die Bruchlast von einfachen Stützen für
beliebige Lastfälle bestimmen kann. Diagramme für Stützen aus Stahl A36
sind in Vorbereitung. Es wurden numerische Werte gegeben, um den Gebrauch
der Gleichungen und der Diagramme zu veranschaulichen.
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Introduction

Le present rapport constitue la seconde partie d'une etude consacree au
comportement postcritique des plaques raidies cisaillees uniformement.

Dans une premiere partie publiee dans les memoires de l'A.I.P.C. [1], nous
avons expose la mise en equation du probleme et presente les valeurs de la
charge critique de voilement ainsi que de la deformee dans le cas particulier
d'une plaque carree renforcee par un raidisseur vertical median de rigidite
relative comprise entre zero et trois.

L'objet de la presente note consiste en l'etude de la repartition des
contraintes et l'analyse de l'etat limite dans le meme cas particulier d'une plaque
carree raidie cisaillee uniformement.

Par souci de clarte, il nous a paru interessant de resumer tres brievement
dans un premier paragraphe les hypotheses de base de notre analyse. Le lecteur
desireux de trouver un expose detaille de la question consultera la reference [1].

1. Bref rappel des hypotheses de travail

L'etude lineaire du voilement des plaques raidies cisaillees uniformement
nous a conduit ä representer la deformee W de l'äme par 1'expression ä 6 para-
metres:
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7TX 3ttu 3ttx iry 2ttX 2ttU
W f,sm—- sm—r^ + fosm-—sm-^ + Min sm]1 2a b ' 2a b ö a b

ttx 7tv rrx 2iry 3ttx 3ny
+/4sin—sm—+f6W1—sm-r+ftBm^-sm-r.

(i.i)

Les axes coordonnes sont disposes comme l'indique la fig. 1; b est la hauteur
de la plaque, sa largeur est 2 a.
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Fig. 1.

L'expression (1.1.) satisfait visiblement les conditions aux limites relatives
a la deformee d'une plaque simplement appuyee sur son contour.

La fonetion d'Airy generatrice des contraintes membranaires a ete obtenue

comme Solution de l'equation de von Karman :

d*<f> „[7 82w \2 d2wd2w\
+ -

8x2dy2 dy*
E 7 d2w \2

_ d2^
\dxdy) dx2 dy2

(1.2)

Nous avons admis qu'au cours du voilement les bords opposes de la plaque
restent rectilignes et se rapprochent librement. Nous avons suppose, en outre,
que la plaque peut se deplacer librement sur les elements qui la limitent dans
la direction du bord correspondant.

Les parametres fi caracterisant la deformee de la plaque sont les inconnues
du probleme. Ils ont ete determines par la methode energetique de Rayleigh-
Ritz en fonetion de la rigidite relative du raidisseur et de la sollicitation de

cisaillement.

2. Contraintes membranaires

2.1. Les expressions analytiques

Les contraintes membranaires sont fournies par les doubles derivations de

la fonetion d'Airy:

xm dy2' vm dx2' m 8xdy'
K }

Nous designerons par oc le rapport ajb de la demi-longueur et de la hauteur
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de la plaque et par t*. la contrainte critique de cisaillement de la plaque non
raidie de reference, ä savoir:

r* 0,8625 ?*E
X2

E est le module de Young et A l'elancement b\e.

Avec ces notations et en divisant les parametres fi de la deformee -par
l'epaisseur e de la plaque, les expressions analytiques des contraintes
membranaires s'ecrivent:
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277X 277?/
COS —r^

a b

2rry\

+ ^3(l + 8a2+16a4
577X 5ttu

cos —— cos — h

77a;
r, o .^ ^COS COS

l + 8a2+16a4 a b

1225 c

2a
5nx iry

625 + 200a2+16a4
C°S Ta~ C°S ~b~

+
441 a2

81 +1800 a2+10000 a4

377# 577?/
cos——COS—7-^

2a 6

225< 377# iry
81 + 72a2 + 16a4

C°S T^~ C°S T

+ /i/4(

+ /1/5

+

+

+ /1/6r

— a2 77 x 477?/ a2

4 (1 + 32 a2 + 266^)
°OS ~a~°°S ~b~ +

1 + 8 a2 + 16 a4

77 a; 277 y\
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a 6 /

— 36a2 377a: 577?/

81 +1800a2+10000a4C°S~2a~C°S "IT
144 <

81 + 72a2+16a4
16a2

3ttX 77?/
COS — COS -r-2a 6

4 a277# 577?/
pno pno _l + 200a2+ 10000a4 2a b l + 8a2+16a4

TTX 77?/\
cos -— cos —^2a b I

yoc" 2ttx\)0C* TTX
——cos + -cos —4 a 4 a

9a2 ttx 6ttv
+ l+72a2+ 1296 «*C0SirC0S-r

16(l + 18a2 + 81a4)

277X
cos cos -

•TTJÄ

b

/ 25 a2 77 x
+ /2Mr+72a2+1296a4COS2~a

49 c

2401 +3528 a2+1296 a4

377?/ a2 ttx tt y
cos —: ——-s———-7 cos -— cos -7—6 l + 8a2+16a4 2 a b

Ittx 3ttu
cos——cos—7-^2a 6
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1225a2 7770; ttv\
rCOS ——cos- '

2401 + 392 a2+16 a4 2 a b

2TTX 277?/
cos cos-

/ a2 ttx oc2 2TTX oc2

+ /«/*(-TC0B-T + T00B--T--16(1 + 2«» + «*)— a — b

oc2 ttx 2Try\
+ - -r—z COS COS- '

l + 8a2+16a4 a b

/ —4a2 ttx 77?/ 1

+ /a/5(l + 8«2+16«4COS2^COSX + IT72^
16a2 TTX 377?/

cos——cos -
2 + 1296 a4 2 a b

100a2 5t7^ 3t7V
- cos —— cos —7-^

625 +1800 a2+1296 a4 2 a

400 a2 577 a; 77?/
+ 625 + 200a2+16a4 C°ST^COST

¦/t/e(
81a2 3ttx 2-rry

- COS COS —r^81 + 72a2+16a4
81a2 3ttx 4t7?/

4(81+288a2+256a4)C°S a
C°S"

b

—9a2 3ttx ttV ol2 3ttX 3-ny
+ /3/481+72«2+16«4COS^COSX+l+8«2 + 16«4COS^COS-r

225a2 577# 77?/
+ 625 + 200 a2+16a4COS"2^COST~

25a2 5t7X 3t7?/\
rCOS— COS—r-^

625 +1800 a2+1296 a4 2 a

/ 9 ttx 9 3ttx 9
+ /3/5(-«2cos- + «2cos—+ ITM-

TTX 477?/
i cos — cos-2 + 256 a4 a b

9a2 3ttx 4
rcos cos-81 + 288a2 + 256a4

JLM\
b I

.,/ —9 a2 77X Try+ /3/8(l + 8«2+16a4COS2^C°SX + T
81a2 77# Ö77?/

iCOS—— cos—~
+ 200 a2+10000 a4 2 a

3969 a2 Ittx Try+ 2401 + 392a2+16a4COSTa~C°ST"

441a2 777X 577?/\
r COS — COS —r-^

2401 + 9800 a2+10000 a4 2 a

x 3-ny
-cos—7-^-
a o

/ 4a2 77

+ /4/5\l + 72a2+1296a4C°S2

36 a2 3ttX Try\
+ 81 + 72a2+16a4COS"2^C°Sx)

/ 9a2 77i
+ /4/6\4(l + 32a2 + 256a4)COS~a"

TTX 477?/
cos — cos—~
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9a2 2ttx 2ttv
-t-16(l + 2«2 + «4)COS^C°S-6

