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On Thin Shallow Elastic Shells over Polygonal Bases
Des coques minces élastiques a courbure faible, ayant une base polygonale

Uber diinne, flache, elastische Schalen vieleckigen Grundrisses

D. S. WALKINSHAW G. E. RILEY
Defence Research Board, Ralston, Professional Engineer, Province of
Alberta, Canada Ontario, Canada
J. N. SIDDALL G. AE. ORAVAS
Associate Professor of Mechanical Engi- Professor of Engineering Mechanics,
neering, McMaster University, Hamilton, MecMaster University, Hamilton,
Ontario, Canada Ontario, Canada
Introduction

This paper demonstrates the applicability of the approximate theoretical
solution given by Oravas in 1957 [1]1) for shallow thin ealotte shells of spherical
middle surface subjected to isothermal deformations by uniform normal
pressures.

Although spherical calotte shells have been constructed in practice, as far
as is known any analytical solution used in their design neglected the shell’s
transverse bending stiffness. Such momentless analyses introduce errors in the
solution, particularily near the shell’s boundary where transverse bending is
important. The extent of penetration of this transverse bending zone towards
the shell’s apex depends upon the shell’s thickness, middle surface curvature,
boundary periodicity and loading.

The theoretical solution is based on a collocation procedure introduced for
plates by TOLKE in 1934 [2] by means of which prescribed boundary conditions
are satisfied at discrete boundary points. In this method, derived from the
general theory given by MusHTARI in 1938 [3] and Vvasov in 1949 [4], the
transverse shear deformation of the shell is neglected in comparison with its
transverse bending and extensional surface deformation.

1) Numbers in brackets designate references at end of paper.
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Sectional resultants obtained both theoretically and experimentally for a
spherical shell enclosing an hexagonal base are graphically depicted for various
radial lines of the characteristic segment of the shell.

Theoretical sectional resultants are also depicted for a similar spherical
shell enclosing a triangular base.

Fig. 1. Vector diagram of shell element
showing sectional resultants of stress.
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Fig. 2. Vector diagram showing relation
of boundary coordinates 7, s to shell
interior coordinates 7, 6.
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Formulation of the Theoretical Solution

The two fundamental fourth order differential equations for thin shallow
shells subjected to isothermal deformation by uniform normal loading given
by MusHTARI and VLASOV are

1
R

(1)
Eh

4 —_— 2 —
ViF 7 Viu, =0

DViu,+—V*F =p,,

]
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where  u, mnormal displacement
F  stress function
p, load intensity component per unit area normal
to middle surface of shell
h  constant shell thickness
E Youne’s modulus of elasticity
R radius of curvature of middle surface of spherical shell
D = Eh3[12 (1 —»?) = flexural rigidity of shell

e_ 4 d _ 2 19 1 &
Sdrodic — o Trart e e
pi= P22

v Poisson’s ratio

7o radius vector to middle surface of shell

r  radial parametric coordinate of shell

6  circumferential parametric coordinate of shell

MARGUERRE gave similar shallow shell equations in 1939 [5].
The solution of equations (1) under certain restrictions can be reduced to the
solution of three differential equations

P27z —i)2] ¥, =

-ﬁa
(72— iX] P2V, = P2, = 0, @)
P2V, —iX2V, = 0,
where V=wu,+i0F =V+V,+V,,

w = 1/12 1—v2%)/Eh?,
A2 = V12 (1 —v?)/Rh

and 7, V; and V, represent three linearly independent solutions.

Solution of equations (2) yields the approximate normal displacement u,,
and stress function F for a spherical shell of k-tuple symmetry. Since the shells
which were investigated possessed no inner boundaries terms containing ker,, (x),
kei, (x) and r—" are omitted from the solution because of their singular nature
at the origin. Finally the solution becomes

(Ar)+A¢beig(Ar) + B}

’U/n——

E’h
+ Z [4}, bery, (Ar) + A2, beiy, (Ar) + CL, r*™] cos (kn 6),
n=1

_ p, B r?

