Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 28 (1968)

Artikel: Beitrag zur Berechnung von zusammengesetzten Zylinder-, Kegel- und

Kugelschalen für den Silo-, Behälter- und Turmbau

Autor: Hampe, E. / Köppler, H. / Schweisinger, P.

DOI: https://doi.org/10.5169/seals-22170

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beitrag zur Berechnung von zusammengesetzten Zylinder-, Kegelund Kugelschalen für den Silo-, Behälter- und Turmbau

Contribution to the Design of Cylindrical, Conical and Spherical Built-up Shells for the Construction of Silos, Tanks and Towers

Contribution au calcul de coques composées cylindriques côniques sphériques pour la construction de silos, de réservoirs et de tours.

E. HAMPE

H. KÖPPLER

P. SCHWESINGER

Prof. Dr.-Ing. habil.

Dr.-Ing.

Dipl.-Ing.

Institut für Stahlbeton und Spannbeton Hochschule für Architektur und Bauwesen, Weimar, DDR

1. Einleitung

Rotationssymmetrische Flächentragwerke finden auf den Gebieten des Behälterbaues, des Silobaues, des Turm- und Schornsteinbaues umfangreiche Anwendungen. Dabei werden diese Schalenformen sehr oft miteinander kombiniert verwendet. So z.B. bei Verwendung von Zylinder- und Kegelschalen für die Ausbildung von Turmfundamenten, für Wassertürme usw.

Die Berechnung des Schnittkraftzustandes solcher kombinierter Schalentragwerke ist im allgemeinen ohne grundsätzliche Schwierigkeiten durchzuführen.

Jedoch ist der Rechenaufwand vor allem für die Beurteilung hinsichtlich einer statisch oder ökonomisch optimalen Ausbildung im allgemeinen noch recht erheblich.

Die Aufgabe des vorliegenden Beitrages soll es sein, für die Berechnung einfacher Kombinationen von Zylinder-, Kegel- und Kugelschale einige Rechenhilfsmittel bereitzustellen, mit denen die Ermittlung der Übergangsschnittkräfte zwischen den einzelnen Schalenformen in einer einfachen Form möglich wird.

Dabei werden die in [1] bereitgestellten Berechnungsgrundlagen verwendet. Die untersuchten Kombinationen können auch als statisch unbestimmte Hauptsysteme für mehrfach zusammengeschlossene rotationssymmetrische Schalen verwendet werden.

Für die nachfolgenden Untersuchungen gelten folgende Bezeichnungen:

$$\begin{array}{ll} h_Z &= \text{Wanddicke des Zylinders} \\ h_{Ke} &= \text{Wanddicke des Kegels} \\ h_{Ku} &= \text{Wanddicke der Kugel} \\ \lambda_h &= \frac{h_{Ke}}{h_Z} \text{ bzw. } \frac{h_{Ku}}{h_Z} \\ B_Z &= \frac{E\,h_Z^3}{12\,(1-\mu^2)} \quad \text{(Biegesteifigkeit des Zylinders)} \\ k_Z &= \frac{\sqrt[4]{3\,(1-\mu^2)}}{\sqrt{a\,h_Z}} \\ B_{Ke} &= \frac{E\,h_{Ke}^3}{12\,(1-\mu^2)} \quad \text{(Biegesteifigkeit des Kegels)} \\ k_{Ke} &= k_Z\,\sqrt{\frac{\sin\alpha_0}{\lambda_h}} \\ B_{Ku} &= \frac{E\,h_{Ku}^3}{12\,(1-\mu^2)} \quad \text{(Biegesteifigkeit der Kugel)} \\ k_{Ku} &= k_Z\,\sqrt{\frac{\sin\psi_0}{\lambda_h}} \end{array}$$

F- und G-Werte werden aus [1], Band 4, entnommen.

2. Berechnung der Übergangsschnittkräfte zwischen den einzelnen Schalenformen

Zur Berechnung der Übergangsschnittkräfte von zusammengesetzten Schalentragwerken stehen mit dem Kraftgrößenverfahren, dem Formänderungsverfahren und den iterativen Methoden mehrere Möglichkeiten zur Verfügung. Ausführliche Darlegungen zu diesen Möglichkeiten finden sich z.B. in [1], Band 4.

Bei der hier vorliegenden Kombination von jeweils 2 verschiedenen Schalen ist die Anwendung der Kraftgrößenmethode im allgemeinen am sinnvollsten. Diese Methode wird demnach hier auch zur Ermittlung der Übergangsschnittkräfte verwendet.

Die Durchführung der Untersuchungen wird an der Kombination Zylinderschale — Kugelschale erläutert, für die anderen Schalenkombinationen werden nur die Ergebnisse angegeben; die Berechnung erfolgte analog.

Die Berechnungsgrundlagen sind für hohe und flache Kugelschalen verschieden. Die Lösungen für die hohe Kugelschale lassen sich in Abhängigkeit von trigonometrischen und hyperbolischen Funktionen angeben, die für flache

Kugelschalen in Abhängigkeit von Besselschen Funktionen. Der Einfachheit halber verwenden wir hier für die Ableitung der Bestimmungsgleichungen zur Berechnung der Überzähligen den Formalismus der hohen Kugelschale.

In den Zusammenstellungen werden auch die Ergebnisse für die flache Kugelschale in Abhängigkeit von den in [1] verwendeten Besselschen Funktionen angegeben.

Für die Berechnung der Kombination aus Zylinderschale und hoher Kugelschale führen wir nach Fig. 1 ein statisch bestimmtes Hauptsystem ein, in dem die Überzählige X_1 als die Randquerkraft, die Überzählige X_2 als das Randmoment an der Zylinderschale bzw. an der Kugelschale definiert sind.

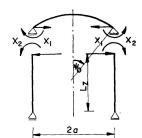


Fig. 1. Statisch bestimmtes Hauptsystem mit den Übergangsschnittkräften X_1 und X_2 .

Die Bedingungsgleichungen zur Berechnung der beiden Überzähligen gewinnen wir aus der Forderung, daß die Verformungen der beiden Schalenränder im statisch bestimmten Hauptsystem unter der Wirkung der Belastungen und der beiden Überzähligen miteinander verträglich sein müssen.

Die gegenseitigen Formänderungen zwischen der Zylinderschale und der Kugelschale ergeben sich am statisch bestimmten Hauptsystem wie folgt:

Aus der Wirkung der Belastung (z.B. Eigengewicht):

Gegenseitige Verschiebung:

$$\begin{split} \delta_{10} &= -\frac{g_{Ku}}{4\,B_Z\,k_Z^4} \frac{1}{\lambda_h \sin\psi_0 \, (1 + \cos\psi_0)} \bigg(1 - \cos\psi_0 - \cos^2\psi_0 \\ &\quad + 2\,a\,k_Z \cos\psi_0 \frac{\sqrt{\lambda_h \sin\psi_0}}{\lambda_h} R_1 + \mu \bigg) + \frac{g_{Ku}}{4\,B_Z\,k_Z^4} \, \frac{\mu}{1 + \cos\psi_0}, \end{split}$$

Gegenseitige Verdrehung:

$$\delta_{20} = \frac{g_{Ku}}{4\,B_Z\,k_Z^4\,a}\,\frac{2}{\lambda_h} \left[1 + \frac{a^2\,k_Z^2\cot\psi_0}{\lambda_h\,(1+\cos\psi_0)}\,R_2 + \frac{\mu}{2} \right] - \frac{g_Z}{4\,B_Z\,k_Z^4\,a}.$$

Aus der Wirkung der Überzähligen $X_1 = 1.0$ [Mp/m]:

Gegenseitige Verschiebung:

$$\delta_{11} = \frac{1}{2 B_Z k_Z^3} \left(\frac{F_4}{F_1} + \frac{\sqrt{\lambda_h \sin \psi_0}}{\lambda_h^2} \right).$$

Gegenseitige Verdrehung:

$$\delta_{12} = \frac{1}{2 \, B_Z \, k_Z^2} \Big(\frac{F_2}{F_1} - \frac{1}{\lambda_h^2} \Big).$$