+ /5/e(T
36a2 770; 5tj?/

cos——cos -
+ 200 a2 + 10000 a4 2 a b

900a2 5ttx 77?/\] py
icos^r^-cos^J ~ ^jr- (2-2b)

625 + 200a2+16a4 2a

Tm rtninT / -2a2 277# 477?
-2L =-2,318 j« -——:—77r-ism sm—^t* [ \l + 8a2+16a4 a b

25a2 2t7£ 2t7?7 25a2 ttx 4ttry
+ TTTT^ TT—z TrSm Slil-r^ + ^Tr~^ TTZT^—iSlIl SH1 -

16(l + 2a2 + a4) a b l + 32a2 + 256a4 a b

')
8a2 TTX 2Try\
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'/l/3(l + 8a2
2a2 577# Ö77?/
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81 + 72a2 + 16a4 2a b
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/ 150a2 ttx 3-rry 2a2 ttx iry+ /2/3(TT72a2+1296a4Sm2^Sm-fe- " 1 + 8a2+ 16 ^"»^"»T
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2401 +3528 a2+1296 a4 2 a

350a2 7t70? 77?/
+ 2401 + 392a2+16a4Sm"2^TSmT



144 CH. MASSONNET - M. SKALOUD - J. DONEA

/ —a2 2770? 277?/ 2a2 770; 277?
+ UJn/1——-s jrSin sm—7-^ + -—z—t;—r^—jsm— sm—7-^/2/4\16(l + 2a2 + a4) a fe l + 8a2+16a4 a fe

../ —8a2 ttx ttv 9
+ /2/4l + 8a2+16a4Sm2^SmT- + IT72^

120 a2 5770:
sm sm
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3TT1J
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+
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+ /4/6\IT3^

7770: 577?/\
sm —-— sm —=—

24a2 3ttX 77M
+ 81 + 72a2+16a4Sm^Smx)

770:

2+256^4Sm^_Sm_fe~+16 + 32a2 + 16a4
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Dans les expressions (2.2. a) et (2.2. b), px et py representent les valeurs
moyennes des sollicitations normales aux bords de la plaque.

Dans l'hypothese admise du rapprochement libre des bords opposes au
cours du voilement, ces quantites sont nulles.

2.2. Valeurs numeriques des contraintes membranaires

Les valeurs numeriques des contraintes membranaires crxm, oym, rm ont ete
calculees pour une plaque carree de cöte 2 a, cisaillee uniformement et renforcee

par un raidisseur vertical median de rigidite relative y/y* comprise entre zero
et trois.

Les valeurs de la sollicitation exterieure de cisaillement r ainsi que celles
des contraintes sont exprimees par leur rapport ä la charge critique rc* de la
plaque non raidie de reference.

Y/v* 0 uo

oxm
2a

^H

^^rrnTTTTTTTTTT^

^rffl^^;
^^rTTrxTTTTTTTTT>^^

Oym

-. ??-1

Fig. 2. Fi£. 3.

Les figures 2 et 3 montrent respectivement les allures de axm et uym pour
yjy* 0 et rjrfr 4z. II apparait clairement sur ces figures que les contraintes
ont des valeurs egales en deux points symetriques par rapport au centre de la
plaque. De plus, ces contraintes sont auto-equilibrees puisque les sollicitations
normales moyennes au bord de la plaque sont nulles.

On constate par les calculs detailles que, si le passage de y\y* 0 a yjy* 1

reduit tres sensiblement les valeurs des contraintes membranaires, le passage
de y/y* 1 ä yjy* 3 provoque une reduction nettement moins forte.

Que yjy* soit egal ä 1, 2 ou 3, la contrainte axm a son maximum positif au
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point (o; 0, y a) et son maximum negatif au point (0: 0,75a, y 0). La
contrainte aym a son maximum positif au point (x 0,75 a, y 0,25a) et son
maximum negatif au point (o: 0, y 0,25 a).

Les figures 4, 6 et 8 montrent l'allure de axm pour t/t,* 4 et y/y* 1, 2,3.
Les diagrammes des contraintes sont limites ä la demi-plaque (n^x^a;
0^y^2a) pour les raisons de symetrie deja mentionnees.

Les figures 5 et 7 donnent l'allure de aym pour t\t*. 4 et y\y* 1 et 2. Les

diagrammes sont limites ä la portion (0^o:^2a; O^y^a) de la plaque. On

constatera sur toutes ces figures que les contraintes membranaires sont auto-
equilibrees.

yy-10 fe-4o ^?
y yY*-2o x/xct-4o

f

xm
t *

öxmxm
SC W I- H

Fig. 4. Fig. 6.

y^^P^^Y/V"10 YicT-40

2a

^<<TTT>^.

^rTTTTm
Oym

^J

yY'-20 %cf-40

UH3^
^lTTT-NM-axi>>, -r<rTTTx;

oym

-^rTTTTri

^-1

Fig. 5. Fig. 7.
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ty
W-3.0 %s-4.o

xm

Oxm

trr

Fig. 8.

3. Contraintes de flexion

3.1. Expressions analytiques

Les contraintes de flexion varient lineairement sur l'epaisseur e de la plaque.
Leurs valeurs maxima ont pour expression:

°xt +
Ee ld2w d2w\

Y^)\d^: + VJy2)'

Ee /'- ?# d2^
d?/2"1""^2 (3.1)

_ ^ d2w
ry +Ge„ „ „,, +

#e d2w

do;d?/ 2(l+v) £#£?/

II est avantageux d'exprimer ces contraintes par leur rapport ä la
contrainte critique de la plaque non raidie de reference.

Compte tenu de 1'expression (1.1.) de la deformee w, on obtient pour une
plaque carree de cote 2a:
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^f= +(2,357/, sin^ sin -3^ + 5,924 /2sit*. \ 2a 2 a
3ttX 77?/

sm——sm —2a 2a

^ ^^« / • 2770; 77?/ ^ ^^„ / 770; 77?/
+ 10,957/.sm sm-^ + 0,8281/4sm—-sm/a a 2a 2a

* ~, ^ t • 770: 77?/ „ JN,rt, 3770:. 377y\
+ 3,312 L sm — sm^+ 7,453 L sm —— sm-^L

a a b 2a 2a /

Vi,f /~ ~~, • 770:. 3ttu ^ A^_ 377:-f + 5,924/ sm—sm—-^ + 2,357/2sm——sm
tc* \ ,L 2a 2 a " 2 a

3 tt x tt y

+ 5,606/oSin-^sin^ + 0,8281 /4sin^sin^ (3.2)
a a 2a 2a

o n,<W TTX TTy „ ,_ • 3TTX 3 TT ?/\
+ 3,312/5sin — sm—- + 7,453/6sm——sin—-

a a 2a 2a /

^ +2(l>338/1cos^oos-^+l,338/acos^cos^
tc* \ 2a 2 a 2 a 2 a

rt ,.„„ 2770: Try ^ AAt% ttx ny+ 3,567 L cos cos—- + 0,446 /d cos^—cos —-
a a 2a 2a

««„ / ^^ ^V * ~,~ t 3ttx 3tty\+ 1,784/.cos — cos — + 4,013 L cos——cos——* a a 2a 2a

3.2. Valeurs numeriques des contraintes de flexion

Le manque de place ne nous permet pas de reproduire les valeurs numeriques

des contraintes de flexion pour les valeurs 0, 1, 2 et 3 de yjy* et une
sollicitation exterieure t/tc* 3,5, 4, 6 et 8.

