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Dr. Ing., Professor, Department of Civil M. Sc. (Engg.), Research Scholar, Depart-
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A clear understanding of the dynamic behaviour of a bridge is an essential
pre-requisite for an efficient design and construction. But the dynamic analysis
is relatively more complex than the static analysis and perhaps due to this
reason the dynamic behaviour has not been studied thoroughly in the past. For
an easy and comprehensive theoretical analysis certain simplifying assumptions
are necessary at one stage or the other, but how far the results of such an
analysis correspond with the actual behaviour is of utmost importance. For in-
stance, the analysis of Inglis [1], Mise and Kunu [2], in which the bridge is
assumed to behave like a beam is applicable only for bridges with long and heavy
girders as are usual in railway plate girder bridge practice. The above beam
theory if applied to beam and slab highway bridges can account only for the
beam type modes in which the plate action can be neglected. But for the
calculation of response under moving loads or earthquake forces a complete and
accurate knowledge of the free Vibration characteristics including both the modal
shapes and the natural frequencies is essential. For this it is clear that only a
theory which can account for all types of modes is appropriate.

The physical model which corresponds to the beam and slab bridge is a thin
plate with stiffeners, the edges perpendicular to the direction of traffic being
simply supported and the other two edges remaming free or elastically supported.
Though classical methods are available for analysing stiffened plates, the
mathematical details of such procedures are so complex that they are of restricted
application in practice. Many types of assumptions have been made to simplify
the analysis under statical loading by various investigators, the most populär
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one being that of replacing the system by an equivalent orthotropic plate [3, 4].

Naruoka and Yonezawa [5], Yamada and Veletsos [6] have applied the orthotropic

plate theory for studying the free Vibration of beam and slab bridges.
Naruoka and Yonezawa have solved the differential equation of free Vibration

of an orthotropic plate with two opposite edges simply supported and with
the other two either free or elastically supported. Characteristic equations have

been derived for two values of the torsional parameter p I viz. 0 and 1.

u, 0 impües H=D1 + 2DXU 0. This is possible only when both Dx and D^
vanish independently. This point has been overlooked by them and hence the

equations given for the case of p 0 are incorrect. Further it has been concluded

that the fundamental mode shape in the lateral direction has either one or two
nodal lines and that the beam theory fails to give an estimate of the fundamental

mode frequency. This is also not correct. Yamada and Veletsos have

studied the Vibration of I-beam bridges by the Rayleigh-Ritz method. The

structure has been considered as a plate supported on five identical beams of
which two are at the edges. The free Vibration equation of an orthotropic plate
has also been solved by them for studying the bridge Vibration problem using
the orthotropic plate theory. A few comparisons have been made between the

two approaches by Huang and Walker [7] for five and nine beam bridges having

beams along the edges also.

Sundara Raja Iyengar and Jagadish [8] have studied the free Vibration
of beam and slab bridges by expanding the deflection function in terms of the
unstiffened plate-eigen functions. The torsion of the beams has been neglected

in this analysis. Jagadish [9] recently has analysed the same problem by the

Rayleigh-Ritz method using the plate-eigen functions which satisfy all the

boundary conditions exactly. The torsional rigidity of the beams has also been

considered in this investigation. In both the above investigations the bridges

are assumed to have only longitudinal beams.

Though the method of eigen functions or the Rayleigh-Ritz method are

more exact than the orthotropic plate theory, they are tedious in their
mathematical details and not suitable for a general presentation so as to be useful for

ready reference. But the results of an exact analysis are indispensable for studying

the usefuiness and Kmitations of an approximate theory such as the orthotropic

plate theory. In the present work the orthotropic plate theory has been

utilised for studying the free Vibration characteristics of single span beam and

slab bridges. The accuracy of the orthotropic plate theory has been demon-

strated by comparing the results with those of an exact theory. Results of
experimental work conducted to verify the theory have also been reported.
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Analysis

The differential equation governing the free vibrations of an orthotropic
plate is (Fig. 1)

D,
W

+ 2(D1 + 2Dxy)-
W

+ A d*W w
dx* ' "v"1 ' xv'8x28y2 y dy*

Where p~ mass per unit area of the plate.

