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1. Introduction

Welded built-up members are being used more frequently in steel construc-
tion due to economy, convenience, and esthetics. The residual stresses produced
in the member as a result of the welding play an important role in the buckling
strength of the member.

I't hade been believed that residual stresses do not affect the elastic buckling
of structural members, but this is only true for column buckling of the Euler
type.

When a flat plate containing residual stresses is subjected to a thrust, it may
buckle in one of three ways according to the magnitude of the thrust, that is,
either elastic buckling, elastic-plastic buckling, or plastic buckling.

When a thin plate is subjected to compressive forces, shearing forces, or
their combination, the differential equation for the plate in the elastic range
takes the form [1]

D [&%2 - 8430 £ ?421 +h [a @Jrzv ,\62'50 +o ?27’.0] =0, (1)
s ALYk =0 ooy oA 3
where D = flexural rigidity of the plate = %{i&v—z),

w = deflection of plate,

0,,0, = normal stress components in the cartesian coordinates,

+y = shearing stress in the cartesian coordinates,

E = Young’s modulus,

h = thickness of plate,

v = Poisson’s ratio.
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This differential equation was solved for many cases under different boundary
conditions by TimosHENKO [1, 2] and many others.

From 1924, attempts to extend the theory of plate stability into the inelastic
range were made by F. BreicH [3], CEWALLA [4], Ros and EicHiNger [5].

In 1941, Mapsex noted and discussed qualitatively the effect of residual
stress on plate buckling [6]; his work led directly to the later recognition of
residual stress effects in columns.

As the theory of plasticity developed, new theories were presented for plas-
tic buckling. One was based on the deformation theory [7], and another on the
flow theory of plasticity [8, 9]. Later, both theories were modified by using the
SHANLEY coneept [10, 11, 12, 13].

In 1960. OxkErBLOM presented a paper [14] concerning the influence of
residual stresses on the stability of welded structures and structural members.
based on experimental results. His paper showed that there was a possibility
of elastic buckling of plate elements of a structure which had been fabricated by
welding.

In the same year, Yosniki, Fusira and Kawar [15) investigated analyti-
cally the influence of residual stresses on the elastic buckling of centrally
welded plates, and showed that the residual stresses could influence the elastic
buckling of a plate.

These two studies are apparently the only papers concerned with elastic buck-
ling of plates with residual stresses. There is no theoretical research other than
in the elastic range.

In fact, the method of analysis presented in this paper is believed to be the
first approach to the solution of the elastic-plastic and plastic buckling of plates
with residual stresses.

This paper is based on a dissertation [16] to which reference may be made
for detailed information on the history of the study of plate buckling and
for a complete summary of the theories and formulas involved.

2. Analysis of Buckling Strength

1. General Approach

The buckling strength of a plate with residual stresses is evaluated by the
energy method in this paper. The behavior of a plate is analyzed by the theory
of elasticity and by the two theories of plasticity (the secant modulus defor-
mation theory and the flow theory). These theories are based on relationships
between stress and strain which are described below, in Section 2.2.

The theorem of minimum potential energy [17] is valid for an elastic body;
it is valid also for a plastic body in which the reversal of strain is not allowed.
Expressions for the total potential energy of a plate with residual stresses were
derived in this study for the elastic and plastic ranges. In the plastic range, the
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expression was based on both the deformation theory and on the flow theory,
using the Shanley concept. By adopting a suitable stress-strain relationship for
each domain of the plate and by substituting the appropriate deflection func-
tions, the potential energy in the plate may be evaluated taking into account
the effect of residual stresses in the plate. The minimization of the potential
energy leads to the equilibrium condition according to the theorem of minimum
potential energy. When the Ritz method is employed to minimize the potential
energy, there results a set of simultaneous equations with respect to the coeffi-
cients which appear in the assumed deflection function. In the Ritz method, the
assumed deflection funetions must satisfy the geometric boundary conditions
and these functions must be as complete as possible. For buckling problems,
the set of simultaneous equations are homogeneous. The non-trivial solution of
this set of homogeneous simultaneous equations is possible only if the coeffi-
cient is equal to zero

The roots of such a coefficient deferminant will give the critical values of
buckling strength of the member, these corresponding to the characteristic
values, the lowest of which is the critical buckling strength.

2. Stress-Strain Relationship in the Elastic and Plastic Ranges

The behavior of the plate was analyzed by using the theories of elasticity
and plasticity in the elastic and the plastic parts respectively. For material
strained into the plastic range, two theories of plasticity were used, one being
the secant modulus deformation theory, and the other the flow theory. In the
plane stress problem, those theories are based on the following stress-strain rela-
tionship:

a) Elastic range, from the theory of elasticity [18, 19].

1 1 2(1+v)
= et — — D)
©“=F los =03 &= [ =va Yoy = Tew’ (2)
where €,.¢, = normal strain components in cartesian coordinates,

shearing strain in cartesian coordinates.

I

Yy
b) Plastic range, from the secant modulus deformation theroy [7].

for loading:

€x = T loir Sl U_U] ’ €& = T [Oy T U.r] 5 3 e (R Ty (3)
T
where E =,
€
O = intensity of stress, (4)
et intensity of strain;




214 YUKIO UEDA - LAMBERT TALL

for unloading (the material is assumed to behave completely elastically):

el i

1
v g iy

1
detics 7 [do,—vda,], de, 7

[do, —vda,], Ay, =

where the relationship is given in the form of a variation to eliminate the effect
of a permanent set.

c¢) Plastic range, from the flow theory [20].

for loading: S = % [A Gy — (v+ 2 ; I)d'y:| 5
: 1 A—1 A+3
€ =-E~[— (V+ ou Uz I dﬂ], (6)
| , ()
\ Vi

where €,,¢, = rate of change of strain components in the cartesian coordinates,

u
¢,.. 0, = rate of change of stress components in the cartesian coordinates,
A = B|E, =l|«t (ratio).
for unloading:
: T2 . : e : ; 2(1+v) =
G.EZEI:G.E_VGy]’ Ey:'E'[O'U—VO"T], '}/_IUZT’T:EU. (f)

3. Residual Stress Distribution

Steel structures fabricated by welding contain residual stresses due to the
plastic deformations set up by the temperature gradient induced at welding
21 22 23]

In general, two residual stress patterns may be regarded as typical for
welded plates and for shapes fabricated from plates by welding. One is that due
to an edge weld, and the other that due to a center weld [21, 22].

The buckling strength of these plate elements may be investigated on the
basis of these two distributions.

It is advantageous to simplify the residual stress distribution for the ana-
lysis of the buckling strength of plates [22, 24]. The residual stress pattern used

‘ in this study will be of the form shown in Fig. 1, which corresponds to the

+
O<|>

(a)

Fig. 1. Usual residual stress distributions in edge welded plates.
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pattern obtained in experimental work. For this study the residual stress distri-
bution of Fig. 2a was chosen as a simple approximation of the true pattern. By
adjusting the appropriate parameters, this pattern can be reduced readily to
other patterns such as those shown in Figs. 2b, 2¢ and 2d, which correspond to
different geometric proportions of plates [16].

M “uunmuwr‘"ﬁll b-b,20
(b) 1
LR byby=0
{c) [
|
Fig. 2. Simplified residual stress distribution used in the ..1.' i ,'.mﬂﬂ RN
analysis. "“W ,,2 0
d) s

(

4. Potential Energy of the Plate

The theorem of minimum potential energy [16, 17] leads to equilibrium
differential equations in the elastic and plastic ranges. Tn this study, the equili-
brium differential equations in the plastic range obtained from the theorem of
minimum potential energy was shown to be the same as those obtained from
consideration of the equilibrium of an element of the body [16]. The characteris-
tic values of these differential equations give the values of the buckling strength.

If the solution of the differential equations is difficult to obtain, the energy
method can be used as a powerful tool to solve the problem to sufficient accu-
racy for engineering purposes.

The total energy of the plate is obtained in the form of a summation of the
strain energy stored in the plate and the work done by the external forces
acting on the plate, with an additive constant which depends on the reference
position. In this study, the reference position was taken as the loaded state
prior to buckling.

The potential energy at buckling is shown below for the following cases:

a) In the elastic region of the plate,

b) in the plastic region, using both the secant modulus deformation theory and
the flow theory.




216 YUKIO UEDA - LAMBERT TALL

a) For the elastic part of the plate, the energy equation may be shown to be

[

2

e R e e
2| \o x> ox o0y dx2 | \oy® oy*

v

J 2 O-J' &“ x o5 T‘f” E‘ <€ E !/ U!/ E: y A3 'Jﬁ

where I/ = potential energy stored in the plate.

C

b) For the plastic part of the plate, based on the secant modulus deformation
theory. modified by using Shanley’s concept, the expression derived in this

- [ Dy~ (Pw\2 . (2w (2w e
V= 5 | Gnil== IFe=Clt——" i< lerl@slis —
2 oxs ox? | \dy dx oy
o2
e

study is

'\/2 ) ‘72 7 ,»12 . ’:2 ) 2
+C’§(f 2:/) (c ?)—6'4 ( 2:;) (,( ,w)—I-C'E, (( @f) }d.vd’.y (9)
Y22 | \0y? oy*)\ox oy 0 y?