On remarque par l'etude de ces valeurs que, pour la plaque non raidie, les

contraintes oxf et ayf sont maximum au centre, ce qui est evident puisque les

contraintes de flexion ont la meme allure que la deformee.
L'allure des contraintes axf et oyf pour t/tc* 4 est donnee aux figures 9 et

10 pour une moitie de la plaque.
Comme pour les contraintes membranaires, le passage de yjy* 0 ä yjy* 1

reduit tres sensiblement les contraintes, tandis que le passage de y/y* l a

y/y* 3 provoque une reduction nettement moins forte.
Que yjy* soit egal a 1, 2 ou 3, le maximum positif de axf a lieu au point

(x 0,15 a, y 0,5a), le maximum negatif au point (0: 0,25 a, y 0,15 a).
Quant ä ay^, le maximum positif a lieu au point (x 0,15 a, ?/ 0,5a), le maximum

negatif au point (x 0,25 a, y a).
Les figures 11 et 12 montrent l'allure de axf et ayf pour y/y* 2 et t/tc* 4.
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VV-2.0 Vt*-4.0

Ty W-0 %c*r-4.0

CN

-Q

oxfoxf i-4oxf

Oxf

Fig. 11Fig. 9

X
l%*-0 X/xcr-4-0

^iTTT

^fl ^MTTl\i *
kCN^1N^^ i?ir-

^P^ 3f atöyfOyf £"2

Fig. 10. Fig. 12.

4. Contraintes membranaires de comparaison

La contrainte membranaire de comparaison a pour expression:

2.
(4.1)
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On constatera que, quel que soit le raidissage, l'ecart entre les valeurs
maximum et minimum de amc pour une charge donnee est d'environ 25%.

La figure 13 montre la Variation en fonetion de la sollicitation t/tc* de la
contrainte membranaire de comparaison maximum (<ymc)maxlrc%-

La ligne hachuree montre les valeurs de ocmmax pour une plaque qui ne
voile pas. En ce cas,

' er

5. Etat limite de la plaque

En attendant d'avoir une theorie analytique du comportement post-critique
dans le domaine plastique, on peut se baser dans une analyse approximative
de l'etat limite des plaques sur la Solution des equations correspondant au
comportement parfaitement elastique (voir les equations (1) de la premiere
partie de ce memoire [1]).

En vue de definir l'etat limite des plaques en acier, on peut aeeepter les

points de vue suivants:
a) Tenons compte d'abord ä la fois des contraintes de membrane et des

contraintes de flexion.
Mesurons l'intensite de l'etat de contrainte par la contrainte de comparaison

ac calculee selon l'hypothese de Huber-Mises-Hencky:

°c= io2x+a2y-axoy + 3r2, (5.1)

oü ax, (jy, t designent les sommes des contraintes de membrane et de flexion.
L'etat limite dans ce cas est determine par la condition

indiquant que la contrainte maximum de comparaison orcmax atteint la limite
elastique Be.

En ce cas, l'etat limite des ämes est donne par le debut de plastification
ä la surface ä l'endroit de la plaque le plus sollicite. Le debut de plastification
ne correspond pas ä la ruine de la plaque; c'est pourquoi cette definition est

assez conservatrice.
b) On peut ensuite considerer les contraintes de membrane uniquement.
De maniere analogue, l'etat limite est determine par la condition

°cmmax ^e' (5.3).

On suppose ainsi que les pointes de contrainte de flexion s'annulent dans
le domaine plastique.

II est vrai que meme la sollicitation limite determinee par la definition (b)
ne correspond pas ä la charge ultime. Mais, en tous cas, eile est moins conser-
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vatrice que la contrainte limite determinee par (a), parce qu'elle correspond
deja ä un certain degre de plastification de Tarne.

C'est pourquoi nous avons utilise ce concept dans 1'analyse de l'effet de la
rigidite flexionnelle d'un raidisseur vertical median sur l'etat limite d'une
plaque carree cisaillee.

Les sollicitations limites resultantes f sont donnees pour l'acier doux A37
(Be 2400 kg/cm2, par consequent Rl 1385 kg/cm2) et pour y 0 (äme non
raidie), y — y*, y 2y*, y 3y* a la figure 14.

Les contraintes critiques rcr, determinees dans la premiere partie [1] de ce

memoire, sont egalement indiquees sur cette figure ä titre de comparaison.
II apparait clairement que la sollicitation limite f est (sauf pour les minceurs

faibles) substantiellement plus elevee que la contrainte critique rcr, ce qui
indique l'effet bienfaisant du comportement hypercritique des plaques minces.
Par exemple, pour y 0, f est, pour A 200, superieur de 159%, et, pour
A 400, de 626% ä rcr; tandis que pour y 3y*: f est pour A 200, de 13,8%
et pour A 400 de 183% plus eleve que rcr.

L'analyse de la sollicitation limite f montre que cette grandeur est con-
siderablement influencee par la rigidite flexionnelle y du raidisseur vertical.
Par exemple, f (y 3y*) est, pour A 200, de 20,5%, et, pour A 400, de

15,6% plus eleve que f(y 0).
II resulte en outre de la fig. 14 que la contrainte limite f continue ä croitre

si la rigidite y depasse la valeur optimum theorique y*, ce qui est en accord
avec les conclusions de la premiere partie [1] de ce memoire, oü l'on a montre,

"C kp/cm2
ii

1500

1385

^s^^

1000

\ ^ -2\ ^r\ ^ Yv%500

0

200 300100 400 500
A

Fig. 14.
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entre autre, que l'efncacite du raidisseur de rigidite relative y y*, est limitee
dans le domaine post-critique.

II faut souligner toutefois qu'en donnant ä la rigidite flexionnelle y du
raidisseur la valeur y 3y*, on reduit certes considerablement la deformee du
raidisseur et de la plaque, mais le benefice en sollicitation limite (dans le cas
considere d'une plaque carree, cisaillee, renforcee par un raidisseur vertical
median) est assez faible.

Bibliographie

[1] Ch. Massonnet, M. Skaloud et J. Donea: Comportement postcritique d'une plaque
carree raidie cisaillee uniformement. Memoires de l'A.I.P.C, Vol. 27, 1967, p. 187

ä 210.

Resume

Le present memoire constitue la seconde partie d'une etude sur le

comportement postcritique des plaques raidies cisaillees uniformement, dont la
premiere partie a ete publiee dans le Volume 27 des Memoires A.I.P.C., p. 187

ä 210. Son objet est l'etude de la repartition des contraintes et 1'analyse de

Vetat limite dans le cas particulier d'une plaque carree.
Deux definitions differentes de l'etat limite de la plaque sont examinees

successivement. En adoptant la moins conservatrice des deux, qui definit
l'etat limite par la condition ocmmax Re, oü crcmmax est la plus grande
contrainte membranaire et Re la limite d'elasticite du metal, on montre nume-
riquement que la contrainte limite f est substantiellement plus elevee que la
contrainte critique rcr, le gain allant jusqu'ä 626% pour une plaque non raidie
de minceur ö/e 400. On montre aussi qu'en donnant au raidisseur la rigidite
relative y 3y*, on reduit considerablement la deformee du raidisseur et de la
plaque dans le domaine postcritique, mais le benefice sur la contrainte limite f
est par contre assez faible.

Zusammenfassung

Diese Abhandlung bildet den zweiten Teil einer Studie über das
überkritische Verhalten einer gleichmäßig durch Schub beanspruchten, versteiften
Platte, deren erster Teil in den Abhandlungen der IVBH, Band 27, auf den
Seiten 187 bis 210 abgedruckt ist. Die Verteilung der Spannungen sowie die
Berechnung des Grenzzustandes für die Quadratplatte sollen behandelt werden.

