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Yo rigidité du raidisseur quasi-rigide dans tout le domaine post-
critique de la plaque
& = — rapport de la section du raidisseur et de la plaque

T tension de cisaillement
b fonction d’Airy
tensions de membrane

G.’I‘])l 2 O-_/]IH 2 Tlll

T tension critique de la plaque non-raidie de référence

w déformation transversale de la plaque

AR parameétres de la déformée

eaney rapprochements unitaires des bords opposés de la plaque

R, limite d’élasticité

7 déformation de cisaillement

UE:Z_;? = :;fu.z) (bE)J tension critique d’Euler

o coefficient de voilement

K — ﬁ;”}fb; — 102)2 variable auxiliaire (pour £ = 21 000 kg/mm? et v = 0,3)

1. Position du probléeme

La seule base théorique dont nous disposons actuellement pour dimen-
sionner les raidisseurs de 1’ame d’une poutre & ame pleine est la notion de
raidisseur strictement rigide. Ce raidisseur est le plus léger de tous les raidis-
seurs rigides: ¢’est pourquoi on désigne la rigidité relative y* de ce raidisseur
sous le nom de rigidité optimum.

La notion de rigidité optimum est une notion purement théorique, basée sur
la théorie linéaire des plaques. Cette théorie dit bien qu’un raidisseur de
rigidité * reste rectiligne sous la charge critique théorique de voilement, mais
elle ne nous donne aucun renseignement sur ce qui se passera dans le domaine
posteritique.

(’est pourquoi il nous a paru indispensable de revoir la notion de raidisseur
strictement rigide a la lumiere de la théorie non-linéaire des grandes déforma-
tions et en particulier d’'étudier de pres le comportement posteritique des
ames raidies cisaillées uniformément dans leur plan.

Considérons done une plaque rectangulaire de longueur 2a de largeur b
cisaillée uniformément dans son plan et renforcée par un raidisseur vertical
médian.

Nous rapportons la plaque aux axes coordonnés z, , z définies par la fig. 1.

Nous admettrons que la plaque est fabriquée d’un matériau élastique. par-
faitement plastique dont le comportement est régi par le diagramme de
PrANDTL représenté a la fig. 2. Nous supposerons en outre que les champs de
tension et de déformation apparaissant dans la plaque appartiennent au
domaine élastique.
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Nous nous bornerons dans ce travail & rechercher I'influence de la rigidité
flexionnelle du raidisseur sur le comportement hypercritique de la plaque.
Nous supposerons donc que le raidissage de la plaque est réalisé de manieére
telle qu’on puisse négliger les phénomenes de torsion pure et de déversement
du raidisseur pendant le voilement de la plaque.
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Fig. 1. Fig. 2.

2. Solution générale du probleme

2.1. Equations différenticlles et conditions aux limites

Les équations du voilement non-linéaire des plaques ont été établies par
von Karman en 1910.

On définit 1’état de tension de membrane existant dans la plaque par une
fonction de tension d’Airy @.

Les tensions de membrane s’en déduisent par double dérivation:

2D Xy _ 20 :
Orm = f/ yz > Oym = ﬂf? Tm — o Ey (—'1)

La condition de compatibilité des déformations du feuillet moyen s’exprime
par I’équation:

P D A aZap \E 02 0ioAh0 _
4+2,- ST p4=E R [BeE e | o (2.2 a)
ox T ] dx dy ox? Ay
D’autre part. la condition d’équilibre d’un élément de plaque s’écrit:
D (¢t w ot w Mt w PP Pw it EP . AP 0w (2.2b)
e \oat ' " oxPoy® | 0yt  oy® 9% ' 0x% 9y: < owdydwdy

Les symboles w, @, D, e, £ ont été définis dans la liste des notations. Les
équations (2.2) forment un systeme d’équations aux dérivées partielles non
linéaires & deux fonctions inconnues, @ et w.

Les conditions aux limites du probléme sont fonctions des conditions de
support de la plaque.

Nous supposerons que la plaque est simplement appuyée sur son contour
ce qui donne pour la fonction w les conditions aux limites suivantes:
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A. pour =0, A w0 (2.3 a)
y =0, y=2>b, w =0, (2.5
Pw Pw
iBetpour ca— 0 P = M = — =0, 24a
pour ; 15 a e 8m2+V0!y2 ; ( a)
y=0 y=b gL S O O
= — i —_ — YP— = A pa
Y ; Y : AR 0 22

Les conditions aux limites relatives a la fonction @ sont fonctions de la
rigidité flexionnelle des pieces de support de la plaque; envisageons deux cas:

A. La rigidité flexionnelle des éléments aux limites est telle que les bords
de la plaque restent rectilignes

pour 75 = {0« aR (T
2a 2a (25&)
1 Bud'v 1 102D 2D 1{0w\? s Ll
e, =— | —dx =— _— — — = x = constan
G Gk 2 R s e D Gl 2 :
0 0

o

pour y =0, Y=

!v
St
o

b

b
¢ 0o 111 e R R G A e
ey = Ef@d? _EJ [E(W—VW) _2(ay) ] dy = constante.

