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Computer Analysis of Grillages Curved in Plan
Caleul par ordinateur des réseaux de poutres courbes dans le plan

Berechnung gekrivmmter Tragerroste mittels Elektronenrechner

F. SAWKO
Professor of Civil Engineering
The University of Liverpool

List of Symbols

Young's modulus.
Poisson’s ratio.

2(1+p)
Flexural constant.
Torsional constant.

E
I.,L
G Rigidity modulus =
1
J

o = % Ratio of flexural to torsional stiffness of a member.

w  Uniformly distributed load.

P Concentrated point load.

r  Radius of curved member.

8  Angle subtended by curved member.

¢  Angle defining position of point on curved member.
M Bending moment.

T Torsion moment.

@ Shearing force.

b,d Width and depth of rectangular member.
t  Wall thickness of box member.

A Area of cell of hollow section.

@  Depth to breadth ratio = -3

» Moment in « direction.
M, Moment in y direction.
F.  Vertical force.
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f11> f1e ete. Flexibility factors for curved member.

S11: $19 €be. Stiffness factors at end of 1 of curved member.

ty1. 1 ete. Stiffness factors at end of 2 of curved member.

711,719 €te. Restraint factors for curved member.

y  Angle of inclination at end of 1 of curved member with respect
to frame axes.

¢ cosy.
§ siny.

¢ cos(y+0) l cosine and sine of angle of inclination of end 2 of
s"  sin(y+0) | curved member with respect to frame axes.

F Flexibility matrix of a member.

S Stiffness matrix of member.
Numerical factor from graphs.
Multiplying factor for torsional constant.

St

Introduction

The problem of grillage analysis has always presented design engineers with
considerable analytical difficulties. This is due to the high statical indetermi-
nancy that these structures invariably possess. For a torsionless system this
would be approximately one for every internal node of the grid, and analytical
techniques using the “interacting force’” principle have for a long time been the
only solution. The success of the analysis has largely depended on the skill of the
operator in setting up the simultaneous equations without arithmetic errors,
and utilising lines of symmetry and skew symmetry wherever possible to reduce
their number.

A torsionally stiff system, presented an even great obstacle for the analysis.
The interacting force method had to be abandoned and attempts were made at a
moment distribution analysis of grillages, using unit normal deformations at
joints with a series of propping forces. With this device the number of equations
was reduced to the set equal to that in the torsionless case at the expense of
considerable effort in hand computing.

The advent of electronic computers ensured not only an easy and accurate
solution of the simultaneous equations, but enabled another great step forward.
Thus following the example of plane frame analysis LicaTroor and Sawko
[1, 2] demonstrated that an automatic setting up of slope deflection equations
could be achieved for any grillage irrespective of geometric arrangement of
members. Equations expressed the interrelation between nodal forces and the
corresponding displacements which consisted of two rotations about a mutually
perpendicular arbitrary set of in-plane axes and a transverse displacement. Thus
three equations were automatically set up at each node of the grillage for the
torsionless and torsionally stiff cases and were solved to produce first the un-
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known displacements and subsequently the bending moments, torsion moments
and shearing forces for each member of a grillage. The complete analysis was
programmed for the automatic solution by electronic computer, and only re-
quired the geometry of the frame and loading as input parameters.

The original computer programmes were successfully used for the analysis of
numerous bridge deck grillages, floor and roof system. The analysis was also
extended to cover the behaviour of grillages in the elasto-plastic range (SAWKO
[3]) which permitted the investigation of the deterioration of load-deflected
characteristics up to collapse. In all cases, however, the geometry requirements
were such that all the members of a grillage had to be straight between their ter-
minating nodes. This restricted the analysis to grillages which were square,
polygonal, or skew in plan, and no facility existed for the treatment of curved
members. These sometimes occur in roof systems, and are very common in
bridge deck grillages curved in plan, many of which are required at interchanges
and elevated roundabouts with the new motorway systems.

