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Free Vibration of Beam and Slab Bridges
Oscillations libres des ponts a dalle nervurée

Freve Schwingung von Balken- und Plattenbriicken

K. T. SUNDARA RAJA TYENGAR R. NARAYANA TYENGAR
Dr. Ing., Professor, Department of Civil M. Se. (Engg.), Research Scholar, Depart-
Engineering, Indian Institute of Science, ment of Civil Engineering, Indian Insti-
Bangalore-12 tute of Science, Bangalore-12

A clear understanding of the dynamic behaviour of a bridge is an essential
pre-requisite for an efficient design and construction. But the dynamic analysis
is relatively more complex than the static analysis and perhaps due to this
reason the dynamic behaviour has not been studied thoroughly in the past. For
an easy and comprehensive theoretical analysis certain simplifying assumptions
are necessary at one stage or the other, but how far the results of such an ana-
lysis correspond with the actual behaviour is of utmost importance. For in-
stance, the analysis of Incris [1], MisE and Kunir [2], in which the bridge is
assumed to behave like a beam is applicable only for bridges with long and heavy
girders as are usual in railway plate girder bridge practice. The above beam
theory if applied to beam and slab highway bridges can account only for the
beam type modes in which the plate action can be neglected. But for the calcu-
lation of response under moving loads or earthquake forces a complete and
accurate knowledge of the free vibration characteristics including both the modal
shapes and the natural frequencies is essential. For this it is clear that only a
theory which can account for all types of modes is appropriate.

The physical model which corresponds to the beam and slab bridge is a thin
plate with stiffeners, the edges perpendicular to the direction of traffic being
simply supported and the other two edges remaining free or elastically supported.
Though classical methods are available for analysing stiffened plates, the mathe-
matical details of such procedures are so complex that they are of restricted
application in practice. Many types of assumptions have been made to simplify
the analysis under statical loading by various investigators, the most popular
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one being that of replacing the system by an equivalent orthotropic plate [3, 4].
NarvokA and Yonezawa [5], Yamana and VELETSOS [6] have applied the ortho-
tropic plate theory for studying the free vibration of beam and slab bridges.

Narvora and YoxNezawa have solved the differential equation of free vibra-
tion of an orthotropic plate with two opposite edges simply supported and with
the other two either free or elastically supported. Characteristic equations have

been derived for two values of the torsional parameter u (= —V—W) viz. 0 and 1.
z Ly

p=0 implies H=D;+2D,, =0. This is possible only when both D; and D,
vanish independently. This point has been overlooked by them and hence the
equations given for the case of =0 are incorrect. Further it has been concluded
that the fundamental mode shape in the lateral direction has either one or two
nodal lines and that the beam theory fails to give an estimate of the fundamen-
tal mode frequency. This is also not correct. Yamapa and VELETSOS have
studied the vibration of I-beam bridges by the Rayleigh-Ritz method. The
structure has been considered as a plate supported on five identical beams of
which two are at the edges. The free vibration equation of an orthotropic plate
has also been solved by them for studying the bridge vibration problem using
the orthotropic plate theory. A few comparisons have been made between the
two approaches by Huaxa and WALKER [7] for five and nine beam bridges hav-
ing beams along the edges also. ;

SuxDARA Rasa IvENcARr and JacapisH [8] have studied the free vibration
of beam and slab bridges by expanding the deflection function in terms of the
unstiffened plate-eigen functions. The torsion of the beams has been neglected
in this analysis. JacaDpIsH [9] recently has analysed the same problem by the
Rayleigh-Ritz method using the plate-eigen functions which satisfy all the
boundary conditions exactly. The torsional rigidity of the beams has also been
considered in this investigation. In both the above investigations the bridges
are assumed to have only longitudinal beams.