SR gw\? 0 ow o w\2
— —lo. |- e ol W e I8 S dx dy,
A e i wda oy N ¢
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UI‘ b
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40’ 7
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B 1_07(1_,, ) K
%
i
Lo
K 7.
D, = flexural rigidity of plate in the plastic range, based on the
otorimation thoses o s
deformation theory = ;57—

Eq. (9) is similar to Stowells’s equation [11, 12]. except for the coefficients
C3 and (3. In Stowells’s equation,

9.2
(_J_"z‘ Ty + =7 Ty

SRy Y.

= w

2
g3

Based on the flow theory [13, 20] modified by using Shanley’s concept, the
expression derived in this study is:
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- H]z [(, (r w) C’( i Lo) L ((_LE) (Sul_}c)_‘_cs ((' 22)-} dx dy
Jalo ox? ox Y oxf \oy* i
A e A
ox e\ dn\ioy “\oY

{ 2
where Gl — (5—‘11/)1/}\)—(2\14(—;3'&’
0L = 21—,
or - 20— @v+a-1)
(54 A— (1—2v)2’
i 4A(1—2?)

i 2

D, = flexural rigidity of plate in the plastic range, based on the
B h3

flow theory = 20—

Eq. (9) coincides with Eq. (8), when it is applied to the elastic zone, where
E,= E = E. Likewise, Eq. (10) reduces to Eq. (8), since ;= & in the elastic zone.

5. Residual Stresses and the Plate Equation

For an elastic isotropic plate of a constant thickness, 2, which is subjected to
an edge thrust in the direction . the equilibrium differential equation may be
expressed as [1].

4 . § ot § a0
g w o-w o w o~ W

Dle—+2-—a—+ | =—0.h—. (11)
ox Glar= el ox*

When the plate contains residual stress, the stress in the x direction may be
expressed in the form of the summation of the stresses, o,,+o0,, and Eq. (11)
becomes [16]

4 a4 oY, N2

g w o= w g w o°w 3
= T + .2 — + = = —(0..,+0C h'r—. 12
[6 24 dx2dy? oyt (g 05) Jim? (L5

where o, is the residual stress in the x direction.
The energy equation, Eq. (8), modified for the effects of residual stress in
this case, becomes

A 92 45\ 2 0290 \2 J2ap\ (020 22,5\ 2
:D,_ ( ?‘f ) PC (u =9y e i l: + ( lf dx dy
S| a3 ox oy ox%[ \oy? 0y*

(R ow\?2
25 JJ = (0, +0,) (i) dax dy.

/=

(13)

Similarly, the components of residual stresses, o,,. 0,, and 7,,. may be intro-
duced into the expression for the potential energy of the plate [16].
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AR o2 10\ 2 H2 2 210\ (620 52
7= Wl 20 ) 2 ) la) + () ] o
ki x aox oy ox ay oy (14)

h ow\? ow\ [¢w 0w
= 4 : 9 (. et Aoy
”2[(0?‘,_,%_,,) (m) o) (Ex)(é‘y)+( —f—o,,)((J)}d@dz/

where a,,,
ordinates.
The above equations are the elastic domains, but similar equations may be
derived for the plastic domain, by taking into account the yield condition.
The relationship between stress and strain, secant and tangent moduli under
load are shown in Table 1, and illustrated in Fig. 3. These relationship are based

on the assumed residual stress distributions of Figs. 2a and 3a.

QD
>

o are the components of residual stresses in the cartesian co-

ry? 7-Lll

Table 1. Distribution of Stress and Strain, and Secant and Tangent Moduli in Plates

Original State

Domain Strain Stress By ‘ B,
0 —b() —'Ur]_/L —0r1 E .E
to — b2 —¢ (y) E R
ba—b 0r2/E< €y f oreZoy o ! A

Elastic Buckling

0 —bg —[or1/E + €] l—[arl—}-ac] ) 5
bo—bs —[pW)/E+e] | —[¢(y)+oc] | E i
be—b oraf/l — e |  ora—oc E ’ y
Elastic-Plastic Buckling
\ ;
0 —bo "[‘Trl/E+fc] —oy  Eoyloratoc | 0
bo— by Y[+ €] =0V B ooy/¢(y)+ e 0
by —bs —[¢ J)/E+€c] —[é(y) +oc] | E B
ba—b orz/E—ec E Gro— ge FE FE
Plastic Buckling
| 1
0 —bo —[or1/E + €] i — oy | Eoy[or1+oc 0
bo— by —[¢(¥)/E + ] —ay Eoy/¢$(y)+oc 0
b1 — b2 —[¢(y)/E + ] s E ov[¢(y)+ac 0
bs—b —[ec—arg/E] — 0y E'ay/crc+crr2 0
or1+ore oribator2bo  oritor2
where ¢(y) = or1— (y — bo) = = F .

bg—bo i bz—bu e bz-—-bo Y




INELASTIC BUCKLING OF PLATES WITH RESIDUAL STRESSES 219
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BEFORE LOADING AT ELASTIC BUCKLING
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AT ELASTIC -PLASTIC BUCKLING AT PLASTIC BUCKLING

Fig. 3. Relationship between stress and strain in a loaded plate containing residual stresses.

6. Local Buckling of Bwilt-Up Columns

Among the problem of the buckling of plates with residual stresses studied in
the general investigation [16], special attention was paid to the study of the
local buckling of built-up columns.

The method of solution of this kind of problem is quite similar for both
closed and open sections except for the boundary conditions at the open plate
edges.

In this paper, attention is limited to closed sections.

A closed column section is composed of several walls each of which consists
of a flat plate. That is, the study of the local buckling strength of this kind of a
column is reduced to a study of the problem of the buckling of plates connected
at their edges. The study of the local buckling is considered under the following

assumptions [19]:
G
\-\*\\ ° @
©

\ =]
Bt pli) Bix) //\ ¥i
R ASA W
\| £ e J
\_r i ) /_/’ —"—x //
ai Wi
Wi

Fig. 4. Coordinate axes for plate elements.
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1. The column does not buckle as a column before local buckling of the walls
oceurs.

2. The deflection at the edge of the plate is zero.

3. The deflection and bending moment at both the loading ends are zero.

4. The angle between two adjacent plates does not change.

5. The wave length of buckling is identical on each wall, and there is no phase
lag of buckling between the walls.

Referring to Fig. 4, these assumptions may be expressed in the form of
equations.

Assumption 2 may be written as

w; =0 at y,=1b69 (15)

where w; = deflection of the plate on the side 7,
Y; = y-axis of the cartesian coordinate of plate on the side 7,
b9 = half width of plate element on side <.

Assumption 4 may be written as
8; - 81_‘_1 5 :l[L = ‘Tl‘/[l+l &t .l/i', == b(l)

0, =06;, M, =M, , at y, =25

3

(16)

where 6; = angle of rotation at edge of plate 7,
M; = bending moment per unit length of section of plate perpendicular
to the x axis.

Assumptions 3 and 5 suggest the following equation for the deflection function:

: : & £
w; = [, (y,) sin Nf’ sy
where N = number of half waves in the direction of the x axis,
L = entire length of column,

f; (y;) = deflection function expressed in the direction of the x axis.

Special attention should be paid to Assumption 3 concerning the influence of
the aspect ratio fo the plate elements upon the critical strain. According to this
assumption, zero deflection and zero bending moment are assumed at the
loading edges, even though this may not be true in actual cases: this implies

that the longitudinal deflection may be expressed in the form of sin NE—

Studies [1, 19] of the elastic buckling of flat plates have shown that, for the
plate with an aspect ratio of more than 4, the buckling strength is almost iden-
tical in both of the following two cases, simply supported or fixed at the loading
edges, regardless of edge conditions. From this, it is quite rational to presume
that the walls of a column will buckle at the ratio of L/b which gives the lowest
critical value, that is, a plate simply supported at the loading edges, regardless
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of the conditions of the other edges, The local buckling strength of a built-up
column may be predicted from this point of view, since the aspect ratio of
plate elements is more than four in most practical cases.

3. Analytical Solutions

Analytical solutions were obtained and are presented for the elastic, elastic-
plastic, and plastic buckling of a plate with residual stresses when the plate is
simply supported at the loading edges and at the other edges is:

a) elastically restrained,
b) simply supported,
c¢) fixed.

From this solutions the local buckling strength of a built-up column of
rectangular cross section will be obtained. Case a) corresponds to a rectangullar
cross section, Case b) to a square cross section, and Case c) to a limiting case.
All these cases are illustrated in Fig. 5.