Zwei Definitionen für den Grenzzustand werden nacheinander betrachtet:
Wenn man die weniger konservative der beiden anwendet, dieselbe den Grenz-
zustand durch die Bedingung acm max Re, wo crcmmax die größte Membran-
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Spannung und Re die Streckgrenze des Metalles bedeuten, gibt, kann man
numerisch zeigen, daß die Grenzschubspannung f wesentlich über der
kritischen Schubspannung rkr liegt; für eine unversteifte Platte der Dicke bje 400

steigt der Gewinn bis zu 626%. Ebenso wird gezeigt, wenn man der Steife die
relative Steifigkeit von y 3y* zuweist, daß sich dann die Verformungen
derselben und der Platte im überkritischen Bereich beträchtlich verringern,
jedoch der Gewinn für die Grenzschubspannung f im Gegensatz dazu gering
bleibt.

Summary

Present paper constitutes the second part of a study on the postbuckling
behaviour of stiffened plates subjected to pure shear, whose first part has been

published in the IABSE Publications, Vol. 27, p. 187 to 210. Its aim is the
study of the distribution of stress and the analysis of the limit state in the
particular case of a square plate.

Two different definitions of the limit state of the plate are examined in
turn. Adopting the less conservative of the two, which defines the limit state
by the condition vcmmax Re, where ocmmax is the largest membrane stress
and Re the yield point of the metal, it is shown numerically that the limit
stress f is substantially higher than the critical stress rcr, the benefit amounting
to 626% for an unstiffened plate with a "thinness" 6/e 400. It is also shown
that, by giving to the stiffener a relative rigidity y 3y*, the transverse
displacements of the stiffener and the plate are considerably reduced in the
postbuckling ränge; on the other hand, the increase in limit stress f is relatively
small.
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Introduction

It is of interest to explore further and elaborate on the General Report on
"Dynamic Effects of Wind and Earthquake" by D. Sfintesco in the Preli-
minary Publication of the Eighth Congress of IABSE on the effects of
nonlinear and inelastic deformation of multi-story buildings due to strong-motion
earthquake [1].

In the general report, plastic deformation is correctly stated to act as a

damping mechanism under high intensity earthquakes. In addition, damage
is incurred whenever yielding takes place and the damage is accumulative.
The damage may be assessed by «integrating the area under the hysteresis
loops of the moment-curvature diagram for each member since the method
of analysis discussed herein accounts for the columns in flexure as continuous
members, including the nonlinear and inelastic effects, instead of lumping the
inelastic strain at discrete points as plastic hinges or bilinear hinges.

In this discussion a method of shear building analysis by direct stiffness
presented by Saul, Fleming and Lee [2] for a bilinear hysteretic strain
hardening moment-curvature material law is solved numerically by the fourth
order Runge-Kutta formulation for a 10-story building subjected to an interval
of the ground acceleration record of the north-south component of the 1940

El Centro, California earthquake to obtain very accurate response records of
lateral deflection, column end moments, and other parameters of interest. In
a shear building, the floor Systems act as rigid diaphrams and the columns,
which are rigidly attached to the floor Systems, resist all lateral forces and
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thereby undergo relative displacement between floors. In the analyses, the
column segments are massless and continuous; the mass of each story is
concentrated at the floor levels.

The nonlinear set of coupled differential equations of motion are numerically
integrated over variable steps of time which, in this Situation, are governed
by either the pulse duration of the seismogram or a smaller interval used to
pinpoint phase transitions in the bilinear hysteretic moment-curvature
relationship. The response curves obtained, which are the histories of deflection,
moment, etc., contain all the effects inherent in the assumptions including
nonlinearities, inelastic deformations, and Vibration in higher modes. It is
notable that the response over the short time increment of integration is not
assumed to be linear, but, in fact, follows the material law for shear-deflection
which, integrated from the assumed bilinear moment-curvature relationship,
is linear when elastic but otherwise nonlinear.

From the response data obtained, illustrative response curves for lateral
deflection and column end moments are presented as well as moment-curvature
diagrams and envelopes of maximum deflection and moment. Deflected
shapes at particular times are also shown. Three values of the strain hardening
coefficient were used in the analyses which define an elastic structure, an elasto-

plastic structure, and a moderately strain hardened structure. Although
damping was neglected in the problem Solutions, it is available in the formula-
tion and can be easily included. Since damping restricts Vibration, it may be

instructive to include it.
A frame building with flexible girders may be sized so that yielding must

primarily take place in the girders. However, structures in which the floor
beams are composite with reinforced concrete floors or are otherwise more
rigid with respect to the columns, will force the inelastic deformation into the
columns. Inelastic strains of increasing magnitude, accompanied with large
deflections, may indicate that the structure is collapsing since stiffness in the
inelastic material regime is a function of relative lateral deflection.

All equations herein are based on an w-story building with w-degrees of
freedom in the plane. Thus, summation over repeated indices are understood
to be from 1 to n and free indices identify a particular element.

Theoretical Background of the Inelastic Analysis

The complete derivation of the analysis is somewhat lengthy and given
elsewhere [2] so only high points of the theory are repeated here. The material
law and the resistance function of the structure are reviewed as items of
prineipal interest.

The material represented by a bilinear strain-hardening hysteretic moment-
curvature relationship can be given as
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M^Ni +K^-V,). (1)

where Mi is the bending moment, 0j is the curvature, Ni and Wj are the moment
and curvature values at a material phase change and are constant throughout
a phase, and the stiffness is

(2)

in which a is the coefficient of strain hardening. When a 1 the material
remains elastic and as a -> 0 an elastic-perfectly plastic material is represented.
In addition, variable values of moment and curvature within a material phase,
zero at each phase change, are defined as

L^M.-N,, (3)

Vi =*i-V< (4)

so that Li KtjQj. (5)

Thus, the material law is defined.
The equations of motion of an w-story multiple bay shear building with

framed columns of an elastic-linear strain hardening inelastic material
subjected to seismic motion are given as

mu üj + Cy uj + A4j (u) uj + Bt (u) WtGf(t), (6)

where mu is the mass of the i-th. story, the C^ are viscous damping coefficients,
Wi is the weight of story i, G is the magnitude factor of the earthquake (maximum

fraction of acceleration due to gravity), f(t) represents the unitized time
Variation of the earthquake; Uj, Uj, and üj are the relative displacement,
velocity, and acceleration, respectively, of the j-th floor, with respect to the
base, the Atj (u) are stiffness influence coefficients, and Bi (u) is a residual
vector proportional to the accumulated inelastic strain in the columns. Further -

more, the resistance function of the structure, Bi for the i-th floor, is variable
and may be represented as a function of relative displacement by

Ri(u)=Aij(u)uj + Bi(u), (1)

where Atj (u) Sik Kkr rrj (u), (8)

B< (u) Sik (Nk -Kkr rrj (u) Tjp Ap), (9)

in which Tjp and Sik are constant for a particular structure, their being defined
by geometry, Ap accounts for residual strain at phase changes, Nk is the
bending moment at a phase change, and rrj(u) is a nonlinear function of
Qi (u) the phase variable curvature which is a function of relative displacement.
When oc -> 0 rrj(u) is singulär so a very small value of oc, say a 0.0001, is
used in calculations for the elastic-perfectly plastic case.
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A detailed derivation of the analysis which includes complete definitions
of all the tensors given herein is given in reference [2].