0 0

A,. Les bords opposés de la plaque restent rectilignes et ne se rapprochent
pas:

pour z=0, x=2a; g0 (2.6a)

POUTE = QI =Dl 2 =10 (2.6b)

A,. Les bords opposés de la plaque restent rectilignes et se rapprochent
librement:

o

7a)
7b)

POUE v — 02 g D=0, (

o

POUE o — () S — s p,=0, (

ou p,, p, désignent les valeurs moyennes des sollicitations normales aux bords

de la plaque.
B. Les piéces de support de la plaque sont parfaitement flexibles

rz@
pour =0, ai= D C—-z =0, (2.8a)
ay
2P
pour = = C&‘aﬁ =08 (2.8b)

La fonetion @ doit en outre satisfaire la condition de contour

r2®

——P( — =7 pour z =0, = 2a, (2.9a)
o0x oy
rz@

e =7 pour  y =0, 4 —b. (2.9Db)
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2.2. Supposition relative & la déformée de la plaque

Parmi les fonctions admissibles w;; satisfaisant aux conditions aux limites
(2.3) (2.4) et dont les dérivées partielles sont continues jusqu’au quatrieme
ordre, nous faisons choix des fonctions particuliéres

W;; = sin Z;a Sm?g@/ pour e =R R (2.10)

Si la longueur 2a de la plaque n’est pas trés différente de sa longueur b, la
déformée dans le domaine posteritique correspond & un simple champ diagonal.
Il s’agit de déterminer les fonctions coordonnées w;; aptes a déerire ce com-
portement.

Etant donné la difficulté de 1’étude analytique du voilement non linéaire
des plaques, il faut se limiter a un nombre relativement petit de fonctions
coordonnées w,;

Les resultats de I’étude linéaire du probléeme nous ont permis de déterminer
les fonetions ;; qui jouent le r6le le plus important dans le processus du voile-
ment de la plaque (leci nous a conduit & choisir pour la déformée w ’expres-
sion & six parametres:

b= sinwxsm3 +fs sm3 sin” +f 81n)w%81n2ﬂJ+ 311171'811 il
7 o p th 5 B
2.11)
27y 3w 37Ty (
+f5 snn—a_sm-b—qtj’6 sin —— o sin b

ot les f; sont des paramétres provisoirement indéterminés.

2.3. Fonction de tension d’Airy et tensions de membrane

La fonction d’Airy @ définissant 1’état de tension de membrane existant
dans la plaque satisfait 1’équation biharmonique (2.2a) o ot 'on aura remplacé
les dérivées partielles figurant dans le second membre par leurs valeurs déduites
de I’expression (2.11).

Nous avons recherché une solution de 1’équation (2.2a) du type

® =P, +D,,

ou @, est solution de 1’équation homogene correspondant & (2.2a) et @, une
1nte01ale particuliére de 1’équation non-homogene. I’équation homogene
4 - ~4
Dy HO, D

+ 2=
du i e SR

=0

correspondant & 1’équation (2.2a) admet comme solution un polynéme du
second degré de la forme

2 "2
e e Bl p Bulls
S 2

o
o
Lo
-~

+Txy, (:
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ou p, et p,

et 7 le cisaillement uniforme de la plaque.

sont les valeurs moyennes des réactions des éléments aux limites

On peut adopter comme intégrale particuliére de 1’équation non-homogene
une expression @, contenant les mémes lignes trigonométriques que celles qui

figurent dans le second membre de 1’équation (2.2a). Cette

expression @, fait

Intervenir un certain nombre de constantes que 1’on détermine par identifica-
tion. En introduisant le rapport «=a/b, il apparait, tous calculs faits, que la

fonction d’Airy @ peut s’écrire sous la forme

@:E[f§(£0053”+321a2003 Z?)H”(: JNm“L:32105‘~’C()347b7y)
+f3(-200367”;+ : cosgiy)drﬁ(foosw—x-{- : coszwy)
32 2 b 8 128 o2 b
+f3(—a—20032ﬂ$+ - > CO ~L7”j) + f2 (E— 377x+ ! cosGTry)
°\8 128 o2 618 a 128 2 b
+f1f2('q432 R e e cosBW%cos?—y)
1+ 18?2+ 81t a b SI+ 18 a2+ ot a b
9 2 2m 471
+flf3(16+128a2+256a‘1008 PR
1 dos COS47T,L cos 2‘1)
256 4+ 128 2416 o4 a b
+f1f4(—azcoszr—m+feosg,wx ‘ Jia . o i 2
a9 2 1+32a%+ 256 o4 2a b
a? 3ma 27y
R e Do )
+f1f5( Os%y—kg—)l—-cosgzk?/—}—im_*_:% cosgﬂx(:osf;)y
1 o2 2 3my
B TE R DER T St | i e )
+f1fﬁ(— - g‘az.“ cosﬂ—xcosjwj—i-—— Sl cos—icosfi
1432 «®>+256 o2 b 14128 224+4096 * 2a b
81 a2 bma 27y
625 +800 02+ 2568 > 24 ° T
9 o2 Swa 47y
~ 625+3200 2+ 409608 2a 00T g )
o f3( : 36 o2 COSL:UCOS )ﬂ’y+ : 3~6a2' 8 T X Sﬂ'y
1+50a2+ 625 ot a b 625 + 50 o2 4 ot b
+f.,f4( -La os3mC Ly_*_é fxz ,—cosgﬂxcosgﬁy
=814+ 720+ 16 2a b 91+8a%+16at 2 a b
+ 36 s cos E Y eos T2
625+ 200 o2+ 16 o 2a b
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4 o2 S e T Y
S oL IPN0EI2060. 2ad i )
o2 3T 9 o2 T 4y
+f2f5( o OBTLE 4 008 o 008 00—
2

a 3mTx 47ry)