Though the method of eigen functions or the Rayleigh-Ritz method are
more exact than the orthotropic plate theory, they are tedious in their mathe-
matical details and not suitable for a general presentation so as to be useful for
ready reference. But the results of an exact analysis are indispensable for study-
ing the usefulness and limitations of an approximate theory such as the ortho-
tropic plate theory. In the present work the orthotropic plate theory has been
utilised for studying the free vibration characteristics of single span beam and
slab bridges. The accuracy of the orthotropic plate theory has been demon-
strated by comparing the results with those of an exact theory. Results of
experimental work conducted to verify the theory have also been reported.
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FREE VIBRATION OF BEAM AND SLAB BRIDGES
Analysis

The differential equation governing the free vibrations of an orthotropic
plate is (Fig. 1)

ot W+ 2(D,+2D, ) 4 *rW i (1)
AR s G e oy P o
Where p = mass per unit area of the plate.
X
—3———
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i w
w
a EE :é:
Il B e Dttt v Fig. 1.

O] SIMPLY SUPPORTED

The boundary conditions simulating the bridge boundary conditions are
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oy D ox oy et dy 2
The solution of equation (1) can be taken as
Sy
I/an (x' y) == I:nn S SIn ])nl n t ' (4)
This reduces equation (1) into
d4 K’l'?b 2 H '])Lz 772 dz )f‘ﬂl n ])I' 7”;; 7T4 ﬁ ?3)2?771
— ‘ & - |0 5
dy* D, ot dy® " (Dy at /N0 ; )

where H=D,+2D,,.

A complete solution of the problem of free vibration is the one which satis-
fies both the differential equation (1) and the boundary conditions (2) and (3).
The satisfaction of the boundary conditions yields characteristic equations, the
real roots of which lead to the natural frequencies. Hence the existence of real
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roots of the different characteristic equations is essential for the plate to exe-

. The physically possible normal

cute normal modes, defined by Y, (y)sin "

mode solutions along with the corr espondmg frequency equations for different

cases are given in the following.
Case (A) H=D,+2D,, + 0.

X) 1/2 ’57)2 CL4 1/2
1 }L)(,u.“—l—F m”) , A ('"”) <72
= mn D?: ma

where u = H/VD,D,.

Only modes symmetric about the x-axis are possible and they are given by

Ymn (3/) Am” opel ml: < a5 Bm n cosh 18— m[: y’ (6)
; . _ (m=b\2. /D, e
where an 5 ( a ) Dy e I 1l - ;

nm +an =2 (m'wb)z E

The transcendental frequency equation is

T D (mwb)2 B
}8 o mn" ], a
tanh 2% = % ! — | tanh 2% (7)
2 B'mn o2 _& g 2
mn ™ Do\ a

The natural frequency parameter A, is given by

+ D ]/ D
— 4 _9 v
/\mn I:Tr T (an m b) D e (Bnm?n b) ] (8)

x

The corresponding eigen function ¥, , () may be taken as

COSh Amn Y 9 D1 (m ™ b)3 COSh Bm nlY

o
b mra Dy a b
Ymn (%) = cmn e - D1 [m 7= b\2 ,an 9)
cosh — S cosh
2 y

Antisymmetric modes do not exist since the corresponding transcendental fre-
quency equation does not have real roots.

A;’"” 12 2
2. ,LL—(,(L —lah ) ’ Amn =T,

Only symmetric modes are possible, with

Y, () = 1, (10)
B, =,

Lo

4
T

A2 \1/2
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Symmetric Modes

The frequency equation is

])1 (m rb)— 2

o IBHE n 7
t&]l IBHHI Ay s mir 5 anl.l H!H (12)
2 an 5 Dl m  b\2 )
ocs —
HHZ Dy 17l

The eigen function is

Omn Y Curak Dy (m o D\? ‘Bm nlY
Y, () = Shibng st 2l (13)
i J I Omn 92 Dy [mmb\2 Bnur
cosn mn -+ -_ZTU = CcOS ‘)
Antisymmetric Modes
The frequency equation is
B Dy (mmb\2|2
X T T,
tan ﬁmn s an Pos Dy\ a _ | tanh mn. (14)
2 ot 2 D1 [m o b\2 2
mn+"D—y a

The eigen function is
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sinh [3 el 5 s
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The frequency parameter A, is given by

N s 3 a \2./D, 2
Amn T [74 0 (181)1?1 ?_ﬂ) ﬁ” +2,u, ls (anﬁé) ]/D—U:l g (16)