F 4

+ 2 {Abbeiq (Ar) — A3 ber, (\r) + B3

+ 2[4}, beiy, (Ar) — A2, bery, (A7) +C%, r**] cos (kn 0)}.
n=1
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Fig. 3. Shell test assembly.

Fig. 4. Plan view of shell on hexagonal base
showing location of radial lines for which sec-
tional resultants of stress are calculated.
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Sectional stress resultants and stress couples can be expressed in terms of
the normal displacement and the stress function as

o F
Fyg (o) z_é','r"z"’
10F 1 &2F
Fn(0) = 57 T2 g
0 (Lol
F.o(0) = Fp, (0) = "5(; W) “
_ *u, 1 ¢%u, 1ou,
B Mg (0) ‘_D[W ”(72 a6 T r ar)]’
1 ?u, 1ou >u
Moy (0) = D[’ﬁ 56s T 7 or arzn]’
- _ _ph1 o (10w,
M, (0) = -Mwlo) =5 7 50)|
0=30°
e=24%
0=10°
e=2-6°
3 COLLOCATION POINTS 7 COLLOCATION POINTS

Fig. 5. Location of boundary collocation points for characteristic periodical segment of
shell over hexagonal base.

The solution for the constants A}, A2, E}, E%, A}, , A%, , Ct, and C%, in (3)
is effected by employing TOLKE’s boundary collocation procedure which
restricts idealized boundary conditions to be satisfied only at discrete boundary
points instead of along the entire length of the boundary.

The boundary conditions relevant to the shallow calotte shells investigated
are

a) Stress resultants normal to the boundary vanish:
an (o) = 0.

b):The boundary undergoes no rotation:

ou,\
a(ﬁ) 0.

¢) The boundary undergoes no normal displacement:
u, = 0. (5)

d) The boundary is fully constrained and consequently undergoes no linear
strain:

€

= 0.
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e) The tangential stress couple vector vanishes along the boundary edge:
M,, =0.

Satisfaction of these boundary conditions, which can be expressed in terms
of the normal displacement u, and the stress function F, at points on the
shell’s boundary, results in a set of simultaneous equations whose solution
yields the unknown constants in (3) allowing the calculation of the sectional
resultants of stress.
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Numerical Solution for a Spherical Shell Enclosing an Hexagonal Base

Experimental sectional resultants of stress were obtained for a spherical
shell enclosing an hexagonal base subjected to isothermal deformation by a
uniform normal load, by taking extensive strain measurements on the upper
and lower surfaces of the shell. Sectional resultants were calculated theoretically
for this shell using both three and seven boundary collocation points and satis-
fying the boundary conditions
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Fig. 8.-Plot showing stress couple “M;y(o0)” for shell over hexagonal base obtained
theoretically for seven collocation points as well as experimentally.
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at each of the collocation points except at the shell’s corners where the strain
was not assumed to vanish.

Shell Parameters

E = 107 p.s.i. (aluminium),
v = 0.33,

P, = —20 p.si,

R = 64 in.,

h = 0.375in.,

k = 6.

Numerical Solution for a Spherical Shell Enclosing a Triangular Base

A solution by the collocation technique is given for a spherical calotte shell
enclosing a triangular base since shells of this type have been constructed in
practice and no other theoretical solutions are known to exist.

The shell was assumed to be supported on a very narrow boundary dia-
phragm. Hence the boundary conditions

1
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\ / Fig. 13. Location of boundary
\\ 7 0, collocation points for characte-
N \90 o ristic periodical segment of shell
N _-"® over triangular base.
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radius = 25" ©o

Fig. 12. Plan view of shell over triangular base showing location of radial lines for which
sectional resultants of stress are calculated.
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were satisfied at each of the collocation points except at the shell’s corners
where the normal boundary force F,, (¢) was not assumed to vanish.