Aus der Wirkung der Überzähligen $X_2 = 1.0$ [Mpm/m]:

Gegenseitige Verschiebung:

$$\delta_{21} = \frac{1}{2 B_Z k_Z^2} \left(\frac{F_2}{F_1} - \frac{1}{\lambda_h^2} \right).$$

Gegenseitige Verdrehung:

$$\delta_{22} = \frac{1}{B_Z k_Z} \left(\frac{F_3}{F_1} + \frac{1}{\lambda_h^2 \sqrt{\lambda_h \sin \psi_0}} \right).$$

Insgesamt ergeben sich die gegenseitigen Formänderungen zwischen Zylinderschale und Kugelschale zu

Gegenseitige Verschiebung
$$\delta_{10} + X_1 \delta_{11} + X_2 \delta_{12}$$
.
Gegenseitige Verdrehung $\delta_{20} + X_1 \delta_{21} + X_2 \delta_{22}$. (1)

Die Erfüllung der Verträglichkeitsbedingung erfordert, daß die gegenseitigen Formänderungen Null sind. Daraus ergibt sich das Gleichungssystem

X_1	X_2	
δ ₁₁	δ_{12}	$-\delta_{10}$
δ_{21}	δ_{22}	$-\delta_{20}$

Die Lösungen dieser Bedingungsgleichungen geben wir in nachstehender allgemeiner Form an

$$X_{1} = \beta_{11} \delta_{10} + \beta_{12} \delta_{20}, X_{2} = \beta_{21} \delta_{10} + \beta_{22} \delta_{20}.$$
 (2)

Die in dieser allgemeinen Form verwendeten β -Werte sind für die einzelnen Schalenkombinationen wie folgt einheitlich anzugeben:

$$\beta_{11} = -2 B_Z k_Z^3 \Phi_{11},$$

$$\beta_{12} = \beta_{21} = B^Z k_Z^2 \Phi_{12},$$

$$\beta_{22} = -B_Z k_Z \Phi_{22}.$$
(3)

Zur Berechnung der Φ -Werte sind in Tafel 1 die für die einzelnen Schalenformen anzuwendenden Formeln angegeben. Ein Auszug aus der umfangreichen numerischen Auswertung dieser Beziehungen wird in Tafel 2 angegeben.

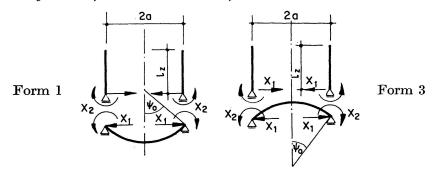
Damit ist die Berechnung der β -Werte für alle hier angegebenen Schalenformen möglich.

Die Berechnung der Belastungsglieder δ_{10} und δ_{20} läßt sich mit den in den Tafeln 3 bis 8 zusammengestellten Formeln durchführen. In diesen Tafeln sind die Belastungszahlen in Abhängigkeit von den wichtigsten Belastungsfällen und den wichtigsten Zuordnungen zwischen Zylinderschale, Kugel-

Tafel 1. Zusammenstellung der allgemeinen Φ-Werte für die verschiedenen Schalenkombinationen.

Φ_{22}		$F_{4z} + rac{F_{1z}V_{\lambda h}\sinlpha_0}{\gamma}R_{1}$	N N	
Φ_{12}	$-F_{2Z} + \frac{F_{1Z}}{\lambda_h^2} R_2$	$\frac{F_{2Z} - \frac{F_{1Z}}{\lambda_h^2}R_2}{N}$	$-F_{2Z} - \frac{F_{1Z}}{\lambda_n^2} R_2 \over N$	$\frac{F_{2Z} + \frac{F_{1Z}}{\lambda_h^2} R_2}{N}$
ϕ_{11}		$F_{3Z} + \frac{F_{1Z}}{\sum_{3 = 1 \sqrt{-1}} R_3} R_3$	N	
Schalenformen	Form 1 Form 5 Form 9 \bigcirc	Form 2 Form 6 Form 10	Form 3 Form 7	Form 4 Form 8

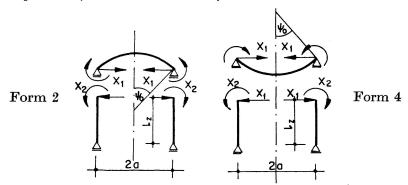
 $N = 1 + \frac{F_1 Z}{2} + \frac{1}{\lambda_h^2} \left[\frac{F_4 Z}{\sqrt{\lambda_h \sin \alpha_0}} R_3 + F_{3Z} \sqrt{\lambda_h \sin \alpha_0} R_1 \pm F_{2Z} R_2 + \frac{F_1 Z}{2 \lambda_h^2} (2 R_1 R_3 - R_2^2) \right]$


Vorzeichenregel für Klammerausdruck von N: oberes Vorzeichen Form 1, 5, 9, 2, 6, 10; unteres Vorzeichen Form 3, 7, 4, 8. Anmerkung: Bei den Φ -Werten der Kugelschale ist der Ausdruck sin α_0 durch sin ψ_0 zu ersetzen.

Tafel 2. Zahlentafel der Φ -Werte in Abhängigkeit von den Parametern λ_h , α_0 bzw. ψ_0 und kl

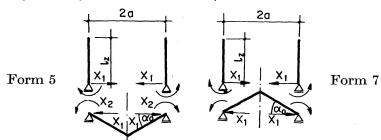
ė.			Schalelhormen			*6	
	3,4,7,8	1, 5, 9	3,7	2 2, 6, 10	4,8	Ψ_{22} 1, 2, 5, 6, 9, 10	3,4,7,8
	٠c	9	7	8	6	10	111
ກັ	0,562280	-0.077818	-0.284510	0,077818	0,284510	0,046479	0,106159
$\boldsymbol{\theta}$	0,669693	-0.028656	-0,461884	0,028656	0,461884	0,106561	0,264320
9	0,680504	0,066631	-0,453899	-0,066631	0,453899	0,159907	0,305060
	0,738987	0,128993	-0.459570	-0,128993	0,459570	0,183470	0,307503
	0,742777	0,129440	-0,462192	-0.129440	0,462192	0,183644	0,308497
	0,510173	-0,075449	-0.265466	0,075449	0,265466	0,047412	0,104216
	0,636373	-0.029088	-0,479548	0,029088	0,479548	0,116454	0,295453
7.	0,644136	0,069340	-0,490462	-0,069340	0,490462	0,182832	0,362165
30	0,684396	0,134085	-0,490808	-0.134085	0,490808	0.212429	0,365800
-	0,687751	0,134527	-0,493540	-0.134527	0,493540	0,212648	0,367026
2.0	0,476946	-0,073633	-0,251815	0,073633	0,251815	0,047807	0,102140
.=	0,609041	-0,029138	-0,481678	0,029138	0,481678	0,122223	$0,\!310925$
	0,618409	0,070534	-0.507473	-0,070534	0,507473	0,197181	0,397295
~~	0,649559	0,136348	-0.505251	-0,136348	0,505251	0,230822	0,402377
	0,652648	0,136785	-0,508018	-0,136785	0,508018	0,231073	0,403747
	0,716649	-0.184464	-0.364658	0,184464	0,364658	0,078788	0,131838
	1,012286	-0.208572	-0.826739	0,208572	0,826739	0,220160	0,508166
	1,052003	-0,096398	-0.945959	0,096398	0,945959	0,360441	0,776232
	1,128404	-0,000095	-0.933526	0,000095	0,933526	0,413566	0,799718
_	1.137939	-0.000081	-0.042775	0.000081	0.942775	0 414177	0.804719

