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Comportement postcritique d'une plaque carree raidie
cisaillee uniformement

Premiere partie: Solution generale et deformee de la plaque

Überkritisches Verhalten einer ausgesteiften quadratischen Platte unter

gleichmäßigem Schul)

Teil I: Allgemeine Lösung und Formänderung der Platte

Post-critical Behaviour of a Stiffened Square Plate Subjected to Uniform Shear

First Part: General Solution and Buckled Pattern of the Plate

M. SKALOTJD J. DONEA

Doc, Ing., C. Sc, Institut de Möcanique Aspirant F.N.R.S., Universite de Liege

Theorique et Appliquäe de rAeademie des

Sciences, Prague
CH. MASSONNET

Professeur ä l'Universit^ de Liege

Liste des principaux symboles

2 a longueur de la plaque
b largeur de la plaque
e epaisseur de la plaque
a ajb Rapport de la demi-longueur et de la largeur de la plaque
E module d'elasticite
v coefficient de Poisson

D titt;—zz rigidite flexionnelle de la plaque
12(1 — v'j °

Ir moment d'inertie du raidisseur

Qr section droite du raidisseur
EI

y -=-^ rigidite relative du raidisseur

y* rigidite optimum theorique provenant de la theorie lineaire du
voilement
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188 M. SKAL0UD - J. DONEA - CH. MASSONNET

7o rigidite du raidisseur quasi-rigide dans tout le domaine post¬
critique de la plaque

rapport de la section du raidisseur et de la plaque
tension de cisaillement
fonction d'Airy

n tensions de membrane
tension critique de la plaque non-raidie de reference
deformation transversale de la plaque
parametres de la deformee
rapprochements unitaires des bords opposes de la plaque
hmite d'elasticite
deformation de cisaillement

12 (l — 2) \b) *ens^on critique d'Euler
coefficient de voilement

k
^Etf ~

10 92 variable auxihaire (pour E 21 000 kg/mm2 et v 0,3)

1. Position du probleme

La seule base theorique dont nous disposons actuellement pour
dimensionner les raidisseurs de l'äme d'une poutre ä äme pleine est la notion de
raidisseur strictement rigide. Ce raidisseur est le plus leger de tous les raidisseurs

rigides; c'est pourquoi on designe la rigidite relative y* de ce raidisseur
sous le nom de rigidite optimum.

La notion de rigidite optimum est une notion purement theorique, basee sur
la thebrie lineaire des plaques. Cette theorie dit bien qu'un raidisseur de
rigidit6 y* reste rectiligne sous la charge critique theorique de voilement, mais
eile ne nous donne aucun renseignement sur ce qui se passera dans le domaine
postcritique.

C'est pourquoi il nous a paru indispensable de revoir la notion de raidisseur
strictement rigide ä la lumiere de la theorie non-lineaire des grandes deformations

et en particulier d'etudier de pres le comportement postcritique des
ämes raidies cisailMes uniformement dans leur plan.

Considerons donc une plaque rectangulaire de longueur 2 a de largeur b

cisaillee uniformement dans son plan et renforcee par un raidisseur vertical
median.

Nous rapportons la plaque aux axes coordonnes x, y, z definies par la fig. 1.

Nous admettrons que la plaque est fabriquee d'un materiau elastique,
parfaitement plastique dont le comportement est regi par le diagramme de
Prandtl repräsente ä la fig. 2. Nous supposerons en outre que les champs de
tension et de deformation apparaissant dans la plaque appartiennent au
domaine elastique.
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Nous nous bornerons dans ce travail ä rechercher Pinfluence de la rigidite
flexionnelle du raidisseur sur le comportement hypercritique de la plaque.

Nous supposerons donc que le raidissage de la plaque est realise de maniere

teile qu'on puisse negliger les phenomenes de torsion pure et de deversement

du raidisseur pendant le voilement de la plaque.
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2. Solution generale du probleme

2.1. Equations differentielles et conditions aux limites

Les equations du voilement non-lineaire des plaques ont ete etablies par

von Karman en 1910.

On definit l'etat de tension de membrane existant dans la plaque par une

fonction de tension d'Airy 0.
Les tensions de membrane s'en deduisent par double derivation:

d20
dy

i<p i$>

,2 ' Jym dx2 dxdy
(2.1)

La condition de compatibilite des deformations du feuillet moyen s'exprime

par l'equation:
w\( d2w^2 «2-32,

'8x2dy2
' dy1

di0 di0
Jx1"* \dxdy

d'w d*w
dx2 dy2

(9. 9.

D'autre part, la condition d'equihbre d'un element de plaque s'ecrit:

D ldiw
+ 2tt

e idz4 '
dx2dy2 +

(PW d20d2w d20 d2w

dy2 dx2

d20
(2.2b)

dy*f dy* dx* dx2 dy2 dxdy dxdy'

Les symboles w, 0, D, e, E ont ete definis dans la liste des notations. Les

equations (2.2) forment un Systeme d'equations aux derivees partielles non

lineaires ä deux fonctions inconnues, 0 et w.

