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The Analysis of Column Supported Plates with
Special Apphcation to Bridges

Le calcul des dalles appuyies sur piliers, eu egard plus
particulierement aux ponts

Die Analyse säulengestützter Platten mit besonderer Anwendung auf Brücken

L. S. D. MORLEY
Royal Aircraft Establishment Farnborough, Hants.

1. Introduction

The present paper deals with the theoretical analysis of a thin flat plate
which is supported by many diversely spaced columns and loaded by concentrated

forces normal to its plane. The problem is one of importance because it
oceurs in so many different engineering contexts. In particular, the current ex-

pansion of the road network in Great Britain requires the design of elevated
roads with complicated arrangements of columns like that at the Cumberland
Basin in Bristol, where the essential structure consists of a reinforced concrete
slab which is supported upon diversely spaced columns. Resort has often been

made to model tests (see e. g. Best and West [1]) in order to obtain the design
data for this type of construction. Such tests provide, however, only the minimum

data for the specific projeet, for it is difficult to optimize the design

through modification of the model or to investigate such effects as settlement,
change of Poisson's ratio or change in the orthotropy subsequent to Cracking of
the concrete. Moreover, the time which is consumed during the construction and

testing of the model is an important factor in competitive design.
As noted by Andrä and Leonhardt [2] and Rüsch and Hergenröder [3],

there is a dearth of reliable theoretical results even for the relatively simple

problem of the single span skew slab and, in consequence, they make resort to
extensive model tests in order to derive tabulations of basic design data. A main

difficulty in a theoretical analysis is that the column supported plate presents

British Crown Copyright, reproduced with the permission of the Controller, Her
Majesty's Stationery Office.



96 L. S. D. MORLEY

a boundary value problem which is complicated by the presence of the statically

indeterminate column reactions.
In a theoretical analysis it is simpler, and usually quite reasonable, to replace

each column by a concentrated load of such intensity that the deflection of the
plate is allowed to take up just the prescribed amount of column settlement
whilst undergoing the apphed loading condition, it being assumed that the
local problems presented by the finite size of the columns can be treated sub-
sequently and separately. It must be borne in mind, however, that this simpli-
fication now provides us with a mathematical problem in the classical theory of
plate bending where the second and higher derivatives of the deflection are
discontinuous at the concentrated load positions (it is recalled that the bending
moments depend upon the second derivatives and the shearing forces upon the
third derivatives ofthe deflection). Now, it has been pointed out previously [4]
that many approximate methods of Solution to boundary value problems in
continuum mechanics proceed as if the Solution is regulär so that their success
is related in some measure with the' 'degree of regularity'' of the actual Solution,
i. e. with the continuity ofthe successive derivatives ofthe deflection. It follows,
therefore, that it is good practice to make proper allowance in our Solution for
the discontinuous behaviour which oceurs in the second and higher derivatives
of the deflection at the concentrated load and column positions. In this
connection, it is noted that the finite difference, finite element and grillage methods
set out to solve this same basic mathematical problem and, although they
provide many valuable results for engineering problems, they usually make no
Provision for this discontinuous behaviour. These methods require, moreover, a
long and continuous sequence of arithmetic Operations which can provide
opportunity for an accumulation of errors. Furthermore, they predict finite
values for the bending moments in the plate at the column positions and under-
neath concentrated loads and, in view of the discontinuity of the second
derivatives of the deflection, these values are dependent upon the size of the mesh.
Although these values, obtained in approximation to infinity, are often
compared with those obtained experimentally there are obvious difficulties in
drawing worthwhile conclusions because the inadequacies of numerical methods
provide proper allowance neither for the two dimensional character of the
actual load distribution nor for the averaging effect of the particular strain
measuring device.

The present analysis employs exact techniques associated with the classical
theory ofplate bending (see e. g. Ttmoshenko andWoinowsky-Krieger [5]) in
conjunetion with principles which are derived by an engineering appraisal of
the problem. For example, in order to reduce the number of sequential arithmetic

Operations it is expedient to separate, as far as is possible, the calculations
for the statically indeterminate column reactions from those which are required
for the boundary value problem of the rectangular plate. Thus, the simpler
problem of a column supported plate is first considered where the boundary is
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extended so that the flat plate becomes of infinite extent. Effective precautions
can now be taken e. g. by collecting the column reactions into statically zero
force groups, to deal with the sensitivity in calculating the deflections and to
deal also with the discontinuities in the Solution but without the encumbrance
of a boundary value problem. Moreover, this statically mdeterminate Solution
is conveniently expressed in explicit terms after the inversion of a matrix of
only the same order as the number of columns. The columns and apphed loading

are next removed for the Solution of the boundary value problem, which
now concerns a rectangular plate loaded only at the boundary by a system of
self-equüibrating shearing forces and bending moments. To simplify matters
still further, the rectangular plate is considered to be of sufficient length so

that the behaviour at the column positions is dependent only upon the resultants

of the tractions at the ends of the rectangular plate and not upon their
manner of distribution. This boundary value problem is solved by straightfor-
ward Fourier synthesis ofthe tractions acting at the long edges and requires the
inversion only of second order matrices. The broad outline of an iterative process

is now apparent. The statically indeterminate problem is solved for the
infinite plate with the prescribed loading and the prescribed column Settlements.
The "residual" shearing forces and bending moments are then calculated along
the lines which correspond with the boundary of the actual rectangular plate.
These residuals are now reversed and apphed along the boundary of the unre-
strained rectangular plate, and the resulting deflections are calculated at each
column position. These deflections, in their turn, are regarded as column Settlements

to be superimposed upon the prescribed Settlements for the infinite plate
Solution. The process is repeated as many times as is required until steady state
values are obtained for the column reactions.

These ideas have a wide apphcation but they are confined here, for definite-
ness, to the rectangular plate which is of constant thickness and is Isotropie,
although an Appendix provides the basic equations for the orthotropic case. A
Computer program has been developed in conjunetion with the analysis to deal
with a quite arbitrary disposition and number of columns, column Settlements
and loading arrangements. The program provides all the column reactions as
well as the bending and twisting moments at any required Station. Extensive
use is made of matrix Operations and the program can be readily adapted to
other situations such as where the boundary is reinforced, the plate is orthotropic

or the columns are elastic. The question of linear elastic column supports can,
alternatively, be dealt with by an auxiliary calculation and an example is
given later in the paper.

Problems of plates supported on continuously distributed bearings can often
be approximated by column supported plates and comparisons of this kind are
provided in the numerical examples which conclude the paper, along with
extensive comparisons from model tests on skew slabs and the Cumberland
Basin elevated road system. In making these comparisons there has been no
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attempt to achieve, or even to investigate, economy in Computer usage by
restricting the number of iterations or the number of terms in the Fourier
synthesis; attention has been confined to achieving an assured high Standard of
accuracy (usually to within four significant figures). The numerical example for
the Cumberland Basin elevated road system shows, however, that the prelimi-
nary infinite plate Solution can provide a good indication of the peak column
reactions for this type of continuous bridge and this then provides a design tool
which is extremely economical in Computer usage. Economies may be achieved in
other ways such as by restricting attention to separate localised areas in a

bridge of considerable extent. A general conclusion which arises from the
comparisons with the model tests is that it is a matter of some difficulty to conduct
these tests in such a way as to obtain reliable results for the column reactions. A
main difficulty is that the load measuring devices inevitably possess inherent
elastic characteristics and these exert their own influence on the column
reactions which are found to be highlysensitive to any kind of settlement, relative or
elastic, of the supports. The effect of this settlement is to redistribute the load

away from the heavily loaded columns and so to provide optimistic values for
the peak reactions. In consequence, the numerical results from the present
method are found to provide pessimistic values for the peak reactions in all the
comparisons with model tests.

Towards the end of the present investigation the author's attention was
drawn to a recent, and remarkable, paper by Jean-Claude Leray [6] which
gives details of many results obtained from a Computer program specially
developed for the analysis of column supported plates of infinite length. The
analysis is due to Jean Leray [7, 8] and proceeds from a numerically determined
biharmonic Green's function for an infinitely long strip with free edges and

supported at infinity. Although his method takes into proper account the
discontinuities of the Solution, a sensitivity is indicated by the use of triple
length arithmetic (24 significant figures) for part of the calculations. There are
also hmitations upon the number (40) and precise disposition of the column
supports and apphed loading.

The author is indebted to Mr. B. C. Merrieield for his assistance with the
development of the Computer program.

2. Notation

An explanation is given first for the various combinations of suffices and an
affix which are used in conjunction with the list of basic notation given at the
end of this paragraph.

The analysis commences by gathering the statically indeterminate column
reactions into self-equihbrating force groups Fa where the suffix cc always de-

notes relevance to quantities immediately associated with this force group;
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the suffix ß always denotes similar relevance to quantities immediately
associated with the principal force groups Fß for the apphed loading.

The Solution is obtained through an iterative process, starting from a pre-
hminary infinite plate Solution where the various quantities bear the suffix inf,
e. g. winf (x, y), Mvinf (x, y), etc. We then proceed to a boundary value problem
for an unrestrained rectangular plate where the various quantities of this
intermediate Solution bear the affix (F), e. g. uflF)(x,y), MyT'(x,y). A return is now
made to the infinite plate where this intermediate Solution bears both the suffix
inf and the affix (F), e. g. wfflf(x,y), My^inf(x,y) etc. The various quantities
appropriate to the final Solution of the boundary value problem, see Eq. (8.3)
et seq, ofthe column supported plate are denoted simply by w(x, y), M.(x,y),
etc.