0,127204 $0,522954$ $0,864550$ $0,900912$ $0,906777$	0,124045	0,143362	0,139216	0,136420
	0,525452	0,647633	0,643156	0,635955
	0,910212	1,223119	1,281437	1,304345
	0,956479	1,304048	1,384085	1,420651
	0,962736	1,315870	1,396775	1,433628
0,077980	0,077295	0,106248	0,104385	0,103081
0,228594	0,232790	0,353499	0,356522	0,357114
0,391562	0,409507	0,625937	0,653704	0,688092
0,455999	0,481151	0,711261	0,752001	0,774239
0,456742	0,481979	0,713333	0,754268	0,776625
0,342282	0,327556	0,407502	0,389255	0,377307
0,813384	0,794527	1,045891	1,010582	0,981475
0,990558	1,002655	1,378651	1,387624	1,376169
0,975493	0,987699	1,354074	1,365704	1,356546
0,985147	0,997400	1,372460	1,384077	1,374559
0,177528 $0,207146$ $0,098457$ $0,000098$ $0,000083$	0,172769	0,280480	0,271063	0,264776
	0,204972	0,450993	0,442553	0,435395
	0,098998	0,393020	0,394325	0,392658
	0,000098	0,284189	0,285515	0,284472
	0,000083	0,286263	0,287572	0,286501
-0.342282 -0.813384 -0.990558 -0.975493 -0.985147	$\begin{array}{c} -0.327556 \\ -0.794527 \\ -1.002655 \\ -0.987699 \\ -0.997400 \end{array}$	-0,407502 -1,045891 -1,378651 -1,354074 -1,372460	$\begin{array}{c} -0.389255 \\ -1.010582 \\ -1.387624 \\ -1.365704 \\ -1.384077 \end{array}$	$\begin{array}{c} -0.377307 \\ -0.981475 \\ -1.376160 \\ -1.356546 \\ -1.374559 \end{array}$
$egin{array}{l} -0.177528 \\ -0.207146 \\ -0.098457 \\ -0.000098 \\ -0.000083 \end{array}$	$\begin{array}{c} -0.172769 \\ -0.204972 \\ -0.098998 \\ -0.000098 \\ -0.000083 \end{array}$	$\begin{array}{c} -0.280480 \\ -0.450993 \\ -0.393020 \\ -0.284189 \\ -0.286263 \end{array}$	$\begin{array}{c} -0.271063 \\ -0.442553 \\ -0.394325 \\ -0.285515 \\ -0.287572 \end{array}$	$\begin{array}{l} -0,264776 \\ -0,435395 \\ -0,392658 \\ -0,284472 \\ -0,286501 \end{array}$
0,666762	0,635195	0,807083	0,768396	0,743551
0,958205	0,916486	1,226069	1,165182	1,121976
1,014617	0,982150	1,338657	1,290910	1,251726
1,069408	1,026187	1,421678	1,356709	1,308553
1,078268	1,034520	1,437655	1,371603	1,322592
0,408525	0,395041	0,598435	0,576501	0,561362
0,418528	0,406301	0,669294	0,645985	0,630351
0,459300	0,441730	0,685643	0,658368	0,641402
0,541842	0,516178	0,775441	0,737273	0,713472
0,543229	0,517899	0,779529	0,740753	0,716755
0,5	0,5	0,5	0,5	0,5
0,9	0,9	0,9	0,9	0,9
1,5	1,5	1,5	1,5	1,5
3,0	3,0	3,0	3,0	3,0
· 25	$_{\circ}09$	30°	45°	°09
		1,5		


Tafel~3.~Belastungszahlen~f"ur~verschiedene~Lastf"alle~der~Schalenkombination~Form~1~und~3

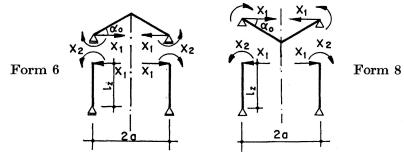
	!	
Belastung Eigengewicht g_k	δ_{10} δ_{20}	$\begin{split} &\pm \frac{g_k}{4B_Zk_Z^4} \frac{1}{\lambda_h \sin\psi_0 \left(1 + \cos\psi_0\right)} \left(1 - \cos\psi_0 - \cos^2\psi_0 \right. \\ &\left. + 2ak_Z \cos\psi_0 \frac{\sqrt{\lambda_h \sin\psi_0}}{\lambda_h} R_1 + \mu\right) \\ &\left \frac{g_k}{4B_Zk_Z^4 a} \frac{2}{\lambda_h} \left[1 + \frac{a^2k_Z^2 \cot\psi_0}{\lambda_h \left(1 + \cos\psi_0\right)} R_2 + \frac{\mu}{2}\right] \end{split}$
Eigengewicht g_Z	δ_{10} δ_{20}	$-rac{g_Z}{4B_Zk_Z^4}rac{l_Z}{a}\mu \ rac{g_Z}{4B_Zk_Z^4a}\mu$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)	δ_{10}	$\begin{split} & -\frac{l_{p}\gamma_{F}}{4B_{Z}k_{Z}^{4}} \bigg[1 \mp \frac{1}{2\lambda_{h}\sin\psi_{0}} \bigg(1 \mp \frac{2-\cos\psi_{0}-\cos^{2}\psi_{0}}{3\sin\psi_{0}\left(1+\cos\psi_{0}\right)} \frac{a}{l_{p}} \bigg) \\ & \pm \bigg(ak_{Z}\cot\psi_{0} \frac{\sqrt{\lambda_{h}\sin\psi_{0}}}{\lambda_{h}^{2}}R_{1} \\ & + \frac{\mu}{2\lambda_{h}\sin\psi_{0}} \bigg) \bigg(1 \pm \frac{2-\cos\psi_{0}-\cos^{2}\psi_{0}}{3\sin\psi_{0}\left(1+\cos\psi_{0}\right)} \frac{a}{l_{p}} \bigg) \bigg] \\ & \frac{l_{p}\gamma_{F}}{4B_{Z}k_{Z}^{4}} \bigg[\bigg(1 \mp \frac{1}{\lambda_{h}\sin\psi_{0}} \bigg) \frac{a}{l_{p}} \\ & - \frac{a^{2}k_{Z}^{2}\cot\psi_{0}}{\lambda_{h}^{2}}R_{2} \bigg(1 \pm \frac{2-\cos\psi_{0}-\cos^{2}\psi_{0}}{3\sin\psi_{0}\left(1+\cos\psi_{0}\right)} \frac{a}{l_{p}} \bigg) \bigg] \end{split}$
Randschnittkräfte	δ_{10} δ_{20}	$\begin{array}{c} \frac{1}{2B_{Z}k_{Z}^{3}} \left(H\frac{F_{4}}{F_{1}} - M\;k_{Z}\frac{F_{2}}{F_{1}} \right) \\ \\ \frac{1}{2B_{Z}k_{Z}^{2}} \left(-H\frac{F_{2}}{F_{1}} + M\;k_{Z}\frac{2F_{3}}{F_{1}} \right) \end{array}$

Randschnittkräfte H	δ_{10} δ_{20}	$\begin{split} &\frac{1}{2B_Zk_Z^3} \bigg(H \frac{F_9}{F_1} + M\;k_Z \frac{2F_8}{F_1} \bigg) \\ &- \frac{1}{2B_Zk_Z^2} \bigg(H \frac{2F_8}{F_1} + M\;k_Z \frac{2F_{10}}{F_1} \bigg) \end{split}$
$egin{array}{c c} \mathbf{Auflast} \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	δ_{10} δ_{20}	$-\frac{P}{4B_Z k_Z^4} \frac{\mu}{a}$
Temperatur $t = a_t$	δ_{10} δ_{20}	$-a a_t \alpha_t$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$\begin{split} &\frac{a_t \alpha_t (1 + \mu)}{2 h_Z k_Z^2} \left(\frac{F_2}{F_1} - \frac{2 F_8}{F_1} \mp R_2 \right) \\ &- \frac{a_t \alpha_t (1 + \mu)}{h_Z k_Z} \left(\frac{F_3}{F_1} - \frac{F_{10}}{F_1} + \frac{1}{\sqrt{\lambda_h \sin \alpha_0}} R_3 \right) \end{split}$
Temperatur $t_a - t_i = a_t$	$\delta_{f 10}$ $\delta_{f 20}$	$\begin{split} &\frac{a_t \alpha_t \left(1 + \mu\right)}{2 h_Z k_Z^2} \left(\frac{F_2}{F_1} - \frac{2 F_8}{F_1} \right) \\ &- \frac{a_t \alpha_t \left(1 + \mu\right)}{h_Z k_Z} \left(\frac{F_3}{F_1} - \frac{F_{10}}{F_1} \right) \end{split}$


