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Theorie elastischer Balkenreihen
Theory for Series of Hlastic Beams

Théorie pour des séries de poutres élastiques

GERHARD SPAETHE
Dr. Ing., Versuchs- und Entwicklungsstelle des StraBenwesens, Berlin, DDR

1. Allgemeines

Unter einer Balkenreihe verstehen wir im folgenden ein Tragwerk, welches
aus einer Reihe nebeneinander liegender elastischer Stibe besteht, die sich in
einer Linie beriihren und in dieser Beriihrungslinie auf der ganzen Lénge
gelenkig miteinander verbunden sind.

v,

Fig. 1. Balkenreihe.

Solche Systeme gewinnen mit der Verbreitung der Fertigteilbauweise an
Bedeutung. Bei der Herstellung von ebenen Tragwerken aus einzelnen stab-
férmigen Elementen werden vielfach Verbindungen angewendet, die in Quer-
richtung nur vernachlissigbar kleine Momente iibertragen, jedoch gleiche Ver-
schiebungen der Balkenrinder erzwingen. Unter Ausniitzung der Torsions-
steifigkeit der Balken entsteht eine Querverteilung der Schnittgrofen und
eine gewisse flichenhafte Tragwirkung.

Als erster hat CsoNkA bereits 1936 ein Verfahren zur Berechnung von
Balkenreihen angegeben, wobei er sich zunichst [1] auf den Fall beschrinkt,
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daB3 die Schubmittelpunkte der Balken und die Gelenke in einer Ebene liegen.
Die spitere Erweiterung auf den allgemeineren Fall [2] fithrt auf ein System
gewdohnlicher Differentialgleichungen fiir die Durchbiegungen der Gelenkel).
Die numerische Losung fiir den Fall der frei drehbaren Lagerung ergibt sich
mit Hilfe von Fourierreihen.

Roxsu1 [3] betrachtet die Balkenreihe als Kontinuum und geht von der
Theorie der orthotropen Platte aus, die er fir die besonderen Bedingungen
der Balkenreihe erweitert. Dieses Verfahren gilt also unter der Voraussetzung,
daf3 die Zahl der Balken grof} ist.

In den letzten Jahren wurden vor allem von tschechischen Autoren Berech-
nungsverfahren angegeben [4 bis 9]. Sie gehen simtlich vom Diskontinuum
aus, vernachlissigen die gegenseitige Behinderung der Verdrehung der Balken
und die daraus resultierenden horizontalen Gelenkkrifte.

Zur Losung werden entweder Fourierreihen benutzt [6,7] oder das sich
ergebende Differentialgleichungssystem wird geschlossen gelost [5, 8, 9]. Dabei
beschriankt man sich vielfach auf den Sonderfall, daB3 die Lasten in Querrich-
tung gesehen mittig auf den Balken stehen.

Vom Verfasser wurde in [10,11] fiir den Sonderfall der frei drehbaren
Lagerung der Balken und kraftefreien Léngsriandern eine geschlossene Losung
angegeben, die es gestattet, auch Einzellasten zu behandeln. Damit wurde die
Grundlage fiir die Berechnung von EinfluBfeldern geschaffen.

Alle bisher bekannt gewordenen Arbeiten beschrénken sich auf den zwar
praktisch wichtigsten, aber auch einfachsten Fall der beidseitig frei drehbaren
Lagerung. In der vorliegenden Arbeit wird die in [10, 11] fiir einen Sonderfall
angegebene Theorie in erweiterter und verallgemeinerter Form dargestellt,
wobei insbesondere verschiedene technisch wichtige Randbedingungen an den
Langs- und Querréndern beriicksichtigt werden. Damit wird die Moglichkeit
geschaffen, Verformungen, SchnittgroBen, Gelenkkrifte und Auflagerkrifte
in beliebig gestiitzten Balkenreihen mit rechteckigem Grundrifl unter beliebiger
vertikaler Belastung in geschlossener Form zu berechnen. In dieser Arbeit
werden die theoretischen Grundlagen bereitgestellt und die Anwendung der
Theorie an einem einfachen Beispiel gezeigt. Eine Einschitzung des Trag-
verhaltens von Balkenreihen mit einer Darstellung der Ergebnisse numerischer
Rechnungen wird an anderer Stelle gegeben.

Im Sinne einer widerspruchsfreien Darstellung der Theorie ist es erforder-
lich, den folgenden Ableitungen die Torsionstheorie der diinnwandigen Stébe
unter Berticksichtigung der Woélbkrafttorsion [12, 13] zugrunde zu legen. Die
bei Vollquerschnitten und dickwandigen Hohlquerschnitten iibliche Vernach-
lassigung der Wolbkrafttorsion ist als Sonderfall mit €, =0 enthalten.

Die Theorie eignet sich besonders fiir eine Auswertung mit elektronischen

1) Dieses Differentialgleichungssystem stimmt mit System (9) fir die Stitzungsart Ta
nach Fig. 3 iiberein.
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Digitalrechnern. Fiir die Berechnung von EinfluBfeldern frei aufliegender
Balkenreihen liegt in der Versuchs- und Entwicklungsstelle des Strallenwesens
ein Programm vor, welches seit mehreren Jahren mit Erfolg bei der Projek-
tierung von Fertigteilbriicken angewendet wird.

2. Annahmen und Voraussetzungen, Bezeichnungen

Die Balken werden als vollkommen elastische Stiabe im Sinne Stabstatik
betrachtet, deren Querschnittsform unter Belastung erhalten bleibt. Alle
Balken sind gleich ausgebildet und haben einfach symmetrische Querschnitts-
form, die sich in Balkenldngsrichtung nicht dndert. Sie liegen alle in einer
gemeinsamen horizontalen Ebene, welche senkrecht zu den Symmetrieachsen
liegt. Die Schubverformungen aus Querkriften werden vernachlassigt.

Aus Fig. 2 ist die Lage des Koordinatensystems, die Numerierung der
Balken und Gelenke sowie die Definition der Schnittgrélen und Gelenkkrifte
ersichtlich.
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Fig. 2. Definitionen.

Es ist ferner

l Stitzweite der Balken
Balkenbreite
t Abstand zwischen Schubmittelpunkt 7' des Balkens und den Gelenk-

linien in Richtung z, im folgenden Schubmittelpunktsabstand genannt
Biegesteifigkeit bei Biegung um die y-Achse

EJ, Biegesteifigkeit bei Biegung um die z-Achse

G'J; Saint Venantsche Torsionssteifigkeit

EC; Wolbsteifigkeit bezogen auf den Schubmittelpunkt 7'

vy, wy, Verschiebungen der Gelenklinie k£ in Richtung y und z

vy, w, Verschiebungen des Schubmittelpunktes des Balkens % in Richtung
y und z

EJ,

Yy
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Pr Verdrehung des Balkenquerschnittes k&
m Anzahl der Balken

Die auf den Balken k einwirkende beliebige duflere Belastung kann man
bei Annahme einer starren Querschnittsform nach dem Hebelgesetz in zwei
Linienlasten p;_;  und p, , aufteilen, die in den Balkenrindern wirken. Es
ist ferner

Pr = Pr, e+ Pr, k1 (1)

die Summe beider am Gelenk % angreifenden Linienlasten.

Im allgemeinen Fall wird die Gelenkkraft eine bestimmte Richtung im
Raum haben. Von ihren drei Komponenten X,, ¥, und Z, wird die Kraft
X, die in Richtung der Balkenlidngsachse wirkt, vernachlassigt. In [10] wurde
der Einflu dieser Komponente genauer untersucht. Dabei zeigte sich, dal
X, verhiltnismaBig groe Werte annehmen kann, jedoch sein Einflull auf die
Schnittkrifte und Spannungen in den Balken bei den im Fertigteilbau iiblichen
Abmessungen im allgemeinen klein ist. Die im folgenden dargestellte Theorie
gilt, wenn der vertikale Abstand zwischen Balkenschwerpunkt und Gelenk
geniigend klein ist. Bei sehr hohen und schmalen Balken mit Gelenken an den
oberen Balkenkanten ist eine genauere Untersuchung zu empfehlen.

