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Theorie elastischer Balkenreihen

Theory for Series of Elastic Beams

Theorie pour des series de poutres elastiques

GERHARD SPAETHE
Dr. Ing., Versuchs- und Entwicklungsstelle des Straßenwesens, Berlin, DDR

1. Allgemeines

Unter einer Balkenreihe verstehen wir im folgenden ein Tragwerk, welches
aus einer Reihe nebeneinander liegender elastischer Stäbe besteht, die sich in
einer Linie berühren und in dieser Berührungslinie auf der ganzen Länge
gelenkig miteinander verbunden sind.

Fig. 1. Balkenreihe.

Solche Systeme gewinnen mit der Verbreitung der Fertigteilbauweise an
Bedeutung. Bei der Herstellung von ebenen Tragwerken aus einzelnen stab-
förmigen Elementen werden vielfach Verbindungen angewendet, die in
Querrichtung nur vernachlässigbar kleine Momente übertragen, jedoch gleiche
Verschiebungen der Balkenränder erzwingen. Unter Ausnützung der Torsions-
steifigkeit der Balken entsteht eine Querverteilung der Schnittgrößen und
eine gewisse flächenhafte Tragwirkung.

Als erster hat Csonka bereits 1936 ein Verfahren zur Berechnung von
Balkenreihen angegeben, wobei er sich zunächst [1] auf den Fall beschränkt,
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daß die Schubmittelpunkte der Balken und die Gelenke in einer Ebene liegen.
Die spätere Erweiterung auf den allgemeineren Fall [2] führt auf ein System
gewöhnlicher Differentialgleichungen für die Durchbiegungen der Gelenke1).
Die numerische Lösung für den Fall der frei drehbaren Lagerung ergibt sich

mit Hilfe von Fourierreihen.
Roesli [3] betrachtet die Balkenreihe als Kontinuum und geht von der

Theorie der orthotropen Platte aus, die er für die besonderen Bedingungen
der Balkenreihe erweitert. Dieses Verfahren gilt also unter der Voraussetzung,
daß die Zahl der Balken groß ist.

In den letzten Jahren wurden vor allem von tschechischen Autoren
Berechnungsverfahren angegeben [4 bis 9]. Sie gehen sämtlich vom Diskontinuum
aus, vernachlässigen die gegenseitige Behinderung der Verdrehung der Balken
und die daraus resultierenden horizontalen Gelenkkräfte.

Zur Lösung werden entweder Fourierreihen benutzt [6, 7] oder das sich
ergebende Differentialgleichungssystem wird geschlossen gelöst [5, 8, 9]. Dabei
beschränkt man sich vielfach auf den Sonderfall, daß die Lasten in Querrichtung

gesehen mittig auf den Balken stehen.
Vom Verfasser wurde in [10,11] für den Sonderfall der frei drehbaren

Lagerung der Balken und kräftefreien Längsrändern eine geschlossene Lösung
angegeben, die es gestattet, auch Einzellasten zu behandeln. Damit wurde die

Grundlage für die Berechnung von Einflußfeldern geschaffen.
Alle bisher bekannt gewordenen Arbeiten beschränken sich auf den zwar

praktisch wichtigsten, aber auch einfachsten Fall der beidseitig frei drehbaren
Lagerung. In der vorliegenden Arbeit wird die in [10,11] für einen Sonderfall
angegebene Theorie in erweiterter und verallgemeinerter Form dargestellt,
wobei insbesondere verschiedene technisch wichtige Randbedingungen an den

Längs- und Querrändern berücksichtigt werden. Damit wird die Möglichkeit
geschaffen, Verformungen, Schnittgrößen, Gelenkkräfte und Auflagerkräfte
in beliebig gestützten Balkenreihen mit rechteckigem Grundriß unter beliebiger
vertikaler Belastung in geschlossener Form zu berechnen. In dieser Arbeit
werden die theoretischen Grundlagen bereitgestellt und die Anwendung der
Theorie an einem einfachen Beispiel gezeigt. Eine Einschätzung des
Tragverhaltens von Balkenreihen mit einer Darstellung der Ergebnisse numerischer
Rechnungen wird an anderer Stelle gegeben.

Im Sinne einer widerspruchsfreien Darstellung der Theorie ist es erforderlich,

den folgenden Ableitungen die Torsionstheorie der dünnwandigen Stäbe
unter Berücksichtigung der Wölbkrafttorsion [12,13] zugrunde zu legen. Die
bei Vollquerschnitten und dickwandigen Hohlquerschnitten übliche
Vernachlässigung der Wölbkrafttorsion ist als Sonderfall mit CT 0 enthalten.

Die Theorie eignet sich besonders für eine Auswertung mit elektronischen

x) Dieses Differentialgleichungssystem stimmt mit System (9) für die Stützungsart la
nach Fig. 3 überein.
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Digitalrechnern. Für die Berechnung von Einflußfeldern frei aufliegender
Balkenreihen liegt in der Versuchs- und Entwicklungsstelle des Straßenwesens
ein Programm vor, welches seit mehreren Jahren mit Erfolg bei der Projektierung

von Fertigteilbrücken angewendet wird.

2. Annahmen und Voraussetzungen, Bezeichnungen

Die Balken werden als vollkommen elastische Stäbe im Sinne Stabstatik
betrachtet, deren Querschnittsform unter Belastung erhalten bleibt. Alle
Balken sind gleich ausgebildet und haben einfach symmetrische Querschnittsform,

die sich in Balkenlängsrichtung nicht ändert. Sie liegen alle in einer
gemeinsamen horizontalen Ebene, welche senkrecht zu den Symmetrieachsen
liegt. Die SchubVerformungen aus Querkräften werden vernachlässigt.

Aus Fig. 2 ist die Lage des Koordinatensystems, die Numerierung der
Balken und Gelenke sowie die Definition der Schnittgrößen und Gelenkkräfte
ersichtlich.

•R f -u lPk"

J<^£
Mz ^f

öQz
Qz+ -r-=-d

zw
P, P,

Pk-wn Pk,kH Pkjk

Fig

^fötlm ^ ¦

lMy+"äf

Definitionen.

Es ist ferner

l Stützweite der Balken
b Balkenbreite
t Abstand zwischen Schubmittelpunkt T des Balkens und den Gelenk¬

linien in Richtung z, im folgenden Schubmittelpunktsabstand genannt
EJy Biegesteifigkeit bei Biegung um die y-Achse
EJZ Biegesteifigkeit bei Biegung um die z-Achse
GJT Saint Venantsche Torsionssteifigkeit
ECT Wölbsteifigkeit bezogen auf den Schubmittelpunkt T
vk, wk Verschiebungen der Gelenklinie k in Richtung y und z

Vk>™k Verschiebungen des Schubmittelpunktes des Balkens k in Richtung
y und z
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cpk Verdrehung des Balkenquerschnittes k
m Anzahl der Balken

Die auf den Balken k einwirkende beliebige äußere Belastung kann man
bei Annahme einer starren Querschnittsform nach dem Hebelgesetz in zwei
Linienlasten pk_X}k und pkk aufteilen, die in den Balkenrändern wirken. Es
ist ferner

Pk Pk,k + Pk,k+i

die Summe beider am Gelenk k angreifenden Linienlasten.
Im allgemeinen Fall wird die Gelenkkraft eine bestimmte Richtung im

Raum haben. Von ihren drei Komponenten Xk, Yk und Zk wird die Kraft
Xk, die in Richtung der Balkenlängsachse wirkt, vernachlässigt. In [10] wurde
der Einfluß dieser Komponente genauer untersucht. Dabei zeigte sich, daß

Xk verhältnismäßig große Werte annehmen kann, jedoch sein Einfluß auf die
Schnittkräfte und Spannungen in den Balken bei den im Fertigteilbau üblichen
Abmessungen im allgemeinen klein ist. Die im folgenden dargestellte Theorie

gilt, wenn der vertikale Abstand zwischen Balkenschwerpunkt und Gelenk
genügend klein ist. Bei sehr hohen und schmalen Balken mit Gelenken an den
oberen Balkenkanten ist eine genauere Untersuchung zu empfehlen.

