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On Thin Shallow Elastic Shells over Polygonal Bases

Des coques minces elastiques ä courbure faible, ayant une base polygonale

Über dünne, flache, elastische Schalen vieleckigen Grundrisses

D. S. WALKINSHAW G. E. RILEY
Defence Research Board, Ralston, Professional Engineer, Province of

Alberta, Canada Ontario, Canada

J. N. SIDDALL G. AE. ORAVAS
Associate Professor of Mechanical Engi- Professor of Engineering Mechanics,
neering, McMaster University, Hamilton, McMaster University, Hamilton,

Ontario, Canada Ontario, Canada

Introduction

This paper demonstrates the applicability of the approximate theoretical
Solution given by Oravas in 1957 [1] x) for shallow thin ealotte shells of spherical
middle surface subjected to isothermal deformations by uniform normal
pressures.

Although spherical ealotte shells have been constructed in practice, as far
as is known any analytical Solution used in their design neglected the shell's
transverse bending stiffness. Such momentless analyses introduce errors in the
Solution, particularily near the shell's boundary where transverse bending is

important. The extent of penetration of this transverse bending zone towards
the shell's apex depends upon the shell's thickness, middle surface curvature,
boundary periodicity and loading.

The theoretical Solution is based on a collocation procedure introduced for
plates by Tölke in 1934 [2] by means of which prescribed boundary conditions
are satisfied at discrete boundary points. In this method, derived from the
general theory given by Mushtari in 1938 [3] and Vlasov in 1949 [4], the
transverse shear deformation of the shell is neglected in comparison with its
transverse bending and extensional surface deformation.

2) Numbers in brackets designate references at end of paper.
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Sectional resultants obtained both theoretically and experimentally for a
spherical shell enclosing an hexagonal base are graphically depicted for various
radial lines of the characteristic segment of the shell.

Theoretical sectional resultants are also depicted for a similar spherical
shell enclosing a triangulär base.
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Fig. 1. Vector diagram of shell element
showing sectional resultants of stress.
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Formulation of the Theoretical Solution

The two fundamental fourth order differential equations for thin shallow
shells subjected to isothermal deformation by uniform normal loading given
by Mushtari and Vlasov are

DV*un+-wV2F pn,

V*F-®^V2un 0,
(1)
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where un normal displacement
F stress function
pn load intensity component per unit area normal

to middle surface of shell
h constant shell thickness
E Young's modulus of elasticity
R radius of curvature of middle surface of spherical shell
D Eh?\\2 (l-v2) flexural rigidity of shell

~~ dr0 dr0 ~ dr2 + r dr + r2 d¥
P74 V2 V2

v Poisson's ratio
f0 radius vector to middle surface of shell

r radial parametric coordinate of shell
6 circumferential parametric coordinate of shell

Marguerre gave similar shallow shell equations in 1939 [5].
The Solution of equations (1) under certain restrictions can be reduced to the

Solution of three differential equations

F2[72-iX2]V0=^,

[F2-iX2]F2Vx F2Vx 0, (2)

F2V2-iX2V2 0,

where V un + icoF V0+Vx + V2,

co i\2(\-v2)\Eh2,
X2 il2(l-v2)/Rh

and VQ, Vx and V2 represent three linearly independent Solutions.
Solution of equations (2) yields the approximate normal displacement un

and stress function F for a spherical shell of &-tuple symmetry. Since the shells
which were investigated possessed no inner boundaries terms containing ker^ (x),
kei^ (x) and r~n are omitted from the Solution because of their singulär nature
at the origin. Finally the Solution becomes

Un ^fr+Al ber°(A r}+Ä2° bei°(A r)+E1°

00

+ 2 [AlnbeTkn(\r)+Alnbeikn(Xr) + Clnrkn]cos(knd),
n=l

7? 2 1 J

F =PnJL + _{Aiheio{xr)-Alber0(Xr)+El

+ Z\4ln beifcn (A r) -A\n berfcre (A r) + G\n r*»] cos (knO)}.
71=1
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Sectional stress resultants and stress couples can be expressed in terms of
the normal displacement and the stress function as

4W d2F
dr2'

d2F
rr((T} r dr + r2 dd2'

and

d 11 dF\
dr\r dd)Fr9(a) =F9t(cj)

dr2

d2u,

(4)

Mrr(a) =-Mde(a) V h?

\dr\r de)]'

e 30

e U
,(Q ?.fi

e=30
e=2A
e=20

e^17
-«'9= A

^f^-^,e:=10
e=2-6c

3 COLLOCATION POINTS 7 COLLOCATION POINTS

Fig. 5. Location of boundary collocation points for characteristic periodical segment of
shell over hexagonal base.

The Solution for the constants A\, A\, E\, E\, A\n, A\n, Ckn and C\n in (3)
is effected by employing Tölke's boundary collocation procedure which
restricts idealized boundary conditions to be satisfied only at discrete boundary
points instead of along the entire length of the boundary.