The following list provides the basic notation for the fundamental quantities.

a length of the rectangular plate, the ends are
located at x 0, a.

26 width of the rectangular plate, the sides are
located at y +6.

An, Bn,Cn, Dn constants which are associated with the nth.
terms of the Fourier series.

c constant used in the iteration process, typically
0.1 ^e^ 1.0.

C denotes the boundary of the rectangular plate.
C%, Cl_1, Cx_2 constants which account for the rigid body

movements of the plate.
cam used in defining the force group Fa, a positive

value corresponds with a column compression.
Ca the intensity of the force group Fa.
D flexural rigidity of the plate.
F a vector quantity which describes all the column

reactions.

i, j, k, k',m integers which refer usually to column numbers.
I the plate is supported upon l columns.
V the number of apphed loads.

M (x) resultant bending moment at an end of the rec¬

tangular plate.
Mx (x, y), My (x, y), Mxy (x, y) plate bending and twisting moments of the x 0 y

co-ordinate system.
n integer which refers to the w.th term of the

Fourier series.

N non-dimensional elasticity parameter for the
column supports.
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p concentrated load of unit intensity acting down-
wards at the position x xm, y ym.

Qx(x,y), Qy(x,y) shearing forces of the xOy co-ordinate system.

distance from origin of co-ordinates, r2 x2 + y2.

defined by Eq. (4.8).

defined by Eq. (4.13).

defined by Eq. (4.11).

s distance measured around the boundary of the
rectangular plate.

T (x) resultant twisting moment at an end of the rec¬

tangular plate.

V (x,y), V (x,y) Kirchhoff normal forces of the xOy co-ordinate

system.

w 'x, y) the normal deflection of the plate.

w (xt, yt) the prescribed settlement of column 1

rectangular Cartesian co-ordinates.

the co-ordinates of some point which lies within
the immediate vieinity of the force group Fa, see

Eq. (4.9).

n-TTJa.

r a constant which is associated with the force
•*¦ a

group Fa, it is defined by Eq. (4.10).

X' a constant which is used during the iterative
process, see Section 8.

A' provides an indication of the convergence of the
iterative process, it is defined by Eq. (8.5).

v Poisson's ratio,

v the outward normal to the boundary, used only
in Section 8.

A few additional symbols are used in Appendix A, they are defined as they
are introduced.

3. Fundamental Equations

The fundamental equations are well known but they are listed below for

purposes of easy reference.
The plate is assumed to he in the horizontal plane with rectangular co-ordinate

axes xOy as shown in Fig. 1; the deflection w is positive downwards. The

expressions for the bending and twisting moments are

Yn
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M„
d2w d2w

-D [^ + v
dxi dy

~ d2w d*w
M„ =-D|^7r-r-v

°y

Mxu= D(l-v)

dx'

d'-w
dx dy'

(3.1a)

(3.1b)

(3.1c)

where D is the flexural rigidity and v is Poisson's ratio. When these equations

are substituted into the equations of element equilibrium we obtain, in the

absence of normal loading, the following partial differential equation

d*w d*w d*w
cJxT+ dx2dy2+cjy*

which governs the behaviour of the plate.

(3.2)

Fig. 1. Bending moments and shearing forces

acting on an elemental portion of plate.

The normal shearing forces are given by

Qx

and the Kirchhoff normal forces by

d Id^w cPw
~dx~\dx2 + dy2

d [d2 w d2 w
dx2 dy2

'x ^x

Vy Qv-

dy

dM.

n d id2w ¦ ,d2w.
¦Ddx-\cW+{2-v)Wh

dx dy\dy2 dx2)

(3.3 a)

(3.3b)

(3.4a)

(3.4b)
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4. Force Croups

The rectangular plate is supported on l distinct columns all of which are here
considered to be rigid and to rest upon rigid foundations which may, however,
have already settled a prescribed amount. The boundary is free from all traction
and restraint.

For the present purpose these columns are replaced by l concentrated reactive
forces of such intensity that the deflection w (x, y) of the loaded plate is allowed
to take up just the prescribed settlement at the column positions. Now, there
are only three equations of overall equihbrium and so the calculation of the
intensity of these reactive forces provides a J-3 fold statically indeterminate
problem which is additional to the usual boundary value problem presented by
the rectangular plate.

The singular Solution of the governing partial differential Eq. (3.2) appro-
priate to a concentrated force of unit intensity acting at the origin of co-ordi-
nates in a plate of finite extent is

w(x,y) 1677.r/21°gr2 t4-1)

with r2 x2 + y2. (4.2)

It is to be noted in Eq. (4.1) that the deflection w (x, y) increases very rapidly in
magnitude with increasing values of r. Clearly, the direct use of this type of
singular Solution in the analysis of a plate supported by a large number of
columns is likely to lead to difficulty in calculating accurate values ofthe deflection

and consequently of the column reactions. A first step in guarding against
this contingency is to collect the reactive forces into self-equihbrating force
groups so that at Mast the resulting stress disturbances behave according to
St. Venant's principle. Secondly, advantage is often obtained by algebraic
rearrangement of the equations in such a way as to reduce likelihood of the
occurrence of differences between numerical values of similar magnitude during
the course of the computation. Such rearrangement does not of necessity result
in an equation possessing the simplest algebraic reduction.

4.1. Force Croups Fa for the Statically Indeterminate Quantities

Linearly independent force groups Fa are introduced as the statically
indeterminate quantities for the column reactive forces where

K - 2 oampm, cc 1,2,3,.. J-3. (4.3)
m=\

The symbol pm refers to a concentrated load of unit magnitude acting down-
wards, i. e. in the sense described in Section 3, at the position x=xm, y=ym
which was previously occupied by column m; the cam are constants where a
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positive value corresponds with a column compression. Other linearly independent

force groups, such as Fa, may be obtained through a linear combination of

the F„ so that
_ 1-3
F T c F (4.4)

where the cam are constants. This arbitrary choice of the statically indeterminate

quantities can be used to considerable advantage.

If each force group Fa is self-equilibrating and is confined to the four

(adjacent) column positions m=i, j, k, k' as shown in Fig. 2 (or m i, j, k if these

Fig. 2. Notation for the force group Fa
at adjacent column positions i, j, k, k'.

positions are co-linear), then

with the remaining eam 0. For equiHbrium it is necessary that

Caj + uafc + C«y — c_

yöC*i+ykcak+yk-cixK -yic*i>

(4.5)

(4.6)

where cai may be taken as unity. This force group gives rise to a stress disturbance

which, by St. Venant's principle, decreases in magnitude with increasing

distance away from the group. The singular Solution of Eq. (3.2) which

corresponds with this force group is written wa (x, y) where

wa (x, y)

with

(cBir?log»f +ca3-r| log r| +cafcr|logrl +caKr2ki\ogr%)
1<ottD

r\ (x-xi)2 + (y-yi)2, rf (x-xj)2+(y-yi)2 etc.,

(4.7)

(4.8)

cf. Eqs. (4.1) and (4.2).

Eq. (4.7) is now rearranged so as to take advantage of the self-equilibrating

properties of the force group, this rearrangement is of especial importance
whenever it is required to calculate the magnitude of wa at a large distance

away from the gronp. It is convenient to denote by xa, ya some point which lies

within the immediate vicinity of the force group Fa, e. g.
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_xi+xj+xk+xk, _yi±yi±yk+yK uq,

see Fig. 2, and to assign to each force group a constant ra which is calculated
from the formula

-Ttx Cairai + cajraj + Caftrafe + cafc'raSr-> (^-10)

where r2{ {xa-xi)2+(ya-yi)2, r2j (xcc-xj)2+(ya-yi)2 etc. (4.11)

In virtue of Eqs (4.6) and (4.8), however, it is noted that we can rewrite J"a in
the form

ra c<xiri+c<xjrj + ccckrk + <W»i- (4-12)

The generic distance ra is introduced, see Fig. 2, where

r2a (x-xa)2+(y-ya)2 (4.13)

and it is noted that
r? r2

logrf logr£ +l0g-f-, logr? logr|+log-|- etc. (4.14)
a. 'oe

provided ra=\=0. Thus on substituting from Eqs. (4.12) and (4.14) the Solution
becomes

1 f r2 §
V«(pC'^ 16tt~D IFal0g a + C<x*^l0g7^"+ C"J'r,?l0g~r^wn

2 r2k „ „2 1^^. k'
(4.15)

+ c* fe ** log -£•+ ca k. r\ log -£
'a a

Furthermore,

^?1og4-r!log^ |t| + rJ)log-2+(rf »BBI (4.16)
a 'a l ri ' a 1

so that with this equality and the first of Eqs. (4.6), the singular Solution

wa (x, y) of Eq. (4.7) is finally rearranged in the form

W'{x'y) 32tVD [2r«logr' + fw(r? jgjlf| Sm +r?) log^-

+ cafc.(r!- + r|)log^j (4.17)

+fw & -r\) Mg^+cafe (| ig|j iog!M+Cafc, §|3fflHa
In this equation, the term in T^ is dominant for the large values of ra and for
particularly difficult calculations it may be necessary to derive another set of
force groups Fa, see Eq. (4.4), in the manner

Fa raiFa-raFa,, (4.18)

where Fa and Fa. are two immediately adjacent self-eqmlibrating force groups
with ra=ra, and which are individually determined in the normal way from
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Eq. (4.6). The terms enclosed in the final pair of braces in Eq. (4.17) are insigni-

ficant for very large values of ra.

