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Northwestern University, Evanston, Illi- Defense, Khartoum, Sudan
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Introduction

The increasing interest in the analysis of prismatic shell structures, also
known as folded or hipped plate structures, in the last few years has led to the
development of several techniques of analysis. GAAFAR [1]%), YIirtzHAKI [2],
ScorpELIs [3], ParME and SBAROUNIS [4] and MEEK [5], among others, sug-
gested approximate methods for analyzing simply supported prismatic shell
structures. Reviews of the various approximate methods for analyzing such
structures can be found in the report of the ASCE Task Committee on folded
plate construction [6], in which an extensive list of references is given, and in the
work of POWELL [7]. An exact method for analyzing the same problem was pre-
sented by GorpBerG and LEvE [8]. More recently the analysis of continuous
prismatic shell structures has received some attention. Yirzuaxr and RErss [9],
SuarMA and Govar [10], and Beaurarr [11] discussed approximate methods
for analyzing continuous prismatic shell structures. Exact solutions for such
problems have been suggested by Leg, Purmaxo and Lin [12], PuLyaxo and
LEE [13], and GoLDBERG, GUTZWILLER and LEE [14].

This paper presents a method for analyzing multiple bay, multiple span
prismatic shell structures, continuous over intermediate transverse diaphragms
and simply supported at the two end diaphragms as shown in Fig. 1.

The proposed method is based on the following assumptions: The material
is homogeneous and isotropic with equal moduli of elasticity in tension and

1) Numbers in brackets refer to items in the list of References.
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compression; it is not strained beyond its elastic limit; plane sections of each
individual plate remain plane after bending; the displacements are small for
each plate; the supporting diaphragms are infinitely rigid in their planes but
flexible normal to their planes; and the influence of the membrane forces on
the bending of the plate is neglected. These assumptions result in tow fourth-
order differential equations, which govern the bending of the plate under the
action of the normal load component and the membrane action of the plate
under the in-plane load components.

End diaphragm

Intermediate
diaphragm

Interior bay 4*:___" L_z-}—Exrerior bay

Fig. 1. Prismatic shells with intermediate diaphragms.

End diaphragm

End diaphragm

Diaphragm i

Plate B

End diaphragm

Fig. 2. Orientation of coordinate axes.

The adoption of a clear sign convention is essential especially when the proh-
lem is programmed for computer analysis. The three orthogonal coordinate axes,
@, y and z are taken, respectively, along the longitudinal, transverse and
normal directions, as shown in Fig. 2, with the corner as the origin. The angle 8,
which defines the slope of each plate, is measured clockwise from a horizonal
plane passing through the origin to the positive y axis. 8 is the absolute value
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of the acute angle between the horizontal plane and the plane of the plate. The
positive directions of the load components X, ¥ and Z, and the stress result-
ants are shown in Figs. 3a and 3b. The displacement components, «, v and w are
positive in the positive directions of the coordinate axes z, y and z, respectively.
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a) Membrane stress resultants.
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b) Bending stress resultants.

Fig. 3. Positive directions of stress resultants and load components.

The method of analysis consists of the following steps:

a) The reactions at an intermediate diaphragm are resolved into components
along the normal and transverse directions, respectively. The exact distributions
of the diaphragm reactions are not known a priori and will be approximated by
uniform step functions for the normal and transverse components, shown in
Figs. 4a and 4 b respectively, which are then expaned into double Fourier series
satisfying the boundary conditions at the two transverse edges.

b) The normal and transverse displacements at the center of each step reac-
tion resulting from the applied loads, in the absence of the intermediate dia-
phragms, are determined.

¢) The flexibility influence coefficients at these locations are calculated by
applying unit step reactions along the normal and transverse directions,
respectively.

d) Using the results of steps b and ¢, the correct value of the step reactions
along the normal and transverse directions are determined from the compata-
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bility conditions that the normal and transverse displacements at the center of
the step reactions vanish.

e) With the step reactions at the intermediate diaphragms along the normal
and transverse directions known, superposition of steps b, ¢ give the total stress
resultants and displacements of the structure due to the applied loads.

b
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a) Normal component.
b
i
b/2s
A i
z

b) Transverse component.