-]

i
l

Rectangular

Cross Section

-~ | |
Si8. 5.8, Square ;
Cross Section y
Lt Fixed —\ \ /-
‘:_—_‘5 7 | 0 Yot By 0 T
Fixed Edges \ ; ]
Fixed imiti L (2)
ixe Limiting Case L Po _E:J
Ty PR ey
S.S.: Simply Supported “ B | i bml
E.R. : Elastically Restrained i ti
x X
Fig. 5. Boundary conditions of the Fig. 6. Coordinate axes for a column
plates. of rectangular cross section.

1. Plate Blastically Restrained ( Rectangular Cross Section )

The cross section here consists of two different pairs of plates, Fig. 6.
The following additional assumptions [16] are added to those given in Sec-
tion 2.6.
1. The material properties of all plates are the same: yield point, Young’s
modulus, Poisson’s ratio; both in the elastic and the plastic ranges respec-

tively.



o
o
o

YUKIO UEDA - LAMBERT TALL

Hach pair of parallel plates are of the same size.

Each pair of parallel plates has the same residual stress distribution.

The residual stress distribution in both pairs of plates is similar in shape to
each other (Fig. 6).

S b i

A combination of two series of sinusoidal functions was chosen [16] as the
deflection function of a plate element of a rectangular box column,

2m—1 -
wy = [Z 1, COS (#— T bz(fll)) + 20, {COS (nw;{D) — (= l)"H sin NwLi,

ps)

2m—1 9, (56}

_.“2.— b(")) ) (/fzn {COS (nﬂT bd(lr;)) ( T 1)”}] sin .Z\T‘IT%,

where a,,,.a,,,,¢;,.¢,, = coefficients of deflection functions,
m,n = positive integers.

W |:Z Qg 4, COS (

These deflection functions were assumed so that the functions satisfy all the
boundary conditions mentioned above.

For Assumption 4: the angle between two adjacent plates does not change,
that is,

a) O1y=x0w = O2y—rp, (19)
b) M, =00 = M, Yo=TFD@) - (20)
Rewriting Eq. (19),
(__5“’1) E (ﬂ) . (21)
0 Y1 )= £0 0 Y2 | ya=F0

Substituting w, and w, into Eq. (21), the relationship between the coefficients
may be obtained.

}_;(127)1 == ala‘lm’ (22)
1 [)(‘2)
where o = —b(—l).

For Eq. (20), the bending moment in the plate may be expressed [24] in the
form of

n9 r/2
M= —D(f L 7;”) (23)
Gali S,
At the edge, w = d l: = ztw = 0 and consequently the bending moment takes
the form, ¥ = —D(d;f ), and the boundary condition is
P w 0> w
OY*" =20 “\OYT y=Fo@

where D, and D, are the respective bending rigidities of the plates,




INELASTIC BUCKLING OF PLATES WITH RESIDUAL STRESSES 223

. : : En?
in the elastic range D = = Te(—)’
in the plastic range

: E h3 B h3 Y
(deformation theory) D;=—~ 3 ; : (25)

2 2= 12(1—?) 9
=05

in the plastic range D TERES el Ll
(flow theory) »=0.5 2R oM TR

The boundary condition Eq. (24) gives the relationship between the coeffi-
cients in the expression for w, and w, as

20271. S IBZC'l?L? (26)
@)\ 2
where B = (]%) (%)—) 4

Substituting the relationship of Egs. (21) and (26), the assumed deflection of
Eq. (18) becomes

2m—1

o — [V a,, COS (—m;— (;(/11)) >0, {cos (n’"bu)) (—1) H sin wa,
: (27)
2 == Lt Y ) : x
Wi = [a?a cos (——2— b(;))) +8>.0, {cos (nwb(f;) (=1) L}] smNTrf.

The first term in the brackets of the equation corresponds to the deflection
of a plate simply supported at all four edges and the second term is closely
associated with that for a plate simply supported at the loading edges and fixed
at the other edges.

Sufficiently accurate results were obtained by taking only the first term of

each series (m =1, n=1) in Eq. (27) (see Section 4). Then the assumed deflection

becomes
w, = |acos Y +C’Jcos —}—l1 sin N 7—
1 9 bn | b<1 | i L

it — [cxacos (7; b(z)) +BC {cos( b(’)) + 1}]smef.

Introducing the above equations, Eq. (28), into the expressions for the energy
integral and carrying out the integration in each part (the elastic parts and the
plastic part), and taking into consideration the different stresses and the secant
moduli, the total potential energy is obtained; V = V;+ ¥, (where ¥} and ¥,
are the potential energy in each plate).

Using the Ritz method, and minimizing the potential energy, the partial
differentation with respect to the coefficients a and ¢ leads to the following
homogeneous equations,

(28)

oV 4
s =10 and

=0 2
ca oc )
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with the result that
@l el =0 @My -Fodhs — 0. (30)

Each component in Eq. (30), F;, By, Fy,, F,,, is listed in Appendix 1, in the
sequence of the cases for elastic, elastic-plastic (deformation theory), elastic-
plastic (flow theory), and plastic buckling (deformation theory).
The requirement that the coefficient determinant of Eq. (30) is zero gives the
stability condition
By Fyy—Fyp By = 0 (31)

from which the critical buckling value can be computed.

2. Plate Simply Supported ( Square Cross Section )

In this study, it was assumed that the four plates which compose a square
column are identical in material properties, size of plates. and the distribution
of residual stress.

The symmetry of the structure and of the residual stress distribution render
the analysis comparatively simple. The solution for this case was obtained as a
limiting case of the previous problem of rectangular cross section. The assumed
deflection function must satisfy the same boundary conditions as before. Be-
cause of symmetry, only one plate, simply supported at all the edges, need be
immvestigated.

Choosing only the terms associated with the deflection of a simply supported
plate in Eq. (27), and taking m =2, the following equation is obtained, which
satisfies all the boundary conditions.

? 3ar Y\ x
= [al cos (ZT)— El) +a, cos (TW (;j)] sin Nw%. (32)
Following exactly the same procedure as in the previous section,
Bt a, B =0, a, By +a, By = 0 (33)
and By Fyy—Fip By =0, (34)

which gives the ecritical strain. I, F,, and F,,(=1F,), are presented in
Appendix 2.

The following equation gives the first approximation for the critical buck-
ling strain,

A, (35)

This corresponds to the limiting case of a rectangular section, and also to the
case where the deflection is assumed as

TN :
w = T Lo LY T—s 36
W = @ cos ( 3 1)) sin T (36)

When there is no residual stress in the plate, this deflection is the exact one [1, 3].
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3. Plate Fixed at the Edges

A limiting case of the rectangular section is the one which corresponds to a
pair of opposite plates which have infinite bending rigidity, as, for example,
stiffeners used in ship structures.

The boundary conditions in the case are fundamentally the same as for the
rectangular section, except for the condition that 6, =6,=0 at the edges. This
leads to @,, =0 in the deflection function, Eq. (27).

The second term in the brackets of the deflection equation, Eq. (27), fulfills
these boundary conditions. That is,

wi— @ ilcos nrry) —(=1)" sin N 7 —= (37)
n=10 b L
and for n=2, il = Bl —i05 (38)

which gives the critical strain.

The components of the determinant, Fy,. Fy, and F,=F, , are shown in
Appendix 3.

The first approximation of the deflection,

w=(C [cos (77 g) + 1} sin 1’\777% (39)

is identical to that by Cox [26] for elastic buckling without residual stresses.
As above, F, = 0, gives the first approximation for the solution, and is the
same as for the limiting case of rectangular sections.

4. Numerical Illustration

The analytical solutions were used to obtain the local buckling strength of
built-up columns of square cross section.

When the plate sizes and the distribution of residual stress are specified, the
critical stress or strain of the elastic, elastic-plastic, and plastic buckling may
be obtained from Eqs. (34) and (35).

The numerical calculation was carried out by a digital computer, the
L.G.P. at Lehigh University [16].

In the numerical calculations, Poisson’s ratio was assumed to be 0.3 in the
elastic range, and 0.5 in the plastic range [16].

The results of numerical calculations from Egs. (34) and (35) were compared.,
and it was concluded that Eq. (35) (considering only the first term for the shape
of the deflection), gives sufficiently accurate answers [16].

1. Elastic Buckling

In this case, the critical stress of buckling obtained from Eq. (35) is a com-
plicated expression, but can be arranged as
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€., a. a
. (& = C — (cr) _R’ (_1_())
EI— Ul/ O'Y 0

a, . o . . . . . .
where ( Cr) = ratio of critical stress to yield point, for elastic buckling with-
ay /o

out residual stresses,

R = reduction of buckling strength due to residual stresses
& f ar1 Org l)() 1’)2
wr ay ¢ oy b ? o

Eq. (40) implies that the influence of residual stresses may be evaluated from
the residual stress distribution independently of the critical stresses, and that
the critical stress, taking account of the residual stresses, may be obtained
readily from the critical stress without residual stresses.