Shell Parameters

E =10"ps.i.,

v = 0.33,

P, = —20 p.s.i.,

R =64 in.,

h = 0.375in.,

k = 3.
Conclusions

The collocation technique satisfies idealized boundary conditions rigorously
only at discrete boundary points. The number of boundary collocation points
which will yield a solution satisfying these conditions over the entire shell bound-
ary is not large. Theoretical solutions given by WALKINSHAW in 1965 [6] for a
shell enclosing an hexagonal base employing three and seven collocation points
on the boundary of the characteristic shell segment, agree reasonably well
with experimental results obtained by RILEY in 1964 [7] for the same shell.
Consequently for this calotte shell, three collocation points are sufficient to
provide reliable solutions for practical design purposes. Obviously the minimum
number of boundary collocation points providing reliable theoretical solutions
increases as the circumferential periodicity of the calotte shell decreases.

The periodic polygonal boundary of a spherical shell introduces periodic
perturbations in the rotationally symmetric solution emanating from the
nonrotationally symmetric boundary. The extent of the penetration of these
perturbations towards the shell’s apex, where the rotationally symmetric
solution associated with the zero order terms of the truncated series solution
dominates, depends upon the degree by which the polygonal boundary deviates
from the circular boundary of the rotational spherical shell enclosing the
polygonal shell.

The experimental shell used in testing exhibited certain unavoidable geo-
metric imperfections, which did not satisfy the conditions of perfect periodicity
in the configuration of the six shell segments assumed in the theoretical solu-
tion. The boundary members were not connected at theirintersection points in
order to simulate the boundary conditions imposed by the theoretical solution
as closely as possible. The discontinuity of the boundary members created some
stress concentrations at the corners of the shell, which partially account for
greater discrepancies between the theoretical and experimental results in these
regions.

The boundary conditions in the experimental shell which were not uniform

‘



ON THIN SHALLOW ELASTIC SHELLS OVER POLYGONAL BASES 187

along the boundary members, did not strictly satisfy the homogeneous theore-
tical boundary conditions. This shortcoming necessitated an introduction of
average corrections to the theoretical boundary conditions which neglected the
variations of the boundary conditions along the boundary members.

The theoretical solution and the experimental results were as compatible
as could be expected in view of these physical limitations in both the con-
struction and boundary conditions of the shell structure. Therefore, the experi-
mental results can merely serve as a good indication for the general nature of
the structural comportment of the shell treated in the theoretical problem.

The higher order KeLvIN Functions employed in this collocative solution
in the form of a truncated series were evaluated by means of the Backward
Recurrence Technique, devised by J. C. P. MiLLER and outlined in detail by
T. E. MicHELS in 1964, using McMaster University’s I.B. M 7040 computer and
double-precision procedure with 17 figure accuracy.

It was established that the number and location of the collocation points
used are not of the paramount significance to the practical reliability of the
results as was initially believed. The discrete satisfaction of boundary condi-
tions in the collocative solution tends to accumulate larger magnitude errors in
the results near the corners of the polygonal calotte shell and, therefore, it is
to be expected that the collocative solution tends to deviate more from the
actual solution in the neighbourhood of the corners of the shell than in the
remaining region of the shell. It is considered that seven boundary collocation
points provide a reliable practical solution for the calotte shell with as little as
triple periodicity.

An Appendix has been given for various quantities in the theoretical solu-
tion, which correct all the misprints in the same expressions given by OrRAvVAS
in 1957.

Appendix

Boundary conditions (5-a) to (5-e) can be expressed in terms of the normal
displacement u,, and stress function F as:

o] _ 'nR
Ay + A8 + 3 [Ahuths + AR + Okt 1 = 2=,
Atl)'/’(s +A(2)S[’7 + nél [A%n‘/‘s +'A120n¢‘9 +011m‘/‘10 ] =0,
1 2 1 = 1 2 1 _anz
A0¢11+A0¢12+E0+nZ=1[Akn¢13+Akn¢14+Olcnl/'15 ]= Eh ’ (A'l)
[v ] nR
Ao+ AJ 1y + EI[A%n‘)bls‘l“A%nS[’ls + 0% 0] = —(1 "V)‘Bé—“,
Afhoy + Al hos + n;1 ALy oz + A} oy + Chy thos 1=0.
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The coefficients in equations (A-1) are:

iy —>\—1n)e1O (A7) cos2 8 +— s beiy (A7) sin28,

w’r

2 -
hy = — L_ berg (A7) cos?8 + % berg (A7) sin28,

w’r

A . _ 2 (kn)2 . A7 2 A A2 sn N an2f 9
Py = ;—?belkn (A7) cos20 — o7 bei,, (A7) cos 0+Zbelk” (A7) sin26; cos (kn 6)