Tafel~4.~Belastungszahlen~f"ur~verschiedene~Lastf"alle~der~Schalenkombination~Form~2~und~4

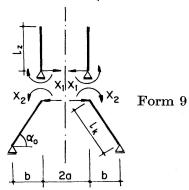
Belastung		
Eigengewicht g_k	δ_{10}	$\mp \frac{g_k}{4 B_Z k_Z^4} \frac{1}{\lambda_h \sin \psi_0 \left(1 + \cos \psi_0\right)} \left(1 - \cos \psi_0\right)$
G _k G _k	δ_{20}	$-\cos^{2}\psi_{0} + 2a k_{Z} \cos \psi_{0} \frac{\sqrt{\lambda_{h}} \sin \psi_{0}}{\lambda_{h}} R_{1} + \mu $ $\frac{g_{k}}{4 B_{Z} k_{Z}^{4}} \frac{2}{\lambda_{h}} \left[1 + \frac{a^{2} k_{Z}^{2} \cot \psi_{0}}{\lambda_{h} (1 + \cos \psi_{0})} R_{2} + \frac{\mu}{2} \right]$
Eigengewicht $g_Z + g_k$ $ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$	δ_{10}	$rac{g_k}{4B_Zk_Z^4}rac{\mu}{1+\cos\psi_0}$
$G_k = \frac{g_k a}{1 + \cos \psi_0}$	δ_{20}	$-rac{g_Z}{4B_Zk_Z^4a}\mu$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)	δ_{10}	$\frac{p_{0}}{4 B_{Z} k_{Z}^{4}} \left\{ 1 \mp \frac{1}{2 \lambda_{h} \sin \psi_{0}} \left(1 \pm \frac{2 - \cos \psi_{0} - \cos^{2} \psi_{0}}{3 \sin \psi_{0} (1 + \cos \psi_{0})} \frac{a \gamma_{F}}{p_{0}} \right) \right.$ $\pm \left[a k_{Z} \cot \psi_{0} \frac{\sqrt{\lambda_{h} \sin \psi_{0}}}{\lambda^{2}} R_{1} \right]$
	δ_{20}	$ + \frac{\mu}{2} \left(\frac{1}{\lambda_h \sin \psi_0} \mp 1 \right) \left[\left(1 \mp \frac{2 - \cos \psi_0 - \cos^2 \psi_0}{3 \sin \psi_0 (1 + \cos \psi_0)} \frac{a \gamma_F}{p_0} \right) \right\} $ $ - \frac{p_0}{4 B_Z k_Z^4 a} \left[\left(1 \mp \frac{1}{\lambda_h \sin \psi_0} \right) \frac{a \gamma_F}{p_0} \right. $ $ + \frac{a^2 k_Z^2 \cot \psi_0}{\lambda_h^2} R_2 \left(1 \mp \frac{2 - \cos \psi_0 - \cos^2 \psi_0}{3 \sin \psi_0 (1 + \cos \psi_0)} \frac{a \gamma_F}{p_0} \right) \right] $
Randschnittkräfte	δ_{10}	$\frac{1}{2 B_{z} k_{z}^{3}} \left(H \frac{F_{4}}{F_{1}} + M k_{z} \frac{F_{2}}{F_{1}} \right)$
H H	δ_{20}	$\frac{1}{2 B_{Z} k_{Z}^{2}} \left(H \frac{F_{2}}{F_{1}} + M k_{Z} \frac{2 F_{3}}{F_{1}} \right)$

Randschnittkräfte	δ_{10} δ_{20}	$\begin{split} &\frac{1}{2B_{Z}k_{Z}^{3}} \left(H \frac{F_{9}}{F_{1}} - M \; k_{Z} \frac{2F_{8}}{F_{1}} \right) \\ &\frac{1}{2B_{Z}k_{Z}^{2}} \left(H \frac{2F_{8}}{F_{1}} - M \; k_{Z} \frac{2F_{10}}{F_{1}} \right) \end{split}$
Auflast	δ_{10} δ_{20}	$rac{P}{4B_{oldsymbol{Z}}k_{oldsymbol{Z}}^4}rac{\mu}{a}$
Temperatur $t = a_t$	δ_{10} δ_{20}	aa_tlpha_t
Temperatur $\Delta t = t_a - t_i = a_t$	δ_{10} δ_{20}	$\begin{split} &-\frac{a_t \alpha_t (1+\mu)}{2 h_Z k_Z^2} \left(\frac{F_2}{F_1} - \frac{2 F_8}{F_1} \mp R_2 \right) \\ &-\frac{a_t \alpha_t (1+\mu)}{h_Z k_Z} \left(\frac{F_3}{F_1} - \frac{F_{10}}{F_1} + \frac{1}{\sqrt{\lambda_h \sin \psi_0}} R_3 \right) \end{split}$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$-rac{a_tlpha_t(1+\mu)}{2h_Zk_Z^3}\Big(rac{F_2}{F_1}-rac{2F_8}{F_1}\Big) \ -rac{a_tlpha_t(1+\mu)}{h_Zk_Z}\Big(rac{F_3}{F_1}-rac{F_{10}}{F_1}\Big)$


Tafel 5. Belastungszahlen für verschiedene Lastfälle der Schalenkombination Form 5 und 7

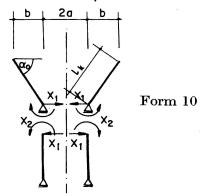
Belastung		
Eigengewicht g_k	δ_{10} δ_{20}	$\begin{split} &\pm \frac{g_k}{4B_Zk_Z^4}\frac{1}{\lambda_h\sin\alpha_0} \bigg(\!\cos\alpha_0 - ak_Z\frac{\sqrt{\lambda_h\sin\alpha_0}}{\lambda_h}R_1\\ &-\frac{\mu}{2\cos\alpha_0}\!\bigg)\\ &\frac{g_k}{4B_Zk_Z^4a}\frac{1}{\lambda_h\sin^2\alpha_0} \bigg(\!2\cos^2\alpha_0 - \!\frac{1}{2}\\ &-a^2k_Z^2\frac{\sin\alpha_0}{\lambda_h}R_2 - \mu\sin^2\alpha_0\!\bigg) \end{split}$
Eigengewicht g_Z	δ_{10} δ_{20}	$-rac{g_{Z}}{4B_{Z}k_{Z}^{4}}rac{l_{Z}}{a}\mu \ rac{g_{Z}}{4B_{Z}k_{Z}^{4}a}\mu$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)	$\delta_{f 10}$	$\begin{split} &-\frac{l_p \gamma_F}{4 B_Z k_Z^4} \left[\left(1 \mp \frac{1}{\lambda_h \sin \alpha_0} \right) \\ &\pm \frac{1}{\lambda_h} \left(a k_Z \frac{\sqrt{\lambda_h \sin \alpha_0}}{\lambda_h} R_1 + \frac{\mu}{2 \cos \alpha_0} \right) \left(\cot \alpha_0 \pm \frac{a}{3 l_p} \right) \right] \\ &\frac{l_p \gamma_F}{4 B_Z k_Z^4 a} \left[\frac{a}{l_p} + \frac{1}{\lambda_h \sin \alpha_0} \left(\frac{3}{2} \cot \alpha_0 \mp \frac{7 a}{6 l_p} \right) \right. \\ &\left \frac{a^2 k_Z^2}{\lambda_h^2} R_2 \left(\cot \alpha_0 \pm \frac{a}{3 l_p} \right) \right] \end{split}$
Randschnittkräfte	δ_{10} δ_{20}	$\begin{split} &\frac{1}{2B_Zk_Z^3} \Big(H \frac{F_4}{F_1} - M \; k_Z \frac{F_2}{F_1} \Big) \\ &\frac{1}{2B_Zk_Z^2} \Big(- H \frac{F_2}{F_1} + M \; k_Z \frac{2F_3}{F_1} \Big) \end{split}$