Eq. (40) has been plotted in Figs. 7 and 8.

| | jmt:szb
| il

BECATA
Jz'(a?. +0,)

R 05} 66
R 7 7

| i

r : I //,,r/ /
74
F la I Pu’/ifa/ﬂh M

(o] 0.5 1.0

H T,

Fig. 8. Relationship between residual
stress magnitude and reduction in
buckling strength.

Fig. 7. Relationship between residual
stress distribution and reduction in
buckling strength (see Eq. 40).

According to the results of the numerical calculations, the critical stresses
of elastic buckling may be calculated by the following approximate expressions,
which have been fitted to the plotted curves of Eqs. (40) (Figs. 7 and 8). The
use of them for prediction results in negligible error.

s L (Eﬁ) oy (U"l) <0115, (41)
Oy Orjo Oy Oy

% _ (_‘.7_) B ("f'l)ﬂ{(c’”)'; (U"l) > 0.15, (42)
O'I' O'I,' 0 Uf' O'I,' O'Ir

where ¢,; = magnitude of maximum tensile residual stress in the assumed
pattern (Fig. 7)
o . Or1
and K = R, for— = 1.0.

gy
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The factor (I/b) influences the buckling strength of a plate, and at a certain
value of (//b) the minimum critical strain may be obtained. However, in the
elastic buckling, the influence of residual stresses on the buckling strength of
a plate is independent of the critical load, as shown by Eq. (40). The factor (I/b)
is contained only in the first term of Eq. (40), but not in the second term. The
first term gives the elastic buckling strength for a plate without residual
stresses which is a minimum for (//b) = 1.0 [16].

The results of the numerical calculations are summarized in Figs. 9 and 11,
for eritical stress critical and strain respectively. Some of the curves for the elastic
buckling intersect the abscissa. This interesting fact shows the possibility of the
buckling of a plate without any external load and explains the reason why
plates can be distorted solely due to the process of welding.

2. Elastic-Plastic Buckling

As in the preceding section, a comparison was made of the accuracy obtained
by taking the first and the first two terms of the deflection equation. The
computation showed that the value for o, /oy as obtained by the deflection
equations, differed only by 39 in the worst case [16]. It was judged that the

160 - -“-b“

Fig. 10. Buckling strength of plates with residual stresses (flow theory).
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use of the first term is accurate enough to carry out a comprehensive numerical
computation with due consideration to the economy of computer time. (For
instance, using only the first term, the running time of the computer was only
one fourth of the time spent for the computation using the first two terms.)

Even when only the first term of the deflection equation was used, the com-
putation did not become much simpler, as was the case for elastic buckling. In
that case, the influence of residual stresses on the buckling strength of a plate
was separated from the original buckling strength of the plate without residual
stresses. For elastic-plastic buckling, it is not possible to separate these two
factors in the equation.

In contrast with the buckling of a single plate, the local buckling of a box
column normally occurs at the critical (//b) ratio which gives the minimum
critical stress.

For each residual stress pattern, various values of {/b were chosen for a
given value of critical strain. From the results of the computation, the curves
(L/B) vs. critical (b/t) were drawn and the most critical (/b was determined
corresponding to the minimum critical strain. This is illustrated in Figs. 13 to
17. For example, in Fig. 15, the lowest critical stress corresponds to an [/b ratio
between 0.7 and 0.8 for elastic-plastic buckling of a plate with residual stress.

Figs. 9, 10, 11, and 12 summarize the computation results for the elastic-
plastic local buckling of the box column using the deformation theory and the
flow theory. Figs. 9 and 10 show the ratio of the average critical stress to the
yield point vs. the b/t ratio, and Figs. 11 and 12 show the ratio of the average
critical strain to the yield strain vs. the b/t ratio. For elastic buckling. the
critical stress is calculated from the ecritical strain multiplied by Young’s
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(L/B) for o;1/oy = 0.25. (L/B) for or1/ay = 0.5.



230 YUKIO UEDA - LAMBERT TALL

oA
20
70 |Fro E = 1§54
25 2.5 S =
I
I
3 ~ §=1025 ‘
r60 S Pt =R e e ————— 60
]
2.0 2.04|
I
}50 tso
o () far =30 Il 10
(: ‘fs)u (r 1" € *36,000 i3 | 2 gt B
s T} T i b i e AT 7Rk .54
40 -0
[o, / , 40
L 2
(ME (3.t 2 55000
i3 200 | S 20
r30 L}O S S S e e T o et
1.0 1.0
If % =4.0
20 !1-20 Rk 7 RN P PR = e o T
H - S 6.0
Il — e e
0s 054
o Deformation Theory I o Deformaton Theory
rio 5075 ©e05 1o = p*0S5
! %203 —== E3-p} buckling i X Va+03 - ——— E1-p} bucking
V,*05 === Plastic buckling | V505 ——— Plastic buckling
o o5 1.0 L5 20 25 30 o 05 1.0 1.5 20 25 30

o=
C i

Fig. 16. Relationship between (b/t).; and Fig. 17. Relationship between (b/t)., and
(L/B) for o,1/ov = 0.75. (L/B) for oy1/oy = 1.0.

modulus. But in the elastic-plastic buckling this relationship is no longer
applicable and the critical stress must be calculated from a more complicated
relationship [16].

As expected [27, 28, 29], the flow theory gives higher critical stresses than
does the deformation theory. The elastic-plastic buckling curves based on the
flow theory lie very close to the boundary of the elastic and the elastic-plastic
buckling regions.

The curves which represent the buckling strength of a plate vs. (b/t) ratio
are hyperboli for elastic buckling, but are almost straight lines for elastic-
plastic buckling. At the transition from the elastic buckling to the elastic-
plastic buckling, there is a discontinuity in the curve in Figs. 9, 10, 11 and 12.
This is due to the sudden plastification of the material in the plate, because of
the shape of the assumed residual stress distribution.

It should be noted that, even though the plate consists of three parts, an
elastic part, a plastic part, and another elastic part, the first approximate
deflection function gives accurate values for the buckling problem [16].

3. Plastic Buckling

The plate material was assumed to be homogeneous and elastic perfectly
plastic. When the entire plate reaches the yield point, the plate can no longer
carry any additional load although the strains may increase. Consequently, the
critical strain may be investigated. For this reason the results of the numerical
analysis do no appear in Figs. 9 and 10 which are drawn with respect to o,, /oy




INELASTIC BUCKLING OF PLATES WITH RESIDUAL STRESSES 231

and b/t. On the other hand, the secant modulus is affected by the magnitude of
plastic strain.

As far as the flow theory is concerned, the complete plastification of the
plate may be delayed by the existence of residual stresses, but after the whole
plate has reached the yield point, the plate behaves completely plastically in the
same manner as if the plate had not been subjected to any residual stresses
before. While the residual stresses do not play any role in the flow theory for
the plastic buckling, they do influence the deformation theory because the
secant modulus defines the relationship between stress and strain in the plastic
range of an elastic perfectly plastic material.

The result of the numerical calculation according to the deformation theory
is shown in Fig. 11.

For the plastic buckling, the study of the influence of residual stresses Is
similar to that for elastic-plastic buckling, that is, no separation of the effect
of residual stresses is possible.

When the plate is not subject to any residual stresses, the plastic buckling
of the plate occurs at 1/12 of the (//b) ratio which gives the lowest critical strain
[12]. For the plate with residual stresses. the corresponding critical value of
(1/b) is approximately 0.7, which is approximately the same as 1/15 This fact
suggests that the existence of residual stresses in the plate affects the critical
strain of the plastic buckling of the plate, but not the wave length of buckling.
(Figs. 13, 15 and 17.)

5. Experimental Results

Experiments were conducted to verify the theories for the elastic buckling
and elastic-plastic buckling of plate elements in built-up square columns.
These columns were built up from plates by welding. Both ASTM A 36 steel and
A 514 steel (T-1 constructional alloy steel) were used.

Ratios of b/t were chosen so that the plate elements would buckle in definite
ranges of elastic, or clastic-plastic buckling, as defined by Figs. 9 and 10.

The experiments consisted of tensile coupon tests, residual stress measure-
ments, and plate buckling tests.

Table 2 lists the dimensions of the test specimens, and their yield loads.
Specimens designated by S are structural carbon steel and specimens designated
by 7' are constructional alloy steel. The plate buckling tests were conducted on
short columns to simulate the local buckling of columns without the occurrence
of column buckling.

The experiments and test results have been described in detail in [30];
only the results will be considered briefly in this paper.

The test results are presented in Table 3, and in Figs. 18, 19, 20 and 21.
Figs. 18 and 19 compare the test results with the deformation theory, and
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Table 2. Dimensions of Specimens

| | | | |
Specimen Le%igt‘h B Ly ap Iz', 1) .—&'roa, 3 L/B ! bt 1",-
No. (in) . (in) (in) " (in2) ! | | (kips)
\ \ : =
S-1 BORSEHESIT 4 e R0 S R e 455
S-11 Bl 0.256 11.8 7.20 |  45.0 460
S-2 BORERIREG 0.253 16.3 4.91 64.0 630
S-21 S il 163 0.2545 W esl65 5.34 LM R s
A GOV S 0 a5a e s 5.31 44.0 ‘ 1340
T-1B G T S 5.34 44.0 | 1340
T-2A SO L T L SR R 5.18 26.2 | 724
T-2B 35 6.77 | 0.258 6.98 5.18 26:20 s T

1) Average value of four faces.