+{a’f > beiy, (A7) sin 26— kn(}‘)belkn()\r) sm29}s1n(kn0)

2
hy = {— % ber},, (A7) cos2 8 + (in?l ber;,, (A7) cos28

2

— A—ber;;n (A7) sin? 0_} cos (kn 8)
w
+ {-— %berkn (A7) +if—;ber;m (A 77)} sin 20sin (kn0),
Py = di = (kn—1)7*—2[(sin2d — cos2 ) cos (kn ) —sin 2 sin (kn )],
w

g = —Aberg (A7) cosf,
i, = —Abeiy (AT) cosf,

g = [k i ber,,, (AF) sin 0] sin (kn ) — [A bery,, (A7) cos 8] cos (kn 8),

Py = — [krn bei,,,, (A7) sin ] sin (kn 8) —[A beiy,, (A7) cos 8] cos (knf),

o = — [kn#*"=1sin 0] sin (kn 8) — [kn 751 cos f] cos (kn ),
11 = bery (A7),

1o = beiy (A7),

i3 = bery,, (A7) cos (knd),

1, = beiy, (AT) cos (knb),

P = 7" cos (kn6),
A oo v T s AL YA L, ~
dig = [ﬁbmo (A7) - beig (A r)] sin2 0 + [—c—u—belo (A7) —%belo (A r)] cos2d,
A v A2
P, = li—w—loer0 ()\r)+—ber A7 )] sin2 @

A2 vA 3
” =] / ~ 2
+ [— —berg (A7) +—?ber0 ()\7")] cos?0,



ON THIN SHALLOW ELASTIC SHELLS OVER POLYGONAL BASES 189

2
s —{ belkn (A7) —— (]—C;Z) bei,, (A7) — %—bei};n (A 7)] sin? f

w

+[ Abel,m AF) +— (krn) bei,, ()\r)+A beiy, ()\?)] cos29}cos (kn0)

w

+ {(1 +v)@ [;A beiy,, (A7) —%bei,m (A ?)] sin 25} sin (kn0),

w0 ={| = s berin 07+ - (57) ey O47) +22 ber, (47| sin 8

vA, . _ v [kn\? Az - ~
4 [;)—? bery,, (A7) ———(7) ber,,, (A7) —Zber,m (A r)] cos 0} cos (kn 0)

w
+ {(1 +v) %@ [% bery,, (A7) —; ber},, (A ?)] sin 2 67} sin (kn 0),

14y (kn—1)7%"—2{[cos20 —sin20] cos (kn f) +sin 28 sin (knb)},

oo =

oy = [A2 berg (A7) + %beré (A ?)] cos20 + [A berg (A7) +v A% bery (A 7)] sin28,
vA _ ~ (A, ., - N

Yo = |A% beig (A7) +— bel0 (A r)] cos? 6 + = bei (A7) +v A2 beig (A7) | sin30,

2
g = { [)\2 bery, (A7) —v (l%n_) ber;, (A7) + %_? bery,, (A 7)] cos2d

(kn)zb A7 Ab o (AT 2bery,, (A7) | sin2 0 kn
tl—0 ery,, ( r)—l—? ery, (A7) +vA2bery, (A7) | sin2 0 cos (kn 0)

+ {kn (1—v) [}\ ber;,, (A7) —-%berkn (A i)] sin 25} sin (knf),

7
2N —~ k A
oy = {[1\2 beiy,, (A7) — v( - ) bei,,, (A7) +——be1kn (A r)] cos2f
2
+ [— (—k;:—)bei,m (A7) +;bei;m (A7) +vA%Dbeiy, (A ?)] sin? (7} cos (kn 6)
kn bono oo T ). -