It is somewhat surprising, therefore, that so little has been published on the
analysed grillages curved in plan. Most attempts have been concentrated on the
analysis of single discrete curved members [4—7] or discrete girders intercon-
nected by rigid cross frames [8]. The only work on grillages consisting of members
curved in plan interconnected by transverse diaphragms seems to have come
from Japan [9, 10]. In this work a series of cuts in cross members are made to
render the structure statically determinate and compatibility equations are set
up to restore continuity to the system. This laborious hand method is imprac-
ticable for torsionally stiff grillages with large numbers of main end transverse
girders. Recently CouLr and ErciN [11] have presented a series solution for
isotropic slabs curved in plan, and demonstrated a sufficient degree of accuracy
of the method compared with perspex models. Their work is interesting but
somewhat limited, since an isotropic slab is not the most efficient medium for
resisting the high torsion moments set up in curved structures.

It is clearly possible to analyse a grillage curved in plan by a number of
equivalent straight sections. This, somewhat dangerous procedure, as will be
demonstrated in the following paragraphs, is sometimes used indiscriminately
by consulting engineers seeking rapid answers to their immediate problems.

The analysis of the curved grillage was attemped by the author for the West
Riding County Council (Yorkshire) for the curved decks of Lofthouse Inter-
change at the intersection of M 1 and M 62 motorways (Fig. 1). This consisted
of a number of prefabricated steel box girders with an insitu composite concrete
slab, which also acted as the transverse distributing medium in the bridge. Ana-
lysis was required for the abnormal vehicle loading in the central and eccentric
positions for maximum transverse moments in the concrete slab and bending
and twisting moments in the curved longitudinal members respectively. The
analysis based on the straight segmental approximation corresponding to the
joint numbering of Fig. 1 gave very reliable answers for moments in the longi-
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Fig. 1. Plan and section of Lofthouse Interchange South Roundabout Deck.

tudinal girders. Transverse moments in slab, however, were most difficult to
interpret, since the resolved components of the longitudinal moments in the
transverse direction at the centre of the bridge were of the same order as trans-
verse moments printed out by the computer. The deck was re-analysed by
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doubling the number of segments, but this merely halved the included angle,
and hence the resolved component, whilse also halving the transverse moments.
The dilemma was thus unresolved, and the designers adopted conservative
values for design purposes.

The above example demonstrated to the author the importance of investi-
gating the degree of approximation involved in simulating members curved in
plan by a series of equivalent straight members, to decide under what condi-
tions this treatment was reasonable.

Approximation in Curved Member Simulation

Fig. 15 shows a straight uniform member of the same section properties as
the curved member with subtended angle. It was desirable to obtain a graphical
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representation of the degree of error involved in the bending stiffness, torsion
stiffness and shearing stiffness at end [1] of the curved member. The percentage
errors, given by:

actual stiffness of  stiffness of equivalent

curved member straicht member
0/ error = = % 1009
2 actual stiffness of curved member 49

are plotted in Fig. 2—4. Stiffness values of curved members, which will be dis-
cussed in the following section, are obtained in Appendix 1, and the corre-
sponding values for the equivalent straight member, in the same directions, in
Appendix 2. The evaluation of these errors over the whole range of values of the
included angle and factors was achieved by a short program written in ALGOL
60 for the Leeds University English Electric Leo-Marconi KDF 9 computer.
Appendix 5 shows that the range of values of « is approximately 0.6 at the
lower range, and increases with depth to width ratios fpr both box sections and
solid rectangular sections. For torsionally weak (I) sections it can be as high as
100 or more.

Figs. 2—4 indicate that the error involved in the straight member simulation
is substantial even for included angles as small as 1 degree, and rises very ra-
pidly forlarger angles. The simulation, therefore is not a promising practical pro-
position if accurate values are required, and the need was felt for incorporating
the exact geometry of the structure for analysis with the exact thoeretical
treatment for members curved in plan.

Stiffness Factors for Members Curved in Plan

Attention will be confined to the analysis of grillages with members of a con-
stant radius of curvature which are by far the most common in practice, al-
though the proposed treatment is by no means restricted to these cases.

In the general analysis of circular bow girders, PipPARD and BARER [4]
have encountered difficulties with a direct solution involving three unknowns,
and have reduced the number to two, by considering the redundant forces in
the centre of the girder and obtaining the solution in two stages by considering
symmetric and skew symmetric loading to determine the central forces, and
then calculating the fixed end moments and shears.