Randschnittkräfte	δ_{10} δ_{20}	$\begin{split} &\frac{1}{2B_{Z}k_{Z}^{3}} \Big(H \frac{F_{9}}{F_{1}} + M \; k_{Z} \frac{2F_{8}}{F_{1}} \Big) \\ &- \frac{1}{2B_{Z}k_{Z}^{2}} \Big(H \frac{2F_{8}}{F_{1}} + M \; k_{Z} \frac{2F_{10}}{F_{1}} \Big) \end{split}$
Auflast P D D D D D D D D D	δ_{10} δ_{20}	$-rac{P}{4B_Zk_Z^4}rac{\mu}{a}$
Temperatur $t = a_t$	δ_{10} δ_{20}	$-aa_tlpha_t$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$\begin{split} &\frac{a_t \alpha_t (1 + \mu)}{2 h_Z k_Z^2} \left(\frac{F_2}{F_1} - \frac{2 F_8}{F_1} \mp R_2 \right) \\ &- \frac{a_t \alpha_t (1 + \mu)}{h_Z k_Z} \left(\frac{F_3}{F_1} - \frac{F_{10}}{F_1} + \frac{1}{\sqrt{\lambda_h \sin \alpha_0}} R_3 \right) \end{split}$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$egin{align*} & rac{a_t lpha_t (1 + \mu)}{2 h_Z k_Z^2} igg(rac{F_2}{F_1} - rac{2 F_8}{F_1} igg) \ & - rac{a_t lpha_t (1 + \mu)}{h_Z k_Z} igg(rac{F_3}{F_1} - rac{F_{10}}{F_1} igg) \end{aligned}$


Tafel 6. Belastungszahlen für verschiedene Lastfälle der Schalenkombination Form 6 und 8

Belastung	8	$\pm rac{g_k}{4B_Zk_Z^4}rac{1}{\lambda_h\sinlpha_0}\!\!\left(\coslpha_0\!-\!a\;k_Zrac{\sqrt{\lambda_h\sinlpha_0}}{\lambda_h}R_1 ight.$
Eigengewicht g_k G_k G_k	δ_{10} δ_{20}	$egin{aligned} & \pm rac{4B_Zk_Z^4}{4B_Zk_Z^4} \lambda_h \sinlpha_0 \left(\coslpha_0 - ak_Z - \lambda_h - k_1 ight. \ & -rac{\mu}{2\coslpha_0} ight) \ & -rac{g_k}{4B_Zk_Z^4} rac{1}{\lambda_h \sin^2lpha_0} \left(2\cos^2lpha_0 - rac{1}{2} ight. \ & -a^2k_Z^2 rac{\sinlpha_0}{\lambda_h} R_2 - \mu \sin^2lpha_0 ight) \end{aligned}$
Eigengewicht $g_Z + g_k$	δ ₁₀	$rac{g_k}{4B_\pik_\pi^4}rac{\mu}{2\coslpha_0}$
g _z	δ_{20}	$rac{g_Z}{4B_Zk_Z^4a}\mu$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)	δ ₁₀	$\frac{p_0}{4B_Zk_Z^4} \bigg\{ \bigg(1 \mp \frac{1}{\lambda_h \sin\alpha_0}\bigg) \pm \left[ak_Z \frac{\sqrt{\lambda_h \sin\alpha_0}}{\lambda_h^2}R_1\right.$
	δ ₂₀	$\begin{aligned} &+\frac{\mu}{2} \left(\frac{1}{\lambda_h \cos \alpha_0} \mp \tan \alpha_0 \right) \right] \left(\cot \alpha_0 \mp \frac{a \gamma_F}{3 p_0} \right) \\ &-\frac{p_0}{4 B_Z k_Z^4 a} \left[1 - \frac{1}{\lambda_h \sin \alpha_0} \left(\frac{3}{2} \cot \alpha_0 \pm \frac{7 a \gamma_F}{6 p_0} \right) \right. \\ &\left. + \frac{a^2 k_Z^2}{\lambda_h^2} R_2 \left(\cot \alpha_0 \mp \frac{a \gamma_F}{3 p_0} \right) \right] \end{aligned}$
Randschnittkräfte	8	$1 /_{H} F_{4+M} = F_{2}$
M	010	$egin{align} & rac{1}{2B_{Z}k_{Z}^{3}}igg(Hrac{F_{4}}{F_{1}}\!+\!Mk_{Z}rac{F_{2}}{F_{1}}igg) \ & rac{1}{2B_{Z}k_{Z}^{2}}igg(Hrac{F_{2}}{F_{1}}\!+\!Mk_{Z}rac{2F_{3}}{F_{1}}igg) \end{array}$
	δ_{20}	$\frac{1}{2 B_Z k_Z^2} \left(H \frac{F_2}{F_1} + M k_Z \frac{2 F_3}{F_1} \right)$

Randschnittkräfte	δ_{10} δ_{20}	$\begin{split} &\frac{1}{2B_{Z}k_{Z}^{3}} \bigg(H \frac{F_{9}}{F_{1}} - M \; k_{Z} \frac{2F_{8}}{F_{1}} \bigg) \\ &\frac{1}{2B_{Z}k_{Z}^{2}} \bigg(H \frac{2F_{8}}{F_{1}} - M \; k_{Z} \frac{2F_{10}}{F_{1}} \bigg) \end{split}$
Auf last	δ_{10} δ_{20}	$rac{P}{4B_{m{Z}}k_{m{Z}}^4}rac{\mu}{a}$
Temperatur $t = a_t$	δ_{10} δ_{20}	$aa_{t}lpha_{t}$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$\begin{split} &-\frac{a_{l}\alpha_{t}(1+\mu)}{2h_{Z}k_{Z}^{2}}\left(\frac{F_{2}}{F_{1}}-\frac{2F_{8}}{F_{1}}\mpR_{2}\right)\\ &-\frac{a_{t}\alpha_{t}(1+\mu)}{h_{Z}k_{Z}}\left(\frac{F_{3}}{F_{1}}-\frac{F_{10}}{F_{1}}+\frac{1}{\sqrt{\lambda_{h}\sin\alpha_{0}}}R_{3}\right) \end{split}$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$egin{aligned} &-rac{a_tlpha_t(1+\mu)}{2h_Zk_Z^2} \Big(rac{F_2}{F_1} - rac{2F_8}{F_1}\Big) \ &-rac{a_tlpha_t(1+\mu)}{h_Zk_Z} \Big(rac{F_3}{F_1} - rac{F_{10}}{F_1}\Big) \end{aligned}$


Tafel~7.~Belastungszahlen~f"ur~verschiedene~Lastf"alle~der~Schalenkombination~Form~9

