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Approximate Analysis of Continuous Prismatic Shells
Calcul approché des votles prismatiques & travées multiples
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Defense, Karthoum, Sudan gineering, Northwestern University,

Evanston, Illinois, U.S.A.

S. L. LEE

Ph.D., Professor of Civil Engineering, Northwestern University, Evanston,
Illinois, U.S.A.

Introduction

During the past few years several investigators have presented various
techniques for the analysis of prismatic shell structures, and many computer
programs have been developed for analyzing this type of simple span structure.
An excellent review of the numerous papers which have been published in the
literature on the analysis of simply supported prismatic shell structures can be
found in the report of the ASCE Task Committee on Folded Plate Construc-
tion [1], and a comparison of simplified theories has been given by PowEsLw [2].

In contrast, the analysis of continuous prismatic shell structures has not
received as much attention. However, this subject has recently been considered
by several investigators, and a few methods of analysis have been presented.
Approximate methods for the analysis of continuous prismatic shell structures
have been discussed by YirzaAKT and REIss [3], and BEAUFAIT [4]. Procedures
for obtaining more accurate solutions have been suggested by PurMano and
LeE [5], GOLDBERG, GUTZWILLER and LEE [6], ScorpELIS and Lo [7], and
LeE and Mousa [8].

This paper presents an approximate method for the analysis of prismatic
shell structures continuous over intermediate transverse diaphragms and
simply supported at the two end diaphragms. The method is based on the
ordinary theory for folded plates [9], and leads to improved accuracies in
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comparison with the procedure suggested by BEAUFAIT [4], as discussed by
ScorpELIS and Lo [7], by formulating the elastic curves of individual plates,
in the beam action analysis, in terms of infinite trigonometric series. The
suggested procedure is convenient for hand computations.

An example problem to illustrate the application of the method is solved,
and the results are compared with those obtained by LEE and Mousa [8]. As
a further comparison, the proposed method is used in solving one of the
illustrative examples given by BEAUFrAIT [4], which was also analyzed by
ScorpELIs and Lo [7].

Assumptions. The method of analysis is based on the following assumptions:
Each plate is rectangular and of constant thickness; the material is homo-
geneous, isotropic and elastic; the longitudinal strains vary linearly across
the width of each plate; the principle of superposition holds; the longitudinal
fold lines are continuous and fully monolithic along their entire length; plates
are relatively long compared to their width, aspect ratio equal to or greater
than three; the supporting diaphragms are infinitely rigid in their planes but
flexible normal to their planes.

Sign Convention. The sign convention adopted in this analysis is summarized
below for convenient reference.

Component Positive Direction
Normal load component Acting downward
Tangential load component Acting from left to right
In-plane load Acting from left to right
Transverse bending moment Producing tensile stresses on bottom fiber
Longitudinal bending moment Producing tensile stresses on right edge
In-plane displacement Producing movement from left to right
Rotation Clockwise
Normal stress Tensile

Notation. The letter symbols adopted for use in this paper are defined
where they first appear and are listed alphabetically in the Appendix.

Method of Analysis

The method of analysis entails the following steps:

a) Assuming non-yielding fold lines, the reactions of the longitudinal edges
due to the applied loads are determined using a transverse slab action analysis.

b) The final in-plane loads, the redundant reactions, and the elastic curves
for individual plates are expanded into Fourier series satisfying the boundary
conditions at the two transverse end diaphragms; setting the displacements
at the intermediate supports equal to zero gives the value of the redundant
reactions.
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c) Applying arbitrary rotation for each plate and assuming that these
rotations and the corresponding transverse bending moments and fold line
reactions vary along the span as the elastic curves due to applied loads, the
corrected values of these rotations are determined for each term of the Fourier
series by satisfying the compatibility conditions at the fold lines.

d) Superposition of steps a, b and ¢ gives the total stresses and displace-
ments in the structure due to applied loads.

e) Steps b, ¢ and d are repeated for succeeding terms of the Fourier series
until the necessary degree of accuracy is achieved.