3. Das Differentialgleichungssystem für die Verschiebungen der Gelenke

Als unbekannte Funktionen werden die Verschiebungen wk und vk der
Gelenke eingeführt. Werden die Balken als Stäbe mit starrer Querschnittsform

betrachtet, so können sich alle Gelenke in horizontaler Richtung nur
um den gleichen Betrag vk v verschieben.

Das Problem führt auf ein System von gewöhnlichen Differentialgleichungen
für die unbekannten Durchbiegungen wk. Die erste und die letzte

Gleichung dieses Systems sind dabei von der Art der Stützung der Längsränder
der Balkenreihe abhängig.

In dieser Arbeit werden die in Fig. 3 dargestellten Randbedingungen untersucht.

Die dort im Querschnitt gezeichnete Stützung denke man sich über die

gesamte Balkenlänge kontinuierlich durchgehend.

Horizontal unverschieblich püüüüüH XKKKKKT*

Horizontal verschieblich püööoq
Ib

Zweiseitig
gestützt

tTOüüoq
Eb

Einseitig
gestützt

UDÜÜÖU

Beidseitig kräftefrei
in vertikaler Richtung

Fig. 3. Randbedingungen an den Längsrändern.
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Für einen beliebigen mittleren Balken k gelten die bekannten Differentialgleichungen

der Balkenbiegung und Balkentorsion, die mit den in Fig. 2

definierten Gelenkkräften und äußeren Lasten folgende Form annehmen:

EX,
-Wj,l*

E Jz ^ _ v v
~J4~ vk — *k — Ik-X

Zk-Zk-l + Pk,k + Pk-l,k>

(2)

Gr Jrp E Crp „, „ b
__r ___. b

~9k j7-9k (Zk + Zk_x)--(Yk-Yk_x)t + (pkk-pk_XtJc)-.P l*

Darin bedeuten Punkte Ableitungen nach der bezogenen Koordinate

i xfl.

Multipliziert man die drei Gleichungen der Reihe noch mit bj2, t und l und
addiert sie, so ergibt sich

EJ„ 6. +-i7tvk +-
GJrp

<Pk
E Grp

p 2~k ' l* ""* ' P rk Z4

und mit den Faktoren 6/2, — t und — 1 wird

<Pk" Zkb + Pk,kt> (3)

EJU b

Z4 2
TZ-Wi. —

EJZt,.... GJT
l* ¦tv

EG.
P -<Pk +—^77' ~zk-ib+Pk-i,kb- (4)

Der Übergang von k auf k + 1 in der letzten Gleichung und Addition ergibt

E«Z. b .^.... >x....v E J„ ,.>s.... ^....v G Jrp

-jf- f (M,fc + w*+i + ~ift(vk ~ vk+i) + -jT- (9k ~ 9k+i)

EC,
Z4 -(9k"-9k+i) =b(Pk,k + Pk,k+i) bPk-

(5)

Aus Fig. 4 können die Beziehungen zwischen den Verschiebungen des

Schubmittelpunktes wk, vk und der Balkenverdrehung cpk einerseits und den
Verschiebungen der Gelenke wk, v andererseits abgelesen werden.

Vu-i=Vk-i Vu=V
fc 1k-1

T
1 <5k-1

Fig. 4. Verformter
Querschnitt.
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$>k
2

(Wk-1 + Wk)> (Pk ^ (Wk-1 ~ ™k) > K v--^ (wk_x - Wk) (6)

Bei der Stützung I a, II a und III a ist v 0.

Werden die Gleichungen (6) in (5) eingesetzt und noch folgende dimensionslose

Abkürzungen eingeführt

!l~4:\l) GJT
+ \l) GJT

+ l2GJT'

I(b\2EJy lt\2EJz ECT
h 4\Z/ GJT \IJ GJT l2GJT'

so erhält man nach kurzer Rechnung die Differentialgleichung für eine mittlere

Gelenkfuge in der Form

b2l2
k Wk-i + 2 /i ™k " + U w'k+i + u>k-i -^wk+ wk+x y—r pk. (8)

\JT Jrp

Es ist bemerkenswert, daß hier die Horizontalverschiebung v der Gelenke
herausfällt. Die Randgleichungen für vertikal gestützte Ränder ergeben sich
aus (8) mit w0 0 bzw. wm 0.

Die Randgleichungen für kräftefreie Ränder erhält man auf ähnlichem
Wege wie oben durch Elimination der Gelenkkräfte aus den Gleichungen (2),
in denen man k 1 zu setzen und die Randbedingungen Z0 Y0 0 zu beachten

hat.
Es ergibt sich für den freien Rand 0

tb EJZ b2l2
fxw0 +f2wx -W{s+wx--W7—^v ^yrr-Po (9)

/ Cr Jrp (jT Jrp

und für den freien Rand m

tb EJZ b2l2
/2Wm-l+!lWm +Wm-l~Wm+-j2QrjrV =QTj-Pm- (9)

Hier tritt als weitere unbekannte Funktion die Horizontalverschiebung v auf.
Diese kann in folgender Weise eliminiert werden. Es ist unmittelbar ersichtlich,

daß gelten muß

F1+(72-71) + (F3-r2)+...+(Fm_1-rm_2)-rm_1 o.

Daraus folgt mit der zweiten Gleichung (2)

v7'+v7- + v7' + ---+vm7+vm-- =o.

In diese setzen wir die dritte Gleichung (6) ein

»""-(«•i'"-wi"")j + »""-(M>i--«;--)g+...+i;---(w^:i-u>^-)g 0
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und erhalten für die Stützung III b

v"" ^k--<t).
Bei der Stützung II b wird mit wm 0

mb

(10)

(11)

Dies in (9) eingesetzt ergibt die gesuchten Randgleichungen.

Stützung IIb

Stützung III b

Rand 0

b2l2

G Jr,
Po>

r, 1 itY ejj, 1 it\2 ejz
m\lj GJrp -w'0'+wx

Rand 0

b2l2

G Jr,
Po>

lt\2EJz r, iit\2EJz-\1/A2 EJ»
m

¦wm

Rand m
b2l2

GJTVm'

Diese Ergebnisse lassen sich in übersichtlicher Form in Matrizenschreibweise
zusammenfassen. Wir schreiben das Differentialgleichungssystem für die
Berechnung der Balkenreihe in der Form

(« + #)&'¦•'+»¦«>•' =|jV (12)

Darin sind SI, 33 und § symmetrische Matrizen mit

m — 1 Zeilen und Spalten bei Stützung I,
m Zeilen und Spalten bei Stützung II

und m+1 Zeilen und Spalten bei Stützung III.
Ihr Aufbau ist für die verschiedenen Stützungsarten aus Tafel 1 ersichtlich.

93 ist bei Stützung III singulär, was man sofort erkennt, wenn man ihre
Zeilenvektoren addiert, in den Fällen I und II jedoch nichtsingulär. Die
Matrix 91 ist im allgemeinen nichtsingulär, sie wird jedoch bei Stützung III
für den Sonderfall fx f2 ebenfalls singulär. Diesen Fall, bei dem sämtliche
Matrizen der Differentialgleichung (12) singulär sind, wollen wir bei den
weiteren Ableitungen zunächst ausschließen. Auf ihn wird weiter unten noch
kurz eingegangen. Die Matrix § ist nur in den Fällen IIb und IIIb nicht
gleich Null. Bei Stützung III b ist sie an ihren vier Ecken besetzt, während
bei Stützung II b nur ein einziger Koeffizient von Null verschieden ist.