Les conditions aux limites du probleme sont fonctions des conditions de

support de la plaque.
Nous supposerons que la plaque est simplement appuyee sur son contour

ce qui donne pour la fonction w les conditions aux hmites suivantes:
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A. pour x 0, x 2a,

y 0, y b,

B. pour x 0, x 2a,

y 0, y b,

Les conditions aux hmites relatives ä la fonction 0 sont fonctions de la
rigidite flexionnelle des pieces de support de la plaque; envisageons deux cas:

A. La rigidite flexionnelle des elements aux hmites est teile que les bords
de la plaque restent rectilignes

w 0, (2.3 a)

w =0, (2.3b)

r d2w d2w
dx2 dy2

0, (2.4 a)

„, d2 w d2w
Mv ir-z+vir^" dyz ox*

0. (2.4b)

pour

pour

x 0,

2a)
la
du
dx

x 2a :

dx
1 ld20 d20\ 11 dw

dx-E\dy2 2\dx

(2.5 a)

dx constante,

y 0, y b:
b

1 fdv\Tydy^\e* b.)dydy
i id20 20\ 1

(2.5 b)

E\dx2 dy2 2\dy dy constante.

Ajl Les bords opposös de la plaque restent rectilignes et ne se rapprochent
pas:

poura; 0, x 2a: £x ®' (2.6a)

pour y 0, y — b: ev Q- (2.6b)

A2. Les bords opposes de la plaque restent rectilignes et se rapprochent
librement:

pour x 0, x 2a: Px ®> (2.7a)

pour y=0, y b: Pv 0, (2.7b)

oü px, py designent Ms valeurs moyennes des sollicitations normales aux bords
de la plaque.

B. Les pieces de support de la plaque sont parfaitement flexibles

d20
pour x 0, x 2 a: -r—? 0,

dy2

8Z® 1
pour 2/ 0, y b: Jtf=0'

(2.8 a)

(2.8 b)

La fonction 0 doit en outre satisfaire la condition de contour

d20
dx oy
d20

dx dy

pour x 0, x 2a,

pour y 0, y b.

(2.9 a)

(2.9 b)
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2.2. Supposition relative ä la deformee de la plaque

Parmi les fonctions admissibles wti satisfaisant aux conditions aux limites

(2.3) (2.4) et dont les derivees partielles sont continues jusqu'au quatrieme

ordre, nous faisons choix des fonctions particulieres

%ttx jrry „ co in\
wH sin-—sm-^ pour %, 7 1, 2, (/.lü)

%' 2 a b

Si la longueur 2 a de la plaque n'est pas tres differente de sa longueur b, la

deformee dans le domaine postcritique correspond ä un simple champ diagonal.

H s'agit de determiner les fonctions coordonnees % aptes ä decrire ce

comportement.

Etant donne la difficulte de l'etude analytique du voilement non lineaire

des plaques, il faut se hmiter ä un nombre relativement petit de fonctions

coordonn6es Wy.
Les resultats de l'etude lineaire du probleme nous ont permis de determiner

les fonctions w^ qui jouent le röle le plus important dans le processus du voilement

de la plaque. Ceci nous a conduit ä choisir pour la deformee w l'expres-
sion ä six parametres:

ttx 3ttV 3ttX ttV 2ttx 2rry ttx try
w /1sin||sin^ + /2sin^-sin-^ + /3sm—sm-^ + /4sm-smx

(2.11)
ttx 2-rry ZttX ö-ny

+ fc sm—sm —~ + L sin-— sm—v—,'6 a b 2a b

oü les fi sont des parametres provisoirement indetermines.

2.3. Fonction de tension d'Airy et tensions de membrane

La fonction d'Airy 0 definissant l'etat de tension de membrane existant

dans la plaque satisfait l'equation biharmonique (2.2a) oü l'on aura remplace

les derivees partielles figurant dans le second membre par leurs valeurs deduites

de l'expression (2.11).
Nous avons recherche une Solution de l'equation (2.2a) du type

0 0t+02,

oü 0-y est Solution de l'equation homogene correspondant ä (2.2a) et 02 une

integrale particuliere de l'equation non-homogene. L'equation homogene

8xi dx2dy2 dy*

correspondant ä l'equation (2.2a) admet comme Solution un polynöme du

second degre de la forme

0i _P^l_T^ + TXy> (2.12)
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oü px et py sont les valeurs moyennes des reactions des elements aux hmites
et t le cisaillement uniforme de la plaque.

On peut adopter comme integrale particuhere de l'equation non-homogene
une expression 02 contenant les memes lignes trigonometriques que Celles qui
figurent dans le second membre de l'equation (2.2a). Cette expression 02 fait
intervenir un certain nombre de constantes que l'on determine par identifica-
tion. En introduisant le rapport a. afb, il apparait, tous calculs faits, que la
fonction d'Airy 0 peut s'ecrire sous la forme

0 E ,2(<x.2 2ttx 1 2ttw\ ,„/a2 4cttx 1 4nry\
/?(32C°S— + 32^C°SV) +/i (32COS^T + 32^COS-r)

§TT% 1 67TV\ ,9/a2 TTX 1 27TV
+ /I(32C°S-^- + 32^C°S-^) + '4 (tC0S^ + 128a2 ^¦¦~6-

/a2 2-rrX 1 4tt2/\ ,„/a2 3770; 1 67T«\+ f*\T«»— + 128^ C0S-r) + ><i(T~B — + !28^ cosJ)
,,,l 4a2 ttx 3ttw 4a2 37TX tt«'+ /l/2(l + 18a2 + 81g4COS-COS-r-t-81 + 18tt2 + a4COS —COS-/

I 9 a2 27rx 47TW
+ £ /s (l6+128a2 + 256a4

C°S~ °°S ~b~
9 a2 47TIE 2-Try

+ 256 + 128a2+16a4C°S^COS-cr

,i,l 7TX ; a2 37ra; 9a2 ttx 2tt«+ /1/4(-a2cos- + -cos—-t-1 + 32a2 + 256a4eos-cos-/
a2 37TX 2TTV

cos —— cos81 + 288a2 + 256a4 2a ö

i I 1 Tri/ 1 3ttV 9 2ttX -ny+/1J5 -T-8cosf- + ---cos-1^ + - cos cos-/\ 4a' 0 32 a1* 0 4 16 + 8a2 + a4 a b