Beam Action Analysis. The differential equation governing the displace-
ment of a prismatic beam subjected to an arbitrary loading of intensity p (x)
is given by

dty _ p()
&t = BI tH

in which £ is the modulus of elasticity and I the moment of inertia of the
beam. The general solution of Eq. 1 is

Y (@) = et e+ 2%+, 2%+, (), (2)

in which y,, () is the particular solution of Eq. (1) and ¢, to ¢, are integration
constants.

A beam, simply supported on the two outer edges, continuous over ¢ inter-
mediate supports and subjected to the applied load ¢ (x), as shown in Fig. 1,

/TTW~rT7L$%T’

Fig. 1. Beam continuous over ¢ inter- g ”?'R - - T "f:'
mediate supports and subjected to trans- ' |
verse load. * g '

y

can be analyzed [10] as a simply supported beam subjected to the applied
load ¢ (x) and the redundant reactions R,, R,,. .. R,, the latter assumed to be
positive if acting upward. The applied load and the redundant reactions are
approximated by Fourier series of the forms

@) = 3 A,sn™"E (3)
m=1 a
B, = 3> Absin™™% (=12, .9, (4)
m=1
2 a
in which A, =Efq(x) sin 27 e (9)
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(ak}zg—l-r) 9 R

2., mrx .

Ak =Zlim | = *sin dr = “Esinmmay, (6)
Arso) 27 a
(aza—r)

in which a is the total longitudinal span, and a; is the ratio of the distance
between the end support and the redundant reaction k to the total longitudinal
span length, as shown in Fig. 1.

The boundary conditions are given by

y(0)=y"(0) =y(a) =y"(a) = 0. (7)
In view of Eq. (7), y, (x) can be conveniently taken in the form

mnx

Yp (@ Z B, sin (8)
Referring to Eqs. (3) and (4), the total load p (x) acting on the beam can be

taken as
¢
(A= ¥ Ab)sin ™=, (9)

k=1

p(x) =

o

substituting Eqs. (8) and (9) into Eq. (1) gives

B, =i1—“1;ﬁ(Am—k§1Afn)' (10)
and substituting Egs. (2) and (8) into Kq. (7) yields

Cp =C =C3 =¢, =0, (11)
Therefore, Eq. (2) takes the form

y(@) =y, @) = ¥ B,sin" "%, (12)

substituting Eq. (10) into Eq. (12) in view of Eq. (6) yields the elastic curve

1 e}
y(x) = E'C;w Z 1( ZRksmmwak)smm;x (13)

mA

For the unyielding intermediate supports, the displacements at these
supports vanish, i.e.,

y(x) =0 (1=1,2,...1), (14)

in which z; is the distance along the z-axis to the particular intermediate
support [. Substituting Eq. (14) into Eq. (13) yields

¢ a
klekDZk = §Dz ¢=1,2,...%), (15)
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N A,
in which D, = Z —psinmmay, (16)
m=1m
D - 1 . . 17
e = g ST asin mm a. (17)
m=1

Eq. (15) gives a set of ¢ simultaneous equations which can be solved for
the redundant reactions R, R,,...R,. Substituting the calculated reactions
and the Fourier coefficient 4,, given by Eq. (13) gives the elastic curves of
individual plates.