'P~ä m (i)

b

-?
SIMPLY SUPPORTED

o|siM
Fig. 1.

PLY SUPPORTED

The boundary conditions simulating the bridge boundary conditions are

1.

2.

82W
W =——- 0 at x 0,a.

ox*
82W D, 82w

+
dy2 Dy dx2

W 2H-DX 83W
+ B.

The Solution of equation (1) can be taken as

dx2-8U=° at^ ±2

Wi„ •. mtrxfay) Ymnsm——smPmnt-

This reduces equation (1) into

d'Ym
dy*

2Hm*ttz d2Ym

D a2 dy2 Dy a*
PVmn

(2)

(3)

(4)

where H=D1 + 2Dxy.
A complete Solution of the problem of free Vibration is the one which satis-

fies both the differential equation (1) and the boundary conditions (2) and (3).
The satisfaction of the boundary conditions yields characterisS equations, the
real roots of which lead to the natural frequencies. Hence the existence of real
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roots of the different characteristic equations is essential for the plate to exe-

cute normal modes, defined by Ymn (y) sin The physically possible normal

mode Solutions along with the corresponding frequency equations for different
cases are given in the following.

Case (A) H D1 + 2DXV 4= 0.

1.
Ai \1/2

A.
PVmn^VS

<TT*

where p HjiDxDy.
Only modes Symmetrie about the x-axis are possible and they are given by

Ymn(y) =Ämnoosh^y + Bmnoosh^-, (6)

where J2Jmn
m^b\2JWx

a j 1 Dy

a2 +ß2 =2uT»ii ' rmn " r"

p-[p2-l +
Ai \*/2'

TT4

m tt ö\2

a

The transcendental frequency equation is

Di jimrb\2

tanh rmn
Pmn

'
ff2 Di Im il bV
Pmn Dy\ a

2 Di (niirby
°Cmn~~D^\a~)

tanh^p.

The natural frequency parameter Xmn is given by

1 IR a I v — 2 2

r{Pmnmb Z> ^ \rmnmb igl
The corresponding eigen function Ymn (y) may be taken as

cosh «mny a2

Ymn(y)

Di /mw6\2 ßmny

cosh^ """¦ "'V cosh^pm Z>„\ a

(7)

(8)

(9)

Antisymmetric modes do not exist since the corresponding transcendental
frequency equation does not have real roots.

/ Ai \1/2
2. ^^»-l+^J \mn TT2.

Only Symmetrie modes are possible, with

Ymn(y) l, (10)

D1 0, (11)

/ A2 \1/2
3. p< [p2-1+^| A_>vr2.
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Symmetrie Modes

The frequency equation is

j. Pmn ~mn

'mn

¦ Di /m7r6\
Pm«"!" Dyy a

The eigen function is

Ymn (y)

i lm,Trb\

u\ a I

i lmTrb\

y\ a j

tanh^p.

-,amny 2 Di Im-irbV ßmny
COSh^ "mn-^-[-^-) COS-^

: u =-J^-! '-

i CCmn oz Di Im ir bY Bm
COsh^- ßmn +^(—) COS^-

fl2)

(13)

Antisymmetric Modes

The frequency equation is

ßmn ß
tanj

The eigen function is

Di /mTr&yns
Dv \ a

ß2 +rmn~
Di lmvb\

amny
Sinn—r— "mn— r>

Ymn(y) - - +

lm,Trb\
Dy\~cT)

Di Im-nby

tanh^p.

sm
Imny

where Pmn

sinh-

nnrb\2-,/ Dx
DZ,

Di Im tt 6\2

Dy \ a

a" p+[p2-l +
Ai \1/2'

-B2in rm-,
intrbX2 -,\Da

%

The frequency parameter A,^ is given by

ßn
D

v- + 2ptT2 iß.
lmb) J Dx

1/2

Case (B) H D^D^ 0.