The Method of Computation

Numerical Integration

The equations of motion, Eq. (6), without damping, were integrated numeri-
cally using the Runge-Kutta fourth-order method [3]. The equations of
motion are written

üi F(t,ui,ui) -^[GWif(t)-Aij(u)uj-Bi(u)] (10)
m(ii)

and the Solution at time t + r, where r A t, is

u<i(h + T) ui(t1) + TUi(t1) + ±T(ai + bi + ci), (IIA)
ui(t1 + T) Ui(t1) + l(ai + 2bi + 2Ci + di), (IIB)

in which a^ rf [^,^(y,^(y], (12A)

^ =TF[t1 + ±T,ui(t1) + iTÜi(t1),ui(t1) + ±ai], (12B)

Ci =TF[t1 + ±T,ui(t1) + ±TUi(t1) + ±;Taiüi(t1) + iibi], (12C)

di^rFl^ + ^Ui^ + TÜi^ + ^Tbi^i^ + Ci]. (12D)

Note that the Atj (u) and B{ (u) are funetions of displacement and are recal-
culated for each of the values in Eqs. (12) using the extrapolation values of
the displacement function in the formulation.

The duration of the time increment A t — r should be as large as possible to
conserve computation time and retain a valid Solution. However, it may have
to be decreased to pinpoint the coordinates of a material phase transition or
the characteristics of the forcing function. Since the duration of A t may be

changed with each integration and the time between pulse changes of an
earthquake accelerogram is considerably smaller than the period of a tall
building, a larger time increment well within the duration of pulse change
coordinates of the seismogram and a smaller time increment of 1/20 to 1/4 of
the larger to locate the material phase transitions should be chosen for the
integration.

Computer Program

A program was written to perform the computation with a digital Computer.
Once the story heights, weights, and column stiffnesses and yield moments
are processed to obtain the physical parameters describing the structure,
seismogram cards are read which give the coordinates of acceleration and time
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delineating peak values. As each seismogram card is read integration proceeds,
linearly interpolating seismogram values, at the larger time increment until
a material phase transition has been passed. At that time, the last set of
calculations are rejected and integration proceeds from the former time with
the smaller time increment until the material phase transition is established.
Control then returns to the larger time increment until a material phase
transition is again detected, at which time the process is repeated.

Each cycle of integration required the reestablishment of the variable
matrices, a number of matrix Operations, and a check on each column for
possible material phase transitions. Lateral floor deflections; column moments,
shears, curvature, and angle change moments; residual values of column
moments, curvature, and angle change moments; as well as the stiffness
influence coefficients and the residual force vector are obtained and printed
with each integration cycle.

The procedure is essentially a direct stiffness method and, therefore, matrix
Operations of multiplication or addition only are required.

The Design Building

For purposes of this study, a 10-story shear building was designed for
which the parameters of a column segment are given in Table 1. The funda-

Table 1. 10-story column segment of design building

Story Height (ft.) Weight (kips) i" (in.4)

1 15 58.5 1166
2 12 58.5 1166
3 12 58.5 1166
4 12 56.5 1166
5 12 56.5 583
6 12 56.5 583
7 12 49.5 583
8 12 49.5 389
9 12 49.5 389

10 (Roof) 12 44.0 389

mental period of the elastic structure is 1.5 seconds using E — 30,000 ksi for
the material. The first column of 4 stories length extends through the first
story although this obviously decreases its stiffness. This built in defect not
only sensed response effects more rapidly than the rest of the structure as

expected but also appears to provide a probable collapse mechanism, especially
in the elasto-plastic case.

The initial yield moment for a column is reduced because of the presence
of axial force and is given, arbitarily, by

N't clt, (13)
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where e is a factor defined by
F

e= 1.076-^.d
(14)

Fy is the yield stress of the material, and d is the depth of the section. Eq. (14)
is derived as follows: From AISC formula 21 [4]:

^-M8(1-^)-
where Py Fy A, P is the axial force, and

M -~ 1 14 y—

(15)

(16)

Since maximum P 0.6P^ (Section 2.3 of [4]) Substitution of Eq. (16) into
Eq. (15) yields Eq. (14). Thus, for the A36 steel 12 inch columns used in the
problem e 0.269 ft.-kips/in.4. In addition, the yield moment of column 1

was further reduced by a ratio of the story heights of adjacent columns cubed
to account for its lesser stiffness. This factor is empirical and may prove to be
excessive or unnecessary, however, results of analyses without it were not signi-
ficantly different.

The building is tapered in stiffness and mass. It is representative of a
commonplace type of reetangular design although the analysis can handle
buildings which decrease in the number of bays with height.
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Fig. 1. Deflection response curves for floors 1, 5 an 10 (a=0.10).
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Response Calculations

The north-south component of the May 18, 1940 El Centro, California
ground acceleration, which is well known and somewhat of a Standard in earthquake

engineering studies, was used as the dynamic excitation in this study.
It is representative of a moderately strong earthquake. The maximum pulse
has an acceleration of about 32% of gravity. The most intensive portion of
the earthquake was in the second through fifth seconds of its duration although
intensive ground movement continuedfor a half minute. To conserve Computer
time the problem calculations were generally for 3 seconds of earthquake
duration although several Solutions were for more extensive periods of time. The
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results obtained for this particular excitation are only indicative of earthquake
response in general since each has its own characteristics.

The design building, with strain-hardening coefficients of a 0.00001

(elasto-plastic), a 0.10 (moderate strain-hardening) and a=1.0 (elastic) was
subjected to 3 seconds of excitation. Stress resultants of moment, deflection,
curvature, influence coefficients, the resistance forces including residuals, and
the excitation were recorded at each time interval of integration, as well as

other parameters. From the data representative curves were plotted.

Results of the Analysis

Histories of the deflections and column end moments of floors 1, 5 and 10

with a strain hardening coefficient of a 0.10 are shown in Figs. 1 and 2. The

response of floor 10 for the elasto-plastic case, a 0.00001, a strainhardened
case in which oc 0.10, and the elastic case in which oc 1.00 are shown in Figs.
3 and 4. Material regime changes are marked on the curves indicating when
excursions take place into the plastic phase. Although excessive deflections were
noted for the elasto-plastic case, which may indicate incipient collapse, the
bending moment is, of course, contained. However, in the presence of strain
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hardening, although deflections are considerably decreased with respect to the
elasto-plastic case, the magnitude of bending moment in the first story column
indicates that it is undergoing excessive deformation although the higher
columns are not.

The moment-curvature excursions for columns 1 and 10 with a strain
hardening coefficient of a 0.10 are shown in Fig. 5. The amount of plastic
deformation can be easily seen from this type of diagram. The limbs of the
curves are either positive velocity or negative velocity and their directions are
marked. The area under this diagram is a measure of energy and so constitutes
a record of cumulative damage. After the ground acceleration has died out
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Fig. 5. End moment-curvature history of
columns 1 and 10 for a=0.1,

Fig. 6. Deflected position of 10-story column
at selected times (a 0.10).
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the structure, if it has not collapsed, will vibrate elastically about a new axis
where the offset in curvature is the permanent set.

The deflected position of the 10-story column segment at three randomly
selected times is of illustrative interest in that it depicts a physical view of
the Vibration. Of particular interest is the behavior of the first story column
due to its greater relative flexibility to the columns immediately above. The
reduced stiffness and yield moment of column 1 is immediately evident in
Figs. 5 and 6.

Of major interest to the analyst are the maximum values of deflection and
stress resultants at each story which occured during the earthquake. Maximum
values can be taken from the response curves and plotted as an envelope as
is shown in Fig. 7 for maximum deflections and in Fig. 8 for maximum bending
moments for the three levels of strain hardening used in the Solution. Maximum
shears are directly proportional to the end moments and are given by

Vi=^Mi. (17)

The moment in a column is related to the difference in lateral deflection of its
adjoining floors. Thus, the change in deflection between stories in Fig. 7 relates
to the moment in Fig. 8, but only in a general sense since the relationship is
not linear.