Stress Relaxation. In general the longitudinal normal stresses caused by
the above mentioned beam action at the common edges of any two adjacent
plates are not the same. Therefore, to satisfy the continuity condition, shearing
stresses equal in magnitude and opposite in direction are applied at the com-
mon edges as shown in Fig. 2a. The magnitude and direction of these shearing

27

' A
) bity,
Plate i+1 5
M Tbisiy,
$7x

dindndndnidindiadies = Y
Simply Supported Edges
Q“ -— - - e e e e aS QJ_‘

o [
7
Plate i 1&)

ﬂxbi/z Cam

A;

Fig. 2. Longitudinal normal stresses. (o] Fres Body of Plates | and i41 (b Longitudinal Normat

Stresses Due to
Correcting Shear Stresses

stresses are determined by a stress relaxation procedure [11]. Referring to
Fig. 2b, it can be shown that the distribution factors are given by

4n,/4; Aiiq
d;, = i SR .~ 18
¢ (4m,/A)+ (479,/4,.,) A;+A4;, (18)
47,/A,; A,
d. — x T+1 — 1 , 19
ST o A + (A A A Ao, (19)

in which d;, A, and d;,,, 4, are the distribution factors and transverse
cross-sectional areas of plate ¢ and plate 7+ 1, respectively; 7, is the normal
force caused by the applied correcting shearing stresses. The carry over factors
in this case are —1/,. It can be seen that the stress relaxation procedure is
analogous to the moment distribution method in which the transverse cross-
sectional areas correspond to the reciprocal of the stiffeness factors.

The corrected in-plane displacements due to the applied load of plate ¢
at a reference transverse section are given by

_ Y I(o,—0y)

?
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in which b;, I;, M, and y, are the width, the moment of inertia, the longitu-
dinal bending moment and the in-plane displacements on the reference section
before the correcting shear stresses are applied, of plate ¢, respectively; and
o, and o, are the corrected longitudinal stresses at the right and left edges
respectively.

Compatability Conditions. Considering the geometry of the transverse cross-
section of a continuous prismatic shell structure, the rotation of plate ¢, ,, is
expressed in terms of the final corrected in-plane displacements as

l)[’z':]((81782783>"')3 (21)
in which i; is the rotation of plate ¢ at a reference transverse section; §;,9,,
33,..., are the final corrected in-plane displacements of plates 1,2,3,... at

the section.

VAR (Bit82coshiz , -8pc0sh23 +33 )

SinAj2 sin A23

-82cos A2

-82cosh23 +83

sinkz3

Fig. 3. Rotation of plate 2 in terms of in-plane displacements.

Eq. (21) is illustrated in Fig. 3. The plate rotation ¥, can be expressed as
= K4, (22)

in which K, and 4? are the correction factor and an assumed arbitrary rotation
of plate ¢ respectively. A separate analysis for each plate is carried out for
an assumed rotation i; while the other plates undergo rigid body translation.
The analysis is based on the assumption that the arbitrary rotation and the
corresponding reactions at the fold lines vary, in the longitudinal direction,
as the elastic curve, Eq. (13), due to the applied load for each term of the
Fourier series.



APPROXIMATE ANALYSIS OF CONTINUOUS PRISMATIC SHELLS 109

The final corrected in-plane displacement 3, is obtained by the superposition
of the corrected in-plane displacements due to the applied load and those due
to the plate rotations, i.e.,

7

in which 4; is the corrected in-plane displacements of plate ¢ due to applied
load, 4,; is the corrected in-plane displacement of plate ¢+ due to an arbitrary
rotation of plate j, and j denotes the number of the plates excepting any
cantilevered end plates. The displacement 4,; is computed by Eq. (20) in
which, in this case, y,, M;;, o, and o, are those due to the assumed rotation
of plate j.

Equating Eq. (21) to Eq. (22) yields

Ki¢g=f(81:82983>"')' (24)

Eq. (24) gives a set of ¢ simultaneous equations which satisfy the compatibility
condition and, in view of Eq. (23), can be solved for the correction factors K;.

The final longitudinal normal stresses and transverse bending moments for
each term of the Fourier series are given by

)
My = M+ 2 K; Mgy, (26)
7

in which o! and M}, are the corrected normal longitudinal stress and the
transverse moment of plate ¢, respectively, due to the applied load; o;; and
M ;,; are the corrected normal longitudinal stress and the transverse bending
moment of plate ¢, respectively, due to an arbitrary rotation of plate j. The
final stresses are the sum of all the stresses due to all the terms in the Fourier

series.