3. Das Differentialgleichungssystem fiir die Verschiebungen der Gelenke

Als unbekannte Funktionen werden die Verschiebungen w;, und v, der
Gelenke eingefithrt. Werden die Balken als Stdbe mit starrer Querschnitts-
form betrachtet, so konnen sich alle Gelenke in horizontaler Richtung nur
um den gleichen Betrag v, =v verschieben.

Das Problem fiihrt auf ein System von gewohnlichen Differentialgleichun-
gen fiir die unbekannten Durchbiegungen w,. Die erste und die letzte Glei-
chung dieses Systems sind dabei von der Art der Stiitzung der Langsrinder
der Balkenreihe abhingig.

In dieser Arbeit werden die in Fig. 3 dargestellten Randbedingungen unter-
sucht. Die dort im Querschnitt gezeichnete Stiitzung denke man sich iiber die
gesamte Balkenlénge kontinuierlich durchgehend.

Horizontal unverschieblich ’PUUUWQ ‘UUUG\?EI‘? W
Ia Io o
Horizontal verschieblich ’Pm:]?l, WUWUJ» TR T
Ib Ib b

Zweiseitig Einseitig Beidseitig kraftefrei
gestiitzt gestutzt in vertikaler Richtung

Fig. 3. Randbedingungen an den Lingsrindern.
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Fiir einen beliebigen mittleren Balken £ gelten die bekannten Differential-

gleichungen der Balkenbiegung und Balkentorsion, die mit den in Fig. 2 defi-
nierten Gelenkkriaften und duleren Lasten folgende Form annehmen
EJ,....

s

=Zyp—Zig—y + P+ Pr-r1c>

Ed,.....
l vk = Y;c - Ifk—l ’ (2)
Gy .. EC, b b
Z2T<Pk T Toi (Zk+Zk—1)§—(Yk—Yk—1)t+(Pkk Pr— 1k)§
Darin bedeuten Punkte Ableitungen nach der bezogenen Koordinate
& =uxfl.

Multipliziert man die drei Gleichungen der Reihe noch mit /2, ¢ und ! und
addiert sie, so ergibt sich

EZZIJ—”';‘)@I}M E;Jzt Ic”+GZ;ITSD;c'_El0T<Pk = Zpb+py b (3)
und mit den Faktoren b/2, —t und —1 wird
FZTJ‘U gﬁ)k —%—JZ v = GZ;IT(P;C' + ElfoPl'cm = —Zp 10+ P10 (4)
Der Ubergang von k auf £+ 1 in der letzten Gleichung und Addition ergibt
B gy v + B e 500 + S5 o g
5
“EO ok —ir1) = b (Pt Pt = b1r ¥

Aus Fig. 4 konnen die Beziehungen zwischen den Verschiebungen des Schub-

mittelpunktes w,, v, und der Balkenverdrehung ¢, einerseits und den Ver-
schiebungen der Gelenke w,,, v andererseits abgelesen werden

'—-*—Vk1V’—"—‘vV_-_‘l ‘
i o
= «

-—

Fig. 4. Verformter
Querschnitt.
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¢

1 1 -
(Wy—q +wy) P = A (Wy—q —wy) Vp =0— A (W—y —Wy) - (6)

Wy, = §
Bei der Stiitzung I a, ITa und I1Ta ist v=0.

Werden die Gleichungen (6) in (5) eingesetzt und noch folgende dimensions-
lose Abkiirzungen eingefiihrt

1(b\2EJ, (€\*EJ, EO,
flzz(T) WT‘JF(Z) GJ, TBEGJy

_1(b\2EJ, ((\*EJ, EC, ™
fz—z(f) G_JT‘(Z) GJ, 12GJ,’

so erhilt man nach kurzer Rechnung die Differentialgleichung fiir eine mitt-
lere Gelenkfuge in der Form
2]2
i 4 20 R iy = 20 i = g P ®)
T
Es ist bemerkenswert, dal3 hier die Horizontalverschiebung v der Gelenke
herausfillt. Die Randgleichungen fiir vertikal gestiitzte Rénder ergeben sich
aus (8) mit wy,=0 bzw. w,,=0.

Die Randgleichungen fiir kréftefreie Rénder erhidlt man auf dhnlichem
Wege wie oben durch Elimination der Gelenkkrifte aus den Gleichungen (2),
in denen man k=1 zu setzen und die Randbedingungen Z,=Y,=0 zu beach-
ten hat.

Es ergibt sich fiir den freien Rand 0

.. .. tb EJ, ... b22
hwe  +faw —wy 4wy 7 @7;” =§j;290 (9)
und fiir den freien Rand m
.. . tb EJ, ... b2
fzwm—1+f1wm +wm-1_wm +—Z?EJ—TU _gJ_Tpm (9)

Hier tritt als weitere unbekannte Funktion die Horizontalverschiebung v auf.
Diese kann in folgender Weise eliminiert werden. Es ist unmittelbar ersicht-
lich, daf} gelten muf}

N+(X-N)+(GL-X)+ -+ (Y — Vo) = Yy = 0.
Daraus folgt mit der zweiten Gleichung (2)
000 0,4+ 0, = 0.
In diese setzen wir die dritte Gleichung (6) ein

=0

v = (wy T —wy )Z‘H’ —(wy" —wy )5‘*‘""“” — (W, 23— wy, )5
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und erhalten fiir die Stiitzung IITb
v =y —w ). (10)

Bei der Stiitzung I1b wird mit w,,=0
4

Dies in (9) eingesetzt ergibt die gesuchten Randgleichungen.

Stﬁtzung IIb Rand 0

2EJ' e e b2 2
Lfl GJ Wy +f2w1 — Wy +wy GJ Po>
Stﬁtzung IITh Rand 0

e (0 E i i+ 2 () iy =
T\l Gap e TR 1) GJpm e T =g e
Rand m

1\2 K J, w: fow s+ t\2 K J, W — .. b2
Z GJ +2 m—l fl [ GJT m wm—l wm_GJTpm'

Diese Ergebnisse lassen sich in iibersichtlicher Form in Matrizenschreibweise
zusammenfassen. Wir schreiben das Differentialgleichungssystem fiir die
Berechnung der Balkenreihe in der Form

b21?

A+H)w " +Bmw" GJTp

(12)

Darin sind 2, B und  symmetrische Matrizen mit

m—1 Zeilen und Spalten bei Stiitzung I,
m Zeilen und Spalten bei Stiitzung II
und m+1 Zeilen und Spalten bei Stiitzung I111.

Ihr Aufbau ist fiir die verschiedenen Stiitzungsarten aus Tafel 1 ersichtlich.

B ist bei Stiitzung III singuldr, was man sofort erkennt, wenn man ihre
Zeilenvektoren addiert, in den Féllen I und II jedoch nichtsingulir. Die
Matrix 9 ist im allgemeinen nichtsingulir, sie wird jedoch bei Stitzung ITI
fir den Sonderfall f,=f, ebenfalls singuldr. Diesen Fall, bei dem sdamtliche
Matrizen der Differentialgleichung (12) singuldr sind, wollen wir bei den wei-
teren Ableitungen zunichst ausschliefen. Auf ihn wird weiter unten noch
kurz eingegangen. Die Matrix § ist nur in den Fillen IIb und IITb nicht
gleich Null. Bei Stiitzung IIIb ist sie an ihren vier Ecken besetzt, wihrend
bei Stiitzung II'b nur ein einziger Koeffizient von Null verschieden ist.

Die gegebenen &dulleren Belastungsfunktionen werden zum Vektor p und
die gesuchten Durchbiegungsfunktionen zum Vektor v zusammengefaf3t.
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p= i\pj‘l’ = |iw]‘|’ (13)

mit §=1,2,3...(m—1) bei Stiitzung I,
j=0,1,2...(m—1) bei Stitzung IT
und j=0,1,2 m bei Stiitzung III.

Es ist bemerkenswert, dal bei der Stiitzungsart Ib keine Horizontalverschie-
bung v auftreten kann und somit der Verformungs- und Spannungszustand
stets mit dem des Falles I a identisch ist. Im Sonderfall =0, wenn die Gelenke
und die Schubmittelpunkte sdamtlicher Balken in einer Ebene liegen, wird
auch bei den Stiitzungen IIb und IIIb die Horizontalverschiebung zu Null.