C&SE (B) H — D1+2‘D.l‘y —
In this case the differential equation (5) for Y, , (y) becomes

d* Ifmn ais (Dr 7”’4 774 s ﬁ pr?lrm) Y Al O / (17)

dy4 ﬁ at DU mn

Y

For H to vanish both D, and D,,, must vanish independently since each is posi-

- A b ;
tive. Hence the boundary conditions at y = + - for this case become

2V 3y
d? Imn w4 d mn _ () (18)

dy? diy?
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mn

Symmetric modes: W () =l (19)
Antisymmetric modes: Y, (y) = 27 é_g. (20)

DN > 72

mn

For symmetric modes the characteristic equation and the eigen function are

%L n Lnn ¢
tan = = — tanh 22 5 (21)
cosh Cmn Y Omn Y
£ b b
and K?m (y) = =I5 : (22)
Cmn Amn
cosh —= cos

For antisymmetric modes the characteristic equation and the eigen function are

(0 &
tan mmn oo ta;llll'—)nn (23)
2 2
. o . . o 1
sinh ’"b" Y  sin Lb” g
and }-mn (y) = o - am” (24)
sinh sin
mab 12
where i — ( ) ( e 1) .

Discussion on the Solutions

In case (A) when D, +0 the characteristic roots f8,,, and transverse modes
Y, . are given by equations (7) and (9) respectively. In this case the transcenden-
tal equation (7) has only one root corresponding to n =1 associated with each

n’. When D, =0 the frequency parameter is A,,, ==* for any m and n=1. The
corresponding modal pattern V,,, is a rigid displacement given by equation (10).
It is interesting to note that this modal shape is the same as the fundamental
rigid body mode of a free-free beam and in such modes the plate behaves as a
beam simply supported at x=0 and x=a. In fact A, =7? is exactly the fre-
quency parameter of a beam with both the edges simply supported and with
flexural rigidity D,. Even when D, is not equal to zero the value of A, for
modes with #» =1 does not differ very much from =2 and also the modal shape
given by (9) is almost a rigid body displacement. The higher symmetric and
antisymmetric modes are covered by equations (12) through (16). When H =0,
it is found that in the lateral direction both symmetric and antisymmetric mo-
des exist with the same frequency parameter A, ==2 The symmetric mode
shape is a rigid displacement as in equation (10) and the antisymmetric shape
is a rigid body rotation about the x-axis.
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Presentation of Results

The different transcendental equations have been solved in detail and the
results presented for various values of %, o % elsewhere [10]. Here only the
Yy

values of A, for three symmetric modes (any “m’ and n=2, 3, 4) and three anti-
symmetric modes (any ‘m’ and n=1, 2, 3) have been shown in figures 2, 3 and
4. The value of A,,, for any ‘m’ and n=1 in the symmetric case may be taken
equal to 72 safely. For the fundamental mode (i.e.m=1,n=1) OEHLER [11] has

verified this by conducting experiments on existing bridges. The curves given
Dy
'D.'I
meter on A, is negligible. Moreover the effect of Poisson’s ratio to which the con-

stant D, is closely related is usually neglected in practice [4]. From figures 2, 3

refer only to the case of 5 =0, since it was found that the effect of this para-
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and 4 the effect of 1 on A, can be clearly studied. It may be seen that the
change in A, as p varies from 0 to 1 is quite pronounced. This contradicts the
conclusion of NARUOKA and YoNEezawa [5] who contend that the effect of u on
A 18 Very low.

Free Vibration of Bridges

The analysis and results hitherto presenetd can be directly applied to the
vibration of beam and slab bridges by determining the orthotropic plate rigi-
dities and the mass. The usual method of finding the rigidities is by distributing

the stiffness of the beams uniformly. Following such a procedure, for a bridge
Do BI
i o

having only equally spaced longitudinal beams —

B G
]’/DID/_ _Db 2’

where ‘s’ = number of beams, £/, GJ and y = flexural rigidity, torsional
rigidity and mass per unit length of the beams.
In evaluating p, the constant D, has been taken equal to v D, where D =

A% 3 . . . . .
1—)—(?1—1;), is the rigidity of the unstiffened plate.