Procedure of Analysis

The procedure to be followed in the analysis of a continuous prismatic shell
consists of the following steps:

1. The applied load acting on each plate is resolved into normal and tan-
gential components.

2. Assuming non-yielding fold lines, a transverse section of unit width is
analyzed as a continuous one-way slab subjected to the normal load compo-
nent, and the reactions at the longitudinal edges are obtained.

3. The final in-plane load acting on each plate is the vectorial sum of the
tangential component of the applied load in step (1) and the in-plane compo-
nent of the forces equal in magnitude and opposite in direction to the reactions
in step (2).
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4. The final in-plane load, the intermediate reactions and the elastic curve
are expanded into infinite trigonometric series. Eq. (5) is used to calculate the
Fourier coefficient 4,, for the applied load, the redundant reactions are deter-
mined by Eq. (15), and the elastic curve is defined by Eq. (13).

5. To satisfy continuity conditions, the longitudinal normal stresses at the
common edges of any two adjacent plates are made equal by applying the
stress relaxation procedure. The corrected in-plane displacements at the
reference section, where the deflections are non-zero for all Fourier harmoniecs
are determined by Eq. (20).

6. An arbitrary rotation is applied at the reference transverse section for
each plate, excepting any cantilevered end plates, and the reactions at the
fold lines are determined. The rotations, the resulting transverse bending
moments and the reactions at the fold lines are assumed to vary along the
span in the same manner as the elastic curve evaluated in step (4). The cor-
rected in-plane displacements are determined at the reference section as dis-
cussed in steps (3) to (5).

7. To satisfy the compatability conditions, each plate rotation is expressed
in terms of the final corrected in-plane displacements, which are the sum of
the displacements due to the applied load and the displacements due to each
of the assumed plate rotations multiplied by a corresponding correction factor,
in accordance with Eq. (23). Equating each plate rotation to the arbitrarily
chosen rotation multiplied by the correction factor leads to a set of simul-
taneous equations, Eq. (24), which, upon substitution of Eq. (23), can be
solved for the correction factors K;.

8. The stresses are evaluated as the sum of the stresses due to the applied
loads and the stresses due to the different rotations, each multiplied by the
appropriate correction factors obtained in step (7), usings Eqgs. (25) and (26).

9. Steps (5) to (8) are repeated for each term of the Fourier series. The
number of terms needed for a solution depends on the desired degree of accu-
racy. This point will be discussed later in the illustrative examples. It is
pertinent to observe that the correction factors are independent of the refe-
rence transverse section taken in the calculation.

Ilustrative Examples

Ezxample 1

A continuous prismatic shell structure having the dimensions shown in
Fig. 4 and subjected to a uniformly distributed live load of intensity 80 psf.
of horizontal projection is analyzed to illustrate the application of the pro-
posed method. All plates have the same thickness, A=4in. Due to symmetry
only half of the shell need be taken into consideration.
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A transverse section of unit width at x=21ft. is selected as the reference
section. One-way slab action analysis due to the normal load component is
shown in Table la applying a routine moment distribution procedure. The
total in-plane loads per unit length, ¢;, on plate ¢ is shown in Fig. 5a.

| 1
| NS

A

-ngs Ib.sft. 4TSIb/ML o2ib/ft: 02 b/t

.
et - P (0) In-pione Load Due to {b) In-plans Load Dus fo
Applied Load Arbitrary Rotation of
(b) Longitudinal Section Plote 2

Fig. 4. Shell dimensions (example 1). Fig. 5. Total in-plane load at x =21 ft.

Table 1. Slab Action Analysis at x = 21 ft.