1 OL2 2ttX "&iry
4 16 +72 a2 + 81a4 a b

,i,l 9a2 ttx 2-rry 81a2 ttx Irry+ txte ~ -,, 09 2_i_9Kfi ,008 — 008-7^+ COS — COS —y-g-
\ 1+32 a'M-25 6 a4 2a 0 l+128a2+4096a4 2a b

81a2 57TX 2-Try+ 625 + 800 a2 + 256 a4
°OS "2^" °°S ~T~

9 a2 57ra; 4ttV
r cos —— cos625 +3200 a2 +4096 a4 2 a

/ 36a13 ttx 5-rry 36a2 ö-n-CK ttw+ lzfz\ T KC\ 2 MC 4C0S C0S—r^+rT^i} PTT^ Z C0S COS-^°\l + 50a2 + 625a4 a b 625 + 50a2 + a4 a ö

/ —4a2 37ra; 7ry 4 a2 3ttX 377«+ /g/4 ot ,79 2. Ifi 4COS~5 C0S~lT + n 4 COS — COS-t-^-
\81 + 72a'i+16a4 2a 0 9 1 + 8a2+16a4 2a 6

36a2 5ttx ttx+ 625 + 200a2+16a4C°ST^COS"T
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4 a2

625 +1800 a2+1296 a4
5ttx 3Try

COS —r COS —=—

+ /2/s(-a2cOS TTX OL2 3tTX- + -—COS h
a 9 a

9 a2 tt x 4:Try
s r cos — cos —;—l + 32a2 + 256a4 a b

et2 Zttx 4:Try_________ cos — cos -s-
+ tzh

+

36t
~^+l«
324 a2

TTX -ny
cos -t— cos -i—(-2a

324 a2

¦'¦" ~ b

IttX try

ttx orrycos COS
l + 200a2+10000a4 2 a b

cos-
2401 + 392 a2+ 16 a4 2 a

36 a2

-cos-

77ra; 57T«
COS cos

2401 +9800 a2+ 10 000 a4 2 a 6

+ fzh\~

+

9 a2 2-TryDTTX

625 + 800 a2 + 256 a4 C°S"__" °°S
b

81a2

+

625 +3200 a2 +4096 a4

81a2
2401 + 1568 a2 + 256 a4

9 a2

5ttX irry
cos—-—cos—;—

7ttX 2-rry
COS — COS ;2a b

+tzh

IttX 4:Try
COS r>Qfi

2401 +6272 a2 +4096 a4 2 a b

9 a2 27T3; 77 w
T —^ 7T—Ü T COS COS —r-4 16 + 8 a2 + a4 a b

81 a2 2ttx 5-TTy
-1 s ^—J cos COS —;—4 16 + 200a2 + 625 a4 a b

81 a2 477X 77W
-I w^x—„„ „ rcos cos-=—

4 256 + 32a2 + a4 a 6

9

4 256 + 800a2 + 625a4

4:TTX Ö77W
cos COS —;—

a

+ /s/e „ 377 a; a2 977 0; a2
¦a2COS — h—-COS— h 2 1 OK« '

2 a 9 2 a 1 + 32 et* + 256 a4 2 a

37ra; 677W
T cos m.— cos -

9 a2

81 + 288a2+256a4 2a
977a; 677«

COS — COS —;—

16t 77 a;
— <

\a
Siry

+ /4/5l1 + 72a2+1296a4COS2aCOS b -I -72a2+16a4+ ^
öttx -ny

cos-—— cos-72a 0

+hh(l

+ UU

+

a2 77 a; 477?/ 9 a2

1+32 a2+256 0^°*~a~C°S~b~ + 4 16+32 a2+16 a4
cos- ¦cos

577 7/

144 a2

1 +200 a2+10 000 a4 2a
144 a2

77X Ö77W
COS —— COS ——i

077a; 777/

625 + 200a2+16a4
°0S "^~ C°S T -*f-*g+ Tzy. (2.13)
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Les tensions de membrane s'obtiennent par double d6rivation de 1'expression

precedente de la fonction d'Airy:
820 d20

(2.14)
d20

0xm~ dy2' avm~Jx2' Tm~~llx~Jy~'

L'ecriture de ces expressions etant tres lourde, nous ne 1'avons pas reprise
101.

2.4. Rapprochements ex, ey des bords de la plaque, deplacements u et v, ddformation
tangentielle 8

Les rapprochements des bords de la plaque sont fournis par les relations
suivantes:

2a

— pour Mr bords x 0, x 2a: Ax ux=Q — ux=2a= —dx,

pour les bords y 0, y b: ^v ~ vv=o vv=b )zy
Les rapprochements unitaires s'ecrivent des lors

2a
Ax 1 f du

— pour les bords x 0, x 2 a: 2a -u dx dx,

pour les bords y 0, y b: e„ —^- $. -^r—dy." b b J dy u

En tenant compte des relations

du 1 ldw\2
J^=:ex~2\dlc) '

dv 1 ldw\2
Ty~ ev~2\ßy-) '

on peut ecrire:

e„

ex -ß{axm-vaym)'

eU I -g(aym-VCTxm)

171 v^xm v(*ymi o

1 /SwA2'

2\¥x dx,

1 fdw
¦^Vvm-v<rxm)-2\dy dy.