N SO 2R g

+ff (—36062 cog*cosﬂ-k Peder r_--cosw—xcosm
A S R [ o b ' 1+200a2+10000ct 2a b
324 o2 Tmx T
M0l F3922 16 2a b
36 o2 Tmrx Sy
T 2401+ 98002+ 100002 > 2a )

+hota( -

9 o . S57T2? 27y
625+ 80002+ 25602 > 2a b
81 o2 dmx 4y

T RoREE 00000k = e b

o 81 &2 COS7TerOS?-ﬁy
2401 4+ 1568 o + 256 o 2a b
9 2 Tmx 4y
T 2401+ 627202+ 409608 > 2a 0 b )
2 2
+f3f5(—§16+8aa2+a4 Cosdzxcos?la—y
+§i i coszﬁmcosaﬂy
4 16+ 20002+ 625t a b
81 o8 47 x Y

+4 256 + 3202+ ot i a 2 ?

2 47z 577:2])

o0 4
e

BT 9 o 3mx 67y
+]‘3f6(

;-F-I':D

— COS — C0S ——— COS
D 0 o Dl g Ty b

9 2 O9mrx 6773/)

=i = = COS COS
S1 + 288 o2+ 256 o4 2a b

5 16 o2 TE 3Ty 16 o S 9
+fols COS — COS ——— + : COS ——— COS ——

1+72024+1296c  2a b 81 + 722+ 16 o> 2a b
o2 T dmy g o 2z 2my
b

+f“"f6(11+3-> SR S s T TR e
144 o2 T Sy

+ 1516 ( C08 5— €08 —

1+ 200>+ 10000t
144 2 by | ay Y2 wipaf \ 5
t $25+ 2002+ 160t > 2a 0 b )] T 12 1 i A by Gyl
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Les tensions de membrane s’obtiennent par double dérivation de 1’expres-
sion précédente de la fonction d’Airy:

2D 02 d 2o
Oem = 5 Oym = ; Tl e e (_)14)
oy? il ox dy

L’écriture de ces expressions étant trés lourde, nous ne ’avons pas reprise

iei.

2.4. Rapprochements e, , e, des bords de la plaque, déplacements w et v, déformation
; tangentielle 6

Les rapprochements des bords de la plaque sont fournis par les relations

suivantes:

2a
ou
—— pour ler'bords a—0,"2=2na: A — —F;dx,
g
b
— pour les bords y=0, y=b: A =J8—'ngy.
; 4,
Les rapprochements unitaires s’écrivent dés lors
2a
dz [ (Eeciar
— pour les bords =0, 2=2a: G = = — | —dz,
' ; 2a 2a | 0x
0
. b
15 (o
— pour les bords y=0, y=b: euz—b}‘!:EJ @dy
0

En tenant compte des relations

ou 1 [0w)\? 1
ax : €J;_§ 6“7,' d 6-'3 = E(U.Em —vaym) ]
v 1 [ow)\? 1 ( )
e s 3 € = — (o —vo
7 Y RO ) Y Y E ym rm
on peut écrire:
2a

1 1 {0w)\?]
€r = 24 f (Umn _ngraa) _§ E | di,
0

dy.

b
1 [l 1 {0w)\?]
Cy = g ! _E(gym_vo-.rm)_? 82/
0

En remplacant dans ces expressions o, , o,m et w par leurs valeurs (2.14)
et (2.11), on obtient aprés quelques calculs:
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2 ’> 9,‘.7 2 772 977 P
== i Sl D S
€ = 18(52 —f3 2 a2 f38a f43)az 58 a2 I FOTL e ) (2.15a)
e 2 2 9m2  p,—vp e
T T 18()2 —f3 9b2 f38b2 f48b2 ‘:’22()2_ §8b2_ HE £, (2.15b)

On constate ainsi que les bords de la plaque restent rectilignes, le signe
négatif montre qu’ils se rapprochent.

11 en résulte qu’en acceptant la solution simple (2.12) de 1’équation bihar-
monique homogene correspondant & 1'équation (2.2a), on ne peut satisfaire
que les seules conditions aux limites 4,, 4, relatives a la fonction @. Seule une
solution beaucoup plus élaborée de 1'équation (2.2a) homogéne permettrait
de satisfaire la condition B.