The same difficulty was experienced in an attempt at a direct determination
of stiffness factors at the ends of a curved member. Thus the author has adopted
an alternative approach of deriving the influence coefficients for the flexibility
matrix at end of 1 of the member, and inverting this to obtain the required
stiffness factors at end 1 (Appendix 1). The restraint factors, and stiffness fac-
tors at and 2 were then simply obtained from consideration of statics. The pro-
cedure involved the use of numerical values of 6 and « to form the flexibility
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coefficients, and the inversion of a 3x3 matrix, and both operations were
carried out inside the computer to yield numerical values of stiffness factors.

Fixed End Forces and Moments

The additional difficulty with curved members is the fact that fixed end
forces and moments cannot be obtained in a simple way as for a straight mem-
ber under any loading. Appendix 3 gives PreparD and Baker’s solution for a
uniformly distributed load, and this is plotted graphically in Figs. 5 and 6 for
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Fig. 5. Values of fixed end moments in Fig. 6. Values of fixed end torsions in
a curved girder under uniformly dis- a curved girder under uniformly dis-
tributed load. tributed load.

quick reference. Treatment of point loads presents even more difficulty not so
much in the analysis (Appendix 4) as in the presentation of data in the form of
graphs or tables. In addition to the two variables f and «, the position of the
point load P varies along the beam. A full range of values has been obtained by
the author, but their presentation would require considerable space. Some typi-
cal results are presented in the form of influence lines in Figs. 7—9 and these are
sufficiently representative of the whole range. As would be expected. large
values of 6 affect moments considerably over the range of «. Shearing forces
(Fig. 9) are relatively insensitive to these charges. For small angles it is suffi-
ciently accurate to induce only the effects of shearing forces and fixed end
moments based on a beam of equivalent length, and to neglect torsion effects.
This is unlikely to lead to excessive errors if the curve is flat. When 6 is large the
actual values can be calculated from the formulae in Appendix 4.



158 F. SAWKO

Bending moment

£ 3
=200~ 8-30°
B=1* M M d %Uc‘\\ ‘
Ao W=l r 15 f;/ - <§,
N 7 TN
105,750 /s /4 \‘\\‘
AR / \
i XY
.10 \ .10 v/ R\ Y
M=fxr8xP
,05 i,‘! \\ 05 a =i e it NEr O ¢ L
0 \ 0
0 5] 1.0 0 D 1.0
Position Y] Position 'l
Fig. 7. Influence line for bending moment Fig. 8. Influence line for bending moment
in a curved girder with 8 = 1 degree. in a curved girder with 6 = 30 degrees.
10 _____ Shear
- e —t
\\ x-ﬂ
=200 8=30° ]
N P
N
N
\Y
Reaction=coeffxP
5
N
N
N
N
™\ Fig. 9. Influence lines for end reaction in
0 N a curved girder with 6 = 30 degrees.
‘5 10

: I3
Position 8

The Computer Programme

The programme for the analysis of grillages curved in plan has been written
in ALGOL 60 for the KDF 9 computer at Leeds University Electronic Compu-
ter Laboratory.

Formulation of the elastic analysis for an automatic solution by the elec-
tronic computer is not new, and attention will be confined only to features of
interest.

The data for input consists of the properties of straight and curved members,
restraint conditions and loading. Curved members are specified by defining
joint numbers that they connect, radius r, included angle 8. bending and tor-
sion constants I and J, whether the curvature is positive or negative (Fig. 13)
and the angle of inclination at end 1 of the member. Members with the same
section properties are specified in groups, and it is not necessary to repeat the
data for each member separately.
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The computer sets up the stiffness factors for the curved members with
respect to the local member axes, and transforms these, using different trans-
formation matrices at ends 1 and 2, to the arbitrary set of axes specified for the
grillage (Appendix 1). The stiffness matrix is then assembled in the usual way,
only one half of the non-zero band width being stored to reduce storage space
and subsequent solution time. The solution of equations is based on T. Baxa-
cHIEWICZ [11] square root method, which proved to be very fast and accurate
even for large sets of equations. The deflections are then used to calculate, for
each curved member, the bending and torsion moments at the two ends and the
shearing forces. For straight members only one value of the torsion is given.

Numerical Example

The bridge deck of the Lofthouse Interchange was re-analysed once the
programme had been developed, and the results are plotted in Figs. 10—12.
Transverse members were formed by the reinforced concrete slab itself, which
is wedge-shaped in plan. A uniform member was assumed in its place, since the
discrepancies were very small. Account was taken of the reduction of stiffness
due to cracking of concrete over the central portion of the bridge.