Fig. 4. Approximation by step functions of reactions of intermediate diaphragm at x=x;.

Bending Action

The differential equation governing the bending of the plates [15] subjected
to normal load component Z is given by

Viw = 2Dy (1)
in which D=FEh3/[12 (1 —u?)], ~ denotes plate thickness, £ the modulus of
elasticity, and p Poisson’s ratio. The general solution of Eq. (1) is

W = Wy, +wW,, (2)
in which w, is a particular integral and w, the complementary solution. A
particular integral satisfying Eq. (1) and the boundary conditions at the two

transverse edges can be obtained by expanding w, and Z in double series of the
form
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co ao
Wyl e, BN CCORIB 7, (3)
m=1 n=
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7 (1) =52 A I o0t 00s B (4)
m=1 n=0

where a=m=/a, B=n=[b, and W, and Z, , are Fourier coefficients. Substi-

tuting Kqgs. (3), (4) into Eq. (1) glves
V/

mn

1 LS e ) .
Wmn =0 .D (062-’:-‘82)2’ (‘))
: : 4 ;
in which A — EJJZ (x,y)sinaxcosBydedy for n =0, (6)
0 0
a
2
= (Z ) sin o x d fortn—(% (7)
Nl a

In view of Eq. (3) it can be seen that the complementary solution w,, satis-
fying the homogeneous part of Eq. (1) and the boundary conditions at x =0 and
x=a, can be taken in the form

— = > e sinior (8)
m=1
where ¥,, is a function of  only. Substituting Eq. (8) into Eq. (1) and setting
Z =0, it can be shown that ¥,, takes the form

B — KB, eV B, e VB ofle ¥l ecrjien i (9)

where K is a load factor introduced to nondimentionalize the constants of
integration B,,, to B,,, and will be defined for particular loading later.

The complete solution is then obtained by substituting Eqs. (3), (8), (9) into
Eq. (2), yielding

o .Z Z HmnSlnaa'COSBJ'I_I{ Z {Blm y_’_Bzme—ay
m=1 n=0 m=1 (10)
+B;aye*?+ B, aye*VEsinax.

3m

The corrsponding bending stress resultants [15], shown in Fig. 3b, are given by

v =) e Z o2+ ufBA) W, sincxcosfy+DK Z a?{B,, (1 —p)ex?

m=1 n=0 =l
+ By (1 — ) e+ By [y (1 — p) — 2 p] €2V (11)
+B4m[“y(l—}L)’l‘z#]@*azf}ﬁnam,
M s =D (B wad) W, sin aw cog By — DR S o2 {8, (1~
m=1 n=0 =
+B2m(1_lu') e—1y+B3m[“y(l_#)+2]€°‘U (]2)

+Bypley(1—p)—2]e Y} sinax,
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(ve]

> aBf W, cosaxsinBy

1 n=1

M, =M, =D(—p)

Yy
i

108

_D(l_f“b)]( Z OC2{Jelmemy_‘BZmBkmy (13)

m=1

+B3nl(ay+1)eaU+B4])1( ay)e_ay}COSOC.T,

Q=D Z (> +B%) W, cos axx cos By

m=1 n=0

- (14)
—2 DK 3 ot B, e*¥—_ B, ¢l coscr,
m=1
Qy =-D Z Z B o +Bg mnsmocxsin[o’y
=1 7::1 (15)
—2DK } o3{B;,e*¥+B,,e*sinaxz,
m=1
R, =D 3 a{o®+f(2— )} W,,cosawcosfy
m=1 n=0
2 (16)
=IO Z 3{Blm #)emy+B27]l(1_#)e—azj
m=i
+Bylay(1—p) +2(2—m)] ¥+ By, [y (1 —p) — 2 (2— )] e~} cos e,
R, ==D 3 3 BI*+a*2—p)] W, sinavsin By
m=1 n=1
(17)

+DJ{ Zl Ola rBlm( nu‘)eay*BZM(l_.u’)e—ay

m=1

+B3m[°‘y(l _:U') s (1 +/~L)] eay+B4m[‘xy(:u'_ 1) _'(1 +/.L)] e_ay}Sinax!

in which M, M, and M,, are the longitudinal, transverse and torsional mo-
ments per unit length respectively, ¢, and @, the longitudinal and transverse
shearing force per unit length respectively, and R, and R, the longitudinal and
transverse edge reactions per unit length respectively.