Das Differentialgleichungssystem (12) ist die Grundgleichung fiir die
Berechnung von Balkenreihen. Gelingt es, dieses System fiir eine bestimmte
Balkenreihe unter der vorgegebenen Belastung p bei Beriicksichtigung aller
aus der Art der Stiitzung und der Belastung sich ergebenden Randbedingungen
zu integrieren, so ist damit die strenge Losung des Problems gefunden. Sobald
die Durchbiegungen v der Gelenke bekannt sind, konnen die Schnittgréen,
Gelenkkrifte und Auflagerkriafte aus den im Abschnitt 6 angegebenen Be-
ziehungen ermittelt werden.

4. Die Losung des Differentialgleichungssystems

Es gelingt, das System (12) bei den vier Stiitzungsarten in geschlossener
Form zu 16sen, in denen die Matrix § =0 ist. Es 148t sich jedoch zeigen, daf}
bei den beiden iibrigen Stiitzungsarten IIb und IIIb der Einflufl von  auf
die Vertikalverschiebungen fv der Gelenke von sehr geringem Einfluf} ist. Um
auch in diesen beiden Fillen mit einem ertrdglichen Aufwand zu einer Losung
zu kommen, wird § vernachléissigt und die Durchbiegungen v werden stets
aus dem vereinfachten System

[b272
LGJTp

At LB = (14)
berechnet. Die Ermittlung der Horizontalverschiebungen v erfolgt dann an-
schlieBend aus der Differentialgleichung (10) bzw. (11).

Dieses Vorgehen bedeutet geometrisch, dafl die Durchbiegungen w unter
der Annahme berechnet werden, daf3 die Balkenreihe seitlich durch eine Kraft
Y, gestiitzt ist. AnschlieBend wird durch eine Horizontalverschiebung dieses
Y,, zu Null gemacht. Dabei werden die unter der Annahme »=0 berechneten
Durchbiegungen w beibehalten. Diese Niherung wird um so besser Werte
liefern, je kleiner der Schubmittelpunktsabstand ¢, je groBer die Stiitzweite !
und die Balkenzahl m ist.
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Wir betrachten das homogene System

A" +Bw™ =0 (15)
und machen den Ansatz o = I, e A (16)
: j=12...(m—1) Stiitzung I,
mit Ly = [xjk:l, j =0,1...(m~—1) Stiitzung II,
: j=01... m Stitzung III.

Dieser Ansatz, in (15) eingesetzt, fiihrt auf das Eigenwertproblem
(AX2 +B)Aix, =0.

Die Eigenwerte A; ;=2\, ,=0 interessieren uns nicht weiter. Wir fassen das
homogene Gleichungssystem

(UAZ +B)r, =0 (17)

als System von Differenzengleichungen auf. Die i-te Gleichung lautet aus-
fiihrlich hingeschrieben

(faAi+ 1) 2y 5o+ 2 (f1 A% — l)xj,k+(f2)‘12c+ D=0

der mit cos __hXi-! 18)

ode ET TR (
Xy 1 k= 2%; pCOSYp+ 2,4 = 0. (19)

Der Ansatz ;g =17

liefert r2—2rcosy,+1 =0 i=7V-1

i e = COSYy * YeosZihy, — 1 = cosd, +isingy, = exive,
Daraus folgt die allgemeine Losung des Systems von homogenen Differenzen-
gleichungen (17)
X = A+ Ayrh = A e Ay e—iide = B, cos iy, + Bysinj i, (20)

J

Darin sind B; und B, reelle Konstanten, deren Grofle aus der ersten und
letzten Gleichung des Systems (17) bzw. (19) ermittelt werden kann. Diese
Randgleichungen sind je nach der Stiitzungsart verschieden. Wir zeigen hier
den Rechnungsgang fiir die Stiitzung II. Die erste Gleichung lautet mit j=0
— %0, COS P+ 5 =0
und mit (20)
— B, cos s+ By cos iy, + B, sin iy, = 0.
Daraus folgt B,=0.
Aus der letzten Gleichung
Lo, = 2 ¥y 1,5 CO8 Py, = 0
ergibt sich mit B,=0
B, [cos (m — 2) iy, — 2 cos (m—1) i, cosfy] =0
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und nach kurzer Rechnung
Rk+1)nw

cosmyy, =0, mzﬁk=—g—+kw, S o™

Wir setzen dies in (18) ein und l6sen nach den gesuchten Eigenwerten A2 auf.

2k+1)n
2m

2k+1)n’
i+ co8~—5——

1 —cos

A2 = k=0,1,2...(m—1). (21)

Den zugehorigen Eigenvektor g, erhédlt man, wenn man die noch freie Kon-
stante B, =1 setzt, unter Beachtung von B,=0 aus (20) zu
‘T 0R2k+1D)w
2m
12k+1) 7
2m

COS

CO8

b = j(2k+1)

2m

cos (m—-1)2k+1)m
2m

- -

In dieser Form ist g, beziiglich der Matrix % orthogonal, jedoch nicht normiert,
so daB} gilt

, _ {0 fiirj =+ k,
LAy —{dkfiirj=k. (22)

Die m Eigenvektoren y, werden folgendermaflen zur quadratischen, nicht-
symmetrischen Matrix X zusammengefaQ3t.

X = (Lo, L1 k2 - -Li- - -Lm)
J(Zkt)m

X =(x;;) mit x;,;=cos o

J
und j =0,1,2...(m—1),
k=01,2...(m-1).

Oder ausfiihrlich hingeschrieben:

coso.lw 0030.3’”r 0080.577- COSM:—I—)E
2m 2m 2m 2m
1-17 1-37 1-57 12m—1)=
X — cos 5 cos 5 cos m oS ———5 ———
COS(m—l)lw c08(’%——1)377 Cos(m-—l)frn COS(’m——l) 2m—1)=
B 2m 2m 2m 2m
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Dann kann man die Gleichungen (22) zur Matrizengleichung

X'UAX =D = Diag (d,,)

zusammenfassen.

(23)

Die Berechnung der Koeffizienten der Diagonalmatrix ® kann in iiblicher
Weise nach (23) erfolgen. Zur Rechenvereinfachung und mit Riicksicht auf
eine spidtere Anwendung bei der Formulierung der Randbedingungen fiir
elastisch senkbare Stiitzung spalten wir die Matrix 9 folgendermafBen auf:

mit

mit

2
I

Dann ist

A=HU+1o Uy

— O
— O i
O
Y

O

D=HhXUX+LX WX =D+, Ds.

(24)

Fihrt man die Matrizenmultiplikationen im einzelnen durch, so erhilt man
nach lingerer aber elementarer Rechnung, wobei zu beachten ist, daf} allgemein

7

gilt, die folgenden Ergebnisse:

D, = Diag(d,;) =m

D, = Diag(d, ;) =m

n .
CoSja =
=1

. 1 .o
sm(n+§)a—sm§

. o
2s1n§

= m(g’

2:-141
COS

2-24+1

cos
2m

cos
2m

é(m—l)-{—l

(25)
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B 2.0+4+1 ]
f1+f2008—~2—1;b—~77
2-1+1
f1+ s cos T
D =, D+, Dy = m 2.241
Hi B+ 12De htfpeos— —m
2(m—1)+1
f1+fzcos———27n—7r

Die hier fiir die Stiutzung II gezeigten Ableitungen lassen sich in &hnlicher
Weise auch fiir die beiden anderen Stiitzungsarten I und III durchfiihren.
Die Ergebnisse sind in der Tafel 2 iibersichtlich zusammengestellt.

Die Eigenwerte A} sind siémtlich verschieden und reell und fiir die Stiitzun-
gen I und 1T stets positiv. Bei Stiitzung I1I ist der erste Eigenwert A2 immer
gleich Null. Bei den Matrizen ®, und ®, beachte man im Fall ITI den Faktor 2
beim ersten und letzten Koeffizienten. Die quadratische Matrix X ist in den
Fallen I und III symmetrisch, im Fall II jedoch nichtsymmetrisch.