The wheel loading of the abnormal vehicle was represented by equivalent
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Fig. 10. Lofthouse Interchange — Distribution of moments in longitudinals and torsion
in transversals.
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point loads at the nodes of the curved grid. This did not lead to large errors in
longitudinal bending and torsion moments. and local wheel effects were super-
imposed on the computer solution in design.

The author believes, that the results so obtained are an accurate represen-
tation of the actual stress conditions occurring in the bridge under the central
vehicle loading. He also feels that the analysis would be difficult, if not impos-
sible. by any other known method.

With the development of the computer programme for grillages curved in
plan. another class of structure has been made amenable to a fast and reliable
solution.
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Appendix 1

Stiffness and Restrain Factors for Member Curved in Plan

With reference to Fig. 13, end 1 of curved member 1—2 is released and unit
values of forces M,,. M, . F_, are applied in turn. The flexibility factors for

Fig. 13. Member curved in plan with
Haar o - F
definition of positive (a) and negative (b) (o M
curvatures.

(a) Positive curvature [b) Negative curvature

member are given below, where the upper sign refers to positive, lower to nega-
tive curvature of the curved member as defined in Fig. 13.

fi1 sin? ¢ de +Z*)7' ] cos® ¢ dd

0 0 (1)
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Thus for any factor « —?5

calculated numerically. The flexibility matrix for the member

and subtended angle 8 flexibility factors can be

fll fl?, le
F = f21 f22 f23
f31 f32 ](33

is then inverted, giving numerically the stiffness matrix at end 1 of the member:

g1y d0raong
S = | Sz Sap So3

| S31 S32 S33_|

The basic force displacement relationship for the curved member can then be
written as:
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Fyy = Ryy Dy + 85 Ds, <

where S;;, R;; are the stiffness and restraint matrices respectively and F, , and
D, , the forces and corresponding displacements at ends of 1, 2 of the curved
member.

The restraint factors r,;; are obtained from equilibrium consideration, by
applying unit displacements in turn to end 1 of the member.

Thus for #2, =1 only, all other displacements equal to zero,

e V) =
ﬂ[cl—'slh J[.r?._"lb
M, = 15, M, o =115,

ni —
Fq =85, Fyy =14,

and from equilibrium:

ME) M, ,+ M, cos0+ M, ,sin@F F,r(1—cosd) =0,
Py = —8j;c080 F 85,800 5,7 (1 —cosb),
M5 M,,— M, sin0+ M, cos80—F,rsind =0,
J. Tip = +8;8M0—8,c080+8,,78ind,
Hoeve s el =0
T8 = cie-
Hence the restraint matrix becomes:
$11CF 8128 +8137 (1 =€) L8 8—8150+81378 Sy |
S$31CF 8328 £ 8337 (1 =€) 8318 — 8390+ 83378 8y |
Stiffness factors at end 2 of the curved member are similar to the correspond-

ing factors at end 1, the only difference being those of sign in the off diagonal
terms. It is easy to show that:

S Esat B s
Spp = | —Sa1  Spa —Sp3 |. (5)

SERL P E
In assembling the stiffness matrix of the complete structure, equation (2)
has to be transformed to a general system of axes ', ¥, 2’ (Fig. 14). Thus every
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curved member will in general be inclined at an angle y at end 1 to the positive
direction of the z’ axis. The inclination at end 2 will be (y+46), due account
being taken of the curvature of member.

v

y

0 7 Q) IFig. 14. Angles of inclination of the ends of
¢ &' curved member related to general system of

la) Positive curvature axes. Positive (a) and (b) negative curvatures.