Table 3. Test Results

Test Results Theoretical Prediction3) ‘ Wosilon
Specimen Sy i ‘7;Etip~0‘n'l’it
= ‘
No. oY) Per?) P. | Pe(kips) | Pe (kips) 7
ay (kips) (kips) with o, without or | (kips)
l 1 ‘
S-1 0.23 340 357 380 455 \ 455
S-11 0.23 355 366 383 460 f 460
S-2 0.16 260 | 337 | 348 ‘ 462 ‘ 630
S-21 QUGS on0 350 ! 465 ‘ 635
‘ ‘ | ,
LI Wt = RIS B G 724 [ 724
T-2B 0.15 640 ‘ 657 1 650 . 724 | 724
TRETLA ORIOYE = 55" 500 700 | 510 | 638 [Ee340)
T-1B 0.10 4005 A8 S 6 0 AEea) 510 | 638 | 1340
| | |

) Ratio between average compressive residual stress and static yield stress.
) The critical loads were determined by means of the “‘top-of-the-knee’” method [31].
%) Prediction was based on the deformation theory of plasticity.

1
2

Figs. 20 and 21 also show the comparison with the flow theory. The ultimate
strengths of the buckled plates are shown for comparison, although this was not
considered in the theoretical study.

The theoretical predictions gave good correlation with the experimental
results for the deformation theory, but were quite high for the flow theory.




Fig. 18. Plate buckling curve with test Fig. 19. Plate buckling curve with test
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of columns (A 36 steel). of columns (A 514 steel).

The result of these pilot tests have shown that considerable post buckling
strength may be expected for the elastic buckling of plates, but not for the
elastic-plastic buckling.

6. Conclusions

This paper presents the results of an investigation into the elastic, elastic-
plastic, and plastic buckling of plates containing residual stresses. Particular
attention has been paid to the local buckling of plate elements of built-up
columns of box-shaped cross sections. An experimental study was correlated
with the theoretical predictions.

In the theoretical analysis, the pattern of the residual stress distribution
was simplified and the theorem of minimum potential energy was employed
with the restriction that there is no reversal of strain at any point in the plasti-
fied material. The plastic part of the plate was analyzed by plastic theories,
the secant modulus deformation theory and the flow theory.




234 YUKIO UEDA - LAMBERT TALL

The method of analysis presented is believed to be the first approximate
solution for the elastic-plastic and plastic buckling of a plate with residual
stresses. Analytical solutions are presented for the elastic, elastic-plastic and
plastic buckling of a plate with residual stresses when the plate is simply
supported at the loading edges and at the other edges is: elastically restrained:
simply supported; or fixed. The result of numerical computations for the
analytical solution to the local buckling of a welded built-up square column is
presented for elastic, elastic-plastic, and plastic buckling. The results are pre-
sented of a pilot experimental study which verified the theoretical analysis.
The experimental study showed the relationship between the buckling strength
and the ultimate strength of a plate element of the column.

The following conclusions may be drawn from the study:

1. The approximation of using only the first term of the deflection equation
gives an answer which is very close to the exact solution, and is accurate
enough for analysis of the buckling problem. (Section 4.)

2. For elastic buckling of a plate with residual stresses, the influence of the
residual stresses on the buckling strength of the plate is independent of the
critical stress, and can be evaluated from the residual stress distribution.
(Section 4.1.)

3. The possibility that the plate with residual stresses may buckle without any
external load was demonstrated. This fact explains the reason why a plate can
distort only due to welding. (Section 4.1, Figs. 9, 10.)

4. The ratio of //b, which gives the minimum ecritical strain, is 1.0 for elastic
buckling, 0.7 to 0.8 for elastic-plastic buckling, and 0.7 for plastic buckling.
(Section 4, Figs. 13 to 17.)

5. For elastic-plastic buckling of the plate, the analysis based on the flow
theory gives a much higher critical strain than the one based on the deformation
theory. (Section 4.2, 4.3, Figs. 9 to 12.)

6. A plate containing residual stresses will not buckle until the critical stress
reaches the yield point, if the b/t ratio of the plate is less than

a) 1.17 lEﬁ/crl~ based on the deformation theory,

b) 1.83 l"fE/or based on the flow theory regardless of the magnitude of the resi-
dual stresses, and less than

c) 1.90 l"/ﬁal- for the plate free of residual stresses. (Section 4.2, 4.3, Figs. 9, 10.)

7. The experiments verified the validity of the theoretical analysis for the
elastic and elastic-plastic buckling of a plate containing residual stresses. The
theory based on the secant modulus deformation theory gave good correlation
with the experimental results, but the theory based on the flow theory did not.
(Section 5, Figs. 18 to 21.)

8. Although considerable post buckling strength occurred for elastic buck-
ling of the plate, this was not the case for elastic-plastic buckling. (Section 5,
Figs. 18, 19.)
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Nomenclature

Uy sy,  coefficients of deflection functions.

B width of plate.

b half width of plate.

b® half width of plate element on side 7.

Cim-Com  coefficients of deflection functions.

D flexural rigidity of plate = D(ilh—%’) :

D, flexural rigidity of plate in the plastic range, based on deformation
theory.

15 flexural rigidity of plate in the plastic range. based on flow theory.

E modulus of elasticity.

E, secant modulus.

E, tangent modulus.

F,, . F,,. Fy . Fy, component of the coefficient determinant of the stability
equation.

h thickness of plate.

L entire length of column or plate.

21 half wave length of buckling of plate.

(1/0) (I/b) ratio giving minimum critical strain of buckling of plate.

M, bending moment per unit length of section of plate about x axis on
side 7.

nm.n positive integers.

N number of half waves in the direction of x axis.

i critical load.

ot ultimate load.

u

Py yield load.
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magnitude of reduction of elastic buckling strength due to residual
stresses.

thickness of a plate.

potential energy of plate.

deflection of plate.

deflection of plate on the side 1.

cartesian coordinates.

y-axis of cartesian coordinate on a plate on the side 4.

shearing strain in the cartesian coordinates.

rate of change of shearing strain.

critical normal strain.

intensity of strain.

normal strain components in the cartesian coordinates.

yield strain in tension or compression.

rate of change of strain components in the cartesian coordinates.
angle of rotation at edge of plate 1.

a parameter, where 40 is the width of the tensile residual stress
distribution in the assumed pattern.

Poisson’s ratio.

E|E,.

average critical normal stress.

intensity of stress.

normal residual stress components in the cartesian coordinates.
magnitude of maximum compressive residual stress in the assumd
pattern.

magnitude of maximum tensile residual stress in the assumed
pattern.

normal stress components in the cartesian coordinates.

rate of change of stress components in the cartesian coordinates.
yield stress in tension or compression.

residual shearing stress in the cartesian coordinates.

shearing stress in the cartesian coordinates.

Appendix

Analytical Solutions for Buckling Strength of Plates with Residual Stresses

Analytical solutions are presented for elastic, elastic-plastic and plastic
buckling of a plate which is simply supported at the loading edges and at other

edges is:

a) elastically restrained,
b) simply supported,
c) fixed.
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Tu— T : sinma g (I, — 1) — (Iy—I%)]

Sk = cosmn I'; log S e T——(m ) i
1
—(m 77)2()) 'cosmwf [l — ) ==l &
+ (m vr)3?371~§sin malg[([—1L6)3— (Lg— )%
+ (H?,ﬂ)4(4) 4'-008911771“6 (L — L)t — (L =)
(whetes o= 1 o2 su— 1 8l L 22 3 orid)
For elastic region 1=F and w=lI.
For plastic region 1= Prandsi=—=1"

For the side 1 of column j=1.
For the side 2 of column §=2.

1. Analytical Solutions for Elastically Restrained Plate

1.1. Addaitional Notation

S =mtw, I{+2,I2+1], Cla =t [w ¢ —2(1—-2v),I2+1],
s =7 [Bw,; ¢+ (4+3v) T2 +4], iy = 7wl —(4—9v) I3+ 4],
iC1 = 4Cis, %52 = ;¢4

iChs = 74 [Bw, I'§+8,I'2+16], Chy = dmt[w ;i +4v T,

jChs = mi[w, TA—8 (1—2v) ,T2+16].