The above method of finding the rigidities has been used in static analysis
with success. Such a simple procedure will be highly desirable in vibration
studies also, if the results obtained are sufficiently accurate. To investigate this
point, seven beam and slab bridge examples have been worked out for finding
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the natural frequencies and the modal shapes. The orthotropic plates have been
defined as explained above. The sectional properties of the bridges are shown in

table 1. It is assumed that the bridges have only longitudinal beams and also

Table 1. Sectional properties of bridges

Bridges & Rl E ﬂ e
o b beams Db Db pb

A 1 3 37.63 1.340 0.200

B 1 4 28.21 0.716 0.150

C 1 5 28.21 0.716 0.150

D 2 4 28.21 0.716 0.150

E 2 5 76.11 1.241 0.225

F 4 3 37.63 1.340 0.200

G 4 4 28.21 0.716 0.150

that the effect of Poisson’s ratio may be neglected. The results obtained by the
present theory have been compared in table 2 with those obtained by JAGADISH
[9] who has solved the same problems by the Rayleigh-Ritz method using plate
eigen functions. The modal patterns have been compared for three bridges in
figures 5, 6 and 7. From table 2 it may be seen that the natural frequency para-
meters predicted by the orthotropic plate theory compare well with the exact
values, particularly when the number of beams is more than three. This is ex-
pected since with larger number of beams the actual structure corresponds more
with the equivalent orthotropic plate.

=28.21; % =0.716; E—ms v=0

ElfS [ D
E-ZB2I, Db =0.716; o 0.15; v =0 ‘_L,—U_—U—U—I

I SYMMETRIC MODE I ANTISYMMETRIC MODE

I SYMMETRIC MODE I ANTISYMMETRIC MODE

T e N
e

I SYMMETRIC MODE I ANTISYMMETRIC MODE I SYMMETRIC MODE I ANTISYMMETRIC MODE
—— AUTHORS -——-- JAGADISH
— S ALTHORS | e JAGADISH
Fig. 5. Modal Shapes of Bridge B. Fig. 6. Modal Shapes of Bridge D.

ab =1, m = 1. alb = 2, m = 1.
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- Fig. 7. Modal Shapes of Bridge F.
I SYMMETRIC MODE I ANTISYMMETRIC MODE alb = 4, m = 1.

—— AUTHORS —--~ JAGADISH
Lo o E i
Table 2. Value of Apn = el with m = 1
Authors Jagadish
Bridges (Orthotropic Plate Theory) (Rayleigh-Ritz method)
ISM IISM TIASM II ASM ISM IISM TIASM II ASM

A 9.87 LT ) 10.15 13.61 9.21 11.22 9.93 13.01
B 9.87 11.01 10.10 13.23 9.68 10.52 9.76 12.78
C 9.87 10.89 10.09 12.84 9.31 11.35 9.96 13.39
D 9.87 15.82 10.80 28.53 9.86 15.73 10.66 29.70
E 9.87 12.61 10.34 18.66 9.42 12.51 10.27 19.03
K 9.87 41.97 14.31 98.35 9.86 40.50 14.02  124.80
G 9.87 39.73 13.52 97.09 9.86 40.60 13.23 103.10

Experimental Work

Experiments were conducted on five aluminium model beam and slab brid-
ges, for checking the use of orthotropic plate theory in the determination of
natural frequencies. The models were fabricated by attaching aluminium beams
to the plate by means of small brass screws. Complete integral action was
assumed and this was taken into account by noting that the beam-plate com-
bination behaves as T-beam and bends about a common neutral axis. Thus,
based on a suggestion of TimMosHENKO [12] the moment of inertia ‘/’ in equa-
tion (25) was taken as

hce?

[ = Ib+m,

(28)
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where /, = moment of inertia of the beam about its own neutral axis,
h = thickness of deck slab,

¢ = spacing of beams,
¢ = depth of the common neutral axis below the middle surface of the
deck slab.