Membrane Action

For the common case where the longitudinal in-plane load component X is
zero, the differential equation governing the plane stress problem of the plates
[16] subjected to the transverse load component Y is given by

0 Y
i — (18)
oy’
where ¢ is an Airy stress function related to the stress resultants by
et (19)

oy
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N = c’f [Y dy, (20)
09
e e ¢ : (21)
g 0x 0y

in which N,, N, and N, are the longitudinal normal force, the transverse
normal force, and the membrane shearing force, per unit length, respectively.
The general solution of Eq. (18) takes the form

q!’ = ¢1J+¢C7 (22)

in which ¢, is a particular integral of Eq. (18) and ¢, the complementary solu-
tion.

A particular integral satisfying Eq. (18) and the boundary conditions at the
two transverse edges @ =0 and x =a, can be obtained by expanding ¢, and Y in
double series of the form

by= 3 3 dpsinazcosBy. (23)
m=1 n=0
A = Z Z, anSinazsinBy, (24)
m=1 n=1
a b
. ; 4 ; :
in which Wt 0 fJY (@,y)sinaxsinBydedy. (Z5)

Integrating Eq. (24) with respect to y yields

J[Ydy-- 3 37,

mmn
m=1 n=

in which F () is a constant of integration and can be expanded in a single series
of the form

smomcosﬁy-{— () (26)

@
I = DRI e (27)
m=1

substituting Eq. (27) into Eq. (26) leads to

[Ydy = —7,221 72‘ )mnﬁsmam0056J+771V1Ensillocx, (28)

substituting Eqs. (23), (24), (28) into Eq. (18) and solving for ¢,,, yield
i — —&1—217,” forem — 0, (29)
Prun, = ﬁ:ym for n + 0. (30)

Referring to Eqs. (19) to (21), it is seen that F, given by Eq. (29) has no effect
on the in-plane stresses and is given only for completeness of the solution.
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In view of Egs. (19), (23), the complementary solution ¢, satisfying the
boundary conditions at the transverse edges x =0 and x =a, can be taken in the
form

8

lfm sinax, (31)

qsc:

m

Il

in which ¢, is a function of y only. Substituting Eq. (31) into Eq. (18) and
setting ¥ =0, it can be shown that the solution of the resulting equation takes
the form

L{Alm (Gt +A2m Eps +A3m 0‘3/6‘“’ +A4m aye—ay}’ (32)

l)l

in which L is another load factor which nondimentionalizes the costants of
integration A4,,, to 4,,,.
The complete solution of Eq. (18) is obtained by substituting Eqgs. (23), (31),
(32) into Eq. (22), giving
(,‘!)— Z Z ¢n1nSInaTCOSBJ+LZ{A1m y+A2me—0y
T e (33)

+ Ay xyedV+ A, cye*Visinax.

Substituting Eqgs. (24), (33) into Egs. (19) to (21) gives the membrane stress
resultants

= Z Z bmn BESinaz cosfy+ L Z ®{d, e (34)

m=1 n= m=1

+ Ay, e+ A4, (24+ay)e¥+A4,, (—2+ay)e*V}sinaz,

o0 o0} [eo]
AV e 2 o1 .
‘L\'!/ ) Z Z qsmna Slno(.’l,COSBy—L Z a2{A1meo¢y 3~
m=1 n=1 m=1 ( O)
+A2me_(xy+A3)1Layeay+A41n°‘yeﬁay}Sinax’
GO e o] @0
i3 1 2
*\T.r,u o5 Z Z ¢mn ocBCOSot.’ESlDBy—L Z o {Al m g 36
m=1 n=1 m=1 ( )
—A, e+ A, (14+ay)ev+A,, (1—ay)e>*V}cosax.