1.2. Analytical Solutions

The analytical solution is given in the form:
E1E22_F12F21 =0,

L= )2 (v110)+ (v 111),

L= ()2 (v 120) + (v 121),

s = (I7,)2 (v 220) + (v 221).

where

F, =

o

1.2a. Elastic Buckling

(v110) = (£130),

(v120) = u (£ 230),

(v220) = u (£430),

(v111) = —k; (¢ 140) =k, (£ 151) + &y (£ 152) + k4 (1 160),
(v121) = —k, (£240) — k, (£251) + &, (¢ 252) + k, (£ 260),
(v221) = —k; (£440) —Fky (£ 451) + kg (£ 452) + k, (£ 460).
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(1130) = [ -3 ] ,

[ 1
(t140) = (1 —o3 %) FO—*Sin'rrFO],
T

(oL — (=S ) (1"2—-]"0)+l(sin—nF2—sinrrFO)] ;
1L

(B L5 =11 = ) (F;—FU?')+i(F2Si11WF2—FISiIle1)

T

- (l)E(COSﬂ'FZ—COSﬁFI)],
(t160) = (1 —o31%) [(Fz— 1)+(717) sinwf2] g

2 : A
(€230) = (1ol o) (2] = Befi —efl )
7 DT

T Bgiss2 3
(£240) = (1 —a2B17%) +Asmw—+*sm =gl
T Dt 2

O T 2 3 S
(25 IhE=s(1=c2 BT ;ru(sm_;zfg—sm_—;]“o)—r- (smTﬁf'y—sm—;Fo)],

3 o

9 2 ;
(£252) = (I —a2B1%) (F sin— F 12y sm—l")+3 (i) (cosgfz—cos

™

I’O)
9\ 2 D
(F sin - F -1 ‘31113 F) + (3;) (Cosgﬁfg—cosﬁ_rfo):l,
’ 6 T 2 Bl
260 — (e e T e
g [y 2 T

B3
[ 23+ 9023 ’

4 . B
(£440) = (1—ap2T7) [SFOJrsmwFOJr_) 31112wfo],
110 2T

(£430)

l

([E451) = loc,BQF[ 3(I—Ty)+ (Slll’rF-‘Slll?TF)-}-l(3111211F2—Si112771_‘0)],
.._77
N Bt 4 : :
(t452) = (1 —aB21%) |:_)(F22—F02)+(F2SIII7TF2—F0S1117TF0)
v

242 1 : ;
+ (—m) (cosm I'y—cosm [g) +5— (I'psin 27 ['y — I'gsin 27 I'y)
=TT

T

2

2
+ (L) (cos;’wfg—cosirrfo)],

(t460) = (1 —ap2lY) {3 (F2—1)+ism i +ism_—rf]

v
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1.2Dh. Elastic-plastic Buckling
(Based on the deformation theory)

(v110) = u, (£110) —u, (¢ 120) +u (£130),

(v120) = u, (£210) —u, (¢t 220) +u (t 230),

(v220) = uy (£410) —u, (£420) +u (£430),

(v111) = — (£ 140) — ko (£ 151) + &y (¢ 152) + k, (£ 160)
(v121) = — (¢240) — k, (£ 251) + ks (£ 252) + k, (£ 260)
(v221) = — (£ 440) — k, (£451) + k, (£ 452) + k, (£ 460)..
E10) = |sefi~Fuch| Dot |sofy—gcy] (- sinm 1),

o

[ 5 IN-r S :
(£120) = |;cf; — 326{1 logjw;j"f' = [10{2 Bch)e} St
L 6

DY o & o ol
(£130) = |eqy _Bac{‘l (0 [1611712 e
n

or s Ll
Bgc{"z] —sin#7 [,
o

(£140) = (1 —a31%) (Fl—l Sinﬂ'Fl),
T

(@151) =(1—o>l%) [(]"2—]"1)—#1(Sinwfg—sinrrfl)],

v

(t152) = (1—atTy) [1) (e G
Z T

+ (i)_(coswl“2~005wfl)] ,

T
[Ane
(t160) = (—o? 1) [(F2—1)+7TSII]WF2],
. R e 3
(£ 210) = [cf—och] #—3111§F0+[lcﬁ 5G| 37;8111TF°’

(t220) = [16 7013]6{24—[10{; oC13] S

, 2 2 O
(¢230) = [1c3— 0613 e 1_3111* ) [1612 —2¢13] Sﬂ(l+5111—_—F1),

3
(t240 = (1—o2BT%) [-—sm——F +3”sm _Wfl],

(t251) = (1—a2B1T%) [i (Sin;r Fz—sin_gfl) +:'

:1““
e ——
o]
=]
2
w
e
B

oo
=
-
Sl
L

7 20
(£2562) = (1—a2B1T%) [E (F2 511131"'2 — Flsing Fl) +3 (—) (cos gFZ —COS 1711“1)
T Z 4 e
)

+3;—

L = Bﬂ' 371'
(F sin”_- T' I';sin— F) + (Tu) (cos—]“z—cosffl)],
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9

(t260) = (1 —a2BI%) [6(—1+Sintfg) - (I-{—sin ');TFQ)],
T 0 TT

2

3 TR TR R 3 X 3
(£420) = 1093+‘84ch3 log =2 + [cﬁ—k’gi) ]S{+ [lc.§5+§42c55] S
BS

Iy—T
LB a]

, Tak
(t430) = |,cE+ 49023 (1-I,) - [16‘5‘4-1-(;1265‘4} = sinz Iy

B o s 1 i
(t410) = 1c§3+—420§3 Lo+ |18 +=5 205 smnF + | e+ 1r,cr,a _——sm 27 Ly
[0 4 o

B3
- [101 420%} 5 sin27 I,
AAD 2F \I‘| 4: ~ F ]‘ = 5) I‘l
(t440) = (1—axp2I%) |3 1+;smrr 1+;Tsm_w 15

(t451) = (1 —aB?1l%) [ (Lo—=17) + 4(8111771"—5111771“)
T

oy e :
+5—(sin2ax I'y—sin 27 1Y)

7T

(¢452) = (1 —aB2I%) [g(I‘zz—F12) +i(ngin-nI’2—F1 sin 7 I'))
Z T
22
+ (;) (cost2~COSm-F1)+_)i(I“gsinZwI“g—FlsianFl)
< Tr
s (—)- (cos 27 [’y —cos 2-77F1)],

(t460) = (1 —aB>1%) [3 (F2—1)+ismwf —i—ism Fz}.

T 2w

1.2¢c. Elastic-plastic Buckling
(Based on the flow theory)

(v 110) = 2w, (¢ 110) +u (£ 130),
(v120) = u, (¢210) +u (£ 230),
(v220) = u, (t410) +u (£430),
(v111) = —(£140) — ky (¢ 151) + kg (¢ 152) + &, (£ 160)
(v121) = — (£240) — ky (£t 251) + kg (£ 252) + K, (£ 260),
(v221) = — (t440) —k, (t451) + ky (1 452) + k, (1 460)

g T 1S
I' + [lcﬁ—ggcﬁ] (Trsm,—rfl),

o

e ke
(t130) = [10{"1 _Bzcn] (=T [1‘3{0 182612} = sinw [},
D)

£

2 3
(t210) = [;¢5— r,clg]ﬂ_sm F + [ef — 9014] sm b

vl
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" 2 2 e - 9 .37
(t230) = [1e15 — o013l — - 1 _SmTFl — [1e1a _2014]5 1+Sm".)—F1):

3 3 3
(t4:].0) - [1623 +B 26'53} F1+ I:]_Ci_’_ﬁ 2624:| S].n.?TF + [1020"}'%26%] Sin. 277.[‘1,

8 I L=
(t430) = [ +B42023] (L= [1%%‘*’@2%%] ;SmT"Fl

3 1
N N L - e Sal )
[lc% —i—w1 2023] 2‘ITsm iy,

(£140), (£151), (£152), (£160), (£240), (£251), (£252), (£260), (£440), (t451),
(452) and (£460) are the same as in Section 1.2b.

1.2d. Plastic Buckling
(Based on the deformation theory)

(v110) = wy (£ 110) —uy (£ 120) + g (£ 130) ,

(v 120) = u, (£210) —uy (£ 220) +ug (£130)

(0220) = 2, (£410) —u, (£420) + ug (£ 430)

(v111) = (£140),

(v121) = (¢240)

(v222) = (£440).

(0= = [1011 182611] I'y+ [ ¢t — ﬁzcm] sinw Iy,

r'y— o
[1011 2011:| log ij 3 [15{; —B 2652] ST

§ L

(£130) [1011 Bgcn] —TI,)— [1012 32012] - —sinz [y,

(t140) = (1 —a3T%)

2 3
sm 510

~

9
(6210} = [y61s = ,013] sm-_-F + [1edy — ochi] -

20) = [1CP 243 Siz =+ [10{; T 2Cﬁ] S,
" o pq 2 s ST v dagls B ST
(1230) = [1013_2013]; l_smgrz == [1%4‘2%41% 1 +5111?F2 )

(1240) = (1—o2BT})

3 SR B 2 1
(t1410) = [105’3-{-642093]]1 +{1024+B4,cg4] Smwﬂ,+[165§,+542095]) sin 27 1Y,

8 I's—TI 2 9
(t420) = I:lcf,g—l— 42623] logF FG + [ +IB42624] Sz [1055"'542653] 83,
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: v /3’3 p B el

o 1
_ P Pl _~ gine
[1025 ot g 2620] 5 sin 2w A%

-

(1440) = —3 (1 —aB, T

2. Analytical Solutions for Simply Supported Plates

2.1. Additional Notation

¢y =mtlwli+2T2+1], cio=mwlg—-2(1-2v)2+1],
cjs =7 [wly+(6+4v) I'7+9], cly=mtwlE—2(3—-8v) [2+9],
cis = ' [wl#+18 2 +81], iy =miwld+18vI'2+81].