En remplacant dans ces expressions crxm, aym et w par leurs valeurs (2.14)
et (2.11), on obtient apres quelques calculs:
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e -_ff—-ff— _/297r2_r2 ** _ff w* _»___.______ (215a._- 7l8o, l22a2 /3ga2 /432a2 /5ga2 /632a2 E ' (Z-l0&)

e - ff _! ff
^2 /297r2 a ^2

/2
^2 /29^2 Pv-^Pa; f2 15WS fl862 /2262 /38&2 /4g62 ^5262 Tt g ft2 j£ ' ^iOD'

On constate ainsi que les bords de la plaque restent rectilignes, le signe
negatif montre qu'ils se rapprochent.

II en r6sulte qu'en acceptant la Solution simple (2.12) de l'equation bihar-
monique homogene correspondant ä l'equation (2.2a), on ne peut satisfaire
que les seules conditions aux hmites _l5 A2 relatives ä la fonction 0. Seule une
Solution beaucoup plus elaboree de l'equation (2.2a) homogene permettrait
de satisfaire la condition _.

En ce qui concerne les deplacements u et v dans le plan de la plaque, ils
sont Solutions d'un Systeme d'equations aux derivees partielles du premier
ordre. Les deux premieres equations sont donnees par les relations

— -(<rxm-v<ryJ--{—}, (2.16a)

Jy- ^^rn-™Xm)—2[Jy-)- (2.16b)

En tenant compte des formules (2.14), (2.11), les equations precedentes
prennent la forme

||=IxK2/l| ^ I2(x,y).

Les expressions de ^— et ^— s'obtiennent ä partir de la relation

du dv dw dw 2(l+j>)v= 1 1 — -t (2.17)7 dy dx^ dx dy E m y '

Cette derniere expression fournit, en effet, la valeur de ^— [-z—(- ^—).
dzv 9y\dy dx]

L'expression (2.16b) fournissant la valeur de |—5—, on aura:x v ' dxdy
d2u 2(l+v)drm

E dy
d2v d2w dw dw d2w

dy2 dx dy dxdydy dx dy2'

En derivant l'equation (2.16a), on obtient _ Connaissant -j—^ et

on determine 3— (ä une constante C-, pres). On trouve de la meme maniere
dv 8y

dxdy dy% dxdy
On trouve de la meme maniere

¦—-, la constante d'Integration etant C9. On determine les valeurs des constantes
du dv

C-l et C2 en substituant les expressions de ^— et ^— dans l'equation (2.17).

Finalement, le Systeme d'equations en -3—, 3—, 3—, -5— fournit les deplace-J ^ dx dy dx dy r
ments u et v. Les nouvelles constantes d'Integration C3, Ci apparaissant dans
les expressions de u et v sont d6terminees par les conditions
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Ii (0,0) 0,

ü(0,0) 0.

Nous ne reprendrons pas ici le detail du calcul des deplacements u et v
dont l'ecriture est tres penible. Nous nous contenterons de montrer comment
on obtient ä partir de u et v l'expression de la deformation tangentiale 8. On
calcule en premier heu la valeur moyenne du deplacement u sur le bord y b:

"y=b (uy=b)dx.

De maniere analogue, on determine la valeur moyenne du deplacement u
sur le bord y 0:

4!/=o % 2 _ \uy=ft) dx.

L 'angle de cisaillement correspondant au deplacement relatif des bords
y 0, y b est donne par

De meme, on calcule ä l'aide des relations

(vx=za)dy. v* =° bj (vx=0) dy

Ms valeurs moyennes du deplacement v aux bords x 0, x 2a. L'angle de
cisaillement consebutif au deplacement relatif des bords a; 0, a; 2a est
donne par

a _ vx=Z a ~ ^3=0
UZ — ö •2a

La deformation de cisaillement 8 est la somme 8X + 82

/i/s
32 a 49

b3 \25(l + 8a2+16a4) 25 (625 + 200a2 + 16 a4)

1225 a2
+

25

9(81+ 1800a2+10000a4) 9(81 + 72a2+16a4)/ a3

26

441a2

25(l + 8a2+16a*) 625 + 200a2+16a4 25 (81+1800 a2+10 000 a4)

+ + ¦
16; 49 <

81 + 72a2+16a4/ ab \25 (1 + 8a2+ 16a4) 625 + 200a2+16a4
5 a2

+81+ 1800a2+10000a4 81 + 72a2+16a
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+ /1/5
32a/ 100 a2 16 a2

~W (9 (81 + 1800 a2+ 10000 a4) 9 (81 + 72 a2 + 16 a4)

400 <

+ ¦

1 +200 a2+10 000 a4 l + 8a2+16a4j
2b l 36a2
a3 \25 (81 +1800 a2+10 000 a4) 81 + 72a2+16a4

16 a2 4 a2
+

25(1 +200 a2+10 000 a4) l + 8a2+16a

+
4 a2

+ tzt:2/3

64 v
~ä~b\ 1 imi;i-/:' 7 81 ¦-¦-,: i.i 7

4 a" a2

1 +200 a2+10 000 a4 + l + 8a2+16a4

32a/ -225 a2 a2
+ ¦

+

b3 \1 +72 a2+1296 a4 l + 8a2+16a4
9 a2

49 (2401 + 3528 a2+1296 a4) 49 (2401 + 392 a2 + 16 a4)/ a

26

-25<
+ + •

49

9(l + 72a2+1296a4) l + 8a2+16a4 9 (2401 + 3528a2 + 1296a4)