The boundary conditions relevant to the shallow ealotte shells investigated
are

a) Stress resultants normal to the boundary vanish:

Fnn(o)=0.

b) The boundary undergoes no rotation:

c) The boundary undergoes no normal displacement:

"n <>- (5)

d) The boundary is fully constrained and consequently undergoes no linear
strain:

€« 0.
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e) The tangential stress couple vector vanishes along the boundary edge:

Mns 0.

Satisfaction of these boundary conditions, which can be expressed in terms
of the normal displacement un and the stress function F, at points on the
shell's boundary, results in a set of simultaneous equations whose Solution
yields the unknown constants in (3) allowing the calculation of the sectional
resultants of stress.
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Numerical Solution for a Spherical Shell Enclosing an Hexagonal Base

Experimental sectional resultants of stress were obtained for a spherical

shell enclosing an hexagonal base subjected to isothermal deformation by a

uniform normal load, by taking extensive strain measurements on the upper
and lower surfaces of the shell. Sectional resultants were calculated theoretically
for this shell using both three and seven boundary collocation points and satis-

fying the boundary conditions
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at each of the collocation points except at the shell's corners where the strain
was not assumed to vanish.

Shell Parameters

E IO7 p.s.i. (aluminium),
v 0.33,

Pn -20 p.s.i.,
R 64 in.,
h 0.375 in.,
k 6.

Numerical Solution for a Spherical Shell Enclosing a Triangulär Base

A Solution by the collocation technique is given for a spherical ealotte shell
enclosing a triangulär base since shells of this type have been constructed in
practice and no other theoretical Solutions are known to exist.

The shell was assumed to be supported on a very narrow boundary dia-
phragm. Hence the boundary conditions

un 0,

€SS ^9

Mns(a) 0,

Fnn(v) =0,

i Ö^
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/ ^0=40
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Fig. 13. Location of boundary
^ ^ collocation points for characte-

kCY) n ristic periodical segment of shell
over triangulär base.

//

L radius 251

Fig. 12. Plan view of shell over triangulär base showing location of radial lines for which
sectional resultants of stress are calculated.
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Fig. 16. Plot showing theoretical
stress couple "Mr^(a)" for shell

over triangulär base.
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were satisfied at each of the collocation points except at the shell's corners
where the normal boundary force Fnn (a) was not assumed to vanish.

Shell Parameters

E 107p.s.i.,
v =0.33,
Pn= -20 p.s.i.,
R 64 in.,
h 0.375 in.,
k 3.

Conclusions

The collocation technique satisfies idealized boundary conditions rigorously
only at discrete boundary points. The number of boundary collocation points
which will yield a Solution satisfying these conditions over the entire shell boundary

is not large. Theoretical Solutions given by Walkinshaw in 1965 [6] for a
shell enclosing an hexagonal base employing three and seven collocation points
on the boundary of the characteristic shell segment, agree reasonably well
with experimental results obtained by Riley in 1964 [7] for the same shell.
Consequently for this ealotte shell, three collocation points are sufficient to
provide reliable Solutions for practical design purposes. Obviously the minimum
number of boundary collocation points providing reliable theoretical Solutions
increases as the circumferential periodicity of the ealotte shell decreases.

The periodic polygonal boundary of a spherical shell introduces periodic
perturbations in the rotationally Symmetrie Solution emanating from the
nonrotationally Symmetrie boundary. The extent of the penetration of these

perturbations towards the shell's apex, where the rotationally Symmetrie
Solution associated with the zero order terms of the truncated series Solution
dominates, depends upon the degree by which the polygonal boundary deviates
from the circular boundary of the rotational spherical shell enclosing the
polygonal shell.

The experimental shell used in testing exhibited certain unavoidable geo-
metric imperfections, which did not satisfy the conditions of perfect periodicity
in the configuration of the six shell segments assumed in the theoretical Solution.

The boundary members were not connected at their intersection points in
order to simulate the boundary conditions imposed by the theoretical Solution
as closely as possible. The discontinuity of the boundary members created some
stress concentrations at the corners of the shell, which partially account for
greater discrepancies between the theoretical and experimental results in these
regions.

The boundary conditions in the experimental shell which were not uniform
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along the boundary members, did not strictly satisfy the homogeneous theoretical

boundary conditions. This shortcoming necessitated an introduction of
average corrections to the theoretical boundary conditions which neglected the
variations of the boundary conditions along the boundary members.

The theoretical Solution and the experimental results were as compatible
as could be expected in view of these physical limitations in both the
construction and boundary conditions of the shell structure. Therefore, the experimental

results can merely serve as a good indication for the general nature of
the structural comportment of the shell treated in the theoretical problem.