(Example 1)
a) Slab Action Analysis b) Slab Action Analysis

for Applied Load for Arbitrary Rotation of Plate 2

Joint B C Joint B C
D.F. 0 1 0| D.F. 0 1 0
F.E.M. (ft-1b) 500 | —750 750 | F.E.M. (ft-lb) 0 0 —3
Final Moment (ft-1b) 500 | —500 875 Final Moment (ft-l1b) 0 0 —3
Shear (1b) —200 275 —325 Shear (1b) 0 0.2 —0.2

Substituting the uniform ¢, into Eq. (5) yields
4q,
4, =" =13, ... (27)

Cmw

Substituting Eq. (27) into Eq. (15), taking only odd values of m in Eqgs. (16)
and (17) due to symmetry and solving for the redundant reaction R, lead to,
using only the first three terms of the series,

R, = 0.6255¢,a, (28)

where g, a is the total in-plane load of plate ¢; the exact value being R =0.625¢;a.
Substituting Eqgs. (27) and (28) into Eq. (13) yields

_ a‘qg, c 1 (4 . mm\ . mwx
Y; (x) = T It m;3 55? (;Z—’;—- 1.251 sin 3 ) sIn———. (29)
Differentiating Eq. (29) gives expressions for the longitudinal bending moment,
2. = 1
My, (@) =2k —2—(—i~—1.25lsinmﬂ) sin 7% (30)
m=T,3,5 1" \M ™ 2 a
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For m=1, Eqgs. (29) and (30) give

atq; T

¥y, (x) = 0.022281{;,1774 sin—a—, (31)
2 .
M, (x) = 0.02228 “quz sin ™% (32)

In view of Eq. (32) and using simple beam theory the longitudinal normal
stresses at the fold lines are determined. Substituting the transverse cross-
sectional areas of the plates into Eqs. (18) and (19) gives the distribution
factors for the stress relaxation procedure. The corrected longitudinal normal
stresses at the reference section, for the first term of the Fourier series due to
applied load is shown in Table 2.

Table 2. Corrected Longitudinal Normal Stresses at x =21 ft. due to Applied Load for m=1
(Example 1)

Joint A B o
D.F. 0 0.75 0.25 0
Long. Stresses (psi) —51.37 51.37 13.52 —13.52
Dist. 0 —28.39 9.46 0
C.0. 14.20 0 0 —4.73
Dist. 0 0 0 0
Corrected Stresses (psi) —37.17 22.98 22.98 —18.25

Substituting Eqgs. (31) and (32) with x=21ft., the corrected longitudinal
normal stresses shown in Table 2, and the moment of inertia and width of
each plate into Eq. (20), yield the corrected in-plane displacements due to
applied load at the reference section for the first term of the Fourier series

A, = 3948(103/K), (33)
A, = —9021 (103/E), (34)

in which 4, and E are in ft. and psf. respectively.
For the rotation of plate 2, assume, at the reference section,

b
o 2
5b2 - EIZ’ (35)

in which b, and I, are the width and moment of inertia of the transverse
cross-section of plate 2 per unit length respectively. The moment distribution
procedure for the assumed rotation and the resulting in-plane loads are shown
in Table 1b and Fig. 5b respectively. The in-plane loads due to rotation of

plate ¢, q4; (z), are assumed to vary along the span as the elastic curve due to
the applied load. Hence ¢, (z) is given by
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Go: (@) = Z/ yi (@), (36)

in which ¢}, is the in-plane load on plate ¢ at the reference section due to the
assumed rotation; y! is the in-plane displacement of plate ¢ at the reference
section due to the applied load. Substituting Eq. (31) into Eq. (36) yields, for
m=1,

Qo; () = 2.349 ¢}, sinzza—x. (37)

Applying the same procedure used perviously for the case of applied load, the
corrected in-plane displacements due to rotation of plate 2 at the reference
section, for m =1, are
Ay, = 2.735 (103/E), (38)
A,y = 0.2363 (103/E), (39)

in which 4;; and K are in ft. and psf. respectively.
Referring to Fig. 3 and Fig. 4a, it can be seen that A, =Ay3 =72, §5= —83
and