4.2. Force Groups Fß for the Applied Loading

In addition to the force groups for the statically mdeterminate quantities,

principal force groups Fß must be selected to deal with the apphed loading and

which is here considered to consist of concentrated loads V in number.

The concentrated apphed load cpipi, which acts downwards with intensity

cj3i at the point x=xi,y yi,is considered for the present purpose to be reacted

entirely by the adjacent columns j,k,k'. Thus, a self-equilibrating principal
force group Fß is given by

Fß CßtPt-CßjPj-CßtPt-CßrPv, (4.19)

where a positive value of cßj, cßk, cßk, corresponds with column compression

and they are calculated from the equüibrium equations

cßi+ cßk+ cßk- cßi'

xicßi + zkcßk + xlfCßt, XiCßi, (4.20)

yjCßi+ykcßk+yk-cßk' ytcßi>

cf. Eqs. (4.5) and (4.6) for the statically indeterminate quantities.
The singular Solution wp (x, y) which corresponds with this principal force

group is

Wß(x,y) 3^0 [2/>]°g1 AcßM +r\)\og^ + Cßk(r2k + r?) ||jim ¦ f
n-iÜ§ii»lf (4-21)

+ k^-i)iog4?+^fc^-^)log^+c^'^'-^)log!1r}
i ß ß ß

cf. Eq. (4.17). The constant rß is calculated from the formula

ty -cpir*pi + cpir*ßi + cßkT*ßk + cpk.rfr (4.22)

and the quantities xp and yp, rßi, rp are given respectively by Eqs. (4.9), (4.11)

and (4.13) with ß substituted for ct.

5. Statically Indeterminate Problem of the Infinite Plate

The aforegoing enables the Solution to the statically mdeterminate problenT

ofthe infinite plate which is undergoing the same apphed loading and prescribed

column Settlements as in the actual finite plate. This Solution is denoted by

winf(x,y) where
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V

2
1=1

1-3
Z(

oc=l
wmt fo y) 2 wß (x> y)+ ZGa wa («> y)+Gi-%x+Gi-iy+Gv (5.1)

where wa (x,y) and wp (x, y) are given respectively by Eqs. (4.17) and (4.21) and
the Ca are constants. The terms Cz_2 x, C?_x y and CT account for the rigid body
movements of the plate.

If the prescribed settlement for column i is written w.

stants Ca are then determined from the requirement that

wint (xi > Vi) wcolset (xi,yi)> i l,2,3,...l
This provides the following set of l X l simultaneous equations

sa(xi,yi) tte °on-

(5.2)

A(xiiyd w%ixi>yi)---w<x(xi>yd ¦ ¦ ¦ wi-%(xi>2/1) xi 2/1 |
wl (x2 > 2/2) W2 (x2 > 2/2) • • • Wa (x2 > 2/2) • • • Wl-Z ix2 > Vi) x2 2/2 l

w-i. ixi, yi) v>2 (xi ,y{) ...wa (xj ,yt) Wj_z (x^, y,) xt yx 1_

wcolset (xl 12/l) - 1 Wß (XX, y±)
ß=l

V

Wcolset (x2 > 2/2) ~ 2 Wß (x2 >
2/2)

"Ci

lOj.

(5.3)

Wcolset (xl>yi) ~ T,Wß(xuy,)
ß-1

If the statically indeterminate force groups Fa are chosen in the manner de-
scribed in Section 4 then the square matrix on the L. H. S. of Eq. (5.3) should be
well conditioned, but if there is any doubt it is worthwhile repeating the calculation

using a different arrangement of force groups, see Eq. (4.4), and to check
whether there is any significant change in the final values for the column
reactions. The force group which provides for this infinite plate Solution is written
Finj. It is calculated from

V 1-3
Finf HFß+ ZColK

8=1 F a=l
(5.4)

where Fa and Fp are as given by Eqs. (4.5) and (4.19) and the values ofthe
constants Ca have just been determined. The force group Finf js, of course, a
vector quantity with l components and, according to the Convention adopted
throughout the present paper, a positive value of a component corresponds with
a column compression.

The inversion of the square matrix on the L. H. S. of Eq. (5.3) is used
frequently during the iterative process, later described, to provide by matrix
multiplication another infinite plate Solution which is denoted by w^f(x,y).
Thus
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1-3
2

a=l
© {x, y) 1 2 G<Pwa (x, y) + ö[?2 x + #S y + OP i (5.5)

where the constants ö<? are formally calculated from the following set of l X l
simultaneous equations

'Mzi'2/i) w2(x1,y1)...wa(x1,y1)...wl_s(x1,y1) x1 y1 1

wx (x2, y2) w2 (x2 ,y2)...wa (x2 ,y2)... Wj_3 (x2, y2) x2 y2 1

w1 (xT, yz) w2 [xj, yt) wa (xx, yz) wt_z (xz, y,) Xj yz 1

^w[^f(x1,yiy

Winf \x2 > 2/2)

yPt&i'yi).

"öf>"

op

pp.
(5.6)

6. Residual Forces Acting at the Boundary of the Rectangular Plate

In preparation for dealing with the boundary value problem of the rectangular

plate, it is necessary to calculate the values of the forces which arise from
the infinite plate Solutions of Section 5 and which act along the lines marking
out the rectangular boundary, as shown in Fig. 3.

COLUMN POSITIONS

fe

FORCE3TR 3UTE

b RESULTANT FORCES AT

x=o.a H

Fig. 3 a and b. Residual forces acting at
the boundary of the rectangular plate.

We first derive the expressions appropriate to the force group Fa. They are
obtained by substituting Eq. (4.7) into Eqs. (3.1) and (3.4) and making use of
the equilibrium Eq. (4.6) so that
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Mx„(x,y) 8^
2 2 -2 ^

:i+")|cailog^ + ca4log^ + cafc,log-f-[

9H_ \fc«<(y~y<)', c*i(y-yj)2

cttfc(2/-2/fc)2 cak-(y-yk-)2
9 rl'

(6.1a)

My,a(x,y) - 8 TT
(1 +v) Ca,.Mg-|-r-Cafcl0g-|-T-Cafc.l0g-i

+ 2(l-v) cai {y-yd2 caj(y-yj)+ (6.1b)

Cqfe(2/-2/fc)21 Cafc-(2/-2/y)2V

Jf, 11 - 1-vfc«^(a;-;ri)(2/-2/i) 1 c«j(x-xi)(y-yj)
xv,a\x>yi /L„ \ v2 r24tt \

cak(x- xk) (y - Vk) c«I (x - xk) (y- vw)

r\ +
(6.1c)

and

Vx,a(x>y) =~t (3-v) Ki{x-Xi) +
cai(X-Xö) +

Cock(X-Xk)
+ Cgk'(x~xk)

\ I 1 r\ r\,

i fctt< (s -sj (y -^)2 ctti (s-xt) (y -y3)2
V)l I +" 1

I caki.x-xk){y-ykf + cak-(x-xk-)(y-yk')2X
?i rl- J.

(6.2 a)

Py.«(*,y)
1

Irr (1-v) c<xi(y-yi) cotj(2/-2/j) cak(y-yk) Cafc-Cy-sfe))
¦ + + +-

I 2(1 v)[c«^y~^3 |
c«j(2/-2/,-)3 (6.2b)

+
cgfc(2/-2/fc)3 Cqfe'(2/-2/fc-)3V

rt 1.
+

Expressions similar to these may be obtained for the principal force groups
.Pg, they are not recorded here.

The infinite plate Solution of Eq. (5.1) therefore produces the bending moment

My,inf(x,y) ZMViß(x,y)+ ZGaMy>a(x,y)
ß=l a=l

(6.3 a)
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and the Kirchhoff normal force

yv,int(x>y) =2 Vyiß(x,y) + lZCaVy,a(x,y) (6.3b)

along lines of constant y, see Fig. 3 a. Similarly, the infinite plate Solution of

Eq. (5.5) produces

1-3

and

M*Ut(x,y)= ZOPMy,a{x,y)

n%t(x>y) lI,opvyta(x,y)
a=l

(6.4 a)

(6.4b)

along lines of constant y.
The ends of the rectangular plate are located along the lines x 0, x a.

It is now assumed that the plate is very long, i. e. o/(2 6)> 1, and that there are

no columns or apphed loads in the vicinity of the ends. Thus, the residual

forces which arise along x 0, x=a from the infinite plate solutions of Eqs. (5.1)

and (5.5) are small in comparison with those which arise along y 1 b. Moreover,

the column reactions are virtually independent of the manner in which these

small residual forces are distributed. Accordingly, in what follows we concern

ourselves with the calculation of the resultant forces at the ends, i. e. Minf (0),

Tinf (0) at x 0 and Min, (a), Tinf (a) at x =a as shown in Fig. 3b.