2.2. Analytical Solutions

The analytical solution is given in the form:

F, =0
or Py Fop— Fip By = 0,
where By = () 110) 4 (v 14 1),

Fiy = By = (I'y)? (v120) + (v121),
By = (I',)? (v 220) + (v 221).

(v110) = u (£130),

(v120) =0,

(v220) = u (£430),

(0111) = —ky (£140) —k, (£ 151) + kg (£ 152) + k, (£ 160),
(v121) = —k, (£ 240) — &y (£ 251) + ks (£ 252) + K, (£ 260) ,
(0221) = —, (£ 440) — kb, (£451) + kg (1 452) + k, (£ 460) .

1 ]
(t151). = T2—I’0+;[Sinw[’.z—smwfo],

(t152) =_~_1)[F;2—~T02)+—1— [FgSill’ﬂFg—FOSillﬂ'FO]+(“1—')H[COSTFF2—COS7TFO],
s era T

] s
(t160) = I'y—1+—sinn [},
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LT 1
(£240) = —sinwlj+—sin 27 [,

T < T
= i : ‘ Daso ; ’
(¢251) = —[sina [y —sinn I\ +5—[sin 27 [, —sin 27 [],
w =T
Do i e in2
(t252) _;[ o Sin I’y — Iy sin 0]+§7—T[ oSN 27 I’y — I'ysin 247 1]
1 1 5 5
+;[COSwI}—COSwFO]—l-(—z;)-é[cos_wPe—cos_wFO].
125 1
(¢260) = —sinw [y +—sin 27 Iy,
T =TT

(£430) = ¢k,

ekl

(t451) =T2—FO+,1

2 TT

[sin3 7y —sin3x= ],

1

£452) =
(t452) s

pO| =

[([2-T2]+ [Iysin3 7 Iy —Iysin 37 []

+

3

1 \2
( )[cosZ3wF2—0033wF0].
e
(1460) = Iy —1+_-—sin3 7 [,

Q7T

2.2b. Elastic-plastic Buckling
(Based on the deformation theory)

(2110) = u, (£110) —u, (£120) +2 (¢ 130),

(v120) = u, (£210) —u, (¢ 220) +u (£ 230),

(v220) = 1wy (£410) —uy (1420) +u (£430)

(v111) = —(£140) —k, (1 151) + k5 (¢ 152) + £, (£ 160)
(v121) = — (£240) — ko (£ 251) + k4 (£ 252) + k, (£ 260)
(v221) = — (t440) — ky (1 451) + k4 (1 452) + k, (£ 460)

1 ;
(t110) = cﬁ[’o%—;c{;smwfo,

r-r :
(t120) = ¢k log {F;—Feil +ch, 81,
6
3 13l
(¢130) =cB(1-I)——cEsinn I,
T

12
(t140) = ') +—sin7 [,
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(sl = (F, =) l[smwf —sin7 I],

=
ot
Ot
Lo

S—
Il

1 . ST
(F22_F12)+;[F23inwfg—ﬂsmwﬂj+(;) [cosmI'y—cosn I}],
1554,
(t160) =I'y—1+—sinw I,
T

Tesc 1
S n ol o N P ey
= cisima Ly + 5 ClaSin 27 Iy,

—_
~
o
e
o
=
Il

990) — B Sl 1 P §1
(t220) = cf3 Sy3+c14 S1a

1 { P
DE = E o1 E o1
(£230) = — = CIBSIIlﬂfl—'_)-'; e singn 88

1| 1
(t240) = —sinz I'; +—sin 2 el

7T "T

(t251) ——[smnF —Slll'rrF]—{—iLSln 27 [y —sin 27 1],

T

(E252)F = [I’gsmv-rl1 I"lsmuf']—i— [F sin2s7 'y —I';sin 27 1]

a

1
19[COS7F —cosm I'g] +-——5[cos 27 [, —cos 27 I'y],
T

(2m)

8552 1
(t260) = —sina [y+5—sin2a Iy,
&7

w

1
(£410) = c&} +—

o et sin3 7l

/85
(t420) = ¢k log e 56 +cb 8L,

: [ESh
(£430) =cE (1—T,) —5—cE&sin3 w1},
o TT

L

(t440) Fﬁ—zg—ﬁsmSWFl,
RERES :

(t451) =I’o—l’1+3—[51113771"'2—51113,—;-F1].
a

(B=T2 +-—— [[ysin37 ,—Iysin3wI]

+
oo

1\2
4~—) [cos 37 [y —cos3w1Y],

QT

ligsies:
(t460) = [h—1+-—sin3a T,
= 3
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2.2c. Elastic-plastic Buckling
(Based on the flow theory)

(v110) = uo(tllO)—I—u( t130),
(v120) = u, (£210) +u (£230),
(v220) = u, (¢410) +u (£430),
(v111) = — (£ 140) — &, (¢ 151) + kg (¢ 152) + ke, (¢ 160)
(v121) = —(£240) —k, (£251) + Ky (£252) + k4 (£ 260),
(v221) = — (£440) —k, (t451) + ky (£ 452) + /&, (£ 460)

1
(¢110) = eI +— 01,,511177F
= i
(¢130) =cll(1—f'1)~—;cmsm7rfl,
i) Fiioas
(1210) = 7Tcmsmw i cl4s1n 2l
it e 1 :
230) = ——c&sing —chsin2x I,
(t230) 1 F1+.) fisin2a [
T 2T

1 ek
(t410) :c{gFl-%EcﬁsmowFl,
: et
£430) =cE (1—-1%) ——cEsin3n T,
15 1 3 16 1
o

(£140), (¢151), (£152), (t160), (£240), (£251), (£252), (£260), (t440), (t451),
(t452) and (£460) are the same as in Section 2.2b.

2.2d. Plastic Buckling
(Based on the deformation theory)

—
<

( ) (£ 110) —uy (£120) +u, (¢130),
(v 120) (£ 210) — us (£220) + us (£ 230),
(v220) = uy (t410) —uy (£ 420) +u, (£430),
(v111) 1
(v121)
( )

1
(¢110) =C11F+ chsinw Iy,

s —l
(£120) = cf log T, F

+eR 81,

1
((130) =cfy (1 —1%) ——cfysina I,

T
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1 : 1 .

(£210) = —chsina Iy +5—cfysin2x I,
T =TT

(£220) = cfy S2+ck, 52,

1 1
(¢230) = ;cﬁsmwf o 0145111 T dy.

1
@410) =1 T, Ly clﬁsm Fardig)

(£420) = ¢f; log ;: 5 4 chi8s,

1 ;
(t430) = cﬁ(l—]’g)—gc{’ﬁsmi’)wl},

3. Analytical Solution for Fixed Plates

3.1. Additional Notation

el d—nel3w L8 1 116], iy =4mtwld+4vIf,

ciyg = a4 [wl$—8(1—-2v)I'¢+16], ¢ty =—-2ntwly,

iy =m[—wlg+4(4—v) ['§+64], cte = 27t [wlg+ 16w T,

= mi[wlE—4(4—9v) T2+64],  cis=m*[Bwlf+32T7+64],

che = —mt[wE+16 (1—v) 2], ¢i, = m[wIE—32(1—2v) [2+64].