(b) Negative curvature

From static and geometric consideration, the force displacement relation-
ships for the curved member referred to the frame system of axes ', ', 2’ are:

B = (58D (I B, Ty D

6

By = (T Ry, T3) D+ (T2 Sy, T3) D3, v
cosy siny 0 [ cos(y+6) sin(y+6) 0
where T, = | —siny cosy 0 | and 7, =| —sin(y+8&) cos(y+6) 0
080 At 0 0 1

The final equation can be written in the form:

A ST e

0 = R RS (7)

c2811—28C819+52855 8C8;+(C*—52) 80— 8CSpy G815 —385ns

where S, = 82811+ 28 €815+ €28y 8 Sqg € Sog

L S33 il

‘Sél =
[(€)2811+28 ¢ 815 +(8") 2500 8" C 813+ [(8')2 —(c")] 810 —5"¢ 555 €815 +8 855]
§')2811 — 28" ¢" 815+ (¢")? 8o 5" 815 — € 83
S33

’ P
12

CC i —8C 1oy —CS Tyn -85 7oy €8 Py —88 1o FCC T —8C 7oy CTis 8T

SC’ )'ll—l‘CC’ }’21_'88,7’12_00, )‘22 SS’ ]‘11+CS’ }'21 +:S‘CI }‘12_‘}_66, "22 S)'1:3+C)‘23

,w Il " ,- 2]
= C 733 —8 Tgg § T3 +C Ty 33

The coefficients of the four 33 matrices are symmetric about the leading
diagonal, and ¢, s stand for cosy. siny. and ¢’. s for cos (y +6). sin (y + 6) respec-
tively.

In this form the equations are suitable for an automatic setting up process
and solution inside the computer, yielding at each joint three displacement D’
in terms of the reference axes of the frame. Member forces are then determined
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from the following equations:

= S TP R T D,
= By 1y D1+ 85 15 Dy

€813 —8812 $811TCS12 S8

where ool C891 —88p9 8851 1+C835 S
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and Ry, T, CToy —S8Tap STy +CTyp 7Tog
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It is usually unnecessary to calculate the corresponding matrices for forces
at end 2 of the member, since these are obtained far more simply from statics.
Thus with reference to Fig. 14 it follows immediately that

M,
M,,=+M_,sinf—M, cosf+Fyrsind.

o=—M,,co80F M, sinf + Fy, r(1—cosb), ()

The force system for every curved member is thus defined by five values —
bending and twisting moments at ends 1 and 2 of the member and shearing
force.

Appendix 2
Stiffnes Factors for an Equivalent Straight Member
With reference to Fig. 15, stiffness factors for a straight member connecting
ends 1 and 2 of member curved in plan can be determined by any of a number of

standard procedures. A flexibility approach parallel to the one adopted in
Appendix 1 is outlined here, since it makes the procedure easy to follow.

Fie. 15. Simulation of curved member by an equivalent straight
‘ : | :

member. an%:wn) ™

End 1 of the member is released, and unit values of forces M., M, . F,, are
applied in turn. It is most convenient to use 2, the distance along the member,
as a variable, rather than positional angle ¢.
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Thus:
2 rsin (6/2) 2 rsin (6/2)

1 : L= 0 r it Piooes

=—— |sin—dx' +— ‘ cos—dx' = — 28in®—= 4+ ——sinf,
I Eff 2 GJ ) 2 EI L
0 0
2 rsin bﬁ/ﬁ) 2 r:in(gﬂ,'_’)

1 TS 7 )
foo = == | cOs—dz' +— ‘Siu'*dl’ = ——sin 0+ 2 8in?—,
R 2 I e EI i 2%

0 0
27 sin (0/2)

[esife FEEIR T Y

i = —{J (ol )ldm = 07 §sm33, (10)
0 7

__fr.H.H A

= F75n 3111§iGJ51n sing,
b
s B )

hs = iEIQ'SlHB?,
L :

T —*Efsmﬁsmz,

The inverse of the flexibility matrix for any values of », « and 6 gives nume-
rically the corresponding stiffness factors at end 1 of the member.

Appendix 3
Uniformly Distributed Load over Girder Curved in Plan

The circular arc bow girder has been solved by PipparRD and BAKER [4]
(p. 413), and their notation is modified to comply with that used previously in
Fig. 16. Values of moment, torsion and shearing force at any point defined by

9/2

Fig. 16. Uniformly distributed load on curved girder.

angle ¢ are:

4cos¢{(a+l)sing_agcos_g} s
M = 2072 et S S ) |
(+1)0—(x—1)sin@ |
4sin¢{((x+l)sing—agcosgl ) i
T =2wr? SR -I_qs (11)
(¢+1)0—(x—1)sind |8

=2wrd.
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Thus end moments at ¢=40/2 (i. e. end 1) become:

4(‘086{(a—|—1)511’18 cos }
MU [ e e 1}
. 451118{(a+1)sin§—7gcos§} 6 (12)
M ’“[*(Hl)-(&—l)sin@ _;5]’

Values of M, and M, are plotted in Figs. 5 and 6 respectively.