To determine the resultant bending moment Mint(x) it is first necessary to

integrate Mx a (x, y), Eq. (6.1 a) over the width 2 b of the plate, so that

Ma{x)=\MXia(x,y)dy,
-b

(6.5 a)

16 w
(l+v)La]-(2y-yj-yi) log^ + cak(2y-yk-yi) log^*

+ c0Lk.(2y-yk.-yi)M
-1

- (1 +v) {caj (yj-yd Mg r2r2 +cak (yk-yd log r|r?

+ <W(2/fc--2/i) !og »Ir?}

+ 8^f(*-*i)tan-(|^)+c0,(x-a,,)tan-(|^

(6.5b)

+ cafc(a;-a;fc)tan 'f^)+caft-(,-^)tan-fcg
v=b

v=-b

For the resultant torsion Tinf (x) it is necessary to combine the contributions

from the corner reactions 2Mxy,a(x,y), Eq. (6.1c), and the Kirchhoff normal

force Vxa(x,y) of Eq. (6.2a). Thus
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T*(x) \jyVx,a(x,y)dy + 2yMxyia(x,y)]v±0, (6.6a)
1 T r2 rl+ ") \ <W (2 x- x}- xt) log-| + ca k (2 x- xk - xt) log -£16i

r2 1

+ Cafc' (Zx-Xp-Xi) log-J-f

-(!+") {<W (xi- xi) log ff t% +cak (xk - x^ log r\ r\
+ cock'(xk'-xi)^gr%r2}

-r-8{cai2/itan-i(|^)+ca^,tan-i(|^

iy(i ^[^^"^(y'y*) [
cocAx-xMy-yi)

cak(x-xk)(y-yk) cak.(x-xlt,)(y-yk.)\

(6.6b)

rk m
¦:¦ ¦¦' j

j/=6

V=—b

Expressions similar to these may be obtained for the principal force groups Fß,
they are not recorded here.

The infinite plate Solution of Eq. (5.1) therefore produces the resultant bending

moment

Mm (x) 2 Mß (x) + jj|CaMa (x) (6.7 a)
ß=l a=l

and the resultant torsion

'S (x) 2 Tß (x) + 23öa Ta(x). (6.7 b)
ß=l a=l

Similarly, the infinite plate Solution of Eq. (5.5) produces the resultant
bending moment

M<$(x)=lZCpMa(x) (6.8a)
a=l

and the resultant torsion

T$(x)=l£CpTa(x). (6.8b)
a=l

7. Fourier Analysis of the Unrestrained Rectangular Plate

We deal now with the boundary value problem of the rectangular plate
which is loaded by a system of self-equilibrating forces acting at the boundary,
as shown in Fig. 3. The columns are removed for this purpose so that the plate is
completely unrestrained and this provides a straight-forward problem which
can be solved in a number of ways.
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The Fourier method of Solution is chosen because of the advantages of the

orthogonal relationship and the simplifications which arise if the plate is of
sufficient length so that the behaviour at the column positions is independent
of the way in which the forces are distributed at the ends x 0, a. This simplified

Fourier Solution is written w(F) (x, y) with

u^>(x,y)

+

+

+

1

126D(l-v2
1

2
8&D(l-v)

Z(x2-vy2)Minf(0) + (x*-3vxy2)M™{a) nM™{0)'

2xyTinf(0)+x2y
Tinf(a)-Tinf(0)

(7.1)

16ttZ»

l
1&ttD

A0 + B0x + Yj U„coshyBy + -^sinhyB
sm ynx

b rna] cosh.ynb

Dny^x,., 1 COSyma;

where

ö02/ + A>2/3 + E (cnsinhyny+-f^coshyny} ™£**b

yn mrfa.

In Eq. (7.1) it is noted that the first series is symmetrical in y and contributes

nothing to the deflection w(F) (x, y) at the ends, while the second series is anti-

symmetrical in y and does not contribute to the warping at the ends x 0, a.

The An, Bn, Cn, Dn are constants to be determined so that the boundary
conditions are satisfied; in particular A0, B0, ö0 control the rigid body move-
ments and may be adjusted to minimize the absolute magnitude of the deflections

at the column positions. If Eq. (7.1) is substituted into the equations of
Section 3 and use made of equations like (6.5 a) and (6.6 b) it can be checked that
the conditions for the resultant forces are satisfied at the ends x 0,a.

The (residual) bending moments MyAnt and (residual) Kirchhoff normal
forces Vy inf which act along the boundaries y ± b are easily expanded into a

Fourier sine, or cosine, series by the method described by Hildebrand [9].
Thus the A„ and J5„ are obtained from

yj£-+y«(1-")tanl1>'nbyfUi-")

-y3(l-v)tanhy^ö y2n\^{l+v)ta,nnynb-yn(l-v)\
a

'

\{MyAnt(x,b) +MyAnf {x, -b)}sinynxdx
16tt

~ \{\inf (x>b) - vv,im (x> -b)}sinynx dx

(7.3)
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and the Cn and Dn from
(2 Mm

y2(l-v)tanhyre6 yn|^tanhyn6+yn(l-v)

-yi(lI y2JT}(l+v)-ym(l-v)tanhy„ö}

16-,
{Jfy,in/ (a, | -MyAnf (x, - 6)} cos yn x dx

a

- —~ j {Vy,inf(x,b) + Vytinf(x, -b)}cosynxdx

7.4)

Finally, for the constant D0 we have

Tinf(a)-Tinf(0)

Dn

ab(l-v)
2tt(2-v)
ab(l-v)

a

~ ir \{Mv-™{x'b) 1 Mv.*»t{x' 1ö)} dx

0

a
4w r- — I {yy,im (x> b) + Vy,int (x> ~b)}dx

(7.5)

which provides also an alternative derivation of the quantity Tinf (a) — Tinf (0),
see Eqs. (6.7b) and (6.8b).

8. The Iterative Process

The broad outline of the iterative process is described in the Introduction.
The statically indeterminate Solution winf(x,y) of Eq. (5.1) is obtained for

the infinite plate under the prescribed loading and prescribed column
Settlements. In preparation for the first iterate, we calculate the residual bending
moment Mv inf{x,y) of Eq. (6.3a) together with the Kirchhoff normal force
Vv inf(x,y) of Eq. (6.3b) along the lines which mark out the boundary of the
rectangular plate, see Fig. 3, where the symbol v denotes here the outward
normal to the boundary. We set

M[%f(x,y)=MViinf(x,y) (8.1a)

and Vv%f(x,y) Vv>inf(x,y) (8.1b)

and so obtain the Fourier Solution w^> (x, y) of Eq. (7.1). This Fourier Solution
is, in its turn, used to derive a new infinite plate Solution uf^f (x, y), see Eq. (5.5),

by setting
wi^f(xi,yi)=w(^(xi,yi) (8.2)

at each column position i l,2.. .1. The aforegoing equations are now com-
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bined to provide a first approximation w' (x, y) to the Solution of the boundary
value problem of the column supported rectangular plate where

w'(x,y) =winf(x,y)-\'wW(x,y)+\'w(£>f(x,y). (8.3)

The value of the constant A' remains to be chosen, but it must fall within the

ränge 0 < A' ^ 1. Eq. (8.3), provides bending moments M'v around the rectangular

boundary
M'v MViinf-XM<P+t\'M<p.nt (8.4)

and similarly for the Kirchhoffnormal forces and concentrated corner reactions
and, in preparation for assigning a value to A', it is useful to calculate the

quantity
SMv>inf(M'P-M<Xt)ds

| 5(M>P-M<pint)2ds ' (8-5)

c

because this provides a valuable indication of the convergence of the iterative
process. In Eq. (8.5), ö denotes the boundary of the rectangular plate and s the
distance measured around this boundary.

Let us now consider the philosophy which underlies the iteration procedure.

If all the columns and apphed loads are at a great distance from the boundary
then the residual boundary tractions are so small that an accurate Solution is
obtained after only one iterate, see Eqs. (8.1) to (8.3), simply by setting A' 1.

In practice, however, the boundary at y ±bis usually in the vicinity of some
of the applied loads and/or columns and it must be recognized that, in this case,
the true corrective tractions at the boundary bear only a qualitative relationship

with the residual tractions which we have calculated from the Solution for
the infinite plate. Indeed, if A' is now taken as unity then the Solution w' (x, y)
of Eq. (8.3) may well be a worse approximation than that given by winf {x,y)
alone. One remedy is, of course to extend the whole boundary and then to solve

the boundary value problems which are presented in succession by incremental
contraction of the boundary back to its original contour. This is, however, in-
convenient from the computational point of view, it is much easier to simulate

crudely this effect by taking values of A' smaller than unity. If we put A' =A',
see Eq. (8.5) then this minimizes the error bending moment distribution around
the boundary of the rectangular plate but, in practice, it is usually found to be

better to put
A' cA', (8.6)

where c is a constant which is prescribed for each problem in the light of experience

(typically 0.1 ^c^ 1.0). Moreover, it is found that the convergence of the
iterative process is accelerated by a simple device as follows. Ifw* (x, y) denotes

the Solution obtained from the previous iterate then it is to be expected that the
Solution w (x, y), with
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w(x,y) YTTyiw* (x>y) +X' w' (x,y)}, (8.7)

is nearer to the exact Solution than either w* (x, y) or w' (x, y). In the case of the
first iterate we put w* (x, y) winf (x, y).