The models were driven by an electromagnetic device, continuously chang-
ing the excitation frequency. A strain gage fastened to each of the models was
used as a vibration pick up to get a display on a cathode ray oscilloscope. The
frequencies of excitation at which the display on the oscilloscope shooted up
were taken as the resonant frequencies. The different modes were identified by
studying the nodal patterns, which were found by strewing fine saw dust on the
models. The results of only two models are presented here. The complete details
of the experiments and the results are given elsewhere [10]. The sectional details
of two models B, and B, are shown in figures 8 and 9. The experimental and
theoretical natural frequencies of these two models are given in tables 3 and 4.
Figures 10 to 14 show the actual nodal patterns of B, and B, in different modes.

Table 3. Natural frequencies of By in c.p.s. Dz/Dy = 8.396, n= 0.6735, p/p = 1.400

m=1 m =2
n Experimental = Theoretical Experimental  Theoretical
1 148 148.8 550 595.8
2 178 179.4 610 627.5
3 286 281.8 660 731.9
4 505 475.6 770 921.0
5 900 809.5 —_ ==

Table 4. Natural frequencies of Ba in c.p.s. Dz/Dy = 36.645, p = 0.6256, plp = 1.625

m =1 m=2

n Experimental  Theoretical Experimental  Theoretical
1 115 112.2 440 448.8

2 160 143.5 488 494.0

3 296 2917.1 620 641.3

-+ 598 578.8 890 913.7

5 1058 1013.0 — —

6 1820 1599.0 = =

The theoretical nodal lines have been shown in these figures by broken lines.
The comparison instituted in tables 3 and 4 between the theoretical and experi-
mental frequencies of models B; and B, shows that the orthotropic plate
theory predicts the natural frequencies with sufficient accuracy. In fact this
good comparison between the theoretical and experimental results was found
for all the five bridge models studied [10]. It may also be seen that even the
nodal patterns obtained theoretically are not very much different from the
experimental nodal patterns.
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Fig. 11. Model By m = 1, n = 3.

Fig. 13. Fig. 14.
Model By m = 1, n = 4. Model By m = 1, n = 6.

Fig. 12. Model By m = 2, n = 1.
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Summary

The free vibration equation of an orthotropic plate with two opposite edges
simply supported, with other two edges free has been completely solved. The
results for the natural frequency parameters have been presented in the form of
charts. The application of these results to the free vibrations of beam and slab
bridges has been explained. The results obtained by this theory for a few bridge
examples have been compared with the exact results and good comparison has
been found between the two. Experimental work conducted on aluminium mo-
del bridges also show that the orthotropic plate theory gives sufficiently accu-
rate results.

Résumé

Apres la résolution complete de 1'équation des oscillations libres d une pla-
que orthotrope a deux bords opposés simplement appuyés et deux bords libres,
on présente, sous forme d’abaques, les résultats obtenus pour les parametres
de la fréquence propre. L’application de ces résultats au probleme des oscilla-
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tions libres des ponts a dalle nervurée est expliquée. La comparaison, avec les
résultats exacts, des résultats obtenus de cette fagon pour différents ponts pris
comme exemples réleve une bonne concordance. Des essais exécutés sur des
modeles de pont en aluminium, il ressort également que la théorie des plaques
orthotropes donne des résultats d’une précision suffisante.

Zusammenfassung

Die Gleichung der freien Schwingung einer orthotropen Platte, bei der zwei
gegeniiberliegende Rinder einfach unterstiitzt und die tibrigen beiden frei sind,
ist vollstdndig gelost worden. Die Ergebnisse der Eigenwerte sind in Tabellen-
form dargestellt. Die Anwendung dieser Ergebnisse auf die freie Schwingung
von Balken- und Plattenbriicken wird erldutert. Die durch diese Theorie fiir
einige Briicken erhaltenen Ergebnisse wurden den genauen Werten gegeniiber-
gestellt; die dabei erzielte Ubereinstimmung ist zufriedenstellend. Versuche an
Aluminiummodellbriicken lassen ebenfalls erkennen, daf3 die Theorie der ortho-
tropen Platte hinreichend genaue Ergebnisse liefert.
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