+ {7 (1-v) [A beiy,, (A7) —= beiy,, (A r)] sin 2 9} sin (kn6),

hos = kn (kn—1) (1 —v) #"—2[sin 2@ sin (kn 0) + (2 cos2f — 1) cos (kn )],

where 7, § are the coordinates of collocation points.
Substitution of the expressions for «,, and F from (3)in (4) yields the sectional
resultants of stress:
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F,, (o)

Fyg (o)

P, R

A A
1A peir 2|l _ % per!
5 +A0[ Tbelo()\r)] +A0[ rbero()\r)]

. Z {A}m[ boii. (3 )_*(M) beiy,, (M)]

2
+4z, [— -a%ber;m (A7) +wi (’frﬁ) ber,, (A r)]

_]ﬁz_(_k_a;n_:_}) ,«Im—2} cos (kn @),

2
- Olcn

P, B
2

Az a2
+43 [3 beil (A r)] + A3 [-  ber; (2 r)]
2 2
+Y {A,lm [%bei;;n A r)] +A2, [— %ber;;n A r)]

+C2, [kn(kn 1) ykn— 2]}003 (kn0),

M,p(0) = D[A(l, [—Azber;; (A7) —;A ber (A r)]

MBr

First derivatives of KELVIN functions of kn-th order with respect to Ar can

+ A3 [ —X2bei’ (A7) —;”Abei;, A r)]

+ Z {A}m[ A?bery,, ()\r)+v(k ) ber,,, ()\r)——)\ bery,, (/\T)]
n=1

+A%, [ A2beiy,, (/\r)+v(k )bel,m ()\r)——)\bel,m ()\r)]

+CL [—kn(kn—1)(1—v) r""“z]} cos (kn@)],

D[Al[ bery (A7) +vA2ber, (Ar)] + A2 [}/\—beié (A7) +v A2 Dbeig (Ar)]

Z {Akn[ (kn) bery, (A7) + Aberkn (A7) +vA2bery, ()\r)]

+A,2m[ (kr"’) bei,, (A7) + ;Abei,'m()\r)+v}\2bei;;n(>w)]

Cr.[=kn(kn—1)(1—-v) r’“”‘ﬂ} cos (knﬁ)].

be expressed by:
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bery, (Ar) = — }7% [bery, 1 (A7) +beiy, ; (Ar)] —[knbery, (Ar)],
beil, (A7) = % [ber,,_, (Ar) —beiy,_, (Ar)] —[%n beiy, (Ar)].

Second derivatives of KELVIN functions of kn-th order with respect to Ar can
be expressed by:

” 1 ’ k n 2 .
ber;,, (Ar) = — 7 ber;, (A7) + (ﬁ) bery,, (A7) —bei,,, (A7),
s 1. ., kn\2, .
beij, (Ar) = —ﬂbel,m (Ar)+ (W) bei,,, (A7) + ber,, (Ar).
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Summary

An approximate solution is presented for the flexure of thin spherical shells
of polygonal plan in which edge conditions are satisfied exactly only at discrete
collocation points on the shell’s boundary. Sectional resultants obtained both
theoretically and experimentally for a spherical shell over an hexagonal base
and theoretically for a shell over a triangular base are graphically depicted
for various radial lines on the characteristic segment of each shell.
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Résumé

On présente une solution approchée pour le calcul de la flexion des coques
minces sphériques a base polygonale, pour lesquelles les conditions aux limites
sont exactement remplies seulement en certains points du bord de la coque.
On a représenté graphiquement pour différentes radiales, d’une part les efforts
obtenus théoriquement et expérimentalement pour une coque sphérique a
base hexagonale et, d’autre part, ceux obtenus théoriquement pour une coque
a base triangulaire.

Zusammenfassung

Dargestellt wird eine Néaherungslosung fiir die Biegung diinner Kugel-
schalen vieleckigen Grundrisses, deren Kantenbedingungen nur in bestimmten
Punkten der Schalenrinder genau erfiillt sind. Die Spannungen, fiir eine
Schale iiber sechseckigem Grundriff theoretisch wie experimentell und fiir
eine solche iiber dreieckigem Grundriff theoretisch erhalten, werden fiir ver-
schiedene Offnungswinkel in ausgewihlten Schnitten zeichnerisch dargestellt.
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