Sl’(z)Kz = _(81+32)/15: (40)

in which 6; is in ft. Substituting Eqs. (33), (34), (38) and (39) into Eq. (23)
gives
S, = (3948 +2.735 K,) (103/E), (41)
8, = (902.1—0.2363 K,) (10%/ ), (42)

in which 8, and £ are in ft. and psf. respectively. Next Eq. (35) yields
$9 = 4.860 (103/E), (43)

in which ¥ is in psf. Substituting Eqs. (41), (42) and (43) into Eq. (40) and
solving for K, yields K,= —40.40.

Finally, substituting the appropriate values of the stresses into Eqgs. (25)
and (26) gives the final longitudinal normal stresses and transverse bending
moments at the reference section for m=1.

The elastic curve and the longitudinal bending moments given by Egs. (29)
and (30) respectively are obrained for the other harmonics of the Fourier series
and the stresses are calculated in the same manner. The number of terms in
the Fourier series used depends upon the desired accuracy. In the following,
the series is truncated when the value of the last term is less than one percent
of the partial sum up to the previous terms. A summary of the correction
factors, the corresponding transverse bending moments and the longitudinal
normal stresses are shown in Tables 3 and 4. Only four terms of the Fourier
series are needed to achieve the desired accuracy. The correction factors have
the same values along the span for each Fourier harmonic, hence the stresses
along the span can be readily calculated.
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Table 3. Transverse Moment M at x=21 ft.
(Example 1)

Fold Line
m Ky

B C
1 —40.40 0 —121.2
Rotation 3 —85.31 0 —255.9
of Plate 2 5 5.681 0 17.0
7 —0.2079 0 —0.6
Applied Load —500 —875.0

Final M (ft-1b) —500 —1236

Table 4. Longitudinal Normal Stresses o at x =21 ft.
(Example 1)

. Rotation . .
Applied Load Final

pplied Loa of Plate 2 nal ¢ (psi)
m Ko ) . .

Fold Line Fold Line Fold Line

A B C A B C A B C

1| —40.40 | —27.2 23.0| —18.3 1.3 | —0.4| 0.1
3 | —85.31 —706.3 436.7 | —346.8 | 24.9 | —7.1 1.2
5 5.681 126.3 | —78.1 62.0 —0.0 | —0.0 |—0.0 | —598.1 | 378.7 |-305.3
71 —0.2079 —17.1 4.4 —3.5 0.0 0.0|] 0.0

A comparison of the above results with those obtained by LEr and Mousa
[8] is shown in Figs. 6 and 7. In the latter, the plate and membrane analysis
are treated as plate and plane stress problems and the exact distributions of
the intermediate diaphragm reactions are approximated by uniform step
functions expanded into double Fourier series using nine steps.

Example 2

A continuous prismatic shell structure having the dimensions shown in
Fig. 8, with constant thickness A=4in., is analyzed by the proposed method
for the case of a uniformly distributed live load of intensity 80 psf. of hori-
zontal projection. A comparison with the results given by Brauralr [4], and
ScorpEeLIs and Lo [7], is shown in Figs. 9 and 10. Beaufait’s procedure is also
based on the ordinary folded plate theory; the continuity condition at the fold
lines is satisfied at the center of selected segments and the elastic curve is
obtained from the corrected longitudinal moments at these locations. SCORDELIS