Belastung		
Eigengewicht g_k	δ_{10}	$egin{aligned} -rac{g_k}{4B_Zk_Z^4} & rac{1}{\lambda_h\sinlpha_0}igg(rac{\coslpha_0}{2}\ & +k_Zrac{\sqrt{\lambda_h\sinlpha_0}}{\lambda_h} & rac{2ab+b^2}{a+b}T_1igg) \end{aligned}$
g*	δ_{20}	$\begin{aligned} &\frac{g_k}{4B_Zk_Z^4a}\frac{1}{\lambda_h\sin^2\alpha_0} \bigg(2\cos^2\alpha_0\\ &-2k_Z^2\frac{\sin\alpha_0}{\lambda_h}\frac{2a^2b+ab^2}{a+b}T_2 - \mu\sin^2\alpha_0\bigg) \end{aligned}$
$oxed{ ext{Eigengewicht } g_Z}$	δ_{10}	$-rac{g_{oldsymbol{Z}}}{4B_{oldsymbol{Z}}k_{oldsymbol{Z}}^4}igg[2l_{oldsymbol{Z}}k_{oldsymbol{Z}}\cotlpha_0rac{\sqrt{\lambda_h\sinlpha_0}}{\lambda_h^2}igg(R_1\!+\!rac{a}{a+b}T_1igg)$
g _z	δ_{20}	$\begin{aligned} &+\mu\frac{l_Z}{a}\left(1-\frac{1}{\lambda_h\sin\alpha_0}\right) \bigg] \\ &-\frac{g_Z}{4B_Zk_Z^4a} \left[\frac{l_Z\cos\alpha_0}{a\lambda_h\sin\alpha_0} \right. \\ &\left. +2al_Zk_Z^2\frac{\cot\alpha_0}{\lambda_h^2}\left(R_2\!+\!\frac{2a}{a+b}T_2\right)\!-\!\mu \right] \end{aligned}$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)	δ_{10}	$-\frac{l_p\gamma_F}{4B_Zk_Z^4}\Big\{1-\frac{1}{\lambda_h\sin\alpha_0}-ak_Z\frac{\sqrt{\lambda_h\sin\alpha_0}}{\lambda_h^2a(a+b)}T_1$
P. C.	δ_{20}	$\begin{split} &\cdot \left[(2ab + b^2)\cot\alpha_0 + \frac{3ab^2 + 2b^3}{3l_p} \right] \right\} \\ &\frac{l_p\gamma_F}{4B_Zk_Z^4a} \left\{ \left(1 - \frac{1}{\lambda_h\sin\alpha_0} \right) \frac{a}{l_p} - \frac{2\cos\alpha_0}{\lambda_h\sin^2\alpha_0} \right. \\ &\left. + \frac{2a^2k_Z^2}{\lambda_h^2a(a + b)} T_2 \bigg[(2ab + b^2)\cot\alpha_0 + \frac{3ab^2 + 2b^3}{3l_p} \bigg] \right\} \end{split}$
Randschnittkräfte	δ_{20}	$rac{1}{2B_{m Z}k_{m Z}^3}\!\left(\!Hrac{F_4}{F_1}\!-\!M\;k_{m Z}rac{F_2}{F_1}\! ight)$
† H J M	δ_{10}	$rac{1}{2B_Zk_Z^2}\Big(-Hrac{F_2}{F_1} + M\;k_Zrac{2F_3}{F_1}\Big)$

Randschnittkräfte		$\begin{split} &\frac{1}{2B_{Z}k_{Z}^{3}} \Big(H \frac{F_{9}}{F_{1}} + M \; k_{Z} \frac{2F_{8}}{F_{1}} \Big) \\ &- \frac{1}{2B_{Z}k_{Z}^{2}} \Big(H \frac{2F_{8}}{F_{1}} + M \; k_{Z} \frac{2F_{10}}{F_{1}} \Big) \end{split}$
Randschnittkräfte		$\begin{split} &\frac{1}{2B_Zk_Z^3} \bigg(H \frac{\sqrt{\lambda_h \sin \alpha_0}}{\lambda_h^2} T_1 - M \frac{k_Z}{\lambda_h^2} 2 T_2 \bigg) \\ &\frac{1}{2B_Zk_Z^2} \bigg(H \frac{1}{\lambda_h^2} 2 T_2 - M \frac{k_Z}{\lambda_h^2 \sqrt{\lambda_h \sin \alpha_0}} 2 T_3 \bigg) \end{split}$
Auflast	δ_{10} δ_{20}	$-\frac{P}{4 B_Z k_Z^4 a} \left[\frac{2 a k_Z \cot \alpha_0 \sqrt{\lambda_h \sin \alpha_0}}{\lambda_h^2} \left(R_1 + \frac{a}{a + l_k \cos \alpha_0} T_1 \right) + \mu \left(1 - \frac{1}{\lambda_h \sin \alpha_0} \right) \right]$ $-\frac{P}{4 B_Z k_Z^4 a^2} \cot \alpha_0 \left[\frac{1}{\lambda_h \sin \alpha_0} \right]$
Temperatur $t = a_t$	δ_{10} δ_{20}	$+\frac{2 a^2 k_Z^2}{\lambda_h^2} \left(R_2 + \frac{a}{a + l_k \cos \alpha_0} 2 T_2 \right) \right]$ $-a a_t \alpha_t$ 0
Temperatur $\Delta t = t_a - t_i = a_t$	δ_{10} δ_{20}	$\begin{split} &\frac{a_{t}\alpha_{t}(1+\mu)}{2h_{Z}k_{Z}^{2}}\left(\!\frac{F_{2}}{F_{1}}-\frac{2F_{8}}{F_{1}}\!-R_{2}+2T_{2}\!\right)\\ &-\frac{a_{t}\alpha_{t}(1+\mu)}{h_{Z}k_{Z}}\left[\!\frac{F_{3}}{F_{1}}-\frac{F_{10}}{F_{1}}\!+\frac{1}{\sqrt{\lambda_{h}\sin\alpha_{0}}}(R_{3}-T_{3}\!)\right] \end{split}$
Temperatur $t_a - t_i = a_t$	δ_{10} δ_{20}	$egin{aligned} & rac{a_t lpha_t (1 + \mu)}{2 h_Z k_Z^2} \left(\!rac{F_2}{F_1} - rac{2 F_8}{F_1}\! ight) \ & - rac{a_t lpha_t (1 + \mu)}{h_Z k_Z} \left(\!rac{F_3}{F_1} - rac{F_{10}}{F_1}\! ight) \end{aligned}$

Tafel 8. Belastungszahlen für verschiedene Lastfälle der Schalenkombination Form 10

Belastung		$a_1 = 1 = \int \sqrt{\lambda_1 \sin \alpha_2}$
	δ_{10}	$-\frac{g_k}{4 B_Z k_Z^4} \frac{1}{\lambda_h \sin \alpha_0} \left[\cos \alpha_0 - \left(a k_Z \frac{\sqrt{\lambda_h \sin \alpha_0}}{\lambda_h} R_1 \right) \right]$
Eigengewicht g_k		$-\frac{\mu}{2\cos\alpha_0}\left(2+\frac{b}{a}\right)\frac{b}{a}$
	δ_{20}	$-rac{g_k}{4B_Zk_Z^4a}rac{1}{\lambda_h\sin^2lpha_0}iggl[2\cos^2lpha_0$
		$+ \left(\frac{1}{2} + a^2 k_Z^2 \frac{\sin \alpha_0}{\lambda_h} R_2\right) \left(2 + \frac{b}{a}\right) \frac{b}{a} - \mu \sin^2 \alpha_0 \bigg]$
Eigengewicht $g_z + g_k$	_	a_{i} , μ b b
d € € €	δ_{10}	$\frac{g_k}{4 B_Z k_Z^4} \frac{\mu}{2 \cos \alpha_0} \frac{b}{a} \left(2 + \frac{b}{a} \right)$
a_{b}	δ_{20}	$-rac{g_{oldsymbol{Z}}}{4B_{oldsymbol{Z}}k_{oldsymbol{Z}}^4a}\mu$
$G_k = \frac{g_k b}{2 \cos \alpha_0} \left(2 + \frac{b}{a} \right)$		
	δ ₁₀	$\frac{p_0}{4 B_Z k_Z^4} \left\{ 1 - \frac{1}{\lambda_h \sin \alpha_0} + \left[a k_Z \frac{\sqrt{\lambda_h \sin \alpha_0}}{\lambda_h^2} R_1 \right] \right\}$
Flüssigkeitsfüllung (γ_F) konstanter Druck (p_0)		$-\frac{\mu}{2}\left(\frac{1}{\lambda_1\cos\alpha_0}-\tan\alpha_0\right)\right]\left[\left(2+\frac{b}{a}\right)\cot\alpha_0\right]$
Ronsoanter Druck (p0)		$-\left(1+\frac{2}{3}\frac{b}{a}\right)\frac{b}{a}\frac{\gamma_F}{a}$
	δ_{20}	$-\frac{p_0}{4 B_Z k_Z^4 a} \left\{ \frac{a \gamma_F}{p_0} - \frac{1}{\lambda_b \sin \alpha_0} \left[\left(1 + \frac{b^2}{2 a^2} \right) \right] \right\}$
		$egin{aligned} & \left\{ egin{aligned} A_{L} & \kappa_{L}^{2} & \alpha & \left(\begin{array}{c} p_{0} & \lambda_{L} \sin lpha_{0} \end{array} \right) \left(\begin{array}{c} 2 a^{2} \\ + rac{b^{3}}{3 a^{3}} ight) rac{a \gamma_{F}}{n_{0}} - \left(2 + rac{b}{a} + rac{b^{2}}{2 a^{2}} ight) \cot lpha_{0} \end{aligned} \end{aligned}$
		$egin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Randschnittkräfte	δ_{10}	$\frac{1}{2B_{\boldsymbol{Z}}k_{\boldsymbol{Z}}^3}\!\left(\!H\frac{F_4}{F_1}\!+\!M\;k_{\boldsymbol{Z}}\frac{F_2}{F_1}\!\right)$
H	δ_{20}	$\frac{1}{2 B_Z k_Z^2} \left(H \frac{F_2}{F_1} + M k_Z \frac{2 F_3}{F_1} \right)$
<u> </u>		22 1 1/