En ce qui concerne les déplacements u et v dans le plan de la plaque, ils
sont solutions d’un systeme d’équations aux dérivées partielles du premier
ordre. Les deux premieres équations sont données par les relations

ou 1 1 /{dw\2

ot L RARICE, D)
ox E( o =V Tym) = Z(Bx) é (220
Fv 1 1 {0w\2

= Se ol 9
OJ E( ym Vo'“tm) 2(8?/) 0 ( 16b)

En tenant compte des formules (2.14), (2.11), les équations précédentes
prennent la forme

ou ov
3z = 11(® ), -@—12(.@,@/).
a1
Les expre; o
ou oJv oJwdw 2(l+v) 5
Tyl i R S T 2.17
Yogtog amagT TE LT Gl

o : : 0 [0 o
Cette derniére expression fournit, en effet la wvaleur de a(i+—g)

L’expression (2.16b) fournissant la valeur de a aJ, on aura:
ot 2l o) do o 62 Pw ow Jw Pw
oy EEES O Al dw o vy S dpRe
9 a2 u 5 : a2u a2
En dérivant 1’équation (2.16a), on obtient P Connaissant -— et ——,
. x oy 9y?  oxdy

’ . au N A =
on determme 5y (& une constante (' pres). 011 trouve de la méme maniere
, la constante d’intégration étant C',. On determme les valeurs des constantes
C’ et (', en substituant les expressions de 8} et dans I’équation (2.17).
5 5 i 3 du ow 0Ov : s
Finalement, le systeme d’équations en 9% 9y’ 3’ a fournit les déplace-
ments « et v. Les nouvelles constantes d’intégration Cy, €, apparaissant dans
les expressions de u et v sont déterminées par les conditions
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w(0,0) =10,
(00—

Nous ne reprendrons pas ici le détail du caleul des déplacements u et v
dont I’écriture est trés pénible. Nous nous contenterons de montrer comment
on obtient a partir de » et » I’expression de la déformation tangentielle . On
calcule en premier lieu la valeur moyenne du déplacement u sur le bord y=b:

2a

2 3 1 .
Uyy = 5 f (2,_p) d.

2a
0
De maniére analogue. on détermine la valeur moyenne du déplacement u
sur le bord y =
2a
3 Lo ]
= — dx.
u!jz() 2 aJ (uy:())
0

L’angle de cisaillement correspondant au déplacement relatif des bords
y=0, y=>b est donné par

e Uy=p — Uy—o
j =t

b

De méme, on calcule & 1’aide des relations
b b

4 1 o i
Vpmoq = gf (Vyes o) Y 5 Vyeo = b__j (Vpmo) dy
0

0

les valeurs moyennes du déplacement » aux bords x=0, x=2a. L’angle de

cisaillement consécutif au déplacement relatif des bords x=0, x=2a est

donné par

Ui niailasn
2

gor=

La déformation de cisaillement 6 est la somme 6, + 0,

ges [_ 32(1,( o2 s 49 o2
ehed b3 \25(14+8a2+160%) 25(625+ 20002+ 16af)
1225 o2 25 o2 2b
—9(81+1800a2+10000a4)+9(81+72a2+16a4))_ﬁ'
o2 1225 2 441 2
25(1+802+16a%) 625+ 200 o2 +16a 25 (8141800 22+10 000 ob)

o 225 o2 16v 49 o
81+72a2+ 16t l+8a+1 o) 625420002+ 16 ot

814 1800 o+ 10000 o 51—1—7)0( + 161
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. 32a 100 o2 16 2
+hls [_ b (9(81+ 180062 +10000 %) 9(81+7202+ 1644
400 o2 4 o2
T 12002 [0000A . TRy 16a4)
2b 36 o 144 o2
Cad ( 5(81+180062+10000at) 81 +72a%4 160t
16 o2 4 o2
25 (1+200 a2+ 10000 &%) i 1+8cx2+16a4)
64 v o 4o
+
ab (

81+ 1800a2+100000t 8147202+ 1602

g4 4 o o o
14+20024+100000*  14+8a2+160at

32a — 225 oc? o?
lals [_ b? (1’+72a2+1296a4+1+8a2+16a4'
9 o2 25 o2 2b
T 10 (2401 + 3528 a2 + 1296 08) 49 (2401 4 39202 + 16&4)) TR
— 25 oc? o? 49 o2
) (9(1 7222+ 12060%) | 1182+ 1602 T 9 (2401 + 3528 2 1 1296 4)
1225 o2 16 v — 25 a2 o
_2401+392a2+16a4) b (1+72a2+1296a4+ 1+8o2+ 16t

o2 2500
t 5401+ 352842+ 12964 2401 + 39202+ 16a4)]
32a 4 2 144 2
hals [_ b3 (1+8a2+16a4_1+72a2+1296a4
36 o2 16 o2 2b
25 (625 + 18002+ 1296 o) 25 (625+'200a2+16a4))—?ﬁ'
4 2 16 2 100 o2
: (T+sa2+ 160t 9(1+72a%+ 1296 ) t 9 (625 + 18002 + 1296 1)
400 o2 64 v o2 4 2
_@5+200a2+16a4) b (1+8a2+16a4 T 1472024 1296 ot

+

«? 4
T 825 1 1800 a®+ 1296 &% 625+ 20002+ 16 ot

s 32 o2 o2
e b3 \9(814+72a2+160a%) 9(14+8a2+16ad)
9 o2 9 2
- +

+200a2+16a%) = 25(625+ 1800 o+ 1296 o)
o? 225 of

(81+7’a2+16a 9(1+8Sa2+16a%)  625+200a2+ 16at)