Die gegebenen äußeren Belastungsfunktionen werden zum Vektor p und
die gesuchten Durchbiegungsfunktionen zum Vektor tv zusammengefaßt.
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Pi tt> (13)

mit j 1, 2, 3 (m — 1) bei Stützung I,
j 0,1,2 (m-1) bei Stützung II

und j 0,1,2 m bei Stützung III.
Es ist bemerkenswert, daß bei der Stützungsart lb keine Horizontalverschiebung

v auftreten kann und somit der Verformungs- und Spannungszustand
stets mit dem des Falles I a identisch ist. Im Sonderfall t 0, wenn die Gelenke
und die Schubmittelpunkte sämtlicher Balken in einer Ebene liegen, wird
auch bei den Stützungen IIb und IIIb die Horizontalverschiebung zu Null.

Das Differentialgleichungssystem (12) ist die Grundgleichung für die
Berechnung von Balkenreihen. Gelingt es, dieses System für eine bestimmte
Balkenreihe unter der vorgegebenen Belastung p bei Berücksichtigung aller
aus der Art der Stützung und der Belastung sich ergebenden Randbedingungen
zu integrieren, so ist damit die strenge Lösung des Problems gefunden. Sobald
die Durchbiegungen *m der Gelenke bekannt sind, können die Schnittgrößen,
Gelenkkräfte und Auflagerkräfte aus den im Abschnitt 6 angegebenen
Beziehungen ermittelt werden.

4. Die Lösung des Differentialgleichungssystems

Es gelingt, das System (12) bei den vier Stützungsarten in geschlossener
Form zu lösen, in denen die Matrix § 0 ist. Es läßt sich jedoch zeigen, daß
bei den beiden übrigen Stützungsarten IIb und IIIb der Einfluß von § auf
die Vertikalverschiebungen tv der Gelenke von sehr geringem Einfluß ist. Um
auch in diesen beiden Fällen mit einem erträglichen Aufwand zu einer Lösung
zu kommen, wird § vernachlässigt und die Durchbiegungen tv werden stets
aus dem vereinfachten System

\h2l2»ttr" + ®KT =W*> (14)
JjT Jrp

berechnet. Die Ermittlung der Horizontalverschiebungen v erfolgt dann
anschließend aus der Differentialgleichung (10) bzw. (11).

Dieses Vorgehen bedeutet geometrisch, daß die Durchbiegungen w unter
der Annahme berechnet werden, daß die Balkenreihe seitlich durch eine Kraft
Ym gestützt ist. Anschließend wird durch eine HorizontalVerschiebung dieses
Ym zu Null gemacht. Dabei werden die unter der Annahme v 0 berechneten
Durchbiegungen w beibehalten. Diese Näherung wird um so besser Werte
liefern, je kleiner der Schubmittelpunktsabstand t, je größer die Stützweite l
und die Balkenzahl m ist.
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Wir betrachten das homogene System

9tftT'' + »ftf' =0 (15)

und machen den Ansatz tv !CkeXk^ (16)

j 1,2. .(m — 1) Stützung I,
mit lk j 0,1. (m— 1) Stützung II,

/ 0,1. m Stützung III.
Dieser Ansatz, in (15) eingesetzt, führt auf das Eigenwertproblem

(3tA8+83)AI& 0.

Die Eigenwerte AÄ 1 AÄ. 2 0 interessieren uns nicht weiter. Wir fassen das

homogene Gleichungssystem

(2U|+»)S* 0 (17)

als System von Differenzengleichungen auf. Die i-te Gleichung lautet
ausführlich hingeschrieben

(/aA|+l)aJy_lifc + 2(/1A|-l)^ifc + (/aÄI+l)a:i+1>fc 0

/ A2 — 1
oder mit cosxfjk -/1^+1, (18)

Xj-i,k-2Zj,kCOSi/jk + xj+x>k 0. (19)

Der Ansatz Xjk rj
liefert r2 — 2 r cos 0^ + 1=0 i / — 1

rX2 cosifjk± icos2i/jk — l cosi/jk±isini[ßk e^1^.

Daraus folgt die allgemeine Lösung des Systems von homogenen Differenzen-
gleichungen (17)

xj}k Axr{ + A2 rj2 Ax eij^ + A2 e-Vfa Bx cos / ifjk + B2 sin / xfjk. (20)

Darin sind Bx und B2 reelle Konstanten, deren Größe aus der ersten und
letzten Gleichung des Systems (17) bzw. (19) ermittelt werden kann. Diese

Randgleichungen sind je nach der Stützungsart verschieden. Wir zeigen hier
den Rechnungsgang für die Stützung II. Die erste Gleichung lautet mit j 0

-x0skcosi/jk + xxk 0

und mit (20)
— Bx cos i/jk + Bx cos ipk + B2 sin ifjk 0.

Daraus folgt B2 0.

Aus der letzten Gleichung

Xm-2, k ~ 2 xm-l, k COS *l>k °
ergibt sich mit B2 0

Bx [cos (m-2)ipk-2cos (m — 1) ijjkcosifjk] 0
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und nach kurzer Rechnung

cos mifjk 0, m^k =J + kTT, ^k
(2k+l)TT

2m

Wir setzen dies in (18) ein und lösen nach den gesuchten Eigenwerten Af. auf.

{2Jc+1)tt

k 0,1,2...(m-1).
-cos

A£
2m

(2k+l)ir9fi + Ucos —^—;1 1A 2m

(21)

Den zugehörigen Eigenvektor jck erhält man, wenn man die noch freie
Konstante Bx 1 setzt, unter Beachtung von B2 0 aus (20) zu

0(2&+l)7T

£k

cos

cos

cos

cos

2m

1(2&+1)tt
2m

j(2k+l)TT
2m

(m-l)(2k+l)TT
2m

%k (22)

In dieser Form ist %k bezüglich der Matrix 21 orthogonal, jedoch nicht normiert,
so daß gilt

c'«x =1° ftir? + fc'
*k*lj \dkfürj k.

Die m Eigenvektoren ^ck werden folgendermaßen zur quadratischen,
nichtsymmetrischen Matrix $ zusammengefaßt.

* (Jo> £l> £2 • • • £fc • • • Zm-l) >

£ Kfc) mit ^ cos —
und j 0,1,2 (m-1),

k 0,1,2 (m-1).
Oder ausführlich hingeschrieben:

2

cos

cos

01-
2m

IItt
2m

cos

cos

0j_3t7
2m
1-3tt
2m

cos

cos

0-5t7
2m

1-577

2m

(m-l)lTT (m—l)37r (m—l)Ö7r
cos — cos-—-— cos-

0(2m-l)?7
COS

2m
l(2m-l)77

COS
2m

(m—1) (2m--1)77
2m 2m 2m 2m
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Dann kann man die Gleichungen (22) zur Matrizengleichung

$'91$ ® =Diag(4) (23)

zusammenfassen.
Die Berechnung der Koeffizienten der Diagonalmatrix ® kann in üblicher

Weise nach (23) erfolgen. Zur RechenVereinfachung und mit Rücksicht auf
eine spätere Anwendung bei der Formulierung der Randbedingungen für
elastisch senkbare Stützung spalten wir die Matrix 31 folgendermaßen auf:

« /i«i+/_*_
mit

mit «i 2t2

"0 1

1 0 1

1 0 1

1 0 1

1 0

(24)

Dann ist
® /1r9i1$+/2rsi23£ /1®1+/2®2.

Führt man die Matrizenmultiplikationen im einzelnen durch, so erhält man
nach längerer aber elementarer Rechnung, wobei zu beachten ist, daß allgemein

n sinln + Joc-sin^
2 COS j OL

?=1 2 sin 4

gilt, die folgenden Ergebnisse:

®i I>iag(dlfÄ.) =m m(£,

®2 Diag(d2ffc) =m

20+1
COS 77

2m
21 + 1

COS 77
2m

22+1
COS 77

2m

2(m-l) + l
COS — 77

2m

(25)
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2) =/1®1 + /2®2

" 2-0+1
/l+/2COS— 77

2m

4 4 21 + 1
fX + f2COS-— 771 * 2m

m 2-2 + 1

/i + ZaCOS— 77
2m

2(m-l) + l
fx+f2COS 77

2m

Die hier für die Stützung II gezeigten Ableitungen lassen sich in ähnlicher
Weise auch für die beiden anderen Stützungsarten I und III durchführen.
Die Ergebnisse sind in der Tafel 2 übersichtlich zusammengestellt.