Conclusions

It is shown that a structure idealized as a shear building can be very pre-
cisely, within the framework of prior assumptions, analyzed for its response
under seismic loading by numerically integrating the nonlinear equations of
motion. The columns are treated as continuous members and so inelastic
strains also have continuity. No conclusions can be drawn with respect to the
behavior of shear buildings in general from the limited analyses in this paper.
However, the behavior of the structure analyzed is studied in depth. It is

immediately apparent that the lesser stiffness of column 1 and its reduced
yield moment has a pronounced adverse effect on the structure. It is feit that
a more accurate method of yield moment reduction due to axial force should be
used.
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Summary

A direct stiffness method of analysis of multi-story shear buildings of a
bilinear hysteretic material is used to find their response to ground motion.
The nonlinear coupled equations of motion of a building are precisely
integrated with the Runge-Kutta Method of numerical integration to obtain their
deformation and stress resultant history due to ground acceleration records
of the 1940 El Centro earthquake. A 10-story structure is analyzed at three
levels of strain hardening in the post-elastic material regime. It is shown how
damage may be assessed.

Resume

Une methode de rigidite directe permet l'analyse des reactions aux mouve-
ments du sol d'une construction ä plusieurs etages, assemblee avec des materiaux

a histeresie bilineaire. Les equations de mouvement d'une construction,
non-lineaires, couplees, sont resolues avec precision par 1'integration numerique
de la methode Runge-Kutta, ce qui donne les deformations et les contraintes
dues aux accelerations du sol lors du seisme d'El Centro en 1940. Un bätiment
ä 10 etages est analyse dans le domaine post-elastique du materiau, ä trois
echelons de durcissement. II est demontre comment des degäts peuvent etre
evites.

Zusammenfassung

Um die Wirkung der Bodenbewegung (infolge Erdbebens) auf ein Hochhaus

aus Material, welches bilineare Hysteresis aufweist, beschreiben zu können,

wird ein direktes Drehwinkelverfahren angewandt. Die nichtlinearen,
gekoppelten Bewegungsgleichungen sind genau nach Runge-Kutta integriert
worden, um den Verlauf der Verformungen und Spannungen infolge der

Beschleunigungen des El-Centro-Erdbebens zu erhalten, welches 1940 stattfand.

Ein zehnstöckiges Tragwerk ist für drei Stufen innerhalb des

Verfestigungsbereiches untersucht worden. Es folgt daraus, wie Schaden abgewendet
werden kann.



Maximum Loads for Eccentrically Loaded Thin-walled Channel Struts

Charges maximales pour piles ä parois minces en U, comprimees excentriquement

Höchstlasten für dünnwandige U-Stützen unter ausmittiger Belastung

A. C. WALKER
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Introduction

The use of thin-walled open sections as load-bearing members in civil
engineering structures has increased considerably in the last few years. This
has given rise to a greater need to understand the mechanics of the behaviour
of these sections and also to obtain design information in a simple and com-
prehensible manner. Although considerable research effort [1-3] has been

applied to the testing and analysis of uniformly-compressed channel-columns,
relatively little attention has been given to the more general condition in
which the load is applied offset from the centroid of the cross-section. This
paper reports on work carried out on this problem both from an experimental
and theoretical standpoint.

The paper is concerned with Channel columns having one axis of symmetry
in the cross-section, and in the analysis it is assumed that the compressive
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Fig. 1. Channel loading geometry. Fig. 2. Non-dimensional representation ofplate
geometry edge-loading and edge restraints.
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load is applied along this axis; then the web of the Channel is compressed
uniformly, while a linearly varying stress is applied to the flanges, as in Fig. 2.

It is also assumed that open thin-walled channel-sections, in which the length
is of the same order of magnitude as the flange or web widths, may be
considered from a theoretical viewpoint to be composed of individual plates that
are connected in a certain manner on their common longitudinal edges. The
determination of the Channel load-bearing characteristics then becomes one
of obtaining the corresponding plate properties and combining these to obtain
compatible conditions along the adjoining edge.

We first consider the behaviour of thin, initially flat, plates loaded by a

linearly varying edge stress. It has been shown [4] that such plates may
sustain load considerably in excess of the theoretical buckling loads before

collapse occurs. Also, good engineering estimates of these maximum loads

may be obtained analytically by assuming that collapse takes place when the
direct stress at the edge reaches the material compressive yield stress. Since
the unloaded edge conditions were taken to be rotationally restrained the
calculated plate instability loads may be synthesise to provide the theoretical
buckling loads [5] of open sections considered to be composed of such plates.
In practice, no plate is perfectly flat, and deflections will grow from the
beginning of load application; for this reason, the theoretically predicted
buckling behaviour is never experienced in practice. However, such a buckling
analysis will indicate to a designer the loads for maximum growth of
deformation and maximum rate of decrease of stiffness. Like their constituitive
plates, compressed sections may sustain loads in excess of the theoretical
buckling loads. In this paper an approximate method of analysis is presented
which combines the plate collapse estimates to give the corresponding estimate
for lipped sections. Test results are described which show that the estimates
are good; these results are used as a basis for an empirical approach, by which
the actual collapse loads may be predicted from the corresponding theoretical
instability loads.

1. Analysis of Single Plates

a) Mathematical Formulation

Ref. [4] presents fully the analysis of the buckling and post-buckling
behaviour of initially-flat, reetangular plates compressed by a linear-varying
load action. The loaded edges were taken to be simply-supported whilst the
longitudinal edges have equal or unequal rotational restraint; this is shown
in Fg. 2. For the sake of completeness the above analysis is summarised in
this paper. We put,

f x y a w nf f /i\* ä> * ö' + b' ü,=T' F=E¥' (1)
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where a is the length of the plate in the x direction and b is the breadth in the
y direction; the von Kärmän [6] large deflection equations may be written in
the nondimensional forms

1 d*co d*co d*co
_ 12n ld2F' d2a> d2F'd2aj d2 F' d2co \

(2a)

c/>2 3^+ dedrj2^^ drf " \d£dri+Te dry2' '

where Ff is the non-dimensional form of the Airy stress function, which is
related to the direct and shear stresses by

axa2 _
d2F' __aya2 _

d2F'
_ rxya2 _

d2F'
°* ~~cj>2Et2 ~ drf ' G^~"E¥~~~W T^~cf>Et2~ d^drj'

The in-plane boundary conditions for the loaded edges, £ 0 and f=l,
with the imposed loading and for zero shearing stress, are

[**w ^L^MMIH' (3a)

r d2F'~]^¦•-[-jmLr0- <3b)

where JVq —-^— and oc is the eccentricity parameter.

Along the unloaded edges there is considered to be no direct stress acting
in the rj direction nor any shearing stress, so that

\d2 Fl
KV-i/2,-1/2 \-jrw\ °> (4a)

L °± J ??=+l/2, -1/2

T d2 F' 1

[r^*-» [8mL.*.-» 0- (4b)

The out-of-plane boundary conditions along the loaded edges were those of
simple support, i.e. if M% is the linear intensity of bending moment about an
axis parallel to the rj axis, then

^W=[^ +^^r0, (5a)

M|=o,i 0- (5 b)

The unloaded edges are fully restrained against lateral deflection and elasti-
cally restrained against rotation, i.e.
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[:
B2oj v 82co

+
drj2 </>2 d£2

[d2cü
v d2a) da)]

[co]^=+l/2,-l/2 - °>

«lp- 0>
+1/2, -1/2

o,
+1/2

(6 a)

(6b)

(6 c)

where /cx — b rJD, k0 —b r0/D and rx, r0 are the degrees of rotation restraint.
An approximate Solution of Eq. (2), together with the appropriate boundary

conditions (Eq. (3-6)), is obtained using Galerkin's method and employing
a digital Computer to perform the necessary arithmetic. The trial series for
F' is

F' =A -!)+!*»] i?2+22&™/,tf)?.0?)>

where A is a constant, brs are constant coefficients, fr (£) and gs(r]) are funetions

of £ and rj only, respectively. After consideration if Eqs. (3) and (4),
Eq. (7) besomes

^^f^-il+i^2^^,...^..^8-2-^^^^2^^- (8)

Similarly a trial series for to may be obtained which satisfies the appropriate
boundary conditions (Eqs. (5) and (6)). This series may be written

<» 2 2 ?m>nm7T|[7f+4-M„7f*^ (9)
ra=l,2,... n=0,l,.-.

where the coefficients An, Bn, etc., may be obtained from the Solution of the
matrix equation

1 2 4 8

1 -2 4-84r(n+2)\(n+l) + ^\ S(n+l2(n+3)[(n+2) + ^J

2(n+3) [(n+2) +|]
L ¦?]