In this case the differential equation (5) for Ymn (y) becomes

VYm
dy*

+
Dx rth^TT*

_
ppmn\ y HR

t^ i t-\ I ¦'-•m/n. ^ *

Dy O* D„

(14)

(15)

(16)

(17)

For H to vanish both Dx and Dxy must vanish independently since each is positive.

Hence the boundary conditions at y 1 -~ for this case become

d2Y
dy2

in

dy3
0. (18)
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!• Knn ~ T2

Symmetrie modes: Ymn(y) 1. (19)

i—V
Antisymmetric modes: Ymn(y) 2 i%f-- (20)

2- Km > TT*

For Symmetrie modes the characteristic equation and the eigen function are

tan^ -tanb.£^ (2i)

cosh^ cos^
and Ymn (y) -*- + - _*-. (22)

cosh—g- cos—5-

For antisymmetric modes the characteristic equation and the eigen function are

tan^2 tanh-%^ (23)
Zi Zi

sinh^p sin^
and Ymn(y)= — + -*-, (24)

sinh-~- sm-jr-

lmTTb\2JDxwhere «mm (^-) ]/^
Ai \v*

Discussion on the Solutions

In case (A) when D1 =# 0 the characteristic roots ßmn and transverse modes
T^w are given by equations (7) and (9) respectively. In this case the transcendental

equation (7) has only one root corresponding to n= 1 associated with each
'm'. When Dx 0 the frequency parameter is /\„,n 7r2 for any in and n 1. The
corresponding modal pattern Ymn is a rigid displacement given by equation (10).
It is interesting to note that this modal shape is the same as the fundamental
rigid body mode of a free-free beam and in such modes the plate behaves as a
beam simply supported at x 0 and x a. In fact Xmn 7r2 is exactly the
frequency parameter of a beam with both the edges simply supported and with
flexural rigidity Dx. Even when Dx is not equal to zero the value of Xmn for
modes with n= 1 does not differ very much from 7r2 and also the modal shape
given by (9) is almost a rigid body displacement. The higher Symmetrie and
antisymmetric modes are covered by equations (12) through (16). When H 0,
it is found that in the lateral direction both Symmetrie and antisymmetric modes

exist with the same frequency parameter /\mn Tr2. The Symmetrie mode
shape is a rigid displacement as in equation (10) and the antisymmetric shape
is a rigid body rotation about the x-axis.
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Presentation of Results

The different transcendental equations have been solved in detail and the

results presented for various values of j, p, -^ elsewhere [10]. Here only the

values of A,^ for three Symmetrie modes (any 'm' and n 2, 3, 4) and three

antisymmetric modes (any 'm' and n 1, 2, 3) have been shown in figures 2, 3 and

4. The value of AmK for any 'm' and n 1 in the Symmetrie case may be taken

equal to tt2 safely. For the fundamental mode (i.e.m=l,n=l) Oehler [11] has

verified this by condueting experiments on existing bridges. The curves given

refer onlv to the case of -=^ 0, since it was found that the effect of this para-

meter on Amre is negligible. Moreover the effect of Poisson's ratio to which the
constant Dx is closely related is usually neglected in practice [4]. From figures 2, 3
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and 4 the effect of p on A^ can be clearly studied. It may be seen that the
change in Xmn as p varies from 0 to 1 is quite pronounced. This contradiets the
conclusion of Naruoka and Yonezawa [5] who contend that the effect of p on
Amn is very low.

Free Vibration of Bridges

The analysis and results hitherto presenetd can be directly apphed to the
Vibration of beam and slab bridges by determining the orthotropic plate
rigidities and the mass. The usual method of finding the rigidities is by distributing
the stiffness of the beams uniformly. Following such a procedure, for a bridge
having only equally spaced longitudinal beams D*

Dv''
EI' Db s,

H
P /ÄÄ i +

GJ s

Db2' (25), (26)

1+^-s, (27)
P_

_
P

^pb

where 's' number of beams, EI, GJ and y flexural rigidity, torsional
rigidity and mass per unit length of the beams.