! 2

e 25 &2 o 16v o
9(625+ 1800 o+ 1296 o#) ab (81+72a2+16a4
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o2 9a o®
T 911821 16a%) 625120022+ 160% | 625+ 1800 a2 1296a4)]

32a 9 o2 2025 2
*lals [_ b3 (l+8a2+16a4_1+200a2+10000a4
81 2 295 o2
T 40 (2401 + 39202+ 16 44) | 49 (2401 + 9800 a2+ 10 000 oc4)
2b 9o 81 «?
—_(1+8a2+16a4 25 (L+200 a2+ 10000 o)
3969 o2 441 o
T 2401439202+ 1644 | 25(2401 + 9800 a2+ 10000 a4))
16 9 o2 812 81 o
Ly (1+8a2+ 160t 1420002+ 100000 2401 +392 o2 + 16 o

9«
* 2401+ 9800 22+ 10000 a4)]

iq — 988 o 32 o
+f4f5[ ba(1+72a2+1296a4—981+72a2+16a4)
2b (4 a? 36 o2
+_a?(§1+72a2+1296a4+81+72a2+16a4)
4y 16 o 6
+&,'5( l+72a2+1296a4_81-1—72052—{—160:4)]
4a — 7200 o2 288 oc?
/s fﬁ[ F(1+200a2+10000a4_ 25 625+200a2+16a4)
2b (36 o2 900 o2
+"EF(_>5 1+20022+100000* 625+ 20002+ 16 o4
4_( — 144 &2 43 144 o2 ” 2(14v) (2.18)
b \1+200a2+10000a* 625+ 200 2+ 16 o TR T

2.5. Détermination des paramétres f; par la méthode énergétique

Nous avons obtenu I'expression @ de la fonction d’Airy génératrice des
tensions de membrane et celles des déplacements ¢, , e, des bords opposés de
la plaque. Ces quantités sont fonctions des parameétres f; caractérisant la
déformée (2.11) de la plaque.

Nous allons déterminer ces parameétres & 1’aide de la méthode énergétique
de Rayleigh-Ritz.

Cette méthode consiste a calculer la variation que subit 1’énergie potentielle
totale de la plaque par suite du voilement. Pour la déformée de voilement
réelle w (x, %), la variation de 1'énergie totale atteint une valeur minimum.

Pour trouver le développement de la forme (2.11) qui représente la déformée
réelle, on doit donc choisir les parametres f; de maniére & rendre 1'énergie
minimum; les conditions & remplir sont, d’aprés le calcul différentiel,
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af;

Les équations (2.19) remplacent 1’équation d’équilibre (2.2D).
L’énergie totale emmagasinée dans la plaque peut s’écrire sous la forme

E=V+T, (2.20)

0 quel que soit ¢. (2.19)

olt V est ’énergie des forces intérieures et 7' ’énergie des forces extérieures.
La composante V est la somme de 1’énergie potentielle ¥, de déformation du
feuillet moyen de la plaque, de I’énergie V; de flexion et de 1’énergie ¥, emma-
gasinée dans le raidisseur:

V="V, +V+V]

m*

(2.21)

Les trois composantes de 1’énergie des forces intérieures sont données par les
relations

2a b
78 € 2 < O ¢
I/m = TE' f f [(U.rm ar O'ym)- 52 (1 my V) (o;rm Oym — 77211)] dx dy ’ ‘ (2'2'2 EL)
0 0
OW Gy Ty T SONE les tensions de membrane.
2a b
D P gtw\E Pw Pw 2w \2
i L g e T d 2.22
= | (G o) 2025 7 ~aag) || 2% 22w
0 0
3 Eed I .
ouD = E ) est la rigidité flexionnelle de la plaque.
Vo=V Vo, (2.220)
ou 'énergie de flexion du raidisseur vaut
2 2 2
1 [ (0% w
Vi=2EK1I, - dy (2.22d)
2 OY* | 2ma
0
tandis que 1’énergie de déformation axiale du raidisseur vaut
& b
ym = ff [o,]2dy . (2.22¢)

0
E 1, et Q, étant respectivement la rigidité flexionnelle et l'aire de la section
droite du raidisseur. o, désigne la sollicitation axiale du raidisseur, dont la
détermination exacte ne peut se faire qu’'en tenant compte de l'interaction
entre la plaque et le raidisseur.
Dans le cas particulier des plaques appuyées ou encastrées sur leur contour,
on sait par le théoréeme de Gauss que

2
; d2w 9% w 02w \2
[ — —— — | dedy =0,
J i de* Gy ox oy
0 0
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ce qui permet de simplifier I’écriture de V;:

2a
) 7 w2
= — =] dedy. 2:22 1
2 J ¢ ’L“ oy* J ( )
00
L’énergie 7' des forces extérieures a pour expression:
b
cw ow r=2a
T=—f [ Ut TV P —tT—| W (l?/1
l 6 C’L (Jy { I.{‘=0
2a (3 22 g)
[ 3 w cw |28
- PVt TUH|Py o T w da :
l oy ox J_U:O
0
Dans le cas d'une plaque appuyée sur son contour, on a
w=0 pour x=0, 2aetpour y=0,0>,
ce qui permet d’écrire I’expression (2.22g) sous la forme
24
= —[ef(y) u+7v)dy|izie — [ (py v+ 7u) de]d28. (2.22h)
Tous calculs faits, cette derniére expression se réduit a
T=—-2abe(pe,+p,e,+70), (25227

ou e,, e, représentent les rapprochements des bords et 6 la déformation tangen-
tielle de la plaque.