The above process is repeated for the second and successive iterates except
only that in Eqs. (8.1) we set

Mf}ni(x,y)=M'vAnt(x,y) (8.8 a)

and V<%f (x, y) Vv[inf (x, y), (8.8b)

where the new residual tractions, denoted by the prime, are calculated on the
basis that the column settlement m»^«^*»?/*) °f Eq. (5.2) is modified by the
amount

7 {wF (xt ,yi)+t\'w'F (Xi, yt)}1+A

with i 1,2.. .1. The process is repeated until the quantity A' of Eq. (8.5) is

sufficiently close to unity, typically 0.9999^/1'^ 1.0001 provides a Solution of
high engineering accuracy. It is sound practice, however, for the ultimate
iterate to modify wcojgci(^>2/i) by ^he amount

w'F(xi,yi)

and to bypass Eq. (8.7) by setting

w(x,y) w'(x,y) (8.9)

and then to compare the values of the column reactions so obtained with those

from the penultimate iterate. This is equivalent to a füll, i. e. unfactored,
apphcation of the corrective tractions to the boundary of the plate.

9. Numerical Examples and Comparisons with other Results

The question of Interpretation and accuracy of results is important. An
actual bridge structure is complex and it is always necessary to introduce some

simplification, such as by smootbing the geometry or excluding certain effects

of three dimensional stress distribution, in order to provide another physical
representation which can be solved by one ofthe established methods ofanalysis.

It is therefore inevitable that inaccuracy oceurs when interpreting the numerical

results back into terms of the actual structure, the extent of the inaccuracy
depending upon the closeness of the physical representation. The engineer has,

however, a firm basis upon which to exercise his judgement provided that this

inaccuracy is not compounded with unknown error arising from simplifications
in the mathematical analysis or from inadequate computation. It is necessary,
therefore, to demonstrate the validity both of the preceding analysis and the
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Computer program and to make comparisons with known results although these
are generally available only for a relatively simple class of problem and are
generally known to be subject to experimental error or are the results of a finite
difference calculation. Indeed, it has not been possible to obtain an absolute
comparison by these means because the few results obtained from rigorous
mathematical investigation refer either to problems of the classical type (i. e.

infinite strip, rectangular plate) where the plate is supported upon continuously
distributed bearings and/or the relevant computations are not seen to have
been pursued to the extent that a four, or even three, significant accuracy is
assured for those physical quantities which are of final interest. Thus, in many
of the following comparisons it is necessary to approximate a continuously
distributed bearing by a number of discretely spaced columns. Finally, a
comparison is made with the results obtained from the model tests which were
carried out in connection with the design of the complex bridge structure which
forms part of the elevated road system at the Cumberland Basin in Bristol.

As mentioned in the Introduction, no attempt is made in these numerical
examples to achieve economy of Computer usage and no account is taken of any
symmetrical properties which may be present. Instead, a large number of terms
is taken in the Fourier series, together with sufficient iterations, in order to be
assured of a high Standard of accuracy, usually to within four significant figures.
Typically, the Fourier series of Eq. (7.1) is truncated between 40 SnS 130 and,
in order to obtain some appreciation of the scale of the calculation, we see that
there is some relationship here between the value of n and the fineness of a
finite difference or finite element mesh. Thus, if in the latter method the length
of the rectangular plate is divided into 100 elemental portions, comparable
with n 100, and the width is coarsely divided into only 10 elemental portions
then this requires the inversion of an immense matrix, albeit sparse, of order
something like 3000 X 3000. In contrast, the maximum size of matrix which is
required to be inverted by the present method is of order l x l where l is the
number of column supports.

The present method in conjunction with the Computer program provides a

very flexible design tool. Thus, economies of Computer usage for design
calculations can be achieved by generally using rather smaller values of n and making
occasional checks on the accuracy by increasing this value such as for the more
critical design cases. Indeed, it is found in the example on the Cumberland
Basin elevated roadway that the prehminary infinite plate Solution (i. e. n 0),
which is itself a fairly trivial calculation, provides a good indication of the
actual column reactions. Moreover, since this prehminary infinite plate Solution
is an explicit and exact calculation, i. e. within the confines of the classical
theory of plate bending, the designer is here provided with an immediate and
direct physical basis for interpretation. Economies of Computer usage can occa-
sionally be obtained by confining attention to the separate local areas of interest

— especially in bridges which are of considerable extent.
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9.1. The Cantilever Plate

This first problem has practical significance in the design of certain types of
monorail cranes and was solved by Jaramdllo [10] in 1950 using the Fourier

integral method for an infinitely long cantilever plate with a continuous

clamped edge. Its approximate representation by a rectangular plate supported

upon 13 columns is shown in Fig. 4.

CONCENTRATED LOAD CAUSING

UNIT DEFLECTION UNDERNEATH
LOAD CLAMPED EDGE

\>.A°TT

4
1 25 «

1-25 r

f

13

2 L * 5

f
o

si~ 1
i T 8 9 10 II i :

o4 o

EQUA /LLY SPACED

j

COLUMNS UNIT SETTLEMENT AI
'y 12 AND 13 POISSON'S

COLUMNS
RATIO P»0.3

Fig. 4. Representation of a cantilever plate of infinite length under concentrated load.

From Jaramillo 's results it is found that a concentrated load of intensity
158.2 D causes a unit deflection underneath the load whereas the load in
columns 12 and 13, for unit settlement of these columns, is obtained from the

present Computer program as —154.7 D when the Fourier series of Eq. (7.1) is

truncated at n 40, it is recalled that D is the flexural rigidity and that a

positive load indicates column compression. The difference of just over two per
cent between these two values is attributable to the additional restraint which
is imposed by the infinitely long plate and the continuous clamped edge.

9.2. The Square Plate

The classical problem of the square plate with two opposite edges simply
supported and the remaining edges free is important and has been studied by
Robinson [11], Balas and Hanuska [12] and by Kurata and Okamura [13]
both theoretically and experimentally. Robinson uses a straightforward finite
difference technique for various mesh sizes, the finest of which divides the plate
into 64 elemental Squares, whereas Balas and Hanuska first remove the

singularity introduced by the concentrated load before proceeding with their
finite difference analysis with the plate divided into 48 elemental rectangles.

Kurata and Okamura employ continuous functions in the form of Fourier
series.
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The classical problem can be approximated by a column supported rectangular

plate as shown in Fig. 5 where the continuously supported edges are both

replaced by five equally spaced columns. A central concentrated load at x 0,

y 0, of unit intensity is simulated, in this instance, by an additional central

column which is allowed to settle just enough to produce a unit tension load in
that column. This enables a comparison of results for the deflection to be

obtained with those from the classical problem and, for this purpose, the Fourier
series of Eq. (7.1) is truncated after w 60 and the iterative process continued

until there is no change in the fourth significant figure for the reaction in each

column.

SIMPLY SUPPORTED

j FREE

f

ö
0

ss6

FIVE EOUALLY SPACED COLUMNS

Fig. 5. Representation of a square plate with two opposite edges simply supported and

Table 1. Deflection w under unit central load in a square plate with two opposite edges simply
supported, remaining edges free

Source

Robinson [11] (64 Squares)
Ktjbata and Okamtjba [13]
Present (see Fig. 5)

Balas and Hantjska [12]
Present (see Fig. 5)

Poisson's ratio v

0.3
0.3
0.3
0.1667
0.1667

w (theory) w (experiment)

0.0241/D
0.02320/D
0.02310/D
0.02456/Z>
0.02316/D

0.0247/D
0.02253/7J

Table 1 provides comparative values of the deflection w underneath the

unit central load and it is to be noted that Robinson, Kurata and Okamura,
take Poisson's ratio as v 0.3 whereas Balas and Hanuska use v 0.1667.

There is agreement to within 0.5 per cent of the theoretical value of Kurata
and Okamura whereas the theoretical values derived by Robinson and Balas
and Hanuska show a rather greater difference amounting to some 6 per cent.

With regard to experiment, the present method provides the dosest agreement
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to the results obtained by Kurata and Okamura from their tests on an aluminium

plate. Tables 2 and 3 list comparative values of the bending moments
Mx and My with those derived from the finite difference calculations of Robinson

and Balas and Hanuska. The differences between the listed maximum
values in the two Tables are respectively 3.5 per cent and 5.3 per cent.

Table 2. Bending moments Mx and Mv in a square plate with unit central load and two
opposite edges simply supported, remaining edges free. Comparison with Robinson's results.