Appendix 4

Point Load on Girder Curved in Plan

Preparp and BAKER [4] give the solution to a curved girder under a single
point load in two steps. Values at the centre of the girder are first calculated,

Fig. 17. Point load on a curved girder.

O
FZ(dnwn)M’

and resolved for end moments torsions and shears. Thus, with the notation of
Fig. 17 the central values are:

(c+ 1) sine +( oc—l)sm—smqﬁ (COSqS-—COSB)
JfozPrm i
(e+1)0—(x—1)sind
Dy = (13)
1 (qS cosqﬁsm—ﬁﬂsmqﬁ — ¢ )—i—icxsingbsinﬁ— (e—1)psind
P;-[§+— (c+1)0%+ +(x—1)fsinf—4 o (1 —cosb) P }’
i i= Pr% l:qb' —sin ¢’ —% (8—2sin_g)] cosecg.

The end moments and force at end (1) become:

7 Ll
M, =M, cos -+ T4 31116+F07‘sm§,

e
I

e), (14)

= 7
—11[03111§+T0 cosf—F,'Jr(]. = COR—

F =F
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and at end (2):

M,=M, Cosg—Tosing—Fo rsing—]) rsing’,

M. = ﬂIOsing-i—To oosf~F0;-(1 "_COST?)_PT(I—COSQSI):

B = D

Appendix 5

(15)

Flexural and Torsional Properties for Hollow and Solid Sections

Hollow Box Sections

For fabricated steel boxes, wall thickness # is very small compared to dimen-

sions of section

b

6 2

kbd? for a<l.

g2 b d? dt b
Thus: I = ;—(———I-Q t+d?t|= + =],
oA 1205 o
€
5 SRt %Azt i 21)351'25
perimeter (b+d)
If d/b=a, and u for steel =0.3,
(({ i 1)@2
El TR
St o SesnaTE
GJHWG = =0.217 (a+ 1) (a + 3).
T—*—(!
a ‘ o
0 0.65
0.5 1.14
1.0 1.74
3.0 5.21
5.0 10.42
Solid Sections
b '(ZB
= ET J=kdb¥HAor a>="T,

4 Thus for pu conerete =0.15,

Bl d\21
= = 2 L% — * =
a7 ).19 (b) i’ for:g =1
= 0.192l

for a<1.
3 or «a
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Values of k are given by TiyMosHENKO [12]

o

6.

10.

11k

a | o
0 0.58
0.5 0.84
1RO SR 36
3.0 6.58
5.0 | 16.50
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Summary

The paper describes the development of a computer program for the ana-

lysis of grillages curved in plan. The basic structural element is a curved mem-
ber, treated in terms of its “exact’ stiffness and restraint factors, which are
derived in the Appendix. Results of analysis of a bridge deck curved in plan for
the Lofthouse Interchange (an intersection of MI and M62 Motorways,
Nr. Leeds) are presented.
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Résumé

La présente communication se rapporte a la description d’un programme de
calcul électronique des réseaux de poutres courbes dans le plan. L’élément de
base du systéme est une piece courbe que 'on considére du point de vue des
coefficients «exacts» de rigidité et d’encastrement qui lui sont associés; ces coef-
ficients sont déterminés dans I’Appendice. On présente les résultats du calcul du
tablier d’un pont courbe dans le plan destiné a 1’échangeur de Lofthouse
(intersection des autoroutes M 1 et M 62, au nord de Leeds).

Zusammenfassung

In dieser Studie wird die Entwicklung eines Rechnerprogramms fiir die
Analyse von im Grundril gekrimmten Triagerrosten beschrieben. Das Grund-
element ist ein gekriimmter Stab, der mit den genauen Stab- und Kreuzsteifig-
keiten, welche im Anhang abgeleitet sind, behandelt wird. Die Ergebnisse der
Analyse einer im Grundri3 gekriitmmten Briickenfahrbahn fiir die Lofthouse
Interchange (eine Kreuzung der Autostraflen M 1 und M 62, Leeds) liegen eben-
falls vor.




	Computer analysis of grillages curved in plan