FafBit man die Eigenwerte A} zur Diagonalmatrix

A = Diag (A%)

zusammen, so laBt sich die Gesamtheit der Gleichungen (17) in Form der

Matrizengleichung
AXA+BX =0

schreiben. Linksmultiplikation mit X’ ergibt

XAXA+X BX=0
oder mit (23)
DA+X'BX=0. (26)

Das Differentialgleichungssystem (14) 146t sich nun auf Orthogonalform trans-
formieren, wenn man an Stelle der Durchbiegungen w), der Gelenke neue
unbekannte Funktionen g, einfithrt, die mit w, durch die Transformations-
beziehung

v =2Xg (27)

verkniipft sind. Wird diese in (14) eingesetzt, so ergibt sich

. b2

und nach Multiplikation mit ¥’ von links

b2 12

RUAXG A BRG = X' p.
. . T



GERHARD SPAETHE

140

” =
L—800g - -
U g u
w +A._”||§vaOO Hlnsgwoo
L - S09 I . .
(1—w) “u -,
) wy w
e o S09 e L — 809 oy 3@, USZIIjBL
hﬁm@o w="% i+g-e w="g 8 =" -[euoder(y
G we W
w u Py 809 L — §00
2 oo I+1-¢ (4
I wmyg W
” L To. S09 .FlmlmOO
2% 5007 I+0¢ _
_ 0 a
K | 1 ] 1 ]
I I I
‘. .. I}, uozLIyBwW
: w=1g . w =g . w="'g -Teuoder([
I I I
L 3_ _ I L T
9! (1+2%3) !¢ 4! T0p o0
k:&mooﬂruw\ u M@m j 5003 +1f 25008+
&5 = iy I QQMNN =y Q\E\ = Iy RUREYINI GYa (o
L—800— L $00 — [ L—800—1
q (1+%72) i
w0 =9 (1—w) g1°0 =19 (1—w) gB1=19 —
w g o= { (1—w) " g1'o= "/ (1—w) gg1r=" .
11 I I Jopugisdue|

Iop Sunzimg

LN




THEORIE ELASTISCHER BALKENREIHEN 141

Fiihrt man hier (23) und (26) ein, so erhédlt man das Differentialgleichungs-
system in der entkoppelten Form

b2 12

@g.'..—@Ag..ZGJTx/p
L
oder g - Adg = a7 DX 'p. (28)
: T
Die k-te Einzelgleichung lautet
. bRy
9k —A%cgk = GJT Z(’chp (29)

und ihre allgemeine Losung

Darin sind 4,, B, C; und D, Integrationskonstanten, die aus Rand- und
Ubergangsbedingungen zu ermitteln sind, und PX(£) ist ein partikuldres
Integral der Gleichung (29), das man durch einen geeigneten Ansatz gewinnen
kann.

Bei der Stiitzung III ist darauf zu achten, daB der erste Higenwert A2=0
ist. Dadurch vereinfacht sich die erste Differentialgleichung (k= 0) des Systems
(28) wesentlich.

e B2 gl
gO - GJT dO . (31)

Da die Komponenten des Vektors g, bei Stiitzung IIT samtlich gleich 1 sind,
kann man auch schreiben
b2 2P
Joo = Gdp 2m (fy+]5)

oder unter Beriicksichtigung von (7)

By, .. 2P

Yo T

Durch Vergleich mit der ersten Gleichung (2) erkennt man sofort, dafl g,
nichts anderes darstellt als die mittlere Durchbiegung der Balkenreihe. g, ist
die Durchbiegung, die entsteht, wenn simtliche duleren Lasten in Querrich-
tung gleichméBig auf alle Balken verteilt werden. g, kann also auf elemen-
tarem Wege ermittelt werden.

Betrachten wir noch kurz den singulidren Fall, der bei den bisherigen
Ableitungen zun#chst ausgeschlossen wurde. Er tritt bei Stiitzung III auf,
bei wolbfreien Querschnittsformen, wenn gleichzeitig der Schubmittelpunkts-
abstand ¢=0 ist. Dieser Fall hat somit auch praktische Bedeutung. Es wird
dann f, =f, und damit beide Matrizen % und B singuldr. Wir wollen jetzt den
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Grenziibergang f, — f, durchfithren und sehen, was sich gegeniiber den bis-
herigen Ableitungen #ndert. Aus der letzten Spalte der Tafel 2 ist ersichtlich,
dafB3 dann der gré8te Eigenwert A,, — oo strebt. Die Differentialgleichung (27),
die hier zweckméiBigerweise in die Form

Lo g PP my 0 Lk P

k ’
— COS —77)
m

s_ [1far k=1,2...(m—1),
|\ 2fir k=0 und k=m
gebracht wird, geht fiir den Fall k=m und A,, — co iiber in

b2lz2 m ,
> (—1) p;.

4m i=0

GIr9, =—

GJp g, nimmt also einen endlichen Wert an, und die Berechnung ist auch in
diesem Sonderfall immer moglich.

5. Randbedingungen an den Balkenauflagern

Fiir die Bestimmung der Integrationskonstanten in der allgemeinen Losung
(30) werden die Randbedingungen fiir die Funktionen g, benotigt. Die Formu-
lierung der Randbedingung ist jedoch von Haus aus gegeben fiir die Durch-
biegungen w,, und fiir die Verdrehungen ¢, der Balken. Es ist daher erforder-
lich, die Randbedingungen fiir g, aus denen fiir w,, und ¢, zu gewinnen. Dazu
werden zunéichst aus den Beziehungen (6)

-~ 1
wy, = b (Wy—y +wp) P = b (Wg—y — Wg)

und deren Ableitungen nach ¢

P . N .

We =7 (w1 +wy), Pe=p (Wg—1—wy)  usw.
die Randbedingungen fiir die Durchbiegungen w, der Balkenrinder ermittelt.
Aus diesen ergeben sich die Randbedingungen fiir g, aus der Lineartrans-
formation (27)

m=2%gqg
und deren Ableitungen
- mw =%Xg" usw.

Im folgenden wird dieser Weg fiir eine Reihe technisch wichtiger Lastfille
beschritten.
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5.1. Frei drehbare Lagerung

Es gilt am Rande £=0

W, (0) =0 keine Durchbiegungen,
¢, (0) =0 keine Verdrehungen,
w;, (0) =0 keine Biegemomente,
@ (0) =0 keine Wélbbehinderung.

Aus (6) folgt dann
w,(0) =0, w; (0)=0, bzw. w(0)=0, 1w (0)=0. (32)
Dies in (27) eingesetzt ergibt
g0)=0, ¢7(0)=0, g,(0)=0, g,(0)=0. (33)

Fiir die Balkenreihe mit beidseitig frei aufliegender Lagerung ergibt sich eine
wesentliche Vereinfachung der Rechnung. Man kann nédmlich das Differential-
gleichungssystem (14) unmittelbar zweimal integrieren. Die dabei auftretenden
Integrationskonstanten kénnen aus den Randbedingungen (32) bestimmt wer-
den. Aus der Art und Weise der Konstantenbestimmung erkennt man jedoch,
daB sie in genau der gleichen Weise erfolgt wie bei der Berechnung der Biege-
momente M (£) eines beidseitig frei aufliegenden Einzelbalkens, und es 148t
sich leicht zeigen, dafl man das System (14) einfacher in der Form

b2

At +%YU=—GJT

m (34)

schreiben kann. Darin ist m ein Vektor

T j=1,2...(m—1) Stitzung I,
m= I»MJ mit §j=0,1...(m—1) Stiitzung II,
: j=0,1... m  Stitzung III,
dessen Komponenten M; Biegemomente von gedachten beidseitig frei auflie-
genden Balken unter der gegebenen dufleren Belastung p; sind. Diese Momente

lassen sich auf elementarem Wege sehr einfach aus Gleichgewichtsbedingungen
errechnen. Die Lineartransformation 1 = X g fithrt auf das entkoppelte System

2
g —Ag =—£]—T€D—1£’m' (35)

mit den Einzelgleichungen

.. b r,m
— A2 =
9 =M= "G T, 4,

und deren allgemeiner Losung

gx = Cpsinh A, €+ Dy cosh AL €+ B* (€).
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Auf diese Weise hat sich die Anzahl der zu bestimmenden Integrationskon-
stanten halbiert. Die Zuriickfithrung des Differentialgleichungssystems 4. Ord-
nung auf ein solches 2. Ordnung gelingt nur im Falle der beidseitig frei dreh-
baren Lagerung. Dieser Fall ist zwar der theoretisch einfachste, aber fiir die
praktische Anwendung auch wichtigste Fall. Ausgehend von dem Differential-
gleichungssystem 2. Ordnung (34) wurde diese Lagerung fiir die Stiitzungsart
IIIb der Lingsrinder vom Verfasser eingehend in [10, 11] untersucht.