Randschnittkräfte		$\begin{split} &\frac{1}{2B_{Z}k_{Z}^{3}} \bigg(H \frac{F_{9}}{F_{1}} - M \; k_{Z} \frac{2F_{8}}{F_{1}} \bigg) \\ &\frac{1}{2B_{Z}k_{Z}^{2}} \bigg(H \frac{2F_{8}}{F_{1}} - M \; k_{Z} \frac{2F_{10}}{F_{1}} \bigg) \end{split}$
Randschnittkräfte	8	$rac{1}{2B_{oldsymbol{Z}}k_{oldsymbol{Z}}^3} igg(H rac{\sqrt{\lambda_h \sinlpha_0}}{\lambda_h^2} T_1 + M rac{k_{oldsymbol{Z}}}{\lambda_h^2} 2 T_2 igg)$
H // M	010	$2B_Zk_Z^3$ λ_h^2 λ_h^2 λ_h^2 λ_h^2 λ_h^2
	δ_{20}	$-\frac{1}{2B_Zk_Z^2} \Big(\!H\frac{1}{\lambda_h^2}2T_2 + M\frac{k_Z}{\lambda_h^2\sqrt{\lambda_h\sin\alpha_0}}2T_3\!\Big)$
Auflast	δ ₁₀	$\frac{P}{4 B_Z k_Z^4 a} \left[\frac{2 a k_Z \cot \alpha_0 \sqrt{\lambda_h \sin \alpha_0}}{\lambda_h^2} \left(\frac{a + l_k \cos \alpha_0}{a} R_1 + T_1 \right) \right]$
P	δ_{20}	$\begin{aligned} &+\mu\left(1-\frac{1}{\lambda_h\sin\alpha_0}\right)\frac{a+l_k\cos\alpha_0}{a} \\ &-\frac{P}{4B_Zk_Z^4a^2}\cot\alpha_0\left[\frac{1}{\lambda_h\sin\alpha_0}\frac{a+l_k\cos\alpha_0}{a}\right. \\ &\left. +\frac{2a^2k_Z^2}{\lambda_h^2}\left(\frac{a+l_k\cos\alpha_0}{a}R_2+2T_2\right)\right] \end{aligned}$
Temperatur $t = a_t$	δ_{10} δ_{20}	$a a_t \alpha_t$
Temperatur $t_a - t_i = a_t$		
	δ_{10}	$-rac{a_tlpha_t(1+\mu)}{2h_Zk_Z^2}igg(\!rac{F_2}{F_1}\!-\!rac{2F_8}{F_1}\!-\!R_2\!+\!2T_2\!igg)$
	δ_{20}	$-\frac{a_t \alpha_t (1 + \mu)}{h_Z k_Z} \left[\frac{F_3}{F_1} - \frac{F_{10}}{F_1} + \frac{1}{\sqrt{\lambda_h \sin \alpha_0}} (R_3 - T_3) \right]$
Temperatur $t_a - t_i = a_t$	δ ₁₀	$-\frac{a_t \alpha_t (1+\mu)}{2 h_Z k_Z^2} \left(\! \frac{F_2}{F_1} - \frac{2 F_8}{F_1} \!\right)$
	δ_{20}	$-rac{a_tlpha_t(1+\mu)}{h_Zk_Z}\Big(rac{F_3}{F_1}-rac{F_{10}}{F_1}\Big)$

Schalenformen	R_1	R_2
"Hohe" Kegel- bzw. Kugelschale "Lange, hohe" Kegel- zonenschale (Form 1—10)	1,0	1,0
"Flache" Kegelschale (Form 5—8)	$\frac{1}{\sqrt{2}} \frac{\left[(G_9^{\cdot2} + G_{10}^{\cdot2}) - \frac{4\mu^2}{\alpha^2} (G_9^2 + G_{10}^2) \right]}{R_4}$	$\frac{(G_{10}G_{9}\cdot -G_{9}G_{10}\cdot)}{R_{4}}$
"Lange, flache" Kegelzonenschale (Form 9—10)	$ - \frac{1}{\sqrt{2}} \frac{ \left[(G_{11}^{\cdot 2} + G_{12}^{\cdot 2}) - \frac{4 \mu^2}{\alpha^2} (G_{11}^2 + G_{12}^2) \right]}{R_4} $	$\frac{(G_{12}G_{11}^{\textstyle{\cdot}}-G_{11}G_{12}^{\textstyle{\cdot}})}{R_4}$
"Kurze, hohe" Kegelzonenschale (Form 9—10)	$rac{F_{4k}}{F_{1k}}$	$rac{F_{2k}}{F_{1k}}$
"Flache" Kugelschale (Form 1—4)	$-\frac{1}{\sqrt{2}} \frac{\left[G_5^{:2} + G_6^{:2} - \frac{\mu^2}{\alpha^2} (G_1^{:2} + G_2^{:2})\right]}{R_4}$	$rac{(G_2^{\centerdot}G_5^{\centerdot}-G_1^{\centerdot}G_6^{\centerdot})}{R_4}$

Tafel 9. Zusammenstellung der in den Tafeln 3—8 verwendeten Faktoren R und T

schale und Kegelschale angegeben. Die dabei verwendeten Faktoren R_1 bis R_4 und T_1 bis T_3 sind in Tafel 9 zusammengestellt.

3. Zahlenbeispiel

Zur Einführung in die bereitgestellten Rechenbehelfe wird nachstehend ein Zahlenbeispiel angegeben.

Autgabenstellung

Für das in Fig. 2 gezeigte zusammengesetzte Schalentragwerk soll der Schnittkraftzustand angegeben werden. Die Bestimmung der Überzähligen erfolgt unter Verwendung des statisch unbestimmten Hauptsystems gemäß Fig. 3 (Form 10 nach Tafel 1), für dessen Behandlung die im Beitrag dargelegte Grundaufgabe mehrfach anzuwenden ist.

Geometrie und Materialkennwerte

Alle erforderlichen Angaben sind in Fig. 2 enthalten.

R_3	R_4	T_1	T_2	T_3
1,0		0	0	0
$\frac{\frac{1}{\sqrt{2}}\left(G_{10}^2+G_{9}^2\right)}{R_4}$	$G_{9} G_{9}^{:} + G_{10} G_{10}^{:} + \frac{2 \mu}{\alpha} (G_{9}^{2} + G_{10}^{2})$			
$\frac{-\frac{1}{\sqrt{2}}(G_{11}^2+G_{12}^2)}{R_4}$	$G_{11}G_{11}^{ \cdot} + G_{12}G_{12}^{ \cdot} - \frac{2\mu}{\alpha}(G_{11}^2 + G_{12}^2)$	0	0	0
$rac{F_{3k}}{F_{1k}}$		$rac{F_{9k}}{F_{1k}}$	$rac{F_{8k}}{F_{1k}}$	$rac{F_{10k}}{F_{1k}}$
$\frac{-\frac{1}{\sqrt{2}}(G_1^{\cdot2}+G_2^{\cdot2})}{R_4}$	$G_1^{\cdot}G_5^{\cdot}+G_2^{\cdot}G_6^{\cdot}-rac{\mu}{lpha}\left(G_1^{\cdot2}+G_2^{\cdot2} ight)$			

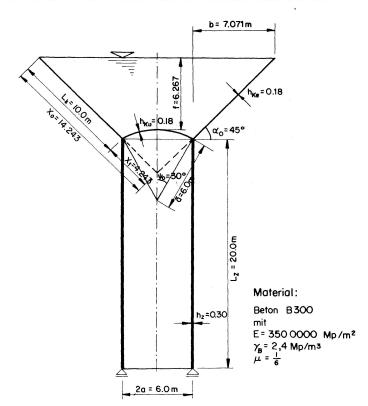


Fig. 2. System, Abmessungen und Materialangaben zum Tragwerk des Zahlenbeispieles.