Membrane Displacements

The relationship between the membrane stress resultants and the longitudi-
nal and transverse displacements of the middle plate surface are [16]

Eh (ou Jv

A — 7l
E'h 8’0 ou

N ( = ) 38
Eh Jv  ou

N - e i S e e 39

Vo 2(1+M)(5%+9y) &
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Substituting Egs. (34), (35) into Egs. (37), (38) and solving for » and » yield
Iy B2 1
S E—h Z Z {‘#’mn G5l 9677111 ot p }m:e ﬁ} COS & COSB}/
L S xy —ay %) /
Z‘ {Alm(l'*_f"')e +A2m(l+/~1‘) +A3m( +°‘y+lu‘°‘y)e ’ ("LO)

X E—lzmzl

+A-1m(—2+0‘3/+#°‘?/) eiay}cosal’*‘ﬁs( )

o2 11 : :
v E]L Z Z{[.qum“,B-—gban-i-K,,”@ISH]O(&CSIHIB!/

m=1 n=1 (4:1)
L 00
— Eﬁ 'Z_la{Alm(l +[-L) emy—AQm(l J’_IJ’) eiay—Ai}m[(l —]“L) _“3/(1 +:U‘):| exl
Ay [0 =) ey (L )] eV sinaa+ - R ().

where ﬁS (y) and E%R(Cc) are constants of integration. These can be ex-

panded into single series of the form

So
S(y) = —+ Z S, cosBy, (42)
B ()= Y R s i) (43)
m=1
b
9 r
in which S, :b: ‘S (y) cos By dy = ) (44)
0
9
R,,L=£JR(x)sinax(lx (=152 8 ) (45)

0

Substituting Eqs. (36), (40), (41) into Eq. (39), multiplying both sides of the
resulting equation by cosfy and integrating with respect to x from zero to a
give

o 2) = 2)
Z%n +B ——sinfly — Z = 252#6 sinfy. (46)

n=1

Repeating the same proceduer, but multiplying both sides by sin 8y, integra-
ting with respect to y from zero to 6 and giving regard to Eq. (46) leads to
S,, =0 for all values of n.

It can be readily verified that the solutions, Eqs. (10), (40), (41), satisfy
the boundary conditions at the two simply supported transverse edges at x =0
andix—a ivel, N.—v—w=M_=—0.
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Applied Loads

For a uniformly distributed load in the longitudinal and transverse directions,
the Fourier coefficients Z,,, and Y, , defined by Eqgs. (6), (7), (25) are given
respectively by

7 —i0) for even m or n £+ 0, (47)
D — ;—i for odd m,n = 0, (48)
W =) for even m,n, (49)
W = Wiilﬂ; for odd m,n. (50)

For uniformly distributed dead load ¢ per unit area of the middle surface,
the load components are defined by

=gt (51)

7, = qcosf. (52)
The corresponding dimensional factor K and L in Eqs. (9), (32) are

K =a*qcosl/D, (53)

L =a®qsinf. (54)

The components of a uniformly distributed live load p per unit area of
horizontal projection are

Y = psinfcosb, (55)

Z = pcos?d. (56)

The corresponding K and L in Eqgs. (9), (32) are, in this case
K =a*pcos?0/D, (57)
L =a?psinfcosd. (58)

Reactions of Intermediate Diaphragms

The line reactions of an intermediate transverse diaphragm, diaphragm ¢ at
x=ux,, are resolved into normal and transverse components along the z and y
axes respectively for each individual plate. An approximation for the distri-
bution of the normal component Z (z,,y) can be obtained by dividing the
length b of the diaphragm into s equal divisions and assuming that the inten-
sity of the line reaction in each division is uniform. This approximation is
represented by the step function shown in Fig. 4a. The intensity of the step
reaction, the center of which is located at x =z, and y=y;. is defined by Z,;.
Similarly the distribution of the transverse component ¥ (z,,#) of the reactions
of diaphragm ¢ will be approximated by another step function as shown in
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<
o

Fig. 4b. The intensity of the step reaction, the center of which is located at
r=x; and y=y,, is defined by ¥;.