The higher order Kelvin Functions employed in this collocative Solution
in the form of a truncated series were evaluated by means of the Backward
Recurrence Technique, devised by J. C. P. Miller and outlined in detail by
T. E. Michels in 1964, using McMaster University's I.B.M. 7040 Computer and
double-precision procedure with 17 figure accuracy.

It was established that the number and location of the collocation points
used are not of the paramount significance to the practical reliability of the
results as was initially believed. The discrete satisfaction of boundary conditions

in the collocative Solution tends to accumulate larger magnitude errors in
the results near the corners of the polygonal ealotte shell and, therefore, it is
to be expected that the collocative Solution tends to deviate more from the
actual Solution in the neighbourhood of the corners of the shell than in the
remaining region of the shell. It is considered that seven boundary collocation
points provide a reliable practical Solution for the ealotte shell with as little as

triple periodicity.
An Appendix has been given for various quantities in the theoretical Solution,

which correct all the misprints in the same expressions given by Oravas
in 1957.

Appendix

Boundary conditions (5-a) to (5-e) can be expressed in terms of the normal
displacement un and stress function F as:

AUX +AW2 + | [A\n^ +A%n^ + G\n^ ] =-
~P»B

n=l 2

A\rjj% +A2^ + 2 [Alnif,8 + A2kni/,9 + <?L0io ] 0,
n l

AW11+AWi* + Eh+ 2Mtn*i* + Al»<l>u + ClnK ^=ET~' {A'l)
71=1

AWU+A14,„+ | [4L0M+^2»&9 +CL02O] -(i-v)^,n=l ^
OO

A\ «A21 + AI 4>22 + 2 [A\n </,23+A\n «/,24 + C\n fe ] 0.
71=1
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The coefficients in equations (A-l) are:

^ Abei' (Ar) cos20 + — bei" (Ar) sin20,
cor co

X X2
ibo ber« (A r) cos2 0 H ber0' (A r) sin2 0,
T cor co

{X - (kn)2 X2 -)
—- bei^.n (A r) cos2 0 - -—z^-bei^ (A r) cos2 0 -\ bei^ (A r) sin2 0\ cos (k n 0)

+ |—=2 bei^ (A r) sin 2 0 - k n l-^\ beij^ (A r) sin 2 01 sin (knB),

04 {- ^= her'kn (A r) cos2 B + —^ ber^ (A r) cos2 6

X2 -)
ber£n (A r) sin2 0} cos (k n B)

co J

+ l zgber^(Ar) -I — ber^.n(Am sin2 0sin(knd),

0. =—(lcn-l) fkn~2 [(sin2 0 - cos2 0) cos (knÜ)- sin 2 0 sin (k n 0)],
CO

i/j6 — Abero(Ar) cosö,

07 — Abeio(Ar) cosö,

i/j8 — -=r-ber^ (Ar) sin0 sin (knd) — [Aber^.n (Ar) cos0] cos (knd),

[kn
-1 -

-=- bei^ (A r) sin 0 sin (knd)— [X bei^ (A r) cos 0] cos (knd),

«Aio -[knfkn-xsin0] sin(&w0) -[&wfkn~xcos0] cos (knB),

0ii =ber0(Ar),

012 =bei0(Ar),

013 berfcn(Ar)cos(fc^0),

014 beifcn (A r) cos (fc rc, 0),

015 rfcn cos (knB),

016 [-^=beii(Ar)-^bei;(Ar)l sin20 + ["— bei0'(Ar) _ .^4 beij (A r)l cos20,

017 ber' (A f) + — ber" (A r) sin2 0
L ^^ ^ J

+ f- — berJ(Ar)+^berJ(Ar)l cos20,[cd v cor u J
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'Ais { [^beito (A f) ~ — hrl heikn (A f) -~beiln (A f)\ sin2 ff

+ ~ ~^hei'kn (A f) + £- l-^j beifc„ (A f) +—bei£re (A r) cos2 öl cos (kn ff)

+ {(!+»')— - hei'kn (Xr)-~ beite (A r)l sin 2 ffj sin (A n ff),

^19 {|_~ 7?heT'kn (A f) +
w (*t) berfcm (A^ +17ber^w (A^ I Sin2 S

+ 17fheT'kn(A ^ ~^\7) heTkn^~Uber*M^A^ cos2^1cos^n^

{(1 + y) ~ [^ berfcTC (A r) -
A

ber^ (A r)l sin 2 ffj sin (fc » ff),

i/r2o ~~—kn(kn — l)rfcw_2{[cos2ff —sin2ff]cos(Ä:fl,ff) + sin 2 ff sin (&w ff)},

+ •

</<21 [a2 ber;' (A f) +~ber; (A r)l cos2 ff + [
A

ber; (A f) + v A2 ber;' (A r)l sin2 ff,

^22 [a2 bei;' (A F) +~bei; (A f)l cos2 ff + \~ bei; (A f) + v A2 bei; (A r)l sin2 ff,