Poisson's ratio v 0.3

Co-ordinat(
(see Fi

X

s position
g- 5)

y

Mx My

Robinson [11]
(64 Squares)

Present
(see Fig. 5)

Robinson [11]
(64 Squares)

Present
(see Fig. 5)

0.125
0.250
0.375

0

0

0

0

0
0

ifß \
0.125
0.250
0.375
0.500

0.216
0.126
0.062
0.287 (0.259)
0.220 (0.195)
0.188 (0.172)
0.178 (0.158)

0.2135
0.1253
0.0556
0.2772
0.2133
0.1855
0.1775

0.161
0.086
0.039
0.101 (0.108)
0.036 (0.039)
0.007 (0.015)
0.000 (0.000)

0.1491
0.0759
0.0285
0.0971
0.0350
0.0083
0.0000

The results in parentheses are obtained from experiment

Table 3. Bending moments Mx and My in a square plate with unit central load and two
opposite edges simply supported, remaining edges free. Comparison with Balas and Hanuska's

results. Poisson's ratio v 0.1667

Co-ordinate position
(see Fig. 5)

Mx My

Balas and Present Balas and Present
x y Hanuska [12] (see Fig. 5) Hanuska [12] (see Fig. 5)

0.125 0 0.208 0.2027 0.140 0.1287
0.250 0 0.123 0.1204 0.077 0.0638
0.375 0 0.059 0.0527 0.035 0.0226

0 0.167 0.265 0.2513 0.042 0.0432
0 0.333 0.204 0.1978 0.000 0.0007
0 0.500 0.184 0.1796 0.000 0.0000

Influence surfaces for the column reactions ofsupportedplates, like the rectangular

plate shown in Fig. 5 but with the ends located at - 0.5417 ^ x <; 0.5417, are
provided byMEHMEL and Weise [14] from numerous experiments on plate glass
modeis with Poisson's ratio I 0.228. For a concentrated load of unit intensity
located at a point x 0.375, y 0 near to column 8, Mehmel and Weise show
that a reaction of 0.58 is to be expected in column 8 whereas the present method,
for the rectangular plate shown in Fig. 5, provides a value of 0.7128 with the
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Fourier series truncated at n 60. It is difficult to identify the precise reason for

this large discrepancy, amounting to some 20 per cent, without a detailed

knowledge of the experimental conditions, but it is unlikely that the difference

in overhang at the ends has such a marked effect. For example, when the rectangular

plate of Fig. 5 is shortened to -1.0 ^ x ^ 1.0 the present method provides

the virtually identical value of 0.7127, moreover, the prehminary infinite plate

Solution itself provides a value of 0.7243 which represents a change of only 1.5

per cent. It is, however, extraordinarily difficult to measure accurately the

reactions in a column supported plate because of the difficulty of ahgning the

supports in the plane of the plate and because the elasticity of the measuring

device exerts its own influence on the distribution of the column reactions. We

can form some estimate of these effects by referring to Table 4 which provides

details, calculated by the present method, of the column reactions caused by
unit settlement of various columns. Thus, inMEHMEL and Weise's experiment

the plate measures essentially 60 cm X 60 cm with a thickness of 0.5 cm and

a Young's modulus of 753 000 kg/cm2 giving a flexural rigidity D 8270 kg cm.

Table 4 now shows that a relative settlement or misalignment as small as

0.005 cm (i. e. one hundredth of the plate thickness) at column 8 causes a reaction

in that column of amount

-429.5X0.005X8270 f§i
— —4.9 kg

60x60 s

and this is significant when it is noted that the individual support reactions are

of the order of 15 kg in the experiment.

9.2.1. Effect of Elastic Column Supports

In their experiments Mehmel and Weise [14] investigate also the effect which

oceurs when all the column supports have a finite and uniformly linear elasticity,

they take N as the non-dimensional elasticity parameter where

xWm^ (9-D
F 462

with w and F respectively as the individual column settlement and reaction and

2 b as the width of the plate. As mentioned in the Introduction, the present
method can be adapted to this case or the question can be dealt with by an

auxiliary calculation in the manner described below.

Let us consider the specific example of a concentrated load of unit intensity
apphed directly over column 8 in Fig. 5. Table 4 provides the reactions caused

by unit settlement of various columns and these are now interpreted as loads

(i. e. sign reversed) apphed to the plate so that there are no reactions except in
the columns which suffer the unit settlement. To provide this unit settlement

the column must suffer a reaction of amount F where

:0Mäd 0.2)
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Table 4. Reactions caused by unit settlement of various columns in the rectangular plate
shown in Fig. 5. Poisson's ratio v 0.228

Column
No.

Column reactions caused by unit settlement at

Columns 6 and 10 Columns 7 and 9 Column 8

1 5.8 D -3.9 TJ -2.0 2)
2 -3.6 2) 2.6 2) 0.9 2)
3 -4.5 2) 2.5 2) 2.12)
4 -3.6 D 2.6 2) 0.9 2)
5 5.8 D -3.9 2) -2.0 2)
6 -80.5 2) 142.6 D - 62.2 2)
7 143.6 D -420.5 2) 276.9 2)
8 -126.3 D 555.7 2) -429.5 2)
9 143.6 2) - 420.5 2) 276.9 2)

10 -80.5 2) 142.6 2) -62.2 2)

from Eq. (9.1), and this requires an addition to the loads quoted in Table 4. The
first column in Table 4 now reads -5.8D,3.6D,4.5I>,3.6 D, -5.8D,80.5D + F,
-143.6D, 126.3D, -143.6D, 80.5D + F and this is regarded as a principal
force group and is denoted by Fei0. In the same way we form principal force

groups F79, F8 and, by symmetry the force groups %

principal force groups may be combined so that
2^4 and .F8. These

F* C,6JR 5 + 0. 4Ä4+0,JP, + 0,6,10 -^6,10 + G7,9 F-jt 9 + 08 Fs, (9.3)

where .F* represents the actual apphed loading condition, i. e. a unit concentrated

load apphed directly over column 8. The values of the constants Ox 6,
024, etc. are determined from the following set of simultaneous equations
which equate the loads in turn as column positions 1,5,2,4, etc.

80.5+FID -142.6
•143.6

126.3

-5.8
3.6

4.5

420.5+J&7D -276.9
-555.7 429.5+.F/.D

3.9

-2.6
-2.5

62.2 -5.8 3.9 2.0

3.6 -2.6 -0.9
4.5 -2.5 -2.1

2.0 80.5+F/D -142.6 62.2

-0.9 -143.6 420.5+.F/.Z) -276.9
-555.7 429.5+FID_

(9.4)

2.1 126.3

P1-5!
~ 0 ~

ü2,4 0

o3 0

^6,10 0

n°7,9 0

iGs J Md\



THE ANALYSIS OF COLUMN SUPPORTED PLATES AND BRIDGES 121

2,4The resulting column reactions are simply FC1>5 in columns 1 and 5, FC
columns 2 and 4, etc. where F is as given by Eq. (9.2).

Mehmel and Weise find for a value of N 0.8 that the reaction in column 8

is 0.31 whereas the above calculation provides a reaction of 0.258. Again, it is

difficult to explain this fairly large discrepancy without a detailed knowledge of
the experimental conditions. The Variation ofthe reaction in column 8 with the

column elasticity parameter is shown in Fig. 6 and this demonstratesvery clearly
the difficulty in simulating the rigid support condition, 2V 0, in a model test;
for N as small as 0.001 the reaction in column 8 is reduced to 0.776.

Fig. 6. Effect of elastic column supports
on the reaction in a loaded column.

1 ¦ 1 1

*1 '

CONCENTRATED LOAD OF UNIT IN

APPLIED AT COLUMN 8\
1 COLUMN ELASTICITY PARAMETER

\ N-*

SEE FIG.5
FOR FÜLL
DETAILS

9.3. The Skew Plate

The arrangement of the column supports in a large proportion of bridge decks

and elevated roadways is such that there is a marked degree of skewness and

this has seriously complicated the design procedure. The importance of the

problem has, however, Md to a number of tabulations of design data for single

span bridges which are derived either as the result of finite difference calculations

on plates with continuously supported edges [11, 12] or from experiments

on small scale modeis [3] which may be supported on discrete columns [14]. It is

the present purpose to provide comparisons between the results obtained by the

present method and typical results taken from these various tabulations. It
must be borne in mind, however, that both the finite difference and experimental

techniques are susceptible to inaccuracies of one kind or the other and

comparisons between the various tabulations are complicated by the different
values which are taken for the Poisson's ratio and by the different geometrical

shapes. Moreover, the present representation of a skew plate by a rectangular

plate means that there can be a considerable overhang, see Figs. 7, 8, 9 and 11,

of irregulär shape from the lines of support. This overhang provides a small

amount of restraint and tends to reduce the general level of the bending
moments in the plate. It is unfortunate that unlike the rigorous analysis of the

rectangular plate by Kurata and Okamura [13] there is not available a similar

treatment for these skew plates with which to establish even a few results for
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plates with continuously supported edges with sufficient precision to provide a
Standard for comparison.

9.3.1. Rhombic Plate with 45° Skew

A single span rhombic plate with 45° skew under central concentrated load
is shown in Fig. 7 where the two continuously supported edges as considered by
Robinson [11] are each approximated here by seven equally spaced columns.
Robinson examined the problem both by a finite difference analysis with the
plate divided into 48 elemental parallelograms and also by experiment on a
mild steel plate.

CONCENTRATEO LOAO OF
UNIT INTENSITY

SS SIMPLY SUPPORTED

f FREE

0-5 ,_ 0-5
EQUALLY SPACED COLUMNS

THIS COLUMN SETTLES SO AS TO PROVIDE
A UNIT TENSION IN THE COLUMN

Fig. 7. Representation of a 45° skew rhombic plate with two opposite edges simply
supported and other edges free, under central concentrated load.