In view of Eqgs. (4), (24), the step reactions Z;; and Y;; can be represented
by the double Fourier series

[20] =0
Zy = Zl = Zwmn sincxxcosfy, (59)
m= =0
=] o0
2
Y, = > 2 Yyunsinczsinfy, (60)
m=1 n=1
in which
Ti+n Yjtc
4: ‘Zij . SZ'ij . .
L ijmn, = —5 lm —HsinaxcosBydrdy = sinf ¢ sin oca; cos By, (61)
ab =0 27 abp
Ti—n Yj—cC for n + 0,
Ti+n Yitce
/ L e e Ul f 0 62
0 —E;_I)I;v Tﬁsmocm By e Sy or n=20, (62)
T—m ui—c
1,-+17 Yi+c
o 4 Yoo ) y
iy = —lim “Usinaxsinpfydrdy = Igin ¢ sin o, sin 63
ijmn c Y Yi= J]
4 b n—0 27] bﬁ
xl n Yi—¢

and ¢c=0b/(2s).
For the normal step reaction Z;;, K and L in Egs. (9), (32) are given by

K =a3Z;cos0/D, (64)

L =a?Z;sing. (65)
For the transverse step reaction Y;;, K and L take the form

K =a*Y;cos0/D, (66)

L =a?Y¥;sind. (67)

The value of Z;; and Y; are obtained by applying the compatability con-
ditions that the nor mal and transverse displacement components at the center
of each step reaction are zeros. These conditions are expressed by

7’ S
: ﬁ Z uih) Zl,j +’LL,\ (e O (68)
1=1 j5=1
r S i
Z Z vklij}ij+v}(?cl =0, (69)

in which » denotes the number of intermediate transverse diaphragms, s the
number of step reactions in each diaphragm defined previously, w}; and v}, the
normal and transverse displacement components at point x;,, y; respectively due
to the applied loads alone, and w;;; and v,;,; the normal and transverse displa-
cement components at point z;,, 7, due to Z;;=1 and Y;; = 1 respectively. These
values of w and v are computed by means of Eqgs. (10), (41) respectively.
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Solution for Typical Interior Bay

As an illustrative example, consider the two-plate symmetrical bay in a
continuous prismatic shell roof such as the one shown in Fig. 1. Assuming that
the number of bays is large, for the purpose of analyzing a typical interior bay
this number may be assumed to be infinite for design purposes. Hence each
longitudinal edge lies in a vertical plane of symmetry and only one plate need be
considered. The boundary conditions on the two longitudinal edges are

N =0 (70)
ow

o (71)
veos—wsinf = 0, (72)
N,sinf+R, cosf = 0. (73)

Consider plate B of an interior bay shown in Fig. 2, which is subjected to
uniformly distributed dead and/or live loads, and normal and transverse step
reactions at the intermediate transverse diaphragms. Substituting the
Fourier coefficients Z,,,, and ¥, , from Egs. (48), (50); the load factors K and L
from Egs. (53), (45) for dead load, and from Egs. (57), (58) for live load; the
Fourier coefficients Z;;,,,, and ¥;;  from Eqs. (61) to (63) for the step reactions;
the corresponding load factors K and L from Eqs. (64) to (67); the displacement

components w and v from Egs. (10), (41); and the stress resultants R,, N,,. N,
from Egs. (17), (35), (36) into Eqgs. (70) to (73) lead to, for y=0,

Alm_A21n+A3m+A4m = 07 (74)
Blm_'B2m+BSm+B4m =0, (75)

A1171+A27n+7n77{_B1m(1 _/J“)+B2m(1 —."J“) +B3m(l +FL) +B4m(1 +:U“)} COt’ze

16 (b/a) 1 [ m*—(pmPnPa?[b?) 2

A Z_ll  [mP+ (PP i
8sin a2, = Ly m?— (un?a?/b?) | . ;
T mtat(afb)sing, Ly wE| [t (2 az/mw)]‘z}smﬁ CRRDY,
Alm (1 +1U“) _A?.m (1 +lu') _A3m (1 _PL) _A4)7L(1 _rLL)

@\212(1—p) (@48 (1) b
ol (h) T(Bl'irz+B2'rrz) o _A(%) W ([ l)
A (9)2 48 (1 —p?)sinaa, [(c/b) 2 sinfecosfy; |