Die Eigenwerte Af. sind sämtlich verschieden und reell und für die Stützungen

I und II stets positiv. Bei Stützung III ist der erste Eigenwert Ag immer
gleich Null. Bei den Matrizen ®x und S)2 beachte man im Fall III den Faktor 2

beim ersten und letzten Koeffizienten. Die quadratische Matrix 3E* ist in den
Fällen I und III symmetrisch, im Fall II jedoch nichtsymmetrisch.

Faßt man die Eigenwerte Af zur Diagonalmatrix

-l Diag(A|)

zusammen, so läßt sich die Gesamtheit der Gleichungen (17) in Form der
Matrizengleichung

schreiben. Linksmultiplikation mit 3£' ergibt

oder mit (23)
(26)

Das Differentialgleichungssystem (14) läßt sich nun auf Orthogonalform
transformieren, wenn man an Stelle der Durchbiegungen wk der Gelenke neue
unbekannte Funktionen gk einführt, die mit wk durch die Transformationsbeziehung

tt> £g (27)

verknüpft sind. Wird diese in (14) eingesetzt, so ergibt sich

\JT Jrp

und nach Multiplikation mit 9£' von links

bn*
r2l3£g-"+r93$g-- ~+rp.Gr Jrp
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Führt man hier (23) und (26) ein, so erhält man das Differentialgleichungssystem

in der entkoppelten Form
b2l2

IX Jrp

7)2 72

oder q"~- Aq" =^-r®-1X'p. (28)
(jT Jrp

Die k-te Einzelgleichung lautet

9k--Hgk=-^^ (29)
\JT Orp ilh.

und ihre allgemeine Lösung

gj,= Ak + Bk£ + Cksinh\kZ + Dkeosh\k£ + Pk*(£). (30)

Darin sind Ak, Bk, Ck und Dk Integrationskonstanten, die aus Rand- und
Übergangsbedingungen zu ermitteln sind, und Pj* (|) ist ein partikuläres
Integral der Gleichung (29), das man durch einen geeigneten Ansatz gewinnen
kann.

Bei der Stützung III ist darauf zu achten, daß der erste Eigenwert A§ 0

ist. Dadurch vereinfacht sich die erste Differentialgleichung (k 0) des Systems
(28) wesentlich.

\JT Urp U/q

Da die Komponenten des Vektors £0 bei Stützung III sämtlich gleich 1 sind,
kann man auch schreiben

9o
b2l2 Z0Pj

GJT2m(fx + f2)

oder unter Berücksichtigung von (7)

EJy ...._^Pj
/> 9o " m

*

Durch Vergleich mit der ersten Gleichung (2) erkennt man sofort, daß g0

nichts anderes darstellt als die mittlere Durchbiegung der Balkenreihe. g0 ist
die Durchbiegung, die entsteht, wenn sämtliche äußeren Lasten in Querrichtung

gleichmäßig auf alle Balken verteilt werden. g0 kann also auf elementarem

Wege ermittelt werden.
Betrachten wir noch kurz den singulären Fall, der bei den bisherigen

Ableitungen zunächst ausgeschlossen wurde. Er tritt bei Stützung III auf,
bei wölbfreien Querschnittsformen, wenn gleichzeitig der Schubmittelpunkts-
abstand £ 0 ist. Dieser Fall hat somit auch praktische Bedeutung. Es wird
dann fx f2 und damit beide Matrizen 31 und 33 singulär. Wir wollen jetzt den



142 GERHARD SPAETHE

Grenzübergang fx -> f2 durchführen und sehen, was sich gegenüber den
bisherigen Ableitungen ändert. Aus der letzten Spalte der Tafel 2 ist ersichtlich,
daß dann der größte Eigenwert Am -*> oo strebt. Die Differentialgleichung (27),
die hier zweckmäßigerweise in die Form

A! 9k ~9k
6«P &p bH* Tc'kp

k GJTXkdk GJT8mll__cos^_V

(1 für k= 1,2..
~ { 2 für k 0 um

(m-1),
und k m

gebracht wird, geht für den Fall k m und Am -> oo über in

b2l2

4m £0y
GJTg'm =--^rZA-l)jPj-

GJTgm nimmt also einen endlichen Wert an, und die Berechnung ist auch in
diesem Sonderfall immer möglich.

5. Randbedingungen an den Balkenauflagern

Für die Bestimmung der Integrationskonstanten in der allgemeinen Lösung
(30) werden die Randbedingungen für die Funktionen gk benötigt. Die Formulierung

der Randbedingung ist jedoch von Haus aus gegeben für die
Durchbiegungen wk und für die Verdrehungen yk der Balken. Es ist daher erforderlich,

die Randbedingungen für gk aus denen für wk und cpk zu gewinnen. Dazu
werden zunächst aus den Beziehungen (6)

!/ x !/ x
Wk g

(Wk-1 + Wk)> ^^b ^k-1 ~ Wk)

und deren Ableitungen nach f
Wk 2 (^-X + Wk ' Vk fr

(Wk-1 - Wk) USW.

die Randbedingungen für die Durchbiegungen wk der Balkenränder ermittelt.
Aus diesen ergeben sich die Randbedingungen für gk aus der Lineartransformation

(27)
tv Xq

und deren Ableitungen
tu" Xq' usw.

Im folgenden wird dieser Weg für eine Reihe technisch wichtiger Lastfälle
beschritten.
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5.1. Frei drehbare Lagerung

Es gilt am Rande £ 0

v°k (0) 0 keine Durchbiegungen,

9kW ~ 0 keine Verdrehungen,
^fc (0) 0 keine Biegemomente,

cpk (0) =0 keine Wölbbehinderung.

Aus (6) folgt dann

wk(0)=0, ^•(0)=0, bzw. l*n(0) 0, tt)*'(0)=0.

Dies in (27) eingesetzt ergibt

8(0) 0, fl"(0)=0, flrÄ(0) 0, gk(0)=0.

(32)

(33)

Für die Balkenreihe mit beidseitig frei aufliegender Lagerung ergibt sich eine

wesentliche Vereinfachung der Rechnung. Man kann nämlich das

Differentialgleichungssystem (14) unmittelbar zweimal integrieren. Die dabei auftretenden
Integrationskonstanten können aus den Randbedingungen (32) bestimmt werden.

Aus der Art und Weise der Konstantenbestimmung erkennt man jedoch,
daß sie in genau der gleichen Weise erfolgt wie bei der Berechnung der
Biegemomente M(£) eines beidseitig frei aufliegenden Einzelbalkens, und es läßt
sich leicht zeigen, daß man das System (14) einfacher in der Form

b2
(34)21 tt)**+33 um¬

schreiben kann. Darin ist m ein Vektor

GJn m

m Mi
j 1, 2... (m — 1) Stützung I,

mit j 0,1. (m — 1) Stützung II,
j 0,1... m Stützung III,

dessen Komponenten M$ Biegemomente von gedachten beidseitig frei
aufliegenden Balken unter der gegebenen äußeren Belastung p^ sind. Diese Momente
lassen sich auf elementarem Wege sehr einfach aus Gleichgewichtsbedingungen
errechnen. Die Lineartransformation tu X g führt auf das entkoppelte System

9"-^9 GJn ¦to-Wm (35)

mit den Einzelgleichungen

9k~Xk9k
b* Um

G Jrp dk

und deren allgemeiner Lösung

gk Ck sinh \k£ + Dk cosh Xk £ + Pfc* (£).
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Auf diese Weise hat sich die Anzahl der zu bestimmenden Integrationskonstanten

halbiert. Die Zurückführung des Differentialgleichungssystems 4.

Ordnung auf ein solches 2. Ordnung gelingt nur im Falle der beidseitig frei
drehbaren Lagerung. Dieser Fall ist zwar der theoretisch einfachste, aber für die
praktische Anwendung auch wichtigste Fall. Ausgehend von dem Differential-
gleichungssystem 2. Ordnung (34) wurde diese Lagerung für die Stützungsart
III b der Längsränder vom Verfasser eingehend in [10,11] untersucht.