1225 a2
+

16v - 25 n2
+

+/./.2/5

+

+

2401 + 392a2+ 16a4/ a6 \l + 72a2+ 1296a4 l + 8a2+16a4
25 a2

2401 + 3528a2 + 1296 a4 2401 + 392 a2 + 16 a4

32a/ 4a2 i i ¦>¦:'

b3 \l + 8a2+16a4 l + 72a2+1296a4
36< 16a2

25 (625 + 1800 a2+ 1296 a4) 25 (625 + 200 a2+ 16 a4

2b_

nz
'

4 a2 16 <

+
100 <

l + 8a2+i6a4 9(l + 72a2+1296a4) 9 (625 +1800a2 + 1296a4)

400 <

+
64 v ioc2

+

625 + 200a2+16a4/ a6 \l + 8a2+16a4 1+ 72 a2+1296a4

4 a2

+ fzk

625+1800 a2+1296 a4 625 + 200 a2 + 16 a4

32a
b3 \9(81 + 72a2+16a4) 9 (1 + 8a2+16a4)

9a2 9a2
+

25(625 + 200a2+16a4) 25 (625+1800a2+1296 a4

9< 225 a2M.
a3 \81 + 72a2+16a4 9 (1 + 8 a2+16a4) 625 + 200a2+16 a4)

16v/ZOa" 10 vi af
+

9(625 +1800a2 +1296a4) + ~Ö6~ (81 + 72a2+l 6 a4
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+ fzh

+hh -

+hh

a2 9 a2 V

+ 1800 a2+1296 a4/_9(l + 8a2+16a4) 625 + 200a2+16a4 ' 626
" 32a/ 9 a2 2025 a2

b3 (l + 8a2+16a4 1+200a2+10000a*
81a2 225 a2 \

49 (2401 +9800 a2+10 000 a4/49 (2401 + 392 a2+16 a4)
'

26/ 9a2 81a2
a3 (l + 8a2+16a4 25 (1 + 200a2+10000a4

3969 a2 441a2
2401 + 392 a2+16a4

'
25(2401 + 9800a2 + 10000a4)/

16 vi 9 a2 81a2 81a2
1

a6 \l + 8a2+16a4 1 + 200a2 + 10000a4 2401+392 a2+16a4
9a^ \

+ 2401 + 9800 a2 + 10000a4/_
" 4a/ -288 a2 35 2 a2 \

81 + 72a2 + 16 a4/63 (l + 72 a2+1296 a4 9

26/4 a2
1 1

36 a2 \

81+72a2+16a4/
' a3 \9 l + 72a2+1296a4 '

4 vi 16 a2 -16 a2 \'
'a6\ l + 72a2+1296a4 81 + 72a2+16a4/_

' 4a/ -7200a2 288 a2 \
63 (l +200a2+10000 a4 25 625 + 200a2 +16<X4)

26/36 a2 900a2
a3 \25 1 +200 a2+10 000 a4

'
625 + 200a2+16 a4

4v/ -144 a2 144 a2 \1 +2(1;^-(2-18)1

a& \l + 200a2+10000a4 625 + 200a2+16a.*/-

2.5. Determination des parametres ft par la methode energetique

Nous avons obtenu 1'expression 0 de la fonction d'Airy generatrice des
tensions de membrane et Celles des deplacements ex, ey des bords opposes de
la plaque. Ces quantites sont fonctions des parametres ft caracterisant la
deformee (2.11) de la plaque.

Nous allons determiner ces parametres ä l'aide de la methode energetique
de Rayleigh-Ritz.

Cette methode consiste ä calculer la Variation que subit l'energie potentielle
totale de la plaque par suite du voilement. Pour la deformee de voilement
reelle w(x,y), la Variation de l'energie totale atteint une valeur minimum.

Pour trouver le developpement de la forme (2.11) qui represente la deformee
reelle, on doit donc choisir les parametres /^ de maniere ä rendre l'energie
minimum; les conditions ä remplir sont, d'apres le calcul differentiel,
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(2-19)—7- 0 quel que soit %.

Les equations (2.19) remplacent l'equation d'equilibre (2.2b).

L'energie totale emmagasinee dans la plaque peut s'ecrire sous la forme

E V+T, (2.20)

oü V est l'energie des forces interieures et T l'energie des forces exterieures.

La composante V est la somme de l'energie potentielle Vm de deformation du
feuillet moyen de la plaque, de l'energie Vt de flexion et de l'energie Vr

emmagasinee dans le raidisseur:
V=Vm+Vrf + Vl (2.21)

Les trois composantes de l'energie des forces mSieures sont donnees par les

relations
2a b

e
Fm 2_ J J Ua*™ + (Tvm)2+2(l+v)(°xm°vm-Tm)'\d*dy,

0 0

oü a^,, aym, rm sont Ms tensions de membrane.

'1 dx2 ' dy2

d2w 82w d2w

oü_

0 0

Ee3

12(1-.

dx2 dy2 \dxdyj Jj

est la rigidite flexionnelle de la plaque.

V V+V

\dxdxdy,

(2.22 a)

(2.22b)

(2 22

oü l'energie de flexion du raidisseur vaut
b

1
Vf =-E I'r n-" Jf

d2W

i\W. dy

tandis que l'energie de deformation axiale du raidisseur vaut
b

V™ ^\[vr]2dy.

2c)

(2.22 d)

(2.22 e)

EI et Qr etant respectivement la rigidite flexionnelle et l'aire de la section

droite du raidisseur. ar dösigne la soflicitation axiale du raidisseur, dont la
determination exacte ne peut se faire qu'en tenant compte de l'interaction
entre la plaque et le raidisseur.

Dans le cas particulier des plaques appuyees ou encastrees sur leur contour,

on sait par le theoreme de Gauss que
2a b

f T [d2 w d2w I d2w

0 0

da;2 dy2 \dxdy dxdy 0,



200 M. SKALOUD - J. DONEA - CH. MASSONNET

ce qui permet de simplifier l'ecriture de Vf.