APPROXIMATE ANALYSIS OF CONTINUOUS PRISMATIC SHELLS 115

psi

¢t
- 400 l ft-1b.
| ™ -2000
200 1
N ~-1500
Lo le
—-1000
-2 \\
~-200 N
RN MT --500 P\
~ p/ \3
|--400 | b
i -0 A B
--600 - 500 i
~-800 . . Liooo
(o) Transverse Distribution of Longitudinal {a) Transverse Distribution of Tronsverse
Normal Stresses ot x= 2I ft, Bending Moment at x=2Ift.
Proposed Method ————— Proposed Method
_________ Lee and Mousa (8]
————————— Lee and Mousa [8]
f1-ib.
-2000
psi
[‘400 —-1500
200 —=-1000
M
Lo T -500
I-200 -0
L-go0 =~ L s00
(b) Longitudinal Distribution of Longitudinal L1000 {b) Longitudinal Distribution of Transverse
Normal- Stresses at Fold Line C Bending Moment ot Fold Line C
Fig. 6. Longitudinal normal stresses o Fig. 7. Transverse bending moment M7
(example 1). (example 1).
5ft. |
5f1. l P
, fl 80 ft. 9 64 fi. |h
I e =
st | se. | iofn l2st.
T T

{b) Longitudinal Section
{a) Transverse Section

Fig. 8. Shell dimensions (example 2).

and Lo formulated a computer technique using plate bending and plane
stress analysis and assuming that the reactions at the intermediate dia-
phragms vary linearly across the width of each plate. It is of interest to note
that the variations of the normal and tangential component of the reactions
across the width of each plate as shown by LEr and Mousa [8] deviate con-
siderably from such an assumption.

Conclusions

This paper presents a simple procedure, which is convenient for hand
computation, for the analysis of continuous prismatic shell structures. It can
be seen that, except at the diaphragms, the transverse bending moments
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obtained by the proposed method of analysis are in good agreement with the
results obtained by ScorpELIs and Lo [7] and Lee and Mousa [8]. Beaufait’s
results are in poorer agreement, especially at the smaller span. The agreement
in the longitudinal normal stresses is better than the transverse bending
moment, as expected. -

Consideration of a unit strip in the analysis of the one-way slab action is
justified by the fact that the variation of the transverse bending moment and
the transverse normal stresses along the span, as shown by LEE and Mousa
[8], is very small except at the diaphragms.

The continuity condition need only be satisfied at one reference transverse
section due to the fact that the reactions along the fold lines have the same
variation along the span.

The compatibility condition is satisfied at all transverse sections if it is
satisfied for a reference transverse section due to the assumption that the
plate rotations, hence the corresponding reactions at the fold lines, have the
same variation along the span as the elastic curves due to the applied load.
Hence the correction factors K; have the same values at all transverse sections.

A comparison of the stresses calculated by the proposed method with those
obtained by the more exact method suggested by LeE and Mousa [8], as
shown in Figs. 6 and 7 and with those obtained by ScorpEris and Lo [7], as
shown in Figs. 9 and 10, shows good agreement except at the supports. It is
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pertinent to note that the agreement between the proposed method and the
solution by LeE and Mousa [8] is better than that between the proposed
method and the solution by ScorpELIs and Lo [7]. The latter may be due to
the assumption made by SCORDELIS and Lo, in their analysis of linear variation
of the components of intermediate diaphragm reactions along the width of
each plate. It was mentioned previously that the linear distributions of the
reaction components deviate considerably from the results obtained by LEE
and Mousa using uniform step functions with nine steps across each plate.

Appendix. Notation

The following symbols are used in this paper:

A;
A, ,AL to At,
a,; to a,

o; (%)

R, to R,

Y ()
Yp (%)

transverse cross-sectional area of plate ¢

Fourier coefficients for load and reactions

span ratio

longitudinal span

Fourier coefficient for elastic curves

width of plate ¢

constants of integration

series defined by Eqs. (16) and (17)

distribution factor of plate ¢

modulus of elasticity

correction factor of plate ¢

moment of inertia of plate 2

longitudinal bending moment function of plate ¢
longitudinal bending moment of plate ¢

final transverse bending moment of plate ¢

transverse bending moment of plate ¢ due to applied load
transverse bending moment of plate ¢ due to rotation of plate
integer defining Fourier harmonic in x direction