3.2. Analytical Solutions

The analytical solution is given in the form:
Hoer =20
5 FiyFpp— Fp 1y = 0,
Fy = ()2 (v110)+ (v 111),
B = I = (T2 0120 (e 121
F, = (I,)? (v 220) + (0221).,

where
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(t130) = c{'fl,

4 . L .
(t140) =3I +—sinw I+ —sin2x7 [,
(1L &

: 1
(F161) =3 (F2—F0)+i[sinwf.2—sinrrfo]+T)—[sin2nl"2—sin 24l
w =TT

—_
b
(=]
Ot

T
Il
ol o

; 1 s
- (I’,f—f'(;z)+[Fzsillwfg—FosilleOJJr-(~) [cosm [y —cosm I]
o i o

2
+ (%) [[ysin 27 Iy — I['ysin 277F0]+(:)1—) [cos 27 Iy —cos2n 1],

-—

: 4\ . :
(¢160) = 3 (['y,— l)+(*) Sllle2+31—3111217F2,
w T

(£230) = ¢k,

L 2% {0
(8240) = — 2@\ ——sinw [+ —sin 27 I'y+-—sin3« I,
T T 3
I3 ; s :
(¢251) =—2(FZ—I’O)—;[smwfz—smwﬂ,]—%—;[sm27rI"2wsm277FO]

i :
+ﬂ[sm3w]”2—sm3'nf'0],

2
(t252) = —(Fz‘z—f’&)—1[Fzsillwfg—FUsilleO]—(—l—) [cosa I'y —cosm []
0 T

+ (1) [Iysin 2wF2—Fosi1127rF0]+2( ! ) [cos 27 [y —cos 27 I]
v

27

2
+ (%) [Iysin3xI'y— ' sin3 7 )]+ (——1—) [cos 3w [y —cos3m ],

3
1 i 1 55
(£260) = —2(I'y—1)——sinw 'y +—sina Iy + —sin 37 I,
¥ T SIS 3

(£430) = ¢k,

% T,
(t440) = 3 j— —sin 2771“0+;Tsméw[’0,

i

1 | o

; : P2 .
t451) =3 ([, — 1) ——[sin2=x [, —sin2# +—[sindwly—sind= 1],
2 0 2 0 477_ 2 0

i

2
(I'g—I'g)——[Iesin2x Iy — I sin 27 ']

w

1'ya I 1 ’ ;
— (~) [cos 2wF2_0082wF0j+(E) [([ysindwI'y— Iysindx []

1\2
-+ (4—"”) [COS4WP2—‘COS4TFFO:|.

2 .
(1460) =4(1’2—1)——5111277]’2—%;;8111477]”2,

w
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3.2b. Elastic-plastic Buckling
(Based on the deformation theory)

(v 110) = u, (£ 110) —uy (£120) +u (¢ 130)
(v120) = u, (£210) —u, (£ 220) +u (£ 230),
(0 220) = uy (£420) —u, (£ £20) +u (£ 430)
(0 111) = — (£ 140) — Joy (¢ 151) + kg (£ 152) + K, (£ 160)
(0121) = — (¢ 240) — ks (£ 251) + kg (£ 252) + k, (¢ 260)
(0221) = — (£440) — ky (£ 451) + kg (1 452) + &, (£ 460)
P 1 pg P a2
((110) = cpy 0+;cmsmwfo+§cmsm_ﬂnf’0,
(t120) = cfilog 1t 1° rf: +05, 83,
0
3 L2 J ey
(t130) :0{51(].—Fl)-——7_1—6‘1""2811177Fl—ECﬁSIHZ‘iTFl,
i) 15 5
(£140) =3I +—sinw ', +5—sin27 I,
T T
> 4 . : j et :
(t151) =3(F2—F1)+—[S11177F2—-sm1r1’1]-|—_)r[sn'127rF2—sm2wF1],
w Z
3 4 s : 2N
(t152) =3(F22—F12)+—[F251117F2—Flslnwfl]+() [cosm [y —cosa I]
74 w Kk
1 : : I
+5—[F2511127F2—F1s1n27rF1]+ — [cos 27 [y —cos 2m 1],
4T < TT
: , 4 . Jo
(£160) =3 (I'y—1)+—sinm [y+5—sin 27 [,
T & 97
i Ppll,.rlp.,)ljlp.‘r
(£210) = cq4 0+;615s1nn— O+ﬂcmsln..7r 0+§TC17S”1377 0>
29 P oo I'Fﬁ P Qly P Ql P Q1
(£220) = cqq4log T +cf5 ST +cls S5+ 17 S5,
2 1D 1 2 1 Bgno 1 5
(t 230) =01'4(1-—Fl)—;—clgsmrrf'l—?;cl‘ﬁsm_wfl—é;clﬁsmf%rrfl,
o .) It o s | P
(t 240) ——_I’l—;smwfﬁ—;sm_wF1+§;sm3wF1,
- 5 1380 : Il el o
(251 =—~(Fz—Fl)—;[smwfz—smwfl]-!—;[sm-nfz-—sm-wFl]

I5diee :
+?—[51n3w112—51113771"1],

2T
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s

2
(£262) = —(Ff—l"f)—l[Fzsinwfz—Flsinwfl]ﬁ(i) [cosm ['y—cosa I]
o

1

]

= X 1A
+ —[Lysin2# 'y — I sin 27 1]+ 2 ()) [cos 27 'y —cos 27 []
a—lTr

11\2
:F (%) [I"'gsinSsz—FlsianFl]+(¥r) [cos 37 Iy —cos3w ],

ToR ey i
(8260) = =2y —1)+—sinwy+—sin 27 [+ —sin 37 I,
= T T 3
P L pas L
(¢410) =& I'y+ 5. ciesin 27 [+ i cksind [,

7
(£420) = cfslog——F" + ¢ Si+cf; S,

gl 1 :
(t430) =cgs(l—I"l)—~§c§%sm?wfl—ac£sm4w,
25 T
(t440) =3I ——sin 27 [ +—sind# I,
T 47

DF 10} ; ke :
(t451) :3(FI—FO)—;[sm2wF2—Sln2wF1}+E[3111477['2—31114771"1],

(t452) =

bo| O

2 1\2
(IE-TI'¢)——[Iysin2# I, — I sin 21rf'1]—(—) [cos 27 [’y —cos 27 ]
a T
11\2
+é[Fzsin4wF2—Flsin4wF1]—(4—77) [cosdm Iy —cosdnl]],

Ar 16528
(6460) =3([y—1)——sin27 [y+-—sindnT,.
T 47

3.2¢. Elastic-plastic Buckling
(Based on the flow theory)

(v110) = u, (¢110) +u (£130),
(v120) = u, (¢210) +u (£230),
(v220) = u, (t410) +u (£430),
(v111) = —(£140) —ky (¢ 151) + k5 (£ 152) + ky (£ 160)
(v121) = — (£240) —ky (£ 251) + k4 (£ 252) + k, (£ 260)
(v221) = — (t440) — ky (£451) + ke (£ 452) + &, (¢ 460)
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(£140), (£151), (£152), (£160), (£240), (t251), (£252), (t260), (t440), (t451),
(t452) and (£460) are the same as in Section 3.2b.

3.2d. Plastic Buckling
(Based on the deformation theory)
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Summary

This paper presents the results of a theoretical investigation into the elastic,
elastic-plastic, and plastic buckling of steel plates containing residual stresses
and simply supported at the loading edges with the other edges:

a) elastically restrained,
b) simply supported,
¢) fixed.

Numerical illustrations are presented for the analytical solution of the
strength of square built-up columns which fail by local buckling. This study
showed that the first term of the series of the assumed deflection function,
™y
2b
and plastic buckling of the plate with residual stresses.

The theoretical predictions were correlated with experimental results ob-
tained from pilot tests on square welded columns of ASTM A 36 steel and of
ASTM A 514 steel (T-1 constructional alloy steel).

o =7 3 . : o . &
W =a COos sin N - was sufficient to investigate the elastic, elastic-plastic,

Résumé

Les auteurs communiquent les résultats d’une étude théorique ayant pour
objet le voilement élastique, élasto-plastique et plastique d’ames métalliques
comportant des contraintes résiduelles et simplement appuyées aux bords
chargés tandis que les autres bords sont:

a) élastiquement encastrés,
b) simplement appuyés,
¢) encastrés.
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Des exemples numériques illustrent le calcul de la résistance de poteaux
composés, de section carrée, périssant par voilement. La présente étude a fait
ressortir que, pour analyser le voilement élastique, élasto-plastique et plastique
des &mes comportant des contraintes résiduelles, il était suffisant de ne retenir
que le premier terme du développement en série de la fonction admise pour

” ’ . ™ 1 . €
représenter la déformation, w=a cos 3 gj sin N 7

On a déterminé la corrélation existant entre les prévisions données par le
calcul et les résultats d’essais pilote exécutés sur des poteaux soudés de section
carrée en acier ASTM A 36 et en acier ASTM A 514 (acier de construction allié
T-1).

Zusammenfassung

Dieser Aufsatz berichtet iiber die Ergebnisse einer theoretischen Untersu-
chung des elastischen, elastisch-plastischen und plastischen Ausbeulens von
Stahlplatten mit Eigenspannungen. In allen Féllen sind die Belastungskanten
gestiitzt, die anderen Kanten

a) elastisch gehalten,
b) gestitzt,
¢) eingespannt.

Die analytische Losung fiir die Festigkeit quadratisch zusammengebauter
Knickstébe, die durch ortliches Ausbeulen versagen, wird durch Zahlenbeispiele
veranschaulicht. Aus dieser Untersuchung ergab sich, daB das erste Glied des Rei-

0 . . w s i
henausdrucks fiir die angenommene Auslenkungsfunktion w=a COS 5 g/sm b

zur Untersuchung des elastischen, elastisch-plastischen und plastischen Ausbeu-
lens der Platte mit Eigenspannungen ausreichte.

Die theoretischen Resultate wurden mit den in praktischen Versuchen mit
geschweiliten quadratischen Séulen aus Stihlen ASTM A 36 und ASTM A 514
(Legierungs-Baustahl T-1) gewonnenen verglichen.
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