In Tafel 3 werden für eine Reihe praktisch wichtiger Lastfälle die
Funktionen gk angegeben. In die Beziehungen sind die Größen Af, dk und %k je
nach der vorgegebenen Stützungsart der Längsränder entsprechend den

Angaben der Tafel 2 einzusetzen.

5.2. Starre Einspannung

Es gilt am Rande | 0

™k (0) 0 keine Durchbiegungen,

cpk (0) 0 keine Verdrehungen,

™k (u) 0 horizontale Biegelinie,

<Pk (0) 0 keine Verwölbungen.

Aus (6) folgt
™*(0) =«£((>) =0

bzw. tü(0) tD'(O) 0

und mit (27)

9(0) =fl'(0) =0 (36)

oder gk(0) =gk(0) 0.

5.3. Freies Stabende mit und ohne Einzellast am Bande

Die Abfassung der Randbedingungen für diesen und die folgenden Fälle
wird etwas komplizierter. Und zwar ist zu beachten, daß in den Gelenken
nicht nur stetig verteilte Gelenkkräfte Zk und Yk wirken, sondern auch Einzelkräfte,

die mit Zk und Yk bezeichnet werden sollen. Solche Einzelkräfte treten
in allen Querschnitten auf, in denen auch äußere Einzelkräfte angreifen, ferner
über allen Auflagerpunkten und an den freien Stabenden. Nur wenn man die
Existenz solcher Einzelgelenkkräfte voraussetzt, lassen sich alle Gleichgewichtsund

Kontinuitätsbedingungen widerspruchsfrei und eindeutig erfüllen. Da die

Einzelgelenkkräfte nur an den Enden der Balkenreihe und an Stellen wirken,
an denen Einzelkräfte als äußere Lasten oder Auflagerkräfte eingetragen werden,

beeinflussen sie nur die Rand- und Übergangsbedingungen und haben
keinen Einfluß auf die Differentialgleichungen. In Fig. 5 ist ein möglicher
Verlauf der Gelenkkräfte über der Gesamtlänge des Balkens dargestellt. Der
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dort angegebene Richtungssinn definiert die positive Richtung der
Einzelgelenkkräfte.

Wir betrachten jetzt ein Balkenelement der Länge dx am freien Rand x 0

und setzen die Gleichgewichtsbedingungen zwischen den äußeren und inneren
Kräften an. Um möglichst allgemein zu bleiben, soll angenommen werden,
daß am freien Rand vorgegebene Kräfte P in Richtung z wirken. Die
Randlasten, die am Balken k angreifen, werden nach dem Hebelgesetz in zwei

Einzellasten Pk-X>k und Pkk in den Endpunkten der Gelenke aufgeteilt.
Analog zu (1) ist auch hier

*k *fc,A- + "*A;,fc+l (37)

die Summe beider am Gelenkende k wirkenden Einzellasten.

,Z,(0)

VM zk(0 i2i»e.>

ZihK»
Y_0)

Zi.ll)

Vt© .1© Zw«
Y. I\-m2k-l«?

¦mk

Fig. 5. Verlauf der Gelenkkräfte
über der Balkenlänge.

Fig. 6. Balkenelement unmittelbar am freien
Ende mit allen äußeren und inneren Kräften.

k.k

K-

*Zk-

^k-l
.iQr T,k Mz,k

Oy,k
y,K

*x

Die Gleichgewichtsbedingungen ergeben unter Berücksichtigung der
bekannten Beziehungen zwischen Schnittgrößen und Verformungen des Stabes

Q,
EJ,

zk +~ir™k" (o) zk-zk_x+pktk+pk_Xtk,

EJ.
-Qvk =+-jfvk-(0) Yk-Yk_x,

LTk

(Zk + Zk_x)~-(Yk- Yk_x) t + (Pk)k-Pk-Xtk)öt-

Diese Gleichungen sind genau so aufgebaut wie die Gleichungen (2), und auf
die gleiche Weise, wie oben die Funktionen Zk und Yk eliminiert wurden,
lassen sich jetzt auch die Einzelkräfte Zk und Yk eliminieren. Alle oben
durchgeführten Entwicklungen einschließlich der Betrachtungen über den Einfluß
der HorizontalVerschiebungen v gelten analog auch hier. Lediglich der Grad
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der Ableitungen bei den Verformungen erniedrigt sich um 1, und wir haben
es nicht wie oben mit Funktionen von £ zu tun, sondern mit deren Randwerten.
Es ergibt sich analog (12) als Ergebnis die Randbedingung

(« + $)tO-"(0)+®tt»-(0)=^--3, (38)

wobei im Vektor p die Gesamtheit der angreifenden Einzellasten zusammengefaßt

ist.

j 1, 2... (m - 1) Stützung I,
j 0,1...(m-1) Stützung II, (39)

7 0,1... m Stützung III.
^

Die Randbedingungen für die Durchbiegungen wk sind also in ähnlicher Weise
wie die Differentialgleichungen miteinander verkoppelt. Mit den aus (27)
folgenden Beziehungen

tr/" (0) Xq" (0), tv' (0) =XQ (0) (40)

gelingt auch hier eine Entkoppelung, wenn die Matrix £) 0 ist (Fälle la, lb,
IIa, IIIa) oder vernachlässigt wird. Man erhält analog (28)

q-(0)-Aq-(0)=-^®-iX'P (41)
G Jrp

mit den Einzelgleichungen

^'•(0)-Ai6rfc(0)=^-^. (42)

Für den wichtigen Sonderfall, daß keine Randlasten Pk vorhanden sind, gilt

?i**(0)-AI^(0)=0.

Als zweite Randbedingung folgt aus der Bedingung, daß keine Biegemomente
und keine Wölbbehinderungen auftreten, wie unter 5.1

?i'(0)=0.

5.4. Das Balkenende auf elastisch senkbaren Stützen

Jedes Balkenende sei auf zwei symmetrisch angeordnete Federn von gleicher
Steifigkeit angeordnet. Der Abstand der Federn sei a, und ihre Federkonstante
cL. Eine solche Randbedingung hat praktische Bedeutung bei der Auflagerung
von Brückenträgern aus Fertigteilen auf Gummischichtenlagern.

Aus der biege- und bimomentenfreien Lagerung folgt zunächst gk (0) 0.
Auf das Balkenende wirkt eine Auflagerkraft der Größe

Ak 2cLwk(0) (43)
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und ein Moment
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MAk ^a2cL(pk(0).

Die Gleichgewichtsbedingungen am Balkenelement nach Fig. 7 ergeben

W T

- Qzk + Ak -1fwk"(0) + 2cLwk(0) =Zk-Zk_x + Pk)k + Pk_X)k,

~~ Qyk ~Jz^ Vk (0) Yk ~ ^fc-1 >

MTk — MAk
ECrp G Jrp tt Cr

—jirV* (0)+-^%(0) ^9>*(0)

(Zk + Zk_x) ^-(Yk- Yk_x) t + (Pk}k -Pk_hk) -.

k-1,k

Zk-1

*,£

Oz.k

Qy,k

><&u
lYlAk

M2,k

M Fig. 7. Balkenelement am

\ elastisch gestützten Rand.

Die Elimination der Gelenkkräfte liefert

|^ [ä*" (0)+wk;x (0)] + 6 cx [^ (0)+wk+x (0)]+-^ * [»;•
•
(0) - vk;x (0)]

/nf 7 FC
+ -^ te (0) -9k+i (0)] —^ [%- (0) -7üi (<>)]

ÖTCr
[%(0)-n+i(°)] b(Pk,k + Pk,k+i) &***•

Setzt man hier die Gleichungen (6) und deren Ableitungen ein und führt außer
den in (7) definierten Größen fx und /2 noch die dimensionslosen Abkürzungen

lcL lcT
f> 2G^b2 + a2^ f^2G^^2-^ (44)

ein, so erhält man nach kurzer Rechnung die Randbedingungen für die
Durchbiegungen wk der Gelenke in der Form
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h Wk-i (°) + 2 /i w'k ' (°) +k w'üi (0) + w'k-i (0) - 2 < (0) + «W (0)

b2l ~
+ h Wk-i (0) + 2f3wk(0)+fi wk+x (0) -^- Pk.