In Tafel 3 werden fiir eine Reihe praktisch wichtiger Lastfille die Funk-
tionen ¢, angegeben. In die Beziehungen sind die GréBen A%, d, und g je
nach der vorgegebenen Stiitzungsart der Léngsrédnder entsprechend den
Angaben der Tafel 2 einzusetzen.

5.2. Starre Hinspannung

Es gilt am Rande £ =0
wy, (0) = 0 keine Durchbiegungen,
¢, (0) =0 keine Verdrehungen,
wy, (0) = 0 horizontale Biegelinie,
o, (0) =0 keine Verwolbungen.
Aus (6) folgt

wy (0) = wy(0) =0
bzw. w(0) =mw (0) =0
und mit (27)

g(0) =g7(0) =0 (36)

5.3. Freies Stabende mit und ohne Einzellast am Rande

Die Abfassung der Randbedingungen fiir diesen und die folgenden Fille
wird etwas komplizierter. Und zwar ist zu beachten, daBl in den Gelenken
nicht nur stetig verteilte Gelenkkrifte Z, und Y, wirken, sondern auch Einzel-

krifte, die mit Z  und f’k bezeichnet werden sollen. Solche Einzelkrifte treten
in allen Querschnitten auf, in denen auch duBere Einzelkrifte angreifen, ferner
iiber allen Auflagerpunkten und an den freien Stabenden. Nur wenn man die
Existenz solcher Einzelgelenkkrifte voraussetzt, lassen sich alle Gleichgewichts-
und Kontinuitdtsbedingungen widerspruchsfrei und eindeutig erfiillen. Da die
Einzelgelenkkréifte nur an den Enden der Balkenreihe und an Stellen wirken,
an denen Einzelkrifte als dullere Lasten oder Auflagerkrifte eingetragen wer-
den, beeinflussen sie nur die Rand- und Ubergangsbedingungen und haben
keinen Einflul auf die Differentialgleichungen. In Fig. 5 ist ein moglicher
Verlauf der Gelenkkrifte iiber der Gesamtlinge des Balkens dargestellt. Der
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dort angegebene Richtungssinn definiert die positive Richtung der Einzel-
gelenkkrifte.

Wir betrachten jetzt ein Balkenelement der Linge dx am freien Rand x=0
und setzen die Gleichgewichtsbedingungen zwischen den &dufleren und inneren
Kriften an. Um moglichst allgemein zu bleiben, soll angenommen werden,
daBl am freien Rand vorgegebene Krifte P in Richtung z wirken. Die Rand-
lasten, die am Balken % angreifen, werden nach dem Hebelgesetz in zwei
Einzellasten 15,0_1,  und 15,6,,c in den Endpunkten der Gelenke aufgeteilt.
Analog zu (1) ist auch hier

By =B o+ B ki1 (37)

die Summe beider am Gelenkende k& wirkenden Einzellasten.

Fig. 5. Verlauf der Gelenkkrafte
uber der Balkenlédnge.

Fig. 6. Balkenelement unmittelbar am freien
Ende mit allen duBeren und inneren Kréften.

Die Gleichgewichtsbedingungen ergeben unter Beriicksichtigung der be-
kannten Beziehungen zwischen Schnittgroffen und Verformungen des Stabes

EJ, ... > 2 ~ 5
—Qu =+ l3ywk (0)=Zk_Zk—1+Pk,k+Pk—1,k’

EJ ... = =
—Qur =+73“z”k 0) = Y, — Y4,
EC, .. GJ, .
MT}c—_"‘T‘Z‘Pk (0)+TT<PIC(O) ==
N T <~ b
(Zk"‘Zk—l)’Q“—(Yk—ch—1)t+(Pk,k“‘ k'——l,k)”z"'

Diese Gleichungen sind genau so aufgebaut wie die Gleichungen (2), und auf
die gleiche Weise, wie oben die Funktionen Z, und Y, eliminiert wurden,
lassen sich jetzt auch die Einzelkrafte Zk und I;k eliminieren. Alle oben durch-
gefiihrten Entwicklungen einschlieSlich der Betrachtungen iiber den Einflul}
der Horizontalverschiebungen v gelten analog auch hier. Lediglich der Grad
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der Ableitungen bei den Verformungen erniedrigt sich um 1, und wir haben
es nicht wie oben mit Funktionen von £ zu tun, sondern mit deren Randwerten.
Es ergibt sich analog (12) als Ergebnis die Randbedingung

(A+9) 10" (0) +B 1" (0) = (38)

G

wobei im Vektor p die Gesamtheit der angreifenden Einzellasten zusammen-

gefaflt ist.
: 9=1,2...(m—1) Stitzung I,
;3=|:Pj—l, j=0,1...(m—1) Stiutzung IT, (39)
: j=0,1... m  Stiitzung III.
Die Randbedingungen fiir die Durchbiegungen wy, sind also in d&hnlicher Weise

wie die Differentialgleichungen miteinander verkoppelt. Mit den aus (27)
folgenden Beziehungen

" (0)=%g""(0), to(0)=2%Xg (0) (40)

gelingt auch hier eine Entkoppelung, wenn die Matrix $ =0 ist (Falle La, Ib,
ITa, I1Ta) oder vernachlidssigt wird. Man erhélt analog (28)

g (0)—Ag (0) = mﬁb-l:f’ﬁ (41)

mit den Einzelgleichungen

I

: b2l 1. P
—\2 =

Fiir den wichtigen Sonderfall, dal keine Randlasten ﬁk vorhanden sind, gilt
g (0) =25 g3 (0) = 0.

Als zweite Randbedingung folgt aus der Bedingung, dafl keine Biegemomente
und keine Wélbbehinderungen auftreten, wie unter 5.1

gi (0) = 0.

5.4. Das Balkenende auf elastisch senkbaren Stiitzen

Jedes Balkenende sei auf zwei symmetrisch angeordnete Federn von gleicher
Steifigkeit angeordnet. Der Abstand der Federn sei a, und ihre Federkonstante
¢z,. Eine solche Randbedingung hat praktische Bedeutung bei der Auflagerung
von Briickentrigern aus Fertigteilen auf Gummischichtenlagern.

Aus der biege- und bimomentenfreien Lagerung folgt zunichst g’ (O) =0

Auf das Balkenende wirkt eine Auflagerkraft der Grof3e

A, = 2¢, @, (0) (43)
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und ein Moment

1
M 45 = 5“2%9%(0) .

Die Gleichgewichtsbedingungen am Balkenelement nach Fig. 7 ergeben

EJ, ... ~ S ~ ~
~ Qi+ A4, = l3ywk (0)+2crwy(0) =Zp~Zy_ 1+ By g+ Fy_q, 15

EJ,.... s =
— Qe = I3 20 (0) = Y=Yy 4,
EC,. .. GJ a?c
My — M 45, = — l3T(pk (0) + lT(pk(O) 2L‘Pk(0) =

Yk-1
\j?Z,k
“ > MTk
Qy,k
l)/' \ Fig. 7. Balkenelement am
rAk ’ elastisch gestiitzten Rand.
\MAK
Die Elimination der Gelenkkrifte liefert
b EJ ~ E Jz
2 y[ Wy, (0) + ;3 (0)] +bey, [y (0) + @y py (0)] +—52 ¢ [0, (0) =011 (0)]
G J B O
+— [‘Pk (0) — g1 (0)] — [‘Plc (0) — 9141 (0)]
a’c

9 £ [‘Pk(o)_‘Pk+1(O)] = b(ﬁk,k'f‘éc,;ﬁl) = bPk.