_4(»+2)[(n+l)+ ^] 8(n+l)

Mf] 1671

¦I6n [<"-1)+t]_

-(n+4) [(»+3) + ^]

(n+4)[(»+3) + ^j

b) Bückling

Theoretically buckling occurs when the flat plate becomes unstable at a

particular value of the applied stress distribution. Thus, in Eq. (8) we have
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6rs 0, and, if the plate is considered to buckle in a unique sinewave form in
the longitudinal direction, we may write Eq. (9) in the form

n=L
o) 2 qn8mmn(;Yn, (10)

71 0,1,...
where Yn [t^+4 + An rjn+z + Bn rj^2 + Cn rj71^1 + Dn rjn].

Thus Galerkin's method when applied to Eq. (2) using brs 0 and Eq. (10),
gives

m27T2 d2Y„ m4774_

-Vi
<f,2 Arf '

</>4

_i^![(i-|)+«,jrB}ry^ o (ozjzL), (ii)
N b2

where k jpr—.

Evaluation of Eq. (11) leads to an algebraic eigenvalue problem for k, the
buckling coefficient. This is very easily programmed for Solution on a digital
Computer, and it has been shown [5] that the buckling coeffieient converges
rapidly for increasing number of terms (L). The buckling load is obtained from

•*-crit. u (-!)•

c) Post-buckling Behaviour

It is assumed here that there is no change of buckle pattern as the load is
increased beyond the buckling load. Thus, if Eq. (9) is written

co sinm7r£ 2 3nhB+4 + ^»'JB+8-l-^»'?n+a + C,Bijw+1 + 2)B^B],
»=o,i,...

and, if in Eq. (8) the summations are given the limits lf^r^T, O^s^u, then
Galerkin's method for Eq. (2) gives

L rT s^u /• f M pF> diF> 8*F'
ti,...r=h...s=h J W H* ~d?dr,z+(p dr,*

0 -1/2

-\Werj +Ww\dCdvd(j 0' (12a)

1 1/2
L T ^ - .p g4 8icü 8*M

«,...r-lX...-oU..J J W2 8P+ 8?8r,* + 9 8 t,*
0 -1/2

io/i 2x \82F'82w 8*F'8*m „ 8*F' 8*0,1]^, ,t A /10_-12(l-v2)^^ + -^^-2^-^I-j}^^ 0, (12b)
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where

l^p^T, O^qSU, O^i^L.
Evaluation of Eq. (12) gives

[A][bn\ [B]\Siqf], (13)

{[C'1]-N^C2]}[qk] [D][brsqkl (0Zi,j,k£L) (14)

where the coefficients of the matrices [A], [B] etc., are constants. Substitution
of [brs], from Eq. (13) into Eq. (14), gives the simultaneous cubic equations

{[C1]-^[(72]}fe] [Z>']feg,.fe]. (15)

This system of equations is solved by successive approximation on a digital
Computer for various values of Nq> NqcHL

One result of this approximate Solution is shown in Fig. 3; the direct
longitudinal stress at the cross-section corresponding to the crest of a buckle

KT0=0

^E7
SIMPLY-SUPPORTED UNLOADED EDGES

<b 2,m=2, ot= 1

02505 0 25

Fig. 3. Middle surface direct longitudinal

stress at the crest of a buckle.

is plotted for various values of Nq It is seen that the stresses at the edges

grow more rapidly than those in the middle, and this gives rise to the formula-
tion of the collapse criterion. Results of tests given in Ref. [4] show that
good agreement is obtained using the above analysis for buckling and maximum

loads.

2. Collapse Loads for Channel Struts Reinforced with "Lips"

Fig. 4 shows how the section is considered to be subdivided into its consti-
tuent plates. The web is thus treated as a uniformly-loaded plate with equal
amounts of rotational restraint along the unloaded edge. The flanges are taken
to be eccentrically loaded plates elastically restrained against rotation along
the unloaded edge common to itself and the web; the lip along the other
unloaded edge is assumed to provide a simple support type of condition [7].
The matching at the common longitudinal edges is required to fulfill the
following conditions.
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a) The degree of edge restraint, r, for the flange and web is equal but opposite
in sign, i.e. moment reactions are equal and the original corner geometry
is maintained.

b) The value and distribution of the longitudinal direct stress, and therefore
the unit shortening, were to be the same for the flange and web.

7•1

>veM

71

Fig. 5. Variation of load with longitudinal
direct stress at 17 %.

Fig. 4. Geometrjr and edge restraint
representation of component plates

of a lipped Channel.

M« 05

- 9 LIPPED
CHANNEL

"Vi WEB

/" FLANGE

-10 -15 -20

The simultaneous application of these requirements results in a very
complex problem. This is simplified by assuming the stress distribution to be
defined to sufficient accuracy by taking only one term in the £ direction in
the series Eq. (8). Now, taking a specific web geometry ((/>w,kw) we may, from
the Solution of the appropriate non-linear Eq. (15), obtain a plot of non-
dimensionalised maximum edge stress against non-dimensional load
parameter, as shown in fig. 5. Now

b r and bfrt

but by assumption, above we have, rf= —rw, and since we are considering
only sections with uniform thickness, Df Dw. Thus, with H bfjbw we have

bW rW Vf __ _ TT

D b
~~ u

Similarly, ^f=ljH <f>w, so that we may obtain corresponding plots on Fig. 5

for various values of H, and by using
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-matf and N^=-mN^9JU #2^/ H2

they may be superposed on to the web plot as shown in Fig. 5. The
intersections of these curves are valid geometries in that all the specified boundary
matching conditions are fulfilled at the particular intersection load. Now,
these particular geometries are considered to be sections at the point of
collapse, i. e. the maximum direct longitudinal stress is equal to the material
yield stress. Thus, using crxw cry, where axw a^wj>2)Eh2ja2, and prescribing
a value for ory, we can obtain the thickness for the sections.

«=0 5 * =' nxbw

cr„ x t LIPPED CHANNEL

+ t 0 0725

X t 0071

O t 0 068

D t 0 066

03 06 09

OL 1 0
tax xbw

y xter

L
LIPPED C

+ t

O t

X t

:hannel

0 0735 in

0 068 in

0065 in

^5^0

D t 0 049 in

4—•

Fig. 6. Variation of non-dimensional maximum

stress with shape factor a 0.5.
Fig. 7. Variation of non-dimensional maximum

stress with shape factor a 1.0.