Auf ähnlichem Wege ergibt sich die Gleichung für die Ecke am kräftefreien
Rand. Setzt man dabei eine Unverschieblichkeit der Gelenke über den
Auflagern in horizontaler Richtung voraus (v 0) oder vernachlässigt den Einfluß
von v auf die Randbedingungen, so läßt sich die Gesamtheit der Randbedingungen

zur Matrizengleichung

%tv'''(0)+^tv'(0) + (f3%x + U%)tv(0) ^-p
(jT Jrp

zusammenfassen. Auch diese Randbedingung läßt sieh orthogonalisieren, wenn
man hier (40) einsetzt und mit X' von links multipliziert. Unter Beachtung
von (23) und (26) ergibt sich

h2l
^Q-(0)-^ÄQ-(0)+(f3^x + fi^2)Q(0) =-gTJH'P

oder g-(o)-_lg-(0)+®8(0)=^-®-iX't> (45)

mit der Abkürzung
®=®-1(/3®i + /4®2) (46)

Die k-te Einzelgleichung lautet

9k '(0)-X2gk(0) + dkgk(0) -^~ **$•
(47)

mit dk
f*di>k + f*d2,k^ dik. d^ nach Tafel 2
/1 dX} k~^12^2,k

Greifen am Rand keine Einzelkräfte Pk an, so wird die Randbedingung

gk"(o)-*lgk(o)+dkgk(o) o

homogen. Wird die elastische Federung des Randes unendlich weich cL 0, so

geht mit dk — 0 die Randbedingung (47) in die des freien Randes (42) über.

Wird dagegen die Stützung unendlich starr, so erhalten wir mit dk -> oo die
Bedingung (33) gk(0) 0.

5.5. Die elastische Zwischenunterstützung

Es gilt an der Stelle £ £x

™kA (£l) ™kB (£i) gleiche Durchbiegungen und

<PkA (£i) 9kB (£i) gleiche Verdrehungen in den Bereichen A und B. Daraus
folgt mit (6), (13) und (27)

Qa(£i) Qb(£i)-
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Aus

™kA (i1) ~ v°kB (ii) gleiche Tangentenneigung der Balkenachsen

<PkA (ii) <PkB (ii) gleiche Querschnittsverwölbungen ergibt sich

8i(fi) ßi(fi)
und aus

wkA (ii) wkB (ii) gleiche Biegemomente

<PkA (ii) <PkB (ii) gleiche Bimomente

folgt q'2 fo) ai' di)-

Zur vollständigen Festlegung der Integrationskonstanten wird noch eine vierte
Übergangsbedingung benötigt. Diese ergibt sich wieder aus den Gleichgewichtsbedingungen

am unterstützten Balkenelement.

r> *-••* |zk
^M-r.kA

7^' t0i,kA
OyM*^

Qz.kB

f^ ^Oy.kB
Mz.kR

Mf.kB >< ¦^lMy,

^^N^Ma

Fig. 8. Balkenelement über einer
elastischen Zwischenunterstützung.

EJ ~
QzkA -QzkB +^fc ^^(^B-^V^^^^L^k^^k-^k-i^Pk^Pk-i,^

EJZ ^...Qy kA ~~QykB p (vkB ~~ vkAi) ^fc — Yk_x,

-MTkA+MTkB-MAk= ^(?ifc*-Pfci)+-^

(Zk + Zk-l) 2~(Yk~ Yk-l) t + (Pk,k - Pk-1,k)
2 '

Die Elimination der Einzelgelenkkräfte Zk und Yk kann auf ähnliche Weise
wie unter 5.4 durchgeführt werden. Dabei ist zu beachten, daß infolge der
Gleichheit der Verwölbungen in den beiden angrenzenden Bereichen cp'kß —

<p'kA 0 ist. Die Rechnung liefert als Ergebnis

9b
"
(-1) - Q2

*

(_i) + % 9 (Ii) £r®-' *' P (48)
G Jrp

mit ® nach (46). Die Einzelgleichung lautet

9kB (ii) ~9kA (ii) +dkgk fo) =^Jf~ (49)
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und wenn keine äußeren Lasten über der Stütze angreifen

g'kB (ii) - g'kl (ii)+dk gk (ii)=°-
Darin ist gk fo) gkA fo) gkB fo).

5.6. Die starre Zwischenunterstützung

Die Übergangsbedingungen ergeben sich aus denen der elastischen
Zwischenunterstützung, indem man die Federkonstante cL -> oo gehen läßt. Damit
strebt dk-> co und es ergibt sich an Stelle von (49)

gk(ii) gkA(ii) °
flte(fi) 0.

5.7. Überganbsbedingungen unter einer Einzellast

Auch die Übergangsbedingungen für diesen Fall erhält man als Sonderfall

von (49), wenn man dort cL dk 0 setzt.

g-kB(ii)-9kA(ii) -^^- (so)
\j~ um ak

5.8. Ubergangsbedingungen an Bereichsgrenzen ohne Einzellast

Mit p 0 folgt aus (50)
g'kl (ii) g'kB (ii)-

In der Tafel 4 sind die betrachteten Rand- und Übergangsbedingungen der
Funktionen gk für die praktische Anwendung übersichtlich zusammengestellt.

5.9. Bandbedingungen für die Horizontalverschiebungen v

Für die Berechnung der Schnittgrößen Myi und Qyi werden bei den
Stützungsarten IIb und IIIb auch die Horizontalverschiebungen v der Gelenke
benötigt. Wenn die Vertikalverschiebungen wk bekannt sind, können die v
aus den Differentialgleichungen (10) und (11) berechnet werden. Dabei sind
am Rande £ 0 folgende Randbedingungen zu beachten:

v" (0) 0 wenn die Balken um ihre vertikale Achse frei drehbar gelagert
sind,

v (0) 0 bei Einspannung um die vertikale Achse,

v (0) 0 bei seitlich unverschieblicher Lagerung,

*'¦¦(0) =^bW (°)-wm" (0)] i(So-EJ9,,, (0) bei Stützung III b,

v'" (0) =mhW<>" (0) i^Ö'" (°) bei Stützung IIb
bei seitlich frei verschieblicher Lagerung.
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Tafel 4. Rand- und Übergangsbedingungen der Funktionen gjc

Frei drehbare Lagerung

Starre Einspannung

Freies Stabende

Stabende mit Einzellast

Elastisch gestütztes
Ende

Elastisch gestütztes
Ende mit Einzellast

Elastische
Zwischenunterstützung

Elastische
Zwischenunterstützung mit
Einzellast

Starre Zwischen-
Unterstützung

Übergangsbedingungen
an einer Einzellast

Übergangsbedingungen
an Bereichsgrenze
ohne Einzellast

m^w

///#

//$//

^ 7^7777^77 *

il

9k 0; gk 0

9k °; 9k °

g'k =Q; g'k'-Kg'k^0

9k =0;
„ _

bH £kp
9k ~*k9k — ri r jKT Urp U/j.

g'k =o; gk'~}ig'kJrdkgk o

gk =°;
gk -*%gk+dk9k=Qj--fr

gkA — gkB> gkA — gkB>

g'kA g'kB'> g'kB-gkA+dkgk o

gjcA — gkB> gkA — gkB> gkA — gkß\

t _
b2l %'kp

gkB — gkA +dkgk — -Q-j- —j—

gkA o; 9kB °;
gkA gkB * gkA gkB

gkA — gks> gkA —

gkA gkB 9 gkB ~~ gkA

gkA ~ gkB 9 gkA — gkB 9

gkA gkB I gkA — 9kB

bH UP
(jT Jrp ak
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Die beiden letzten Gleichungen ergeben sich auf ähnlichem Wege wie oben
die Differentialgleichungen (10) und (11), nur daß hier an Stelle der Funktionen

wk und v deren Randwerte, an Stelle der Gelenkkräfte Yk die Einzelkräfte Yk

treten und der Grad der Ableitungen sich um 1 erniedrigt.
Bei seitlich fester Zwischenunterstützung an der Stelle £ £x gilt

M£i) 0, vBfo) 0, VAfo)=v'Bfo), v'Jfo) Vzfo)

und bei seitlich frei verschieblicher Zwischenunterstützung

VA (il) VB (il)9 VA fo) V'B fo), VA fo) Vß fo)
und

%' (ii) - v'J' (ii) ^l (So - Im) [Qb ' di) ~ QÄ' (ii)] 9 bei Stützung III b,

bzw. v'ß' fo) - vA' fo) ^ So [Qb ' (ii) ~ QÄ' (£i)] > bei Stützung IIb.