The unit central concentrated load is simulated here by an additional central
column number 15, see Fig. 7, which is allowed to settle just enough to produce
a unit tension load in that column. The Fourier series of Eq. (7.1) is now trun-
cated after n 80 and Poisson's ratio is taken as v 0.3 in agreement with
Robinson's value. Table 5 provides comparative values of the deflection w

Table 5. Deflection w under unit central load in a 45° skew rhombic plate with two opposite
edges simply supported, remaining edges free

Source Poisson's ratio v w (theory) w (experiment)

Robinson [11]
(48 parallelograms)

Present (see Fig. 7)

0.3
0.3

0.0117/2)
0.01113/2)

0.0099/2)

undemeath the central load and it is seen that the present result is straddled by
Robinson's theoretical and experimental results by the respective amounts of
5 and —10 per cent. The moments Mx, My and M^ are listed in Table 6 for



Table 6. Moments Mx, My and M^ in a 45° skew rhombic plate with unit central load and two opposite edges simply supported, remaining

edges free. Comparison with Robinson's results, Poisson's ratio v 0.3

Co-ordinate position

(see Fig. 7)

Mx My Mxy

Robinson [11] Present Robinson [11] Present Robinson [11] Present

x y (48 parallelograms) (see Fig. 7) (48 parallelograms) (see Fig. 7) (48 parallelograms) (see Fig. 7)

0.167 0 0.083 0.0840 0.128 0.1190 0.044 0.0492

0.333 0 0.011 0.0175 0.051 0.0540 0.023 0.0235

0.088 -0.088 0.164 0.1568 0.131 0.1177 0.083 0.0828

0.177 -0.177 0.106 (0.112) 0.1045 0.061 (0.069) 0.0539 0.069 (0.073) 0.0666

0.265 -0.265 0.080 0.0813 0.024 0.0222 0.050 0.0487

0.354 -0.354 0.060 (0.062*) 0.0647 0 0.0000 0.032 (0.039*) 0.0323

The results in parentheses are obtained from experiment by Rusch and Hergenrödeb [3] on a model with Poisson's ratio u - 0.216.

* Indicates that the result is appropriate to the co-ordinate position x 0.325, y —0.325.

Table 8. Moments Mx, My and Mxy in a 60° skew rhombic plate with unit central load and two opposite edges simpliy supported, remaining

edges free. Comparison with Balas and Hanuska's results, Poisson's ratio v 0.1667

Co-ordinate position

(see Fig. 8)

Mx My Mxy

Balas and Present Balas and Present Balas and Present

X y Hanuska [12] (see Fig. 8) Hanuska [12] (see Fig. 8) Hanuska [12] (see Fig. 8)

0.125 0 0.049 0.0413 0.0413) 0.149 0.1311 (0.1310) 0.029 0.0469 0.0467)

0.250 0 -0.005 0.0003 0.0001) 0.080 0.0668 (0.0668) 0.010 0.0214 0.0211)

0.375 0 -0.011 -0.0051 (-0.0056) 0.041 0.0341 (0.0341) -0.003 0.0058 0.0054)

0.144 -0.088 0.053 0.0084 0.0084) 0.092 0.0869 (0.0869) 0.058 0.0093 0.0092)

0.288 -0.166 0.018 -0.0179 (-0.0183) 0.030 0.0138 (0.0138) 0.038 -0.0170 (-0.0173)

0.433 -0.250 0.005 -0.0019 (-0.0024) 0 0.0000 (0.0000) 0.016 -0.0097 (-0.0102)

The results in parentheses are appropriate to a truncation of the Fourier series after n 80.
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stations midway between the free edges and also midway between the simply
supported edges, the maximum listed value differing this time by only some 4

per cent from Robinson's. The results in parentheses in Table 6 are obtained
from the experimental work of Rüsch and Hergbnröder on plaster modeis
having a Poisson's ratio v 0.215, they are generally larger than both those of
Robinson and the present method where v 0.3.

9.3.2. Rhombic Plate with 60° Skew (10 Column Supports)

An angle of skew greater than 60 ° is rarely encountered in practice and so this
generally forms the hmiting, and most difficult, case for which data is tabulated
[2,3,11,12,14]. The problem of a single span rhombic plate is now examined in
detail which, in the first instance, is approximated by a rectangular plate with
each of the supported edges resting upon five equally spaced columns as shown
in Fig. 8. A central concentrated load of unit intensity at x Q, y 0 is again

CONCENTRATED LOAD OF UNIT INTENSITY

SS SIMPLY SUPPORTED
f FREE

EQUALLY SPACED COLUMNS

sf ">' "UÄ

< 0-5 »a C-5
!2>3

oy ~s

K*s* *

7
THIS COLUMN SETTLES SO

AS TO PROVIDE A UNIT TENSION 1,
IN THE COLUMN

Fig. 8. Representation of a 60° skew rhombic plate with two opposite edges simply
supported and other edges free, under central concentrated load.

simulated by a central column, number 11, which is allowed to settle just
enough to produce a unit tension load in the column. The Fourier series of Eq.
(7.1) is truncated after % 60 and the two values of Poisson's ratio v 0.1667
and v 0.228 are considered. This enables a comparison of results for both the
central deflection, see Table 7, and the moments, see Table 8, to be obtained for
the plate with continuously supported edges as considered in the finite differ-

Table 7. Deflection w under unit central load in a 60° skew rhombic plate with two opposite
edges simply supported, remaining edges free

Source Poisson's ratio v Central deflection w

Balas and Hanuska [12]
(48 parallelograms)

Present (see Fig. 8)
0.1667
0.1667

0.00555/2)
0.005173/2)
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ence analysis of Balas and Hanuska [12] for Poisson's ratio v 0.1667, along

with a comparison of the column reactions, see Table 9, obtained by Mehmel

and Weise [14] in their experiments on a plate glass model with Poisson's ratio

v 0.228.

Table 9. Column reaction caused by unit central load in a 60° skew rhombic plate with column

supports arranged as shown in Fig. 8. Poisson's ratio v 0.228

Column
Nos.

Column reactions

Mehmel and Weise [14] Present

1, 10

2, 9

3, 8

4, 7

5, 6

0.06
0.42

0.0009
-0.0043

0.0001
0.0672
0.4362

Table 7 shows that Balas and Hanuska calculate a value for the central

deflection which is about 7 per cent larger than that obtained from the present

method and this exhibits the same trend as for their square plate results in
Table 1 where the percentage difference is nearly the same. The maximum

moment listed in Table 8 is a value for My and there is a disagreement here of

some 14 per cent from the larger value calculated by Balas and Hanuska which

repeats more markedly the trend exhibited by My for the square plate, see

Table 3. This disparity between the two sets of results is attributed to the

relatively coarse mesh of 48 elemental parallelograms which Balas and Hanuska

use for their finite difference calculation. As a check, the present calculations

were repeated with an increased number of terms in the Fourier series, now

truncated after n 80. These results are shown in parentheses in Table 8 and

there is seen to be little change of significance in the values of the moments.

Table 9 lists the column reactions and it is seen that the unit load is reacted

almost entirely by the columns at the obtuse corners, i. e. numbers 5 and 6.

Unlike the comparison of column reactions for the square plate in Section 9.2

there is agreement here to within 3.7 per cent of the smaller value obtained by
Mehmel and Weise in their experiment and which is consistent with an alle-

viation produced by a slight column elasticity or settlement.

9.3.3. Rhombic Plate with 60° Skew (24 Column Supports)

The purpose of this second examination of a 60° skew rhombic plate is to

obtain a comparison with the results measured by Andrä and Leonhardt [2]

in their experiments on column supported aluminium plates with Poisson's ratio

v 0.33 and with the extensive work of Rüsch and Hergenröder [3] in their

experiments on plaster modeis with continuously supported edges where v
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0.215. For the present examination the plate is supported upon 24 columns as
shown in Fig. 9 and the moments in the plate are calculated at the locations, I,
II and III which are used as control positions by Andrä and Leonhardt and at
A, B (=111), C, D, E and E2 to correspond with the control positions of Rüsch
and Hergenröder. For these calculations the Fourier series of Eq. (7.1) is
truncated after n 80 and two positions are considered for the concentrated
load which is again of unit intensity.

f'FREE

CONCENTRATED
LOAD OF UNIT
INTENSITY. ¦

POSITION 2

CONCENTRATED
LOAD OF UNIT
INTENSITY.
POSITION 1

0-5 0 5

/&.
A&

Fig. 9. Representation of a 60° skew rhombic plate supported on 24 columns and under
concentrated load.

The concentrated load is first situated at the centre of the plate and the
resulting column reactions, for v 0.33, are listed in Table 10. Again, the apphed
load is reacted almost entirely by the columns located at the obtuse corners,
numbers 12 and 13. The value of this reaction as measured by Andrä and
Leonhardt is nearly 10 per cent smaller than that obtained by the present
method and this is again consistent with an alleviation produced by a shght
column elasticity or settlement.