Les composantes de 1'énergie emmagasinée dans la plaque par suite du
voilement sont fonctions des quantités e, . ¢,, p,. p, dont la valeur dépend des
conditions aux limites pour le déplacement des bords de la plaque. Nous
allons considérer deux cas:

1. Les bords se rapprochent librement:
P = Py = 05 (.223)
2. Les bords ne peuvent pas se rapprocher:

e, =e,=0. (2.24)

Dans le cas (2.24), les expressions (2.15) égalées a zéro fournissent les
valeurs suivantes de p, et p,:

o=~ (= + [t 4’1%)*"(5*"«';‘)(&”5*97@)]’ e

s e e e o).

o

Ut

)
S—

no
(&1}
=p
=
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Les conditions aux limites une fois précisées, on calcule 1’énergie potentielle
de déformation de la plaque a l’aide des formules (2.20) (2.21) (2.22). Les
o
afs
degré permettant de déterminer les 6 parametres f; en fonction de la charge
et du raidissage de la plaque.

Nous caractériserons la charge de la plaque par le rapport 7/7; ou 7/ est
la charge critique de la plaque non-raidie.

On supposera le raidisseur fixé par moitiés symétriquement de part et
d’autre de la plaque. Si on désigne par I, son moment d’inertie relatif a la
flexion normale au plan de la plaque, on peut caractériser le raidisseur par sa

rigidité relative:

équations — 0 fournissent un systéme de 6 équations a 6 inconnues du 3e

rigidité du raidisseur K [,
rigidité de la plaque ~ bD

’)j:

ou encore par le rapport y/y* olt y* est la rigidité relative du raidisseur stricte-
ment rigide!) ou rigidité optimale.

Dans le cas d’une plaque cisaillée uniformément dans son plan, et munie
d’un raidisseur médian, la rigidité optimale de troisieme espece vaut:

y* = 5AF (204258 —F 1)

2a
ou B3 désigne le rapport 'T" des cotés de la plaque.

1) On sait que, quand le raidisseur coincide avec une ligne nodale de la deuxiéme
forme du voilement, on peut définir une rigidité (relative) optimum de premiére espece
y* (E. Chwalla, Stahlbau, Vol. 17, p. 84—88, 1944) qui est la rigidité pour laquelle le
coefficient de voilement du panneau raidi est égale a celui du demi-panneau supposé
librement appuyé sur son contour.

Si on néglige la rigidité torsionnelle du raidisseur, la courbe du coefficient de voile-
ment k en fonction de y a, dans ce cas, la forme de la figure ci-contre et I'on voit qu’il
n’y a aucun intérét & augmenter y au-dela de y*.

Au contraire, dans le cas actuel, la ligne nodale de la deuxiéme forme de voilement
ne coincide pas avec laxe du raidisseur et, par conséquent, on ne peut définir qu’une
rigidité optimum y* de troisiéme espéce; cest la rigidité relative du raidisseur pour
laquelle le coefficient de voilement de la plague raidie devient égal & celui du demi-
panneau supposé librement appuyé sur ses bords. En réalité, le diagramme fig. 3 montre
que k continue encore & augmenter quand y excéde y*. Cette augmentation de k& au dela
de % max est faible et est toujours inférieure & 20 pour cent. C’est pourquoi elle est
généralement négligée, de maniére & pouvoir déterminer kmas aisément dans une plaque
munie de plusieurs raidisseurs, comme étant le coefficient de voilement du panneau
partiel le moins stable. supposé indépendant des autres panneaux et librement appuyé
sur ses quatre bords. Ce principe sert, par exemple, de base aux abaques publiés par
Klsppel et Scheer (Beulwerte ausgesteifter Rechteckplatten. W. Ernst & Sohn, Berlin,
1960).

Néanmoins, nous devons évidemment tenir compte, dans la présente étude, du com-
portement réel de la plague raidie et, en particulier de l’augmentation de k& au dela de la
valeur arbitraire kmas correspondant i la rigidité optimum de troisieme espéce y*.




Lo
==
o

M. SKALOUD - J. DONEA - CH., MASSONNET

Dans le cas d’une plaque carrée (8=1), on a y*=13,5. Comme le raidisseur
n’est pas sollicité axialement, son second paramétre caractéristique, & savoir

Q, : . s 4 : .
le rapport SZITE de la section droite du raidisseur & la section droite de la

plaque, ne joue aucun role dans les calculs.

3. Etude numérique du comportement posteritique d’une plaque carrée
raidie cisaillée uniformement

En vue de simplifier au maximum les calculs numériques, nous admettons
les hypothéses suivantes:

a) Les bords opposés de la plaque restent rectilignes pendant le voilement et
se rapprochent librement (p,=p,=0).

b) La section droite £, du raidisseur est nulle. Le but de notre étude étant
d’étudier I'effet de la rigidité flexionnelle du raidisseur, cette simplification
est admissible.