2a b¦P0 0

d2w d2w
+

dy-
dxdy.

L'energie T des forces exterieures a pour expression
b

T -{c
ö

dw dw
pxu + rv+\px— + r— \v dy

\x=Za

)x=0

_ dw dw
PvV+TU+\pv-T— + T7—-]W" dy dx

dx
)v=b

1 V

)y=0

(2.22 f)

(2.22g)

Dans le cas d'une plaque appuyee sur son contour, on a

w 0 pour x 0, 2 a et pour y 0, 6,

ce qui permet d'ebrire l'expression (2.22g) sous la forme

T -[zS(pxu + T'»)dy]%Zla-[e$lpyv + Tu) dx]$*. (2.22h)

Tous calculs faits, cette derniere expression se reduit ä

_ -2abe(pxex+pyey + r8), ¦ (2.22i)

oü ex, ey representent les rapprochements des bords et 8 la deformation tangen-
tielle de la plaque.

Les composantes de l'energie emmagasinee dans la plaque par suite du
voilement sont fonctions des quantites ex, ey,px, py dont la valeur dopend des
conditions aux hmites pour le deplacement des bords de la plaque. Nous
allons considerer deux cas:

1. Les bords se rapprochent librement:

Px Py Q-

2. Les bords ne peuvent pas se rapprocher:

ex ey 0.

(2.23)

(2.24)

Dans le cas (2.24), les expressions (2.15) egaMes k zero fournissent les
valeurs suivantes de px et py:

77 '¦_
Px

Py=~2(l-v2

2(l-v2)
772_ li2 b2j\4: IM ; (T^ + ^l(l + /H ,;

4 rUa2 ^62/U
9/1

i i___hi_1__bI9/1» • '^ + f2 +^
4

9/2

(2.25 a)

(2.25 b)
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Les conditions aux limites une fois precisees, on calcule l'energie potentielle
de deformation de la plaque ä l'aide des formules (2.20) (2.21) (2.22). Les

equations l=- 0 fournissent un Systeme de 6 equations ä 6 inconnues du 3e
dji

degre permettant de determiner les 6 parametres fo en fonction de la charge

et du raidissage de la plaque.
Nous caracteriserons la charge de la plaque par le rapport t/t* oü t* est

la charge critique de la plaque non-raidie.
On supposera le raidisseur fixe par moities symetriquement de part et

d'autre de la plaque. Si on designe par Ir son moment d'inertie relatif ä la

flexion normale au plan de la plaque, on peut caracteriser le raidisseur par sa

rigidite relative:
rigidite du raidisseur _

E Ir
rigidite de la plaque 6 _

ou encore par le rapport yfy* oü y* est la rigidite relative du raidisseur strictement

rigide1) ou rigidite optimale.
Dans le cas d'une plaque cisaillee imiformement dans son plan, et munie

d'un raidisseur median, la rigidite optimale de troisieme espece vaut:

y* 5,4ß2(2i8 + 2,5J82-Jß3-l),

oü ß designe le rapport -r- des cotes de la plaque.

On sait que, quand le raidisseur coincide avec une ligne nodale de la deuxieme

forme du voilement, on peut döfinir une rigidite (relative) optimum de premiere espece

y* (E. Chwalla, Stahlbau, Vol. 17, p. 84—88, 1944) qui est la rigidite pour laquelle le

coefficient de voilement du panneau raidi est ögale a celui du demi-panneau suppose"

librement appuye sur son contour.
Si l'on neglige la rigidite torsionnelle du raidisseur, la courbe du coefficient de voilement

k en fonction de y a, dans ce cas, la forme de la figure ci-contre et l'on voit qu'il
n'y a aucun interet a augmenter y au-dela de y*.

Au contraire, dans le cas actuel, la ligne nodale de la deuxieme forme de voilement

ne coincide pas avec Taxe du raidisseur et, par consöquent, on ne peut d_air qu'une

rigiditö optimum y* de troisieme espece; c'est la rigidite relative du raidisseur pour
laquelle le coefficient de voilement de la plaque raidie devient egal a celui du demi-

panneau suppose librement appuye sur ses bords. En realitö, le diagramme fig. 3 montre

que k continue encore ä augmenter quand y exeede y*. Cette augmentation de k au delä

de fcmax est faible et est toujours inf&ieure a 20 pour cent. C'est pourquoi eile est

generalement negligee, de maniere ä pouvoir döterminer kmax aiseinent dans une plaque

munie de plusieurs raidisseurs, comme etant le coefficient de voilement du panneau

partiel le moins stable, suppose' indöpendant des autres panneaux et librement appuyö

sur ses quatre bords. Ce principe sert, par exemple, de base aux abaques publies par
Klöppel et Scheer (Beulwerte ausgesteifter Rechteckplatten, W. Ernst & Sohn, Berlin,
1960).

Neanmoins, nous devons övidemment tenir compte, dans la presente ötude, du

comportement reel de la plaque raidie et, en particulier de l'augmentation de k au dela de la
valeur arbitraire kmax correspondant a la rigidite optimum de troisieme espece y*.
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Dans le cas d'une plaque carree (j3 l),onay* 13,5. Comme le raidisseur
n'est pas sollicite axialement, son second parametre caracteristique, ä savoir
le rapport §=r-s de la section droite du raidisseur ä la section droite de la

plaque, ne joue aucun röle dans les calculs.