Setzt man hier die Gleichungen (6) und deren Ableitungen ein und fiihrt aufler
den in (7) definierten GroBen f, und f, noch die dimensionslosen Abkiirzungen

leg,

f3=QGJT

leg,

2 2 —
(b +a/)> .f4“2GJT

(b2 —a?) (44)

ein, so erhdlt man nach kurzer Rechnung die Randbedingungen fiir die Durch-
biegungen w,, der Gelenke in der Form
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fawiZy (0) + 2 frwy” (0) + fowy (0) + iy (0) — 203 (0) + 20311 (0)
b2l
+fa w1 (0) + 2 3wy (0) + [y w1 (0) = 55 .
GJp
Auf dhnlichem Wege ergibt sich die Gleichung fir die Ecke am kréftefreien
Rand. Setzt man dabei eine Unverschieblichkeit der Gelenke iiber den Auf-
lagern in horizontaler Richtung voraus (v=0) oder vernachlissigt den Einflufl
von v auf die Randbedingungen, so lift sich die Gesamtheit der Randbedin-
gungen zur Matrizengleichung
. b2l |
Aw™" (0) +B 10" (0) +(f3 U +1,Us) W (0) = 5P
GJp
zusammenfassen. Auch diese Randbedingung 146t sich orthogonalisieren, wenn
man hier (40) einsetzt und mit X’ von links multipliziert. Unter Beachtung
von (23) und (26) ergibt sich

Dy (0) = DAg (0) 4+ (fsDy+/2De) g(0) = L&

GJp
. = b2l ;
oder g (0)—A4g (0)+Dg(0) = DX p (45)
GJp
mit der Abkiirzung
D =D (f3D1+/1Dy) (46)
Die k-te Einzelgleichung lautet
. = b2l 1.p
g (0) =i (0) + i (0) = g - BEF Y

. - I8kt fada )
mit dk = m, dl,k’ d2,k naCh Tafel 2

Greifen am Rand keine Einzelkrifte 13,C an, so wird die Randbedingung
gi" (0) =Xk (0) + i gy, (0) = 0
homogen. Wird die elastische Federung des Randes unendlich weich ¢; =0, so

geht mit Jk=o die Randbedingung (47) in die des freien Randes (42) iber.

Wird dagegen die Stiitzung unendlich starr, so erhalten wir mit d; — oo die
Bedingung (33) g, (0)=0.

5.5. Die elastische Zwischenunterstiitzung

Es gilt an der Stelle £ =¢;

Wy 4 (&) = Wi (&) gleiche Durchbiegungen und

Pra (€1) = erp (&1) gleiche Verdrehungen in den Bereichen A und B. Daraus
folgt mit (6), (13) und (27)

0.4 (&) = 95 (&)
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Aus

W4 (&) = Wyp (£;) gleiche Tangentenneigung der Balkenachsen
Pra (&1) = @rp (€1) gleiche Querschnittsverwolbungen ergibt sich

84 (&) = g5 (&)
und aus
Wiq (€1) = w5 (&) gleiche Biegemomente

Pra (€1) = @pp (&) gleiche Bimomente
folgt g4 (&1) = a5 (§)-

Zur vollstindigen Festlegung der Integrationskonstanten wird noch eine vierte
Ubergangsbedingung benétigt. Diese ergibt sich wieder aus den Gleichgewichts-
bedingungen am unterstiitzten Balkenelement.

Mzs8 Fig. 8. Balkenelement tiiber einer
\}M\yi elastischen Zwischenunterstiitzung.
. -E Jy A eva A ees had Sl ~ ~
Qora —@oxp +4x = 3 (Wip —Wya) +2crwy = Zyp~Zy 1+ B+ By 5
E J, N ~ ~
Qura — Lyrn R ‘=) = 1~ Y, 1,
EC, GJp, . . 1
rxatMpppg—My = B (‘PkB Pra) +—5— ] (?kB“‘PkA)—§“2CL<Pk =

~ o~ b ~ = - ~ b
(Zy~+Zy_y) E-(Yk“‘ Y1)t + (Pk,k—Pk—l,k)g-

Die Elimination der Einzelgelenkkrifte Z , und Y, . kann auf dhnliche Weise
wie unter 5.4 durchgefiihrt werden. Dabei ist zu beachten, daB infolge der
Gleichheit der Verwdlbungen in den beiden angrenzenden Bereichen ¢, ;—
¢r4 =0 ist. Die Rechnung liefert als Ergebnis

5 () —gd" (E)+Dg(&y) —~—‘D 1x'p (48)

mit D nach (46). Die Einzelgleichung lautet

= b2l 11§
gih () =i €) + e ) = g BE (49)
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und wenn keine dulleren Lasten iiber der Stiitze angreifen

Gis (£0) =it (1) + gy (£1) =0.
Darin ist Ix (€)= Gis (&) = gup (£1).

5.6. Die starre Zwischenunterstiitzung

Die Ubergangsbedingungen ergeben sich aus denen der elastischen Zwischen-
unterstiitzung, indem man die Federkonstante c; — co gehen 1afit. Damit

strebt d_,c — o0 und es ergibt sich an Stelle von (49)

Ir(€1) = gra (&) =0
= gxp(£&1) = 0.

5.7. Uberganbsbedingungen unter einer Einzellast

Auch die Ubergangsbedingungen fiir diesen Fall erhilt man als Sonderfall

von (49), wenn man dort ¢, =d,, =0 setzt.

g DL
i (6) — i €) = g 5t (50)

=

5.8. Ubergangsbedingungen an Bereichsgrenzen ohne Einzellast

Mit p =0 folgt aus (50)
Iiea (&1) = 925 (£1)-

In der Tafel 4 sind die betrachteten Rand- und Ubergangsbedingungen der
Funktionen g, fiir die praktische Anwendung iibersichtlich zusammengestellt.

5.9. Randbedingungen fiir die Horizontalverschiebungen v

Fiir die Berechnung der Schnittgréen M, ; und @, werden bei den Stiit-
zungsarten I1b und IIIb auch die Horizontalverschiebungen » der Gelenke
benotigt. Wenn die Vertikalverschiebungen w, bekannt sind, kénnen die v
aus den Differentialgleichungen (10) und (11) berechnet werden. Dabei sind
am Rande § =0 folgende Randbedingungen zu beachten:

»"" (0) =0 wenn die Balken um ihre vertikale Achse frei drehbar gelagert
sind,

v (0) =0 bei Einspannung um die vertikale Achse,

v (0) =0 bei seitlich unverschieblicher Lagerung,

v (0) = 5 [we " (0) —wy, " (0)] = = (Lo —¥m) g7 (0) bei Stiitzung IIID,

v (0) = —t—w{," (0) = w%gog"' (0) bei Stiitzung ITb

“ mb

bei seitlich frei verschieblicher Lagerung.
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Tafel 4. Rand- und Ubergangsbedingungen der Funktionen gx

Frei drehbare Lagerung

Starre Einspannung

Freies Stabende

Stabende mit Einzellast

Elastisch gestiitztes
Ende

Elastisch gestiitztes
Ende mit Einzellast

Elastische Zwischen-
unterstutzung

Elastische Zwischen-
unterstittzung mit
Einzellast

Starre Zwischen-
unterstitzung

Ubergangsbedingungen
an einer Einzellast

Ubergangsbedingungen
an Bereichsgrenze
ohne Einzellast

9. =0; ¢, =0

9 =0; 9, =0

g =0; g =29, =0

9 = 0;
g —A2 g%

bl 1P
GJy d,

g =05 gi —Ag,+dg, =0

g =0;

b2l 1.9

g —A2g5+dy gy =G, d,

Ir4a = 9B
Jia = 9rp>
914 = kB>

Jin =i+ e = G- g

9xa = 0;

Jra = 9iB>
94 = 9B
Jra = 9kB>
I9ra = 9kp>
Jra = 9rBS

Jra = 9kB5
Jke—Jea+dx g =0

Jia = 9uB;  Iika = JiBS
b2l 1P

Jxp = 0;
Jra = IkB
Jrka = 9iB>

URRRUUR /LY A o
ng‘“gkA:@jT'%kB

Jxa = 9kB>

Jwa = JxB
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Die beiden letzten Gleichungen ergeben sich auf &hnlichem Wege wie oben
die Differentialgleichungen (10) und (11), nur daf3 hier an Stelle der Funktionen

w;, und v deren Randwerte, an Stelle der Gelenkkrifte Y, die Einzelkrifte Y, f
treten und der Grad der Ableitungen sich um 1 erniedrigt.
Bei seitlich fester Zwischenunterstiitzung an der Stelle £ =¢,; gilt

v4(6) =0, wvp(§) =0, vy(&) =v5(&), vi(&)=1rE5(&)
und bei seitlich frei verschieblicher Zwischenunterstiitzung

v (&) = vp(&h), vi(&) =vp(&), vy(é)=vg(6)

und

vp (61 —vi (&) = ﬁ% (Eo—2m) [85 " (§2) — 84" (£1)], Dei Stiitzung I1Ib,

bzw. vy’ (§) —vy (&) = m—tb Lolgr (61— (0], bei Stiitzung IIb.