Belastung

Das Tragwerk wird für die Lastfälle Eigengewicht g und Flüssigkeitsfüllung F untersucht.

$$\begin{split} g_Z &= 0{,}720 \; [\text{Mp/m}^2] \,, \\ g_{Ke} &= g_{Ku} = 0{,}432 \, [\text{Mp/m}^2] \,, \\ \gamma_F &= 1{,}0 \, [\text{Mp/m}^3] \,. \\ \\ &\qquad \qquad Hilfswerte \\ \\ Z\text{ylinder:} \quad k_Z &= \frac{\sqrt[4]{3\left(1-\frac{1}{36}\right)}}{\sqrt{3\cdot0.30}} = 1{,}3775 \quad [1/\text{m}], \end{split}$$

$$\begin{split} B_Z & = \frac{3 \cdot 10^6 \cdot 0,3^3}{12 \left(1 - \frac{1}{36}\right)} = 6942,85 \quad \text{[Mpm²/m]}, \\ k_Z \, l_Z & = 1,3775 \cdot 20 = 27,55 > 5. \end{split}$$

Kegel:
$$\lambda_h = \frac{0.18}{0.30} = 0.6$$
,

$$\begin{split} k_{Ke} & = k_Z \frac{0,7071}{0,6} = 1,4954 \quad \text{[1/m]}, \\ B_{Ke} & = \frac{3 \cdot 10^6 \cdot 0,18^3}{12 \left(1 - \frac{1}{36}\right)} = 1499,66 \quad \text{[Mpm²/m]}, \end{split}$$

$$k_{Ke}l_{Ke} = 1,4954 \cdot 10 = 14,954 > 5.$$

Kugel:
$$k_{Ku} = k_Z \frac{0.5}{0.6} = 1.2575$$
 [1/m],
 $B_{Ku} = B_{Ke} = 1499.66$ [Mpm²/m].

Berechnung

Es werden zunächst die Übergangsschnittkräfte gemäß Fig. 3a aus folgenden Lastfällen benötigt:

Eigengewicht g, Flüssigkeitsfüllung F, Überzählige $X_1^{(2)} = 1,0$ [Mp], Überzählige $X_2^{(2)} = 1,0$ [Mpm].

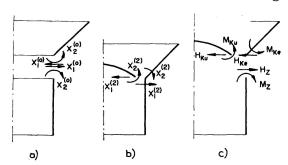


Fig. 3. Definition der Übergangsschnittkräfte X_1 bzw. der Randschnittkräfte H_{ik} bzw. M_{ik} .

Die Belastungszahlen δ_i für die Lastfälle ergeben sich in vorstehender Reihenfolge mit den Beziehungen aus Tafel 8, Zeile 1 bis 4 wie folgt:

$$\begin{array}{lll} \delta_{10}^{(g)} &= + & 4,548 \cdot 10^{-4} \, [\mathrm{m}], \\ \delta_{20}^{(g)} &= -10,216 \cdot 10^{-4}, \\ \delta_{10}^{(F)} &= +20,254 \cdot 10^{-4} \, [\mathrm{m}], \\ \delta_{20}^{(F)} &= -49,116 \cdot 10^{-4}, \\ \delta_{10}^{(X_1^{(2)})} &= + & 0,276 \cdot 10^{-4} \, [\mathrm{m}], \\ \delta_{20}^{(X_1^{(2)})} &= + & 0,380 \cdot 10^{-4}, \\ \delta_{10}^{(X_2^{(2)})} &= + & 0,380 \cdot 10^{-4} \, [\mathrm{m}], \\ \delta_{20}^{(X_2^{(2)})} &= + & 1,046 \cdot 10^{-4}. \end{array}$$

Im weiteren Verlauf der Berechnung werden auf dem üblichen Wege die Überzähligen $X_1^{(2)}$ und $X_2^{(2)}$ ermittelt. Damit lassen sich für die einzelnen Tragwerksteile Zylinder, Kegel und Kugel die Randschnittkräfte H_{ik} und M_{ik} (Definition gemäß Fig. 3c) zusammenstellen, die sich wie folgt ergeben:

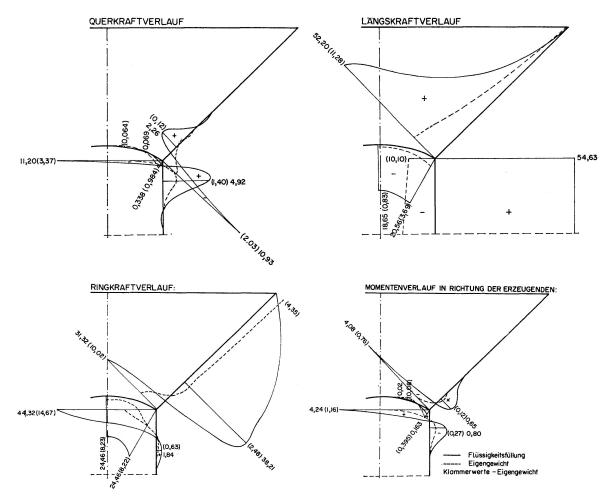


Fig. 4. Schnittkraftverlauf im zusammengesetzten Schalentragwerks nach Bild 2 für Eigengewicht und Flüssigkeitsfüllung.

Lastfall Eigengewicht:

Zylinder: $H = -3,367 \, [\text{Mp/m}]$ $M = +1,156 \, [\text{Mpm/m}],$ Kegel: $H = +2,872 \, [\text{Mp/m}]$ $M = +0,762 \, [\text{Mpm/m}],$ Kugel: $H = +1,969 \, [\text{Mp/m}]$ $M = +0,394 \, [\text{Mpm/m}].$

Lastfall Flüssigkeitsfüllung:

Zylinder: $H = -11,205 \, [\text{Mp/m}]$ $M = +4,242 \, [\text{Mpm/m}],$ Kegel: $H = +15,460 \, [\text{Mp/m}]$ $M = +4,079 \, [\text{Mpm/m}],$ Kugel: $H = +0,676 \, [\text{Mp/m}]$ $M = +0,163 \, [\text{Mpm/m}].$

Der sich damit ergebende Schnittkraftverlauf ist in Fig. 4 angegeben.

4. Literatur

Hampe, E.: Statik rotationssymmetrischer Flächentragwerke. Band 1—4, VEB Verlag für Bauwesen, Berlin (1963, 1964).

Zusammenfassung

Für die Berechnung von zusammengesetzten rotationssymmetrischen Flächentragwerken werden Rechenbehelfe angegeben, die Berechnung der Kombination zwischen Zylinderschalen, Kegelschalen und Kugelschalen unter Einbeziehung der wichtigsten Belastungsfälle — einschließlich Temperaturbelastung — in einer einfachen Form möglich macht.

Summary

Means are indicated for the calculation of the surfaces of revolution which simplify the design of combinations of cylindrical, conical and spherical shells, taking into account the cases of the most important loads including changes in temperature.

Résumé

On indique pour le calcul des surfaces de rotation des moyens qui simplifient le calcul des combinaisons de coques cylindriques, côniques et sphériques en tenant compte des cas de charges les plus importants y compris les changements de température.