3. Etude numerique du comportement postcritique d'une plague carree
raidie cisaillee uniformement

Bn vue de simplifier au maximum les calculs numeriques, nous admettons
les hypotheses suivantes:

a) Les bords opposes de la plaque restent rectilignes pendant le voilement et
se rapprochent librement (px=py 0).

b) La section droite Qr du raidisseur est nulle. Le but de notre 6tude etant
d'etudier l'effet de la rigidite flexionnelle du raidisseur, cette simplification
est admissible.

3.1. Tensions critiques de voilement en fonction de la rigidite relative du raidisseur

En linearisant le Systeme d'equations du 3e degre

dE 1

I HS I
traduisant le minimum de l'energie potentielle de la plaque, on obtient un
Systeme lineaire et homogene de 6 equations ä 6 inconnues oü les coefficients
des fi sont fonctions du cisaillement t, de la geometrie de la plaque et du
rapport yly* caracteristique du raidissage.

Ce Systeme s'ebrit pour le cas qui nous occupe

!,289377 + 50,0715-^1 f{ + (0,259380k) f'3 + (0,648457k)f5- 50,0715-^)/^ 0,

2,289377 + 0,618156-^J f2 - (0,926366 k) ß - [o,618156-^-] /£

+ (0,648457 4)/^ 0,
(0,2593804) f[- (0,9263664) f'2 + 9,157509/^- (0,1440954) /^ +(1,6674584) f6 0,

- 0,618156-^1 ^-(0,1440954)/^ + 0,091575 + 0,618156^ /^

-(0,360253 4)/^ 0,
(0,648457 k) f'x+ (0,648457 k) f2- (0,3602534) f't+ 1,465164/^- (1,1672204) /« 0,

-|50,0715^-)/i + (l,6674584)/^-(l,1672204)/^ (3.1)

+ (7,417582 + 50,0715-^)/^ =0.
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Le Systeme precedent n'a de Solutions non nulles qu'a la condition que le

determinant des coefficients des inconnues fi soit egal ä zero.
L'annulation du determinant en question fournit la valeur de la charge

critique de voilement de la plaque en fonction du raidissage y/y*.
Les calculs ont ete faits ä l'aide de la calculatrice electronique Bull Gamma

ET de 1'Universite de Liege et ont donne les resultats consignes au tableau
suivant:

yjy* k TlTcr

0 0,86253 1,000

0,125 1,2140 1,167

0,25 1,4733 1,708

0,5 1,8101 2,109
1 2,2027 2,554
1,5 2,3808 2,760
2 2,4720 2,867
3 2,5583 2,966

La courbe de la fig. 3 montre la Variation du rapport t^/t* en fonction
de yjy*.

-$r

V

3 - »2.966

£592 ':_760--
*iT867

25 -*2554
d'apres Timoshenko

2
/l 109

/l?08
1.5

/t.167

l Fig. 3.

3.2. Calcul des parametres caracterisant la deformee de voilement

Les valeurs des parametres ft caracterisant la deformee sont les Solutions

du Systeme du 3e degre" a 6 inconnues

dE
Vi

0 (i=l, ...,6).

Nous avons resolu ce Systeme pour differentes valeurs de la charge t/tc* et
du raidissage yfy*.

Ces calculs ont ete faits ä l'aide de la calculatrice Bull Gamma ET par une
methode d'approximations successives analogue ä la methode des tangentes
de Newton.
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Les resultats obtenus ont ete consignes sous forme de graphiques (fig. 4)
oü l'on porte, pour chaque valeur de y/y*, et en fonction de t/t,* la valeur du
rapport fi=file (e etant l'epaisseur de la plaque).

ri

+0,4

+ 0,2

l\ 2

-0,2

-0,4

17"
-Zr"

0.5r"
0,25 v-
0.125>-

+0.3

K>.2

+0. u

3.4 h

0.125 r
0.25

Wy
-03

2>-

Fig. 4 a. Fig. 4b.

r-o

O.I25r
-0,25 j-«
-0,507-"

I,5r
2.0r
3,0r

1--0

0,125r
0,25r-

0,50r

30r*

Fig. 4c. Fig. 4d.

0,IZ5y

3.5v-"

r-o

ZT'

0.125 r
0.25r"
0.5y

-1,5)-"^r
r"0

Fig. 4e. Fig. 4f.
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4. Etat de deformation de la plaque dans le domaine postcritique

4.1. Deformee postcritique de la plaque

La deformee de la plaque dans le domaine postcritique s'obtient imme-

diatement en introduisant dans l'expression (2.11) les valeurs des parametres

fi resultant des figures 4.

Nous avons calcule en fonction de la charge t/t* le deplacement transversal

de la plaque aux differents points definis par les coordonnees

- 0, 0,25, 0,50, 0,75, 1, 1,25, 1,50, 1,75, 2;
a

^ 0, 0,125, 0,250, 0,375, 0,500, 0,625, 0,750, 0,875, 1.
b

Les valeurs du raidissage considerees sont

_.y*
0, 0.125. 0.25. 0.5, 1, 1,5, 2, 3.

De ces resultats, nous retiendrons:

a) L'evolution, en fonction de t/t*, de la fleche du raidisseur

fj^ -fx-fz + K + ü-
e

C'est ce que traduisent les courbes de la figure (5a) cotees en valeur de

y/y*.

b) Le deplacement transversal du centre de chaeun des panneaux encadrant

le raidisseur (Eig. 5b). Conformement a la figure 6, nous designerons ce

deplacement par wp avec

^ Jf(-/i + /2 + /4-/e)-
e 2

y=C
rroW

0.125 y
0.25 -r-

0,5y 0.125)-'

0.5)-

\yi

l.5y 15y2y^
3y

Fic. 5 a. Fig. 5b.
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Fraid Wp

r Fig

c) Nous avons enfin desshM pour chacune des valeurs de yfy* la carte en
projections cotees des deplacements transversaux de la plaque pour une
valeur d6terminee du cisaillement t/t,* (fig. 7).