3.1. Tensions critiques de voilement en fonction de la rigidité relative du raidissewr

En linéarisant le systeme d’équations du 3e degré
gH
df;

traduisant le minimum de 1’énergie potentielle de la plaque, on obtient un
systéme linéaire et homogéne de 6 équations & 6 inconnues ot les coefficients
des f; sont fonctions du cisaillement =, de la géométrie de la plaque et du rap-
port y/y* caractéristique du raidissage.

Ce systeme s’écrit pour le cas qui nous occupe

0

(2,289377 +50,0715 ’;) fi+(0,259380 k) f5 + (0,648457 k) f — (50,07 15 l*) fi=0,
e v

(2,289377+0,6181561*) f5—(0,926366 k) f; — (0,618156 l) i
3 ¥

+(0,648457 k) f, =0,
(0,259380) f; — (0,926366 k) f; + 9,157509 f; — (0,144095 %) f, + (1,667458%) f. = 0,
L (0,618156-%) fb—(0,144095k) f, + (0,091575+ 0,618156%) #

y? 0

—(0,360253 k) f, =0,

(0,648457 k) f; + (0,648457 k) f5— (0,360253 k) [, + 1,465164 /£ — (1,167220 %) {, = 0

J

=L (50,0715 3;) f1+(1,667458 k) fa — (1,167220 k) f, (3.1)
e

+ (7,417582+50,0’7157:,) fe=0.
N
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Le systéme précédent n’a de solutions non nulles qu’a la condition que le
déterminant des coefficients des inconnues f; soit égal a zéro.

L’annulation du déterminant en question fournit la valeur de la charge
critique de voilement de la plaque en fonction du raidissage y/y™.

Les calculs ont été faits & 1’aide de la calculatrice électronique Bull Gamma
ET de 1'Université de Lidge et ont donné les résultats consignés au tableau

suivant:

yly* k 7Tor
0 0,86253 | 1.000
0,125 1,2140 ‘ 1,167
0.25 1,4733 1,708
0.5 1,8101 2,109
1 2,2027 2,554
1.5 2.3808 2,760
2 2,4720 2,867
3 2.5583 2,966

La courbe de la fig. 3 montre la variation du rapport 7 /=% en fonction
de y/[y*.

, Z.  Fig. 3.

3.2. Caleul des paramétres caractérisant la déformée de voilement

Les valeurs des paramdtres [, caractérisant la déformée sont les solutions
du systeme du 3e degré a 6 inconnues

g
o,
Nous avons résolu ce systéme pour différentes valeurs de la charge =/7; et
du raidissage y/y*.
Cles calculs ont été faits a ’aide de la calculatrice Bull Gamma ET par une
méthode d’approximations successives analogue & la méthode des tangentes
de Newton.

0 o= B
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Les résultats obtenus ont été consignés sous forme de graphiques (fig. 4)
ou I'on porte, pour chaque valeur de y/y*, et en fonction de 7/7% la valeur du

M. SKALOUD - J. DONEA - CH. MASSONNET

rapport f;=/f;/e (e étant 1’épaisseur de la plaque).

0,25 7%
0,125y
15

-04 |

Fig. 4a.

Ter”

7=0

'y
=0
+03 s
+0,2H
40,1
T
Ol =Tt
-0t
_ng‘_
_0.3._
-0,4r
-0,5
-06 /0,125 r°*
o
=0, 7F 1y
| {o.zsr‘
- 1S
C)'B| 02y
_O.g>
-1 !‘ 57"
{ A
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Fig. 4b.
fal
y-0
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0,25y"

Fig. 4d.
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4. Etat de déformation de la plaque dans le domaine posteritique

4.1. Déformée posteritique de la plaque

La déformée de la plaque dans le domaine posteritique s’obtient immé-
diatement en introduisant dans ’expression (2.11) les valeurs des parametres

f; résultant des figures 4.
Nous avons calculé en fonction de la charge 7/7 le déplacement transversal
de la plaque aux différents points définis par les coordonnées

=0, 025 20,50 006, 1= 1, 2b B0 D =0

— 0, 0,125, 0,250, 0,375, 0,500, 0,625, 0,750, 0,875, L.

S [/ R

Les valeurs du raidissage considérées sont

X

()1

—

=

Ot
(W)
(JV]

05025 0!
y,,‘

De ces résultats, nous retiendrons:

a) L’évolution, en fonction de 7/7j%, de la fleche du raidisseur

f X ’ ’ ’ ’
—T%d = —fi—fa+fatTs-

(est ce que traduisent les courbes de la figure (5a) cotées en valeur de

vy

b) Le déplacement transversal du centre de chacun des panneaux encadrant
le raidisseur (Fig. 5b). Conformément & la figure 6, nous désignerons ce

déplacement par w, avec

Y~ ([t fa+ i ).

vip |
e |
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T S

il l‘r

L
Wp fraid Wp

«f |r Fig. 6.

p— —
T T

c¢) Nous avons enfin dessiné pour chacune des valeurs de y/y* la carte en
projections cotées des déplacements transversaux de la plaque pour une
valeur déterminée du cisaillement /7% (fig. 7).
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lr

Fig. Te.