“\n mmdcos® | mt @ L n[md+ (n2a?/b?)lE

andi¥ forsye—ih:
Almeab_A2me'—ab+A3m(l+°‘b) (’,‘Xb-’rAMn(l—ocb) e_ab = 0: (78)
Bi1yne* =By, e+ By, (1+ab)e*®+ B, (1—0b)e =0, (79)
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A, e+ A, e+ A, 0be?d+ A, abe*®—ma{B, (1—p)e?
“B2m(1_:LL)efo‘b_FBmu[ab(l_#)_(14—“)]6&0
Byl (1) + (14 )] e} cot? 6 =
_y 18(b/a) 16 b/a 1 [l m* — pm‘znzc&z/bal (80)
m3 nzl [m?+ (n2a?/b?)]? |
8 sin o ; - ik m?— (un?a?/b?) .
+Em27-r4(a/b)sin€_”:123 n2 | [m+(n?a?/mb?)]? sinjdesin ey,
Ay (1 +p)e*®— Ay, (L+p)e*0— A5, {(1- p)—ob(l+pu)}ex®
12 (L—p
—A4m{(1_ﬁb)+ab(1+#) —ab+(h) _(mi{Blmeab
+Byme P+ Bypabe*®+ By abet} = (81)
Al a\248 (1 —p?) a\2 48 (1 —u?)sinaz; ((c¢/b)
h (m )8 77 m 7 cos 0 m?

DER . sinfccosBy; |
+; Z G0 n[m?+(n2a®/b2)2’

In Eqs. (76), (77), (80), (81), the values of A, e and o are set as follows. When
the structure is subjected to uniformly distributed dead and/or live loads in the
absence of the intermediate diaphragms, A=1 and o =e=0. For the case of the
normal step reaction Z,;, acting alone, =1 and A=e=0. Similarly when the
transverse step reaction Y;; acts alone, e=1 and A=0=0. The eight constants
of integration 4,,, to 4,,, and By,, to B,,, for each harmonic are readily com-
puted by means of Eqs. (74) to (81), and the intensities of the step reactions 2y
and Y;; by means of Eqs. (68), (69).

The analysis of the interior bay of a continuous prismatic shell structure
subjected to uniform dead load of intensity g, is programmed for a CDC 3400
computer following the steps outlined above. The shell parameters are taken as
alh=200,bla=0.15, u=0.2 and 6 ==/6. The stress resultants and displacements
for one intermediate diaphragm located at midspan and two intermadiate dia-
phragms at the third points, are calculated to the number of terms where the
last term is less than 1/,9, of the partial sum of the series.

The accuracy of the method is dependent upon the number of step reactions
s. which is taken as 5, 7 and 9. For s=9, the maximum normal and transverse
displacement components at the intermediate diaphragms are less than 19, of
the maximum normal and transverse displacement components in the structure
respectively. For design purposes, this degree of accuracy seems to be sufficient
and s=9 will be adopted in the illustrative examples. Better accuracy can of
course be obtained by using larger value of s. The stress resultants, the normal
component of the displacements and the step reactions at the intermediate
diaphraoms are shown in Figs. 5 to 10. It is seen, as expected, that the magni-
tude of N,, N,,, and w decreases with the increase of the number of interme-
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a) One intermediate diaphragm. b) Two intermediate diaphragms.

Fig. 5. Longitudinal normal force, N,.

a) One intermediate diaphragm. b) Two intermediate diaphragms.

Fig. 6. Transverse normal force, NN, .
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Fig. 8. Transverse bending moment, M.
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Fig. 9. Normal displacement component, w.
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Fig. 10. Normal and transverse components of step reactions at intermediate diaphragms.

diate diaphragms, as shown in Figs. 5, 7, 9 respectively, whereas the magnitude
of N, and M, remains practically the same except at the intermediate dia-
phragms as shown in Figs. 6, 8. It is expected that the errors in N, and M, at
the intermediate diaphragms are larger than elsewhere due to the fact that the
normal and transverse displacement components at the intermediate diaphragms
vanish only at the center of each step reaction as prescribed by Egs. (68), (69).
The small error in the normal displacement component at the diaphragms can
be seen in Fig. 9.