6. Schnittgrößen, Verformungen, Gelenkkräfte, Auflagerkräfte

Ausgehend von den bekannten Beziehungen der Festigkeitslehre zwischen
Schnittgrößen und Verformungen der Balkenachsen erhält man mit den
Gleichungen (6) und der aus (27) folgenden Einzelgleichung

w< E<*8 (51)

die Formeln für die Berechnung der Schnittgrößen im Balken i direkt in
Abhängigkeit von den Funktionen gk. In (51) ist jf der i-te Zeilenvektor der
Matrix 36. Bei den Stützungsarten I und III ist als Folge der Symmetrie von X

Für numerische Berechnungen ist es zweckmäßig, mit den G JT-fachen Funktionen

g zu rechnen. Zur Vereinfachung werden noch folgende Abkürzungen
eingeführt

w. t wj wn_
(52)GJtq g, ü2 _ E Jy

Hz ri j 9

UT Jrp

TP T
Q2 ¦EJÜz Ü2
PU

GJrp' P°
E Crp

G Jrp

Damit ergibt sich

Biegemoment Mzi

Mzi EJV„..W-p x

ßz
~ 2^2 (&-1 + £i 9 9

Querkraft Qzi

Qzi EJy~...
— y W.

p * ~~2p (Ei-1 + Zi 9 9
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Bimoment (Wölbverdrehmomentenintegral) Bt
ß!

B< -^£* 9i u 72
' ei—1 ci / <

Primäres Torsionsmoment MTPi

Mrp + -
G Jrp

'ViLTPi " ' l
Sekundäres Torsionsmoment MT8i

ECrp

1

bl fe*-i-J*)ß">

MTSi —
Z8

-<Pi
ß2Hc /r»bl*Kki- -if)9'">

Gesamtes Torsionsmoment M>Ti

MTi M,TPi + MTSi= ^(^-^Ig'-^g-jbl^i-i ei'\* 12

Bei den Beziehungen zur Berechnung der Schnittgrößen Myi und Qyi treten
auch die Horizontalverschiebungen v auf.

,_. EJ„^.m E J„
±uyi — p~ vi ~~ f2~

U" -(W\'_X-WV) -I,

U""--(^r1-ti?i,,)j-j.

Bei den Stützungen la, lb, IIa und IIIa ist v 0 und damit wird
tR2

0p \hi-l hi öv% bP (tf-i- ¦S?)fl". ö.

Bei den Stützungen II b und III b müssen zunächst die Funktionen v aus den
Differentialgleichungen (10) bzw. (11) unter Beachtung der unter 5.9
angegebenen Randbedingungen integriert werden. In der überwiegenden Mehrzahl
der praktisch vorkommenden Fälle, aber leider nicht in allen Fällen, ergeben
sich sämtliche bei der Integration von (10) und (11) auftretenden Konstanten
zu Null. Für diesen wichtigen Sonderfall ist

V =—j-W0mb mfcXo*9

und

MVi~ bl2\li-l %i mJQ >

Qyi bP

Vl bP

(stx-sf-|)fl-.
(~sic v* CO ~ em \

Qyi bP \%*-i- l)!

bei Stützung IIb

bei Stützung III b

bei Stützung IIb

bei Stützung III b
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Die Formeln für die Ermittlung der vertikalen Gelenkkraftkomponente Zi
erhält man aus den Gleichungen (3) und (4) unter Beachtung von (6), (7), (10)
und (11) nach einigen Zwischenrechnungen

Zi ^+12~^ + Wb* [feti-lft-i) (/. fl**** + 8") +4^ (I)2 (So*-^) fl"

bei Stützung III b

bei Stützung II b

Zt PiJ+1~PiJ + j^-2(ltx-lhi) (/2fl— + fl**),

bei den Stützungen la, lb, IIa und IIIa.

Der Einfluß der Horizontalverschiebung v auf die Gelenkkraftkomponente
Zi wird im allgemeinen vernachlässigbar klein sein, so daß es in der Regel
zulässig ist, die Zi für sämtliche Randbedingungen einheitlich nach der zuletzt
angegebenen Formel zu berechnen. Die Gelenkkraft Zm im letzten Gelenk m,
welche gleichzeitig die Auflagerkraft einer am Längsrand gestützten Balkenreihe

darstellt, errechnet sich aus folgenden Beziehungen, die sich aus
Gleichung (3) nach einigen Umrechnungen ergeben.

Zm ~Pm,m + pl2 Sm-i(/2 9""+9")+^(yj £o*9" J> bei Stützung IIb

zm -Pm,m + ^2£m-i (ik fl""" + ß") > bei den Stützungen Ia, Ib und IIa

Zur Berechnung der horizontalen Komponenten der Gelenkkräfte Yi werden
die Differentialgleichungen für die Balkenbiegung um die z-Achse für alle
Balken links von der Fuge i angeschrieben.

YX,

— Y — Y.

Die Summation ergibt
P T

Yi -jr (»i"" +^"- + • • • +% ")•

EJZ,....
P %

EJ^....
P v*

EJZ,....
——— V,
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Setzt man hier die Gleichung (6) ein

v eja n
Yi -^Uv -(w0 -wt )^\

und beachtet (10), (11) und (51), so erhält man für die verschiedenen Stützungsarten

folgende Beziehungen für die Berechnung der Yi.

tß2 _Yi 777^X* 9 9 bei den Stützungen la, lb

Yi -j^ (£* - So) 9 > bei den Stützungen II a, III a7 tßt /r» 1* bltKki l

Yi J^t (tf"^ So) fl' *' *, bei der Stützung IIb
/ Q2 I n ryy\ n \

Yi jjr[ ~ —Jm + Et* —So*] 9""> bei der Stützung Illb

Die in den Gelenken wirkenden Einzelkräfte Zi sind von den
Lagerungsbedingungen der Balken abhängig. Wir geben im folgenden die Endbeziehungen
an, die sich aus den Gleichgewichtsbedingungen an den Balkenenden, den

Zwischenunterstützungen oder den Angriffspunkten von Einzellasten nach

einigen Zwischenrechnungen ergeben.

Elastisch gestütztes Balkenende

+ Jlt2^i-i-li+i)(f2Q' " + 9'+/49)>
P —P 1

y x 1,1+1 i,i -

Freies Stabende

z* Pi-i+1~Pi-i +~ (£tx - sf+j (/.0-+Ä-),

Elastische Zwischenunterstützung

Zt Pi'i+1~Pi'i + -^&ti-lt+i) [/2(0i* -fl***-) + /48L

Angriffspunkt einer Einzellast

Zt Pi'i+1~ P" + -^ (;?_i -&+i) k (Ab --QÄ1-

Greifen an den Balkenenden und den Zwischenunterstützungen keine

Einzellasten an, so ist Pi i+x Pi t 0 zu setzen.
Diese Formeln gelten streng für die vier Fälle, bei denen v 0 ist und mit

sehr guter Näherung auch für die anderen beiden Stützungsarten. Bei starrer

Stützung wird mit cL -> co, /4 -> co und g -> 0 der Ausdruck für die Zi
unbestimmt.
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Die horizontal wirkenden Einzelkräfte Yi berechnen sich aus

Yi §r[iGJTv--lüc*-tf)Q-]

Die Auflagerkräfte Ai und die vom Auflager abzutragenden Torsionsmomente
MAi berechnet man bei elastischer Lagerung nach den Gleichungen (43), die
man auch in der Form

Ai cL (sti + X?) 9, MAi ^ (Xti" S?) 926

schreiben kann.