6. Schnittgroflen, Verformungen, Gelenkkrifte, Auflagerkriifte

Ausgehend von den bekannten Beziehungen der Festigkeitslehre zwischen
Schnittgrofen und Verformungen der Balkenachsen erhédlt man mit den
Gleichungen (6) und der aus (27) folgenden Einzelgleichung

w; =¥g | (51)

die Formeln fiir die Berechnung der Schnittgroen im Balken 7 direkt in
Abhéngigkeit von den Funktionen g;. In (51) ist ¢} der i-te Zeilenvektor der
Matrix X. Bei den Stiitzungsarten I und III ist als Folge der Symmetrie von ¥

T =1t¥

Fiir numerische Berechnungen ist es zweckméBig, mit den GJ,-fachen Funk-
tionen g zu rechnen. Zur Vereinfachung werden noch folgende Abkiirzungen

eingefiihrt
EJ, EJ, E OT

_ 2 2 _ —
GJTg g, Bz GJT’ By GJT’ Bc T (52)
Damit ergibt sich
Biegemoment M,;
EJ, ... £
'lezi = - lzywi = zﬁlg gz 1+g;k)g ’

Querkraft @,

EJ, . ... 2 —eee
in == l3ywi = §l3 gz-—l'*'@z)g H
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Bimoment (Wélbverdrehmomentenintegral) B;

EC, .. ..
Bi =—'_l_§—$9°i = bﬂlcz (gz 1 gz)g )
Priméres Torsionsmoment M p;
GJ, . 1 _
My p; =+“Z—T‘<Pi = b“j(l?iﬂ tHa,

Sekundéres Torsionsmoment M g,

EC, ... 2 —ee
My, =“‘l—3T<Pi =—”b‘/§lc‘3(§?1 tHe,

Gesamtes Torsionsmoment M p,
1 . _
My = Mppi+Mpg = 5T (2?‘—1—3?)( f;; g )
Bei den Beziehungen zur Berechnung der SchnittgroBen M, und @, treten
auch die Horizontalverschiebungen » auf.

EJ,... BL[ .. .. .t
EJ,.... EJJ, ... e e b

Bei den Stiitzungen I a, I'b, ITa und IITa ist v=0 und damit wird
M 1811 Y 5 _ 1By ok ®) g
vi=pp B8, Q=g -t eT

Bei den Stiitzungen IIb und IIIb miissen zundchst die Funktionen » aus den
Differentialgleichungen (10) bzw. (11) unter Beachtung der unter 5.9 ange-
gebenen Randbedingungen integriert werden. In der iiberwiegenden Mehrzahl
der praktisch vorkommenden Fille, aber leider nicht in allen Fillen, ergeben
sich simtliche bei der Integration von (10) und (11) auftretenden Konstanten
zu Null. Fiir diesen wichtigen Sonderfall ist

t ¢ s Qg
v =_7W = mg;," g bei Stiitzung 11b
t t s Qs
und v = —bwo—wm) =% (t&—zx¥)a, bei Stitzung ITIb
t B2 & ..
Myi = _—%L(g;k—l—_'g’:k—%) a .

bei Stiitzung ITb

%k
zz"_l—xz“—%)ﬁ“',

bei Stiitzung I11b
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Die Formeln fiir die Ermittlung der vertikalen Gelenkkraftkomponente Z,
erhilt man aus den Gleichungen (3) und (4) unter Beachtung von (6), (7), (10)
und (11) nach einigen Zwischenrechnungen

Pii+1— Pii 1 e —s 282 (t\2 — e
Zy == +2lzbz[(zz"_1—zz"+1) (fa@""" +8 )+7”(7 (k5 —xn) 8|
bei Stiitzung 111 b

ii+1 — P 1 e e 282 [0\ L.
Zz-=p’“2 b +2l2b2[(xi“_1—xz“+l) (297" +8 ”7%(7) % 8 ]

bei Stiitzung I1b

P 1 e
Zi=p’+12 Pi, +2l2b2(§?—1—gf+1) (fa87"+87),

bei den Stiitzungen Ia, Ib, ITa und II1a.

Der EinfluB der Horizontalverschiebung v auf die Gelenkkraftkomponente
Z,; wird im allgemeinen vernachldssigbar klein sein, so daBl es in der Regel
zuldssig ist, die Z; fiir simtliche Randbedingungen einheitlich nach der zuletzt
angegebenen Formel zu berechnen. Die Gelenkkraft Z,, im letzten Gelenk m,
welche gleichzeitig die Auflagerkraft einer am Lingsrand gestiitzten Balken-
reihe darstellt, errechnet sich aus folgenden Beziehungen, die sich aus Glei-
chung (3) nach einigen Umrechnungen ergeben.

1 e | e T L2 —
Zm=—pm,m+W[g;’,‘l_1(fzg +q )+%(7) P ], bei Stiitzung ITb

1 — .
Z, = —pm’m+—lz—b~21;;’;t_1 (faa""+9), bei den Stiitzungen Ia, Ib und ITa
Zur Berechnung der horizontalen Komponenten der Gelenkkrifte ¥, werden
die Differentialgleichungen fiir die Balkenbiegung um die z-Achse fiir alle
Balken links von der Fuge ¢ angeschrieben.

EdJ,.....
o =1,
EdJ,.....
A 2 —‘YZ_YI’
EdJ,.....
Iz v =YY,
Die Summation ergibt
EJ, . P -
Yy = 077 0y )
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Setzt man hier die Gleichung (6) ein

Y, - EJZ[iv...._(wé..._wé...)_{]

und beachtet (10), (11) und (51), so erhdlt man fiir die verschiedenen Stiitzungs-
arten folgende Beziehungen fiir die Berechnung der Y.

Y, = b/s;i’ g, bei den Stutzungen Ia, Ib
= b/g i/ F-Hg, bei den Stiitzungen Ila, IITa
Y, = LBy gg‘—m—zga" q, bei der Stiitzung IIb
bls m
Y, = Bu e M) G bei der Stistzung T1Th
i =\ Tt T )8 e1 der Stutzung 111

Die in den Gelenken wirkenden Einzelkrifte Z~Z sind von den Lagerungs-
bedingungen der Balken abhiangig. Wir geben im folgenden die Endbeziehungen
. an, die sich aus den Gleichgewichtsbedingungen an den Balkenenden, den
Zwischenunterstiitzungen oder den Angriffspunkten von Einzellasten nach
einigen Zwischenrechnungen ergeben.

Elastisch gestiitztes Balkenende

s P,,—-P, 1 R g
Z’iz ,+12 * +2lb2 (X;k~1_gzk+1) (f?.g +g +f4g)7

Freies Stabende

~ ~

. Ba-B, . 1 e
Z;= ’+12 ’+2lb2(ﬁ—1_ﬁ+l)(f29 +4a°),

Elastische Zwischenunterstiitzung

Z_ — Pi,i+1"Pi i
1

1 —ee  —uee =
5 toype B =) (85 —84) +/a8],

Angriffspunkt einer Einzellast
- P,,-P, 1 S
Z;= ’+12 > +2lb2 (tF1—rf1) (8 —84)-

Greifen an den Balkenenden und den Zwischenunterstiitzungen keine

Einzellasten an, so ist P il —-P %+ =0 zu setzen.