Discussions and Conclusions

To compare the results of the proposed method with those obtained by
GoLpBERG, GurzwinLeEr and LEr [14] using finite difference technique, a
two-plate, single bay prismatic shell structure, similar to the one shown in
Fig. 2, simply supported on one transverse edge and fixed on the other, with
both longitudinal edge free and subjected to uniformly distributed live load of
intensity p, is analyzed by the proposed method. This structure may be treated
as one half of a continuous prismatic shell structure, twice as long in longitu-
dinal span, simply supported on the two transverse edges and continuous over
a center diaphragm. The center longitudinal edge lies in a plane of symmetry
and the two outer longitudinal edges are free. Hence only one plate need be
analyzed.

The boundary conditions on the free longitudinal edge are

N, =0, (82)
N, =0, (83)
M, =0, (84)
R, =0. (85)

Taking ¥ =0 as the free longitudinal edge, as in plate 4 of Fig. 2, appropriate
substitution for the stress resultants in Eqs. (82) to (85) as before leads to

Alm
Blm(l -—-‘LL)

A91n+A3m+A4m =

0,
'—B2m( ) ‘B3m(1+,u‘) B4m(1+}u‘):0>
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16 (b/a) s 1| (,ungaz/mzbz)l
A1m+A2nl_ m3 5 ZSJF ].— n2 2/771,2[)2)]ZI
(88)
8(bja) sin o 2, 1. 1—(un®a®m2b%)) . :
m2mtsin n;mﬁll~[1+(n2a2/m262)]2 sin Scsinfy;,
4
Bim(l—p)+ By, (b=p)+28B;, —28B,, = “)
2 (89)
4sin o, 2 w+ (n2a?/m?b?) 5 1
% (m )t cos 8 COSQ{#(C/b)+;n;2 [+ (a2 mE BA)E schcosBij.

The boundary conditions on the central longitudinal edge, which lies in a
plane of symmetry, are given by Egs. (78) to (81).

The solution is obtained in identical manner as before. A comparison of
the stress resultants N, and M, is shown in Fig. 11. It is seen that the proposed
solution is in good agreement with the extrapolated solution given by GoLp-
BERG, GUTZWILLER and LEE [14]. The agreement is closer in N, than M.

The proposed method of analysis is quite general and can be used for the
analysis of any bay of a multiple span, multiple bay prismatic shell structures
simply supported on the two transverse edges and continuous over interme-
diate transverse diaphragms. An extension of the method to include flexible
intermediate transverse diaphragms presents no fundamental difficulties. In

05

ofx

-05

0.05

b) Transverse distribution of transverse bending moment, M, .

Fig. 11. Comparison of solutions by GorpsErG, GurzwirLer and Lee and proposed

method.
—-—-—- coarse grid
_______ fine grid GorLpBERG, GUTZWILLER and LEE [14]
———— extrapolation }

———— proposed method
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this case, Bqs. (68), (69) should be modified to take into consideration the
deflections of the intermediate diaphragms due to the step reactions.
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Summary

The theory of elasticity is applied to the analysis of multiple bay, multiple
span prismatic shell structures, continuous over intermediate transverse
diaphragms and simply supported at the two end diaphragms. The exact
distribution of intermediate diaphragm reactions is approximated by uniform
step functions expanded into double Fourier series. A comparison of the results
with those obtained by a finite difference technique is also presented.

Résumé

La théorie de 1’élasticité est appliquée au calcul des formes prismatiques
& baies multiples et & travées multiples, continues sur des diaphragmes inter-
médiaires et simplement appuyées aux deux diaphragmes extrémes. On obtient
une approximation de la distribution réelle des réactions aux diaphragmes
mtermédiaires en développant des fonctions en escalier uniformes en double
série de Fourier. On compare également les résultats ainsi obtenus avec ceux
donnés par I’application d’une méthode aux différences finies.

Zusammenfassung

Die Elastizititstheorie wird auf die Analyse mehrfeldriger, durchlaufender
Faltwerke, mit Querscheiben an den Enden und bei den Zwischenunterstiit-
zungen, angewandt. Die genaue Verteilung der Reaktionen auf den Zwischen-
querscheiben wird angenihert ausgedriickt durch Stufenfunktionen, die in
doppelte Fourierreihen entwickelt werden. Ein Vergleich mit den durch ein
Differenzenverfahren ermittelten Ergebnissen ist ebenfalls dargestellt.
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