arbitrary load function

in-plane load function due to applied load

~ in-plane load function on plate ¢ due to rotation

uniformly distributed in-plane load on plate ¢« due to applied
load

in-plane load on plate ¢ at reference section due to applied load
in-plane load on plate ¢ at reference section due to rotation
intermediate reactions

infinitely small length increment

number of intermediate diaphragms

in-plane displacement function

particular solution for y
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Y; () in-plane displacement function of plate ¢
y: in-plane displacement of plate 7 at reference section
o; final normal stresses of plate ¢
o} normal stresses of plate ¢+ due to applied load
Oy normal stresses of plate ¢ due to rotation of plate j
N resultant of longitudinal normal stresses at «
P, total rotation of plate ¢
9 assumed rotation of plate ¢
3; final corrected in-plane displacement of plate ¢
4;; corrected in-plane displacement of plate ¢ due to rotation of
plate 7
yip corrected in-plane displacement of plate ¢
Ay angle between plate ¢ and plate j defined in Fig. 3
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Summary

An approximate analysis of multiple span, multiple bay prismatic shell
structures simply supported at the two end diaphragms and continuous over

the

intermediate transverse diaphragms is presented. The in-plane load, the
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intermediate diaphragm reactions and the elastic curve in the beam action
analysis are expanded into Fourier series. The arbitrary plate rotations and
the corresponding transverse bending moments and fold line reactions are
assumed to vary along the span as the elastic curves due to the applied load
for each term of the Fourier series. The actual plate rotations are determined
from the compatability of fold line displacements at a reference transverse
section. The number of terms in the Fourier series needed depends upon the
desired accuracy of the solution. In general, four to five terms are sufficient
for practical purposes and the proposed method is feasible for hand calculation.

Résumé

On présente une méthode de calcul approché des voiles prismatiques &
travées multiples et & baies multiples simplement appuyées aux deux dia-
phragmes extréemes et continus sur les diaphragmes transversaux intermé-
diaires. La charge dans le plan, les réactions des diaphragmes intermédiaires
et la ligne élastique calculée comme pour une poutre ont été exprimé en séries
de Fourier. Les rotations arbitraires de la plaque et les moments de flexion
transversaux correspondants et les réactions des lignes de jonction sont suppo-
sés varier le long de portée comme les lignes élastique sous la charge appliquée
pour chaque terme des séries de Fourier. Les rotations effectives de la plaque
sont déterminées grace a la loi de compatibilité des déplacements des lignes de
pli par rapport & une section transversale de référence. Le nombre des termes
nécessaires de la série de Fourier dépend de 1’exactitude de la solution exigée.
En général, 4 ou 5 termes sont suffisants dans la pratique et la méthode pro-
posée est réalisable & la main.

Zusammenfassung

Fir mehrfeldrige, mehrschiffige und prismatische Schalen, deren Endschei-
ben frei aufgelegt sind sowie tiiber Zwischenquerscheiben durchlaufen, wird ein
Néaherungsverfahren vorgelegt. Die in der Fliche liegende Last, der Zwischen-
scheiben Auflagerkraft und die sich fiir einen Balken ergebende elastische
Linie wurden in Fourier-Reihen entwickelt. Zur Variation lings der Spann-
weite sind die willkiirlichen Plattenverdrehungen und die entsprechenden
Quer-Biegemomente sowie Faltlinien-Auflagerkrifte so wie die elastische Linie,
angemessen jedem Glied der Fourier-Reihe der angreifenden Last, angenommen.
Die wirklichen Plattenverdrehungen sind durch die Vertriglichkeit der Falt-
linien-Verschiebungen eines nachgewiesenen Teils bestimmt. Es hingt von
der gewiinschten Genauigkeit ab, wie hoch die Zahl der benétigten Fourier-
Glieder ist. Im allgemeinen diirften fiir die praktischen Fille vier bis finf
Glieder geniigen und es zeigt sich, dal das vorgeschlagene Verfahren fiir die
Handrechnung durchfiihrbar ist.
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