In this study, oy= -35x 103lb.//in2, cf>w=l, E 33x 106lb.//in2, a 8in,
and by limiting the thickness ränge to 0.050 in — 0.090 in the plots of collapse
load against section geometry shown in Figs. 6 and 7 were calculated; in these,

a
Cmax w and the lip width is 1 in. The procedure is shown in the following

example, with
# 0.62,

<*xwa>2

at =-8.35,
-35X103X64

N' -6.02.
VW

0.0902 in.[ <r*,g* 11/2 [ -35X103X64 IM
~ [fäEatJ ~ [1X33X10«X -8.35J

N^Ebw(l + l.5H + 0.125) 3_?5x 103 tbf_

h

Similarly, with

52.9.

H 0.65,

# 0.68,

h 0.0705,
h 0.0582,

(7 52.0,

(7 51.7.

In this way Figs. 6 and 7 were constructed; due to the approximate nature
of the Solution of the plate differential equations there is some scatter in the
theoretical results; this is contained in the enclosed area shown in these plots.
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The most common design curve is that which enables the designer to
calculate the maximum load for a section from the corresponding theoretical
buckling load. Examples of this type of curve are given in Ref. [1] and [2]
for uniformly compressed sections. The usefulness of this curve lies in the
fact that the buckling load is relatively simple to calculate for even complex

Fig. 8. Maximum strength of eccentrically
loaded short lipped Channel struts.

+
Q'mox

_ fe)°M

+ « 05

O o= 10

O

sections. If the curves in Figs. 6 and 7 are recast in this manner it is seen that
on a plot of (omaxlay) against (crylcrcr)1/2 (Fig. 8), these quantities may be
related by

Here

a Ig \0-54^max / ucr\

bwh[l + 2H(l-^+HL(l-cc)]'
P

bwh[l + 2H(l-^+HL(l-a)]'
where HL is the ratio of lip width to web width.

3. Experimental Investigation of Lipped Section Maximum Load

The special loading rig designed for this investigation is shown in Fig. 9.

It consisted of two relatively massive plattens opposed to each other and
individually mounted on four arms for vertical restraint and on two trunnions
for restraint in the horizontal plane. The trunnions fitted over two heavy
steel bars, one above the plattens and one below, which ran the length of the
frame and were firmly attached to it. Rotation of the serrated hand wheels
caused the end assemblies to approach each other thus inducing a load in the
speeimen Channel, placed accurately in position in the grooved case-hardened
face plates provided. Eccentric loading was obtained by the differential
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w-*1

z

~\>

Fig. 9. View of experimental
loading rig.

loading of one side from the other. The magnitude of the load was indicated

by electrical resistance foil strain gauges bonded to the link bars and connected

to a Huggenberger switch box and strain bridge. Each link bar was previously
calibrated and was found to give a linear reading over the required load ränge.

Collapse was indicated by a reduction of the load for an inward movement

of the loading plattens. Results of this series of tests are plotted in Fig. 6

and 7.

Conclusions

An approximate method of analysis has been presented which assumes

that a short Channel column may be treated as a collection of individual

plates connected appropriately along their common edges. The analysis
Combines the large deflection behaviour of these constituitive plates to provide

an engineering estimate of the maximum load capacity of the Channel.

The analysis is shown to give good predictions when applied to short

columns subjected to eccentric loading. It is also found that the experimental
results may be described adequately by a single curve relating the column

theoretical buckling stress, the corresponding or maximum stress and the

material yield stress. The test programme reported here was of limited ränge
but the good agreement obtained promises hope for a coherent design for-
mulation for open Channel columns subjected to a variety of eccentric load

actions.

Notation

a
b

bf,bw
b01. bn

plate. or Channel, length.
plate breadtli.
Hange and web widths respectively of a Channel section.

etc. Galerkin coefficients in stress function series.



MAXIMUM LOADS FOR THIN-WALLED CHANNEL STRUTS 179

i,j,k,n integers used in Galerkin deflection series.

k buckling constant.

p,q,r,s integers used in stress function series.

q0,q1, etc. Galerkin coefficients in deflection function series.

rx, r0 degrees of rotational restraint per unit distance in x direction
at plate edges y= -6/2 and y= +b\2 respectively.

t plate thickness.

w displacement of a point of the plate middle surface in a direction
normal to the undeformed middle surface.

x, y cartesian coordinates.
D flexural stiffness of the plate, defined by D E t3/l2 (1 - v2).

E Young's modulus of the plate material.
F Airy's stress function.
F' non-dimensional form of Airy's stress function, F' FjEt2.
H Channel shape factor, H bfjbw.

HL ratio of lip width to flange width.
L limit of deflection series.

Nx normal force per unit length in the middle surface of the plate
in the x direction.

N0 value of Nx at x 0, y bj2 and x a, y bj2.
N'0 non-dimensional form of N0, N0' N0 a2J4>2 E t2.

N0cr critical value of N0 at initial buckling.
P total compressive load applied to plate.
Pcr critical value of P at initial buckling.
Pmax maximum plate load.

T, TJ limits of stress function series.

oc load eccentricity parameter.
non-dimensional forms of the degrees of rotational restraint per
unit length in x direction at plate edges y= —6/2 and y= +6/2

respectively, Kl= -r^-, k0=-r~-.
values of kx at common edges for flange and web, respectively.

v Poisson's ratio of the plate material.
£, rj cartesian coordinates in non-dimensional form, % x\a, rj=ylb.
(f> aspect ratio of plate, <f> ajb.

<f>f, cf)w aspect ratio of flange and web, respectively, of a Channel section.

gx Gy direct stresses in the x and y direction, respectively.

o-|, gv non-dimensional forms of gx and a„

rxy shearing stress in the xy plane.

r^ non-dimensional form of rxy, t^ -^wi
a> non-dimensional form of w, co w\t.

K,,K{o

V w

oxa2 aya2
(T'0~~Et2

rxya2
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Summary

An analytical and experimental investigation is made of the maximum
load-carrying capacity of thin-walled open Channel columns under eccentric
compression. The Channels are treated as being composed of individual plates
connected appropriately along their common edges. The large deflection
behaviour of these plates is analysed approximately using Galerkin 's method
and the results are synthesised to give an engineering estimate of the maximum
load of the short columns.

The results of the experimental investigation show these estimates to be

of good engineering accuracy and it is also shown that the results may be
described adequately by a single curve relating the column buckling stress,
the corresponding maximum stress and the material yield stress.

Resume

Ce rapport presente une etude theorique et experimentale sur la capacite
de charge de piliers ä section en JJ. On considere la section comme composee
de parois individuelles, liees conformement. Les grandes deformations propres
a ces plaques ont ete analysees ä l'aide de la methode Galerkin. A partir des

resultats obtenus, on reussit une estimation tres generale de la capacite de

charge de piliers courts, estimation qui se montre en bon aecord avec les
valeurs experimentales. En plus on voit que les resultats peuvent etre repre-
sentes par une seule courbe reliant la tension de flambage, la tension maximale
correspondante et la limite d'ecoulement du materiau.
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Zusammenfassung

Es wird eine theoretische und experimentelle Studie über die Höchstlast
dünnwandiger [/-Stützen dargelegt. Man nimmt an, der Querschnitt sei aus
einzelnen Platten zusammengesetzt, die an ihren Ecken entsprechend verbunden

sind. Die diesen Platten eigenen großen Verformungen werden näherungsweise

nach dem Galerkin-Verfahren untersucht. Die Synthese der Ergebnisse
dient der praktischen Schätzung der Maximallast kurzer Stützen.

Die Versuchsergebnisse zeigen, daß diese Schätzung für praktische Zwecke
genügend genau ist. Es wird ferner gezeigt, daß die Ergebnisse zweckmäßig
durch eine einzige Kurve dargestellt werden können: Diese Kurve verbindet
die Beulspannung, die entsprechende Maximalspannung und die Fließgrenze
des Materials.
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