In evaluating p, the constant Dx has been taken equal to vD, where D
Eh3

12(1- j is the rigidity of the unstiffened plate.
The above method of finding the rigidities has been used in static analysis

with success. Such a simple procedure will be highly desirable in Vibration
studies also, if the results obtained are sufficiently aecurate. To investigate this
point, seven beam and slab bridge examples have been worked out for finding



FREE VIBRATION OF BEAM AND SLAB BRIDGES 9

the natural frequencies and the modal shapes. The orthotropic plates have been
defined as explained above. The sectional properties of the bridges are shown in
table 1. It is assumed that the bridges have only longitudinal beams and also

Bridges

A
B
C

D
E
F
G

Table 1. Sectional properties of bridges

GJ
Db

1.340
0.716
0.716
0.716
1.241
1.340
0.716

a No. of EI
b beams Db
1 3 37.63
1 4 28.21
1 5 28.21
2 4 28.21
2 5 76.11
4 3 37.63
4 4 28.21

y
pb

0.200
0.150
0.150
0.150
0.225
0.200
0.150

that the effect of Poisson's ratio may be neglected. The results obtained by the

present theory have been compared in table 2 with those obtained by Jagadish
[9] who has solved the same problems by the Rayleigh-Ritz method using plate
eigen functions. The modal patterns have been compared for three bridges in
figures 5, 6 and 7. From table 2 it may be seen that the natural frequency
Parameters predicted by the orthotropic plate theory compare well with the exact
values, particularly when the number of beams is more than three. This is

expected since with larger number of beams the actual structure corresponds more
with the equivalent orthotropic plate.

0.716;

I SYMMETRIC MODE I ANTISYMMETRIC MODE

I SYMMETRIC MODE I ANTISYMMETRIC MODE

I SYMMETRIC MODE

AUTHORS

I ANTISYMMETRIC MODE

— JAGADISH

Fig. 5. Modal Shapes of Bridge B.
ajb 1, m 1.

I SYMMETRIC MODE

AUTHORS

I ANTISYMMETRIC MODE

JAGADISH

Fig. 6. Modal Shapes of Bridge D.
ajb 2, m 1.
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37.63,-gj= 1.34; -£• 0.21^=0

'TQj |Dj inj-"

SYMMETRIC MODE I ANTISYMMETRIC MODE

I SYMMETRIC MODE

AUTHORS

I ANTISYMMETRIC MODE

JAGADISH

Fig. 7. Modal Shapes of Bridge F.
ajb 4, m 1.

Table Value of X,
_Pmna2-f/ p

",-~ri2~~lD~x with m ¦¦

Authors
Bridges (Orthotropic Plate Theory)

I SM II SM I ASM II ASM

Jagadish
(Rayleigh-Ritz method)

I SM II SM I ASM II ASM

A 9.87 11.19 10.15 13.61 9.21 11.22 9.93 13.01
B 9.87 11.01 10.10 13.23 9.68 10.52 9.76 12.78
C 9.87 10.89 10.09 12.84 9.31 11.35 9.96 13.39
D 9.87 15.82 10.80 28.53 9.86 15.73 10.66 29.70
E 9.87 12.61 10.34 18.66 9.42 12.51 10.27 19.03
F 9.87 41.97 14.31 98.35 9.86 40.50 14.02 124.80
G 9.87 39.73 13.52 97.09 9.86 40.60 13.23 103.10

Experimental Work

Experiments were conducted on five aluminium model beam and slab bridges,

for checking the use of orthotropic plate theory in the determination of
natural frequencies. The modeis were fabricated by attaching aluniinium beams
to the plate by means of small brass screws. Complete integral action was
assumed and this was taken into account by noting that the beam-plate
combination behaves as T-beam and bends about a common neutral axis. Thus,
based on a Suggestion of Timoshenko [12] the moment of inertia '7' in equation

(25) was taken as

I=h +
hce2

(28)
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where Ib moment of inertia of the beam about its own neutral axis,
h thickness of deck slab,
c spacing of beams,
c depth of the common neutral axis below the middle surface of the

deck slab.