L’examen de ces figures permet déja de se rendre compte du degré d’effi-
cacité de chacun des raidisseurs, notion que nous allons préciser quelque peu.

4.2. Efficacité du raidissage

En ce qui concerne le comportement du raidisseur dans le domaine post-

. critique, la figure 5a montre clairement qu’il existe une similitude avec le

diagramme (P,f) d’une barre comprimée idéale avec grandes déformations
(fig. 8).

Fig. 8.

Par analogie avec cette barre, nous pouvons prévoir (malgré que les calculs
| correspondants n’aient pas été faits) que le comportement d’une plaque raidie
\ a courbure initiale sera représenté par les courbes pointillées de la fig. 9 ana-
| logue & celle de la fig. 8.

Ainsi done, le raidisseur de rigidité y>y* ne reste pas rectiligne dans le
domaine posteritique. Sa loi déformation-charge est hyperbolique au début
de la déformation, et est ensuite freinée par le développement de tensions de
membrane stabilisantes, la grandeur de la fleche du raidisseur dépendant de
sa rigidité flexionnelle.
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4.3. Déformation de cisaillement de la plague

Tant que la charge critique de voilement n’est pas atteinte, la déformation
de cisaillement est liée & la charge appliquée par la relation

Au dela de la charge critique, la plaque se déforme et la déformation de
cisaillement varie en fonction de la charge suivant I’expression (2.18). Pour
le cas d'une plaque carrée, cette expression s’écrit:

1
0 = 35 [—1,0506 f; f;+2,12582 f; f; +9,08104 f; f; + 2,94442 f; /7

T

+ 146728 f3 {1+ 5,37682 f3 fq + 2,72354 f f; + 6,41823 f; fi] +

Les courbes de la figure 9 donnent la valeur du rapport 6/6% en fonction
de 7/7%, 0% étant défini par

B3

o
G

eho
ch—

—

f raidisseur o

*
B‘:I’

Fig. 9.

5. Conclusions

Il ressort d’une analyse des figures 5—9 que 'efficacité du raidisseur verti-
cal, dont la rigidité flexionnelle égale la valeur optimum théorique y*, est

limitée, en ce sens qu’un tel raidisseur fléchit des le début du domaine post-
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critique et n’apporte pas a la plaque le méme soutien qu'un raidisseur de
rigidité relative y plus grande, qui reste quasi-rectiligne jusqu’a la ruine
d’ensemble de la poutre a ame pleine.

Cette conclusion est en parfait accord avec les résultats expérimentaux
obtenus antérieurement par 1'un des auteurs. Afin que le raidisseur reste
quasi-rectiligne dans tout le domaine hypercritique, il faut augmenter sa
rigidité flexionnelle selon la formule

Yo =3y"

Résumé

(e mémoire étudie théoriquement le comportement d’un panneau d’acier
carré appuyé sur ses quatre bords, renforcé par un raidisseur médian et soumis
dans son plan au cisaillement pur, en intégrant les équations couplées non-
lindaires de von Karman a 1’aide de la méthode énergétique. Les calculs numé-
riques sont exécutés sur ordinateur.

L’analyse montre que l'efficacité du raidisseur vertical, dont la rigidité
flexionnelle égale la valeur optimum théorique y*, est limitée, en ce sens qu’'un
tel raidisseur fléchit des le début du domaine post-critique et n’apporte pas
a la plaque le méme soutien qu’un raidisseur de rigidité relative y plus grande,
qui reste quasi-rectiligne jusqu’a la ruine d’ensemble de la poutre a ame pleine.

Zusammenfassung

In diesem Beitrag wird das Verhalten einer quadratischen Stahlplatte, die
an ihren vier Kanten unterstiitzt, durch eine Mittelaussteifung verstirkt und
in ihrer Ebene reinem Schub unterworfen wird, rechnerisch untersucht, indem
die gekoppelten, nichtlinearen Karmanschen Gleichungen mit Hilfe der ener-
getischen Methode integriert werden. Die Zahlenrechnungen sind auf einem
Rechengerit durchgefiithrt worden.

Die Untersuchung zeigt, dall der Wirkungsgrad der vertikalen Aussteifung,
deren Biegefestigkeit dem theoretischen optimalen Wert y* gleich ist, insofern
begrenzt ist, als eine solche Aussteifung sich mit Beginn des tiberkritischen
Bereichs biegt und der Platte nicht dieselbe Stiitzung bringt wie eine Aus-
steifung der relativen Steifigkeit y, die bis zum totalen Bruch des vollwandigen
Balkens quasi geradlinig bleibt.

Summary

This paper is a theoretical study of the behaviour of a square steel plate
supported on its four edges, strengthened by a median stiffener and subjected,



210 M. SKALOUD - J. DONEA - CH. MASSONNET

in its plane, to pure shearing stress, by integrating the coupled, non-linear
von Karman equations by means of energy method. The numerical calculations
are carried out with a computer.

The analysis shows that the efficiency of the vertical stiffener, the flexural
rigidity of which is equal to the theoretical optimum value y*, is limited, in
that a stiffener of this kind buckles at the commencement of the post-critical
range and does not provide the plate with the same support as a stiffener of
greater relative rigidity -, which remains practically rectilinear until the
failure of the entire plate girder.
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