<ig. 7a. Fig. 7 b

£.3 =^«.5

Fig. 7 c. Fig. 7d.
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0

Fig. 7fFig. 7e.

L'examen de ces figures permet deja de se rendre compte du degre d'efficacite'

de chaeun des raidisseurs, notion que nous allons preciser quelque peu.

4.2. Efficacite du raidissage

En ce qui concerne le comportement du raidisseur dans le domaine
postcritique, la figure 5a montre clairement qu'il existe une simihtude avec le

diagramme (P,f) d'une barre comprimee ideale avec grandes deformations
(fig. 8).

Fig. 8.

Par analogie avec cette barre, nous pouvons prevoir (malgre que les calculs

correspondants n'aient pas ete" faits) que le comportement d'une plaque raidie
ä courbure initiale sera represente par les courbes pointillees de la fig. 9

analogue a celle de la fig. 8.

Ainsi donc, le raidisseur de rigidite y>y* ne reste pas rectiligne dans le

domaine postcritique. Sa loi d6formation-charge est hyperbolique au debut
de la deformation, et est ensuite freinee par le developpement de tensions de

membrane stabilisantes, la grandeur de la fleche du raidisseur dependant de

sa rigidite flexionnelle.
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4.3. Deformation de cisaillement de la plaque

Tant que la charge critique de voilement n'est pas atteinte, la deformation
de cisaillement est liee ä la charge appliquee par la relation

SHhH BIAu delä de la charge critique, la plaque se deforme et la deformation de

cisaillement varie en fonction de la charge suivant 1'expression (2.18). Pour
le cas d'une plaque carree, cette expression s'ecrit:

6 ^[-1,0506/^ + 2,12582/^ + 9,08194/^ + 2,94442/^

+ 1,46728 /J/; + 6,37682/^ + 2,72364/J# + 6,41823ß/ä+-J-.

Les courbes de la figure 9 donnent la valeur du rapport 8/8* en fonction
de t/t*;, 8*. etant defini par

T*a* 'er
er ri '

0,5 >-e=

Fig. 9. Fig. 10.

5. Conclusions

II ressort d'une analyse des figures 5—9 que l'efficacite du raidisseur vertical,

dont la rigidite flexionnelle egale la valeur optimum theorique y*, est

limitee, en ce sens qu'un tel raidisseur flechit des le debut du domaine post-
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critique et n'apporte pas ä la plaque le meme soutien qu'un raidisseur de

rigidite relative y plus grande, qui reste quasi-rectiligne jusqu'ä la ruine
d'ensemble de la poutre ä äme pleine.

Cette conclusion est en parfait accord avec les resultats experimentaux
obtenus anterieurement par l'un des auteurs. Afin que le raidisseur reste
quasi-rectiligne dans tout le domaine hypercritique, il faut augmenter sa

rigidite flexionnelle selon la formule

y0 3y*.

Resume

Ce memoire etudie theoriquement le comportement d'un panneau d'acier
carre appuye sur ses quatre bords, renforce par un raidisseur median et soumis
dans son plan au cisaillement pur, en integrant les equations couplees non-
lineaires de von Karman ä l'aide de la methode energetique. Les calculs nume-
riques sont executes sur ordinateur.

L'analyse montre que 1'efficacite du raidisseur vertical, dont la rigidite
flexionnelle egale la valeur optimum theorique y*, est limitee, en ce sens qu'un
tel raidisseur flechit des le debut du domaine post-critique et n'apporte pas
ä la plaque le meme soutien qu'un raidisseur de rigidite relative y plus grande,
qui reste quasi-rectiligne jusqu'ä la ruine d'ensemble de la poutre ä äme pleine.

Zusammenfassung

In diesem Beitrag wird das Verhalten einer quadratischen Stahlplatte, die
an ihren vier Kanten unterstützt, durch eine Mittelaussteifung verstärkt und
in ihrer Ebene reinem Schub unterworfen wird, rechnerisch untersucht, indem
die gekoppelten, nichtlinearen Kärmänschen Gleichungen mit Hilfe der
energetischen Methode integriert werden. Die Zahlenrechnungen sind auf einem

Rechengerät durchgeführt worden.
Die Untersuchung zeigt, daß der Wirkungsgrad der vertikalen Aussteifung,

deren Biegefestigkeit dem theoretischen optimalen Wert y* gleich ist, insofern
begrenzt ist, als eine solche Aussteifung sich mit Beginn des überkritischen
Bereichs biegt und der Platte nicht dieselbe Stützung bringt wie eine
Aussteifung der relativen Steifigkeit y, die bis zum totalen Bruch des vollwandigen
Balkens quasi geradlinig bleibt.

Summary

This paper is a theoretical study of the behaviour of a square steel plate
supported on its four edges, strengthened by a median stiffener and subjected,
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in its plane, to pure shearing stress, by integrating the coupled, non-linear
von Karman equations by means of energy method. The numerical calculations
are carried out with a Computer.

The analysis shows that the efficiency of the vertical stiffener, the flexural
rigidity of which is equal to the theoretical optimum value y*, is hmited, in
that a stiffener of this kind buckles at the commencement of the post-critical
ränge and does not provide the plate with the same support as a stiffener of
greater relative rigidity y, which remains practically rectilinear until the
failure of the entire plate girder.
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