The modeis were driven by an electromagnetic device, continuously changing

the excitation frequency. A strain gage fastened to each of the modeis was
used as a Vibration pick up to get a display on a cathode ray oscilloscope. The

frequencies of excitation at which the display on the oscilloscope shooted up
were taken as the resonant frequencies. The different modes were identified by
studying the nodal patterns, which were found by strewing fine saw dust on the
modeis. The results of only two modeis are presented here. The complete details
ofthe experiments and the results are given elsewhere [10]. The sectional details
of two modeis Bx and J34 are shown in figures 8 and 9. The experimental and

theoretical natural frequencies of these two modeis are given in tables 3 and 4.

Figures 10 to 14 show the actual nodal patterns of Bx and i34 in different modes.

Table 3. Natural frequencies of Bi in c.p.s. DxjDv 8.396, /*. 0.6735, pjp 1.400

m 2

Experimental Theoretical

550 595.8
610 627.5
660 731.9
770 921.0

m — 1

n Experimental Theoretical

1 148 148.8
2 178 179.4
3 286 281.8
4 505 475.6
5 900 809.5

4. Natural frequencies of B4 in c.j.

m 1

n Experiment;al Theoretical

1 115 112.2
2 160 143.5
3 296 297.1
4 598 578.8
5 1058 1013.0
6 1820 1599.0

1.625

m=2
Experimental Theoretical

440 448.8
488 494.0
620 641.3
890 913.7

The theoretical nodal lines have been shown in these figures by broken Hnes.

The comparison instituted in tables 3 and 4 between the theoretical and
experimental frequencies of modeis Bx and _B4 shows that the orthotropic plate
theory predicts the natural frequencies with sufficient accuracy. In fact this
good comparison between the theoretical and experimental results was found
for all the five bridge modeis studied [10]. It may also be seen that even the
nodal patterns obtained theoretically are' not very much different from the

experimental nodal patterns.
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T=i?^r A # ^n25 U-

Fig. 8. Model Bi.
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1 j±. "4n^r+¥
Fig. 9. Model B4.

mm Ff

Fig. 11. Model Bi m 1, n 3.
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Fig. 10. Model Bi m 1, n 2.
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Fig. 13. Fig. 14.
Model B4 m 1, n 4. Model B4 m l,n 6.

Fig. 12. Model Bi ro 2, n 1.
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Summary

The free Vibration equation of an orthotropic plate with two opposite edges

simply supported, with other two edges free has been completely solved. The
results for the natural frequency parameters have been presented in the form of
Charts. The apphcation of these results to the free vibrations of beam and slab

bridges has been explained. The results obtained by this theory for a few bridge
examples have been compared with the exact results and good comparison has

been found between the two. Experimental work conducted on aluminium model

bridges also show that the orthotropic plate theory gives suffieiently accu-
rate results.

Resume

Apres la resolution complete de l'equation des oscillations fibres d'une plaque

orthotrope ä deux bords opposes simplement appuyes et deux bords fibres,
on presente, sous forme d'abaques, les resultats obtenus pour les parametres
de la frequence propre. L'application de ces resultats au probleme des oscilla-
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tions Iibres des ponts a dalle nervuree est expliqu6e. La comparaison, avec les
resultats exacts, des resultats obtenus de cette facon pour differents ponts pris
comme exemples releve une bonne concordance. Des essais executes sur des
modeles de pont en aluminium, il ressort egalement que la theorie des plaques
orthotropes donne des resultats d'une precision süffisante.

Zusammenfassung

Die Gleichung der freien Schwingung einer orthotropen Platte, bei der zwei
gegenüberliegende Ränder einfach unterstützt und die übrigen beiden frei sind,
ist vollständig gelöst worden. Die Ergebnisse der Eigenwerte sind in Tabellenform

dargestellt. Die Anwendung dieser Ergebnisse auf die freie Schwingung
von Balken- und Plattenbrücken wird erläutert. Die durch diese Theorie für
einige Brücken erhaltenen Ergebnisse wurden den genauen Werten gegenübergestellt;

die dabei erzielte Übereinstimmung ist zufriedenstellend. Versuche an
Aluminiummodellbrücken lassen ebenfalls erkennen, daß die Theorie der
orthotropen Platte hinreichend genaue Ergebnisse liefert.
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