7. Beispiel

Die Anwendung der Theorie soll an einem einfachen Beispiel gezeigt werden.
Wir berechnen die Gelenkkräfte und Schnittgrößen in der tordierten Balkenreihe,

die nach Fig. 9 durch vier an den Ecken wirkende Einzellasten P
belastet ist. Diese Belastung wurde von Müller [14] zur experimentellen
Bestimmung der Torsionssteifigkeit einer Balkenreihe benutzt.

7^

Fig. 9. Tordierte Balkenreihe.

Die Balkenreihe liege so im Räume, daß am Rande £ 0 die Verschiebungen
gleich Null sind. Die Balkenzahl m sei gerade. Für die Stützung der Längsränder

liegt Fall III b nach Fig. 3 vor. Da hier als äußere Lasten nur Randkräfte

auftreten, ist p 0; die Differentialgleichung (29) wird homogen, und
damit ist auch das partikuläre Integral in (30) Pfc* (i) 0. Die Integrationskonstanten

der allgemeinen Lösung (30) errechnen sich aus den Randbedingungen:

^*(0) 0 liefert Dk 0,

gk(l) 0 liefert Ck 0,

gk-(0)-A2kgk(0)=^^ liefert Bk -^§-,
b2l XX)

g'k" (1)— A|^(l) qtj-~r^ i^ mit den bereits berechneten Konstanten
widerspruchsfrei erfüllt,

gk(0) 0 liefert Ak 0.
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Die erste Komponente g0 des Vektors g wird aus der Gleichung (31) ermittelt,
die infolge p 0 hier

g0'" 0 lautet.

Allgemeine Lösung i/o — ^o 6 i "0 2TV Ob -r^o
90 (0) 0 liefert jB0 0,

0i'(l) 0 liefert ^o 0,

g0 (0) 0 liefert D0 0.

g'0" (0) g'Q" (1)~0 ist mit A0 0 bereits erfüllt. Die restliche Konstante C0

hat lediglich eine Lageveränderung der Balkenreihe, und zwar eine Drehung
um die Auflagerachse £ 0 zur Folge. Wir setzen auch C0 0, das bedeutet
geometrisch, daß die Balkenreihe so im Räume festgelegt wird, daß ihre
Längsachse A—A nach Fig. 9 bei der Verformung ihre Lage nicht verändert.

Damit ist
bn tkp t9o °> 9k G Jrp Ak dk

k 1, 2. .m.

Mit den Angaben der Tafel 2 ist für Stützungsart III
1 1

A|d/<

1

mit g
f 1 für k 1,

mS(l-ooB^w)
mi \2invk m

2...(m-1),

Die gegebene äußere Belastung wird zum Vektor

V=P

-1
0

0

0

+ 1

zusammengefaßt.
Beachtet man, daß nach Tafel 2 die erste und die letzte Komponente von jfc

xok — cosO +1,
+ 1 für gerades k,

°mk cos k TT
— 1 für ungerades k

ist, so erkennt man, daß

S'p =-2P

0

1

0

1

1

0
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gilt. Damit ergibt sich für den Vektor g

0

1

1 — cos

0

1

1 — cos -

0

1

1^

-cos-
(m— 1) tt

2P
m

b2l

0

1

1 — cos —m
0

1

1 — cos:

0

1

-cos
(m— 1) tt

9'" =9' 0.

Daraus folgt zunächst, daß sämtliche Schnittgrößen in den Balken zu Null
werden mit Ausnahme des primären Torsionsmomentes.

Für dieses erhalten wir

M,TPi ^(•£.i-tf)B--+^
m—1

z
k=l,3,5...

U—\)lC7T %k7t
cos cos

m m
Jc-rr

1 — cos —m

Die Auswertung der Summe liefert stets den Wert m/2, so daß

MTPi Pb wird.

Die stetig verteilten Gelenkkräfte Zi und Yi verschwinden ebenfalls. Lediglich
die Einzelkräfte Zi an den Fugenenden haben einen von Null verschiedenen
Wert.

~ m—1

zt 2lb* (S*-i-J?+i)8* +
m E

(i—l)kir (i+l)kiT
COS COS

fc=l,3,5... 1 —COS
hi

Diese Summe nimmt den Wert m an, und wir erhalten

z< P.

Der Ausgleich der an den Ecken angreifenden Einzelkräfte P erfolgt über die

an den Gelenkenden wirkenden Einzelkräfte Zi. Diese leiten in alle Balken

gleiche Torsionsmomente der Größe Pb ein. Die Balken selbst sind frei von
Biegemomenten und Querkräften. Damit besteht ein wesentlicher Unterschied
zur tordierten Platte. Wie die verfeinerte Plattentheorie von Reißner zeigt,
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werden dort die Einzellasten P durch Querkräfte der Große P/2 entlang aller
vier Plattenrander von einer Ecke zu den anderen transportiert. Bei der
Balkenreihe erfolgt der Kraftausgleich nur entlang der zu den Balken senkrecht
liegenden Randern.

Zt(0) p Z2(0) P 1(0) P

Z2(1) P Zm KD

Fig. 10. Darstellung des Krafte-
verlaufs in der tordierten Bal¬

kenreihe.
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Zusammenfassung

Es wird eine allgemeine Theorie zur Berechnung von Balkenreihen über
rechteckigem Grundriß unter beliebiger vertikaler Belastung dargestellt. Das
sich ergebende Differentialgleichungssystem für die Durchbiegungen der
Balkenränder wird durch eine geeignete Lineartransformation auf Diagonalform

überführt. Damit wird eine einfache Lösung in strenger Form möglich.
Die Lösungen werden für eine Reihe technisch wichtiger Randbedingungen
an den Längs- und Querrändern entwickelt. Die Randbedingungen an den

Längsrändern beeinflussen das Differentialgleichungssystem und damit dessen

Lösung. Die Randbedingungen für die Querränder dienen zur Bestimmung
der Konstanten in diesen Lösungen. Die Anwendung der Theorie wird am
Beispiel der tordierten Balkenreihe gezeigt.

Summary

A general theory is presented for the design of series of beams disposed in a

reetangular plane and subjected to any vertical loading. The resulting system
of differential equations for the deflections of the edges of the beams becomes,

by a suitable linear transformation, a diagonal matrix, so that a simple and
rigorous Solution is possible. The Solutions are provided for a series of boundary
conditions for the longitudinal and transverse edges commonly met with in
practice. The boundary conditions for the longitudinal edges affect the system
of differential equations and hence the Solutions. The boundary conditions
for the transverse edges are used to determine the constants of these Solutions.
The application of the theory is demonstrated by the example of a series of
beams subjected to torsional stresses.

Resume

On presente une theorie generale pour le calcul de series de poutres placees
dans un plan reetangulaire, soumises ä une charge verticale quelconque. Le
Systeme d'equations differentielles qui en resulte pour les fleches des bords
des poutres devient, par une transformation lineaire appropriee, une matrice
diagonale. Ainsi une Solution simple et rigoureuse est possible. Les Solutions
sont apportees pour une serie de conditions aux limites pour les bords longi-
tudinaux et transversaux courantes dans la pratique. Les conditions aux
limites pour les bords longitudinaux influencent le Systeme d'equations
differentielles et done ses Solutions. Les conditions aux limites pour les bords
transversaux servent ä determiner les constantes de ces Solutions. On montre une
application de la theorie sur l'exemple de la serie de poutres soumises ä la
torsion.
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