^23 {U2ber^ (Ar) -v \~\ beTkn (Xf)+~bev'kn (A f) cos2ff

+ - ^-^- berfcB (A r) +- ber;m (A r) + v A2 ber£ra (A f) sin2 ff 1
cos (k n ff)

+ |~ (1 - v) h ber^ (A r) - i berfcm (A r)l sin 2 ffJ sin (k n 6),

<A24 {U2bei^„ (Xf)-v\~\ beifcn (Af) +~bei^ (Ar) cos2ff

+ [-^?beifc»(Ar) + jbei'kn (Ar) + vA2bei£n(Ar)l sin2ffjcos (knd)

+ {^? (1 - ") [A bei^ (A r) - r\ beito (A r)l sin 2 ffj sin (k n ff),

i[i25 fcw(Ä;w-l)(l-v)rfc™-2[sin2ffsin(fcnff) + (2cos2ff-l)cos(fcriff)],

where f, ff are the coordinates of collocation points.
Substitution of the expressions for un andF from (3) in (4) yields the sectional

resultants of stress:
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F„(a) ^ +^A.bei;(Ar)] +^§ [-Aber;(Ar)]
00

+ £ {Jfc» \z7rhei'kn (Ar) ~h[t) eikn {Xr)]

+ Akn[--~z berj^ (A r) + i- |^J
*
berto (A r)j

_dn tn(^»-1) ,*»-«} cos (in ö);

W =^+^^bei;'(A,)]+^[-^ber;(A,)]

+ X {Ä*n [^bel^ (A^)] +Aln [~ ^berL (A^]

+ <?lm [^ (fc n -1) r*"-2l} cos (knd),

Mr0(a) Z>[^ä[-A2ber;'(Ar)-^Aber;(Ar)J

+ AI \ - A2 bei; (A r) - - A bei; (A r)]

+ £ {^L[-A2berL(Ar)+v^)2berto(Ar)-^AberL(Ar)]

+^l» [-A2bei^re (Ar) + v(^J2beite (Ar) -^Abei^ (Ar)j

+ Cln[-kn(kn-1) (1-v)rkn-*]\cos(knd)\,

M0r (a) d\a\ [Aber; (Ar) +^A2ber;' (Ar)] +A% ßbeij (Ar) +vA2bei; (Ar)]

+ £ {^„ [- (^)2berfcK (Ar) + Aber^ (Ar) + vA2berL (Ar)]

[lkn\2
X 1

~ \^r) heikn (A r) +- bei£n (A r) + „ A2 bei^ (A r)J

+ ^L[-^^(^^-1)(1-^)^n~2]}cos(fcrc0)l.

First derivatives of Kelvin funetions of kn-th order with respect to Ar can
be expressed by:
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kerj^(Ar) -— [ber^^(Ar) + beifcn_!(Ar)] -[knbeTkn(Ar)],

be,i,(Ar, i[b.r«»_1,A„-bei».1(Ar)]-[i:„bei,.(Ar)].

Second derivatives ofKelvin funetions of kn-th. order with respect to Ar can
be expressed by:

1 lkn\2
ber^ (A r) -^ berJ.n (A r) +1-^-1 berfcn (A r) - beifcn (A r),

1 lkn\2
Keikn (Ar) -^bei^n (A r) +1-^1 bei** (Ar) + ber^ (Ar).
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Summary

An approximate Solution is presented for the flexure of thin spherical shells
of polygonal plan in which edge conditions are satisfied exactly only at discrete
collocation points on the shell's boundary. Sectional resultants obtained both
theoretically and experimentally for a spherical shell over an hexagonal base
and theoretically for a shell over a triangulär base are graphically depicted
for various radial lines on the characteristic segment of each shell.
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Resume

On presente une Solution approchee pour le calcul de la flexion des coques
minces spheriques ä base polygonale, pour lesquelles les conditions aux limites
sont exactement remplies seulement en certains points du bord de la coque.
On a represente graphiquement pour differentes radiales, d'une part les efforts
obtenus theoriquement et experimentalement pour une coque spherique a
base hexagonale et, d'autre part, ceux obtenus theoriquement pour une coque
ä base triangulaire.

Zusammenfassung

Dargestellt wird eine Näherungslösung für die Biegung dünner Kugel-
schalen vieleckigen Grundrisses, deren Kantenbedingungen nur in bestimmten
Punkten der Schalenränder genau erfüllt sind. Die Spannungen, für eine
Schale über sechseckigem Grundriß theoretisch wie experimentell und für
eine solche über dreieckigem Grundriß theoretisch erhalten, werden für
verschiedene Öffnungswinkel in ausgewählten Schnitten zeichnerisch dargestellt.
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