Diese Formeln gelten streng fiir die vier Fille, bei denen v =0 ist und mit
sehr guter Ndherung auch fiir die anderen beiden Stiitzungsarten. Bei starrer
Stiitzung wird mit ¢; — o, f, = 0 und g — 0 der Ausdruck fiir die Z@ unbe-
stimmt.
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Die horizontal wirkenden Kinzelkrafte ﬁ berechnen sich aus
o Ar e 1 ..
7= |iene g ar-wma|.

Die Auflagerkriafte 4, und die vom Auflager abzutragenden Torsionsmomente
M ,; berechnet man bei elastischer Lagerung nach den Gleichungen (43), die
man auch in der Form

a’cy

A; =cp (¥, 4+ g, My, = 25 (xE.—xHg

schreiben kann.

7. Beispiel

Die Anwendung der Theorie soll an einem einfachen Beispiel gezeigt werden.
Wir berechnen die Gelenkkrifte und SchnittgroBen in der tordierten Balken-

reihe, die nach Fig. 9 durch vier an den Ecken wirkende Einzellasten P be-
lastet ist. Diese Belastung wurde von MULLER [14] zur experimentellen Be-
stimmung der Torsionssteifigkeit einer Balkenreihe benutzt.

Fig. 9. Tordierte Balkenreihe.

Die Balkenreihe liege so im Raume, dafl am Rande ¢ =0 die Verschiebungen
gleich Null sind. Die Balkenzahl m sei gerade. Fiir die Stiitzung der Léangs-
rander liegt Fall IITb nach Fig. 3 vor. Da hier als dullere Lasten nur Rand-
krifte auftreten, ist p=0; die Differentialgleichung (29) wird homogen, und
damit ist auch das partikuldre Integral in (30) B} (§)=0. Die Integrations-
konstanten der allgemeinen Losung (30) errechnen sich aus den Randbedingun-
gen:

9% (0)=0 liefert D, =0,
g (1)=0 liefert (=0,
. b2l LLp 4. b2l 1P
)2 = ) = —— SEY
95 (0) =A% g, (0) GJn d liefert B, G edy

2
g, (1)=A2g5 (1) = bl md ist mit den bereits berechneten Konstanten
widerspruchsfrei erfiillt,

9, (0)=0 liefert A,=0.
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Die erste Komponente g, des Vektors g wird aus der Gleichung (31) ermittelt,
die infolge p =0 hier
go " =0 lautet.

Allgemeine Losung Jo = Ao_%f+ B, g +Cyé+D,
gy (0) =0 liefert B, =0,
go (1) =0 liefert A, =0,
go (0) =0 liefert D, =0.

go (0) =g, " (1)=0 ist mit Ay=0 bereits erfiillt. Die restliche Konstante C,
hat lediglich eine Lageverinderung der Balkenreihe, und zwar eine Drehung
um die Auflagerachse £ =0 zur Folge. Wir setzen auch C,=0, das bedeutet
geometrisch, dal die Balkenreihe so im Raume festgelegt wird, daf ihre
Léangsachse A—A nach Fig. 9 bei der Verformung ihre Lage nicht verdndert.
Damit ist /
A
9o O’ P GJTA,%dk£7

k=1,2...m.

Mit den Angaben der Tafel 2 ist fiir Stiitzungsart I1I

1 1
A2d,

1firk=1,2...(m—-1),
2firk=m.

mS(l-cos%w) mit 9= {

Die gegebene dullere Belastung wird zum Vektor
-1

0

0

0
I
e

+1

zusammengefalt.
Beachtet man, dal nach Tafel 2 die erste und die letzte Komponente von g,

Ty =c0s0 = +1,

+ 1 fiir gerades £,

Tt = COS K = } —1 fiir ungerades &

ist, so erkennt man, daB

p— O = O

O pd a0
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gilt. Damit ergibt sich fiir den Vektor g

_ 5 _ _ " _
1 1
].—COSlz ]__COS_l_w
m m
0 0
1 1
ZP 1—008& QP l—COSg)—ﬂ:
GJpg=¢=+—b2l¢ m ’ q = b2l m ’
m 0 m 0
0 0
1 1
1—cog™m=1r 1—cos™M=1r
. 0 . L O 1

g =§ =§"" =0.

Daraus folgt zunéchst, daBl simtliche SchnittgroBen in den Balken zu Null
werden mit Ausnahme des priméren Torsionsmomentes.

Fiir dieses erhalten wir
G-k ik
_— e — c —_—
m

2Pb m=1 COS

k
L 1 —cos -~
m

1 —.
Myp; = ﬁ(ﬁq_ﬁ)g =+

Die Auswertung der Summe liefert stets den Wert m/2, so dafl
Myp; = Pb  wird.

Die stetig verteilten Gelenkkrifte Z,; und Y; verschwinden ebenfalls. Lediglich

die Einzelkrifte Z, an den Fugenenden haben einen von Null verschiedenen
Wert.
t—Lkx (7;+1)767T

m—1  ¢o8-—— —— —cos
. m

!

. 1 .
Z;= 2lbz(’é§k—1"§§k+1) g =+—

3

kn
k=1,3,5... 1 —cos—
m

Diese Summe nimmt den Wert m an, und wir erhalten
Z’i = P .
Der Ausgleich der an den Ecken angreifenden Einzelkrifte P erfolgt iiber die

an den Gelenkenden wirkenden Einzelkrifte Z~2 Diese leiten in alle Balken

gleiche Torsionsmomente der GréBe Pb ein. Die Balken selbst sind frei von
Biegemomenten und Querkriften. Damit besteht ein wesentlicher Unterschied
zur tordierten Platte. Wie die verfeinerte Plattentheorie von Reillner zeigt,
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werden dort die Einzellasten P durch Querkrifte der GroBe P72 entlang aller
vier Plattenrdnder von einer Ecke zu den anderen transportiert. Bei der Bal-
kenreihe erfolgt der Kraftausgleich nur entlang der zu den Balken senkrecht
liegenden Réndern.

Fig. 10. Darstellung des Kriéfte-
verlaufs in der tordierten Bal-
kenreihe.
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Zusammenfassung

Es wird eine allgemeine Theorie zur Berechnung von Balkenreihen iiber
rechteckigem Grundril unter beliebiger vertikaler Belastung dargestellt. Das
sich ergebende Differentialgleichungssystem fiir die Durchbiegungen der
Balkenrinder wird durch eine geeignete Lineartransformation auf Diagonal-
form iiberfiihrt. Damit wird eine einfache Lésung in strenger Form mdoglich.
Die Losungen werden fiir eine Reihe technisch wichtiger Randbedingungen
an den Lings- und Querrindern entwickelt. Die Randbedingungen an den
Langsrindern beeinflussen das Differentialgleichungssystem und damit dessen
Losung. Die Randbedingungen fiir die Querrdnder dienen zur Bestimmung
der Konstanten in diesen Losungen. Die Anwendung der Theorie wird am
Beispiel der tordierten Balkenreihe gezeigt.

Summary

A general theory is presented for the design of series of beams disposed in a
rectangular plane and subjected to any vertical loading. The resulting system
of differential equations for the deflections of the edges of the beams becomes,
by a suitable linear transformation, a diagonal matrix, so that a simple and
rigorous solution is possible. The solutions are provided for a series of boundary
conditions for the longitudinal and transverse edges commonly met with in
practice. The boundary conditions for the longitudinal edges affect the system
of differential equations and hence the solutions. The boundary conditions
for the transverse edges are used to determine the constants of these solutions.
The application of the theory is demonstrated by the example of a series of
beams subjected to torsional stresses.

Résumé

On présente une théorie générale pour le calcul de séries de poutres placées
dans un plan rectangulaire, soumises & une charge verticale quelconque. Le
systeme d’équations différentielles qui en résulte pour les fleches des bords
des poutres devient, par une transformation linéaire appropriée, une matrice
diagonale. Ainsi une solution simple et rigoureuse est possible. Les solutions
sont apportées pour une série de conditions aux limites pour les bords longi-
tudinaux et transversaux courantes dans la pratique. Les conditions aux
limites pour les bords longitudinaux influencent le systéme d’équations diffe-
rentielles et donc ses solutions. Les conditions aux limites pour les bords trans-
versaux servent a déterminer les constantes de ces solutions. On montre une
application de la théorie sur 1’exemple de la série de poutres soumises & la
torsion.
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