The concentrated load is now moved to position 2, see Fig. 9, in order to
secure a more significant comparison with the bending and twisting moments
which were measured in the experiments. The column reactions for this loading
case are listed in Table 10 and it is noted that, for v 0.33, the maximum value
is now 1.257 times the magnitude ofthe apphed load and the value measured by
Andrä and Leonhardt is nearly 6 per cent smaller than this. The adjacent
column suffers a large tension of -0.775 times the magnitude of the apphed
load. The results in parentheses are for Poisson's ratio v 0.215.

The values of the bending and twisting moments are listed in Table 11
where Andrä and Leonhardt's results are derived by interpolating from their
illustrations of the influence curves and, along with Rüsch and Hergenröder's
results, are resolved where necessary so that the directions of the moments
correspond with those ofthe present paper. It was necessary to reverse the sign
ofthe twisting moment as given by Rüsch and Hergenröder. The comparison
between the values is disappointing. Following the trend exhibited in Section
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Table 10. Column reactions caused by unit load in a 60° skew rhombic plate with column

supports arranged as shown in Fig. 9. Poisson's ratio v 0.33

Column
Nos.

Column reactions

Load at position 1 Load at position 2

1

Andbä and pr6Sent Andbä and Present
Leonhabdt[2] Leonhabdt [2]

V.1; -0.0011 0.003 0.002)

2 0.0054 — 0.001 0.000)

3 0.0005 — 0.000 (-0.001)
4 -0.0003 — -0.002 (-0.003)

^¥? -0.0013 — -0.005 (-0.006)
^''6. ' -0.0013 — -0.008 (-0.008)

7 0.0009 ¦— -0.011 (-0.011)
8 0.0090 — -0.011 (-0.011)
9 0.0231 — -0.034 (-0.033)

10 0.0990 — 0.085 0.077)

11 -0.07 -0.1004 -0.66 -0.775 (-0.745)
12 0.42 0.4665 1.19 1.257 1.239)

13 0.42 0.4665 0.00 -0.015 (-0.049)
14 -0.08 -0.1004 -0.18 -0.069 (-0.045)

^16:;7 0.0990 — -0.006 0.004)

16 0.0231 ¦—• 0.087 0.099)

17 0.0090 — 0.160 0.167)

18 0.0009 — 0.152 0.153)

19 -0.0013 — 0.104 0.100)

20 -0.0013 — 0.063 0.055)

21 -0.0003 — 0.033 0.025)

22 0.0005 — 0.009 0.005)

23 0.0054 — 0.016 0.013)

24 — -0.0011 — -0.035 (-0.028)

The results in parentheses are for Poisson's ratio v ¦¦ 0.21c

9.3.1, Rüsch and Hergenröder's results are generally larger, sometimes by as

much as 25 per cent, than the results calculated by the present method. The

absolute magnitude of Andrä and Leonhardt's most significant result is some

14 per cent smaller than the present value. To try and resolve these discrepancies

the moments Mx, My and Mxy were plotted as shown in Fig. 10 for a section

passing through the control points B, D and A (see Fig. 9) and also for a section

passing through the control points C and A. It is seen that many of Rüsch and

Hergenröder's results he in regions of rapidly varying stress and, in
consequence, the comparison ofresults as depictedbyFig. 10 is moderatelygood except

for the value ofM^ at control point C. It should be noted that Rüsch and

Hergenröder derive their moments from strain gauge rosettes located a slight
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distance away from the reference point (Andrä and Leonhardt measure the
curvatures of the plate). Also, the overhang of the rectangular plate at the lines
of support, see Fig. 9, provides a small amount of restraint which tends to
reduce the general level of bending moments as calculated by the present
method.

Fig. 10 shows clearly the logarithmic singularity which oceurs in the values
of Mx and My at the concentrated load position. The rational interpretation of
this singularity in practice must take proper account of the two dimensional
nature of the actual loading distribution and the three dimensional character
of the stress distribution in that region.

RÜSCH AND HERGENRÖDER3

EXPERIMENTAL VALUES

x MK

+ My

0-MXy

Mx7 \M*

/ /R \
*M*y_/' IT

CONCENTRATED LOAD OF UNIT INTENSITY

f*FREE

\mx

7\Mxy \
My 8§i s£¦ C

SECTION

CONTRO
PASSING

L POINTS
rROUGH
C AND A

0 707 0 707
EQUALLY SPACED COLUMNS

EDGE EDGE

SECTION PASSING TROUGH CONTROL POINTS B.OANDA

Wy

Fig. 11. Representation of a 45° skew parallelogram
plate supported on 14 columns and under a concen¬

trated load.

Fig. 10. Distribution of the moments across two
sections of the plate shown in Fig. 9 with the unit

concentrated load at position 2.
LINE OF SUPPORT LINE OF SUPPORT

9.3.4. Parallelogram Plate with 45° Skew

The column reactions in a parallelogram plate with 45° skew under unit
concentrated load and supported on 14 columns, as shown in Fig. 11, are now
determined in order to obtain a comparison with the results of the Computer program
developed by Jean-Clatjde Leray [6] following the analysis of Jean Leray
[7, 8]. This analysis proeeeds from the biharmonic Green's function, determined
through numerical quadrature, for the behaviour of an infinitely long strip with
free edges and supported at infinity. The computations are restricted in so far as
the locations of the column supports and apphed loads must eoineide with the
nodes of a square network which generaUy divides the width of the strip into 10

equal parts, although a finer network with 14 equal parts across the width can
also be considered; no allowance is made for the finite length of the plate.
These hmitations do not permit the accuracy of the numerical results to be
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investigated by advancing to a finer network (cf. the ease of increasing the number

of terms in the Fourier series for the present method) or by modifying the
length of the plate. Nevertheless, the work of Leray provides the basis for a
remarkable set of calculations which overcome many of the difficulties which are
mentioned in the present Introduction.

The results ofthe calculations for the column reactions are listed in Table 12

where Poisson's ratio is taken as v 0.2 to correspond with that of Leray. The
Fourier series of Eq. (7.1) is truncated after » 100. It is interesting to note
that although the load is only ofunit intensity the reaction in column number 7,

at the prominent obtuse corner, is 1.634 and there is a large tension in the adjacent

column number 6 of — 0.974. Leray's results provide slightly less pessimis-
tic reactions differing respectively by 1.5 and 3.6 per cent from these values.
The remaining reactions are much smaller and, although there is agreement in
sign there are differences between the two sets of results. In order to obtain some
resolution of these differences further calculations were undertaken, first with
the Fourier series truncated after n 120 and this produces no change in the
column reactions. The rectangular plate was then lengthened so that the ends

were located at —1.237 ^ x 5j 1.237 and these results are given in parentheses in
Table 12 where it is seen that there is little change in the values for the column
reactions.

Table 12. Column reactions caused by unit load in a 45° skew parallelogram plate with
column supports arranged as shown in Fig. 11. Poisson's ratio v 0.2

Column
Nos.

Column reactions

Leray [6] Present

1 0.022 0.064 0.053)
2 -0.067 -0.097 (-0.082)
3 -0.036 -0.034 (-0.035)
4 -0.061 -0.063 (-0.063)
5 0.033 0.032 0.031)
6 -0.939 -0.974 (-0.976)
7 1.61 1.634 1.635)
8 -0.051 -0.003 (-0.004)
9 0.144 0.069 0.070)

10 0.111 0.102 0.102)
11 0.108 0.108 0.108)
12 0.076 0.088 0.088)
13 0.068 0.096 0.096)
14 -0.018 -0.023 (-0.023)

The results in parentheses are for a longer plate with the ends located at

- 1.237gzg 1.237, see Fig. 11.
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9.4. Model of the Cumberland Basin Elevated Road System

In the absence of an adequate method of theoretical analysis Best and West
[1] obtained basic design data by testing a 1/24th scale model of a part of the
system of elevated roadways for the Cumberland Basin in Bristol. The actual
structure is a reinforced concrete slab supported on columns and is of uniform
thickness (24 inches) except for edge beams. The columns are generally arranged
in lines of three, symmetrically disposed across the width of the slab but, at one
point, the elevated slab crosses over a road at a considerable angle of skew and
this requires a rearrangement of the columns to provide one skewed parallelogram

span directly over the lower road and two trapezoidal spans, one on either
side of the centre, before the columns are again arranged in lines perpendicular
to the line of the road.

For their model representation, Best and West made a rectangular slab
from micro-concrete of uniform one inch thickness measuring 120 inches by
27 inches and supported upon 20 columns. For the present representation, see
Fig. 12, the plate measures 130 inches by 27 inches and values ofthe flexural

FLEXURAL RIGIDITY D= 500,000 Ib.i
POISSON'S RATIO l"OI5
('FREE

¥ t<

M-Z

5-L0ADING BAYS A.B.C.D AND E 16 C0NCENTj§@E0 LOADS EACH OF
INTENSITY 312-5 lb.lN TYPICAL
LOADING BAY

TOTAL LOAD IN A BAY IS 5000 Ib.

Fig. 12. Representation of the model of the Cumberland Basin elevated road System.

rigidity D 500 000lb in and Poisson's ratio v 0.15 are assumed. Five loading
cases are considered which consist of a group of sixteen concentrated loads
acting respectively in the loading bays A, B, C, D and E as shown in Fig. 12

with the Fourier series of Eq. (7.1) truncated after n 80. Three sets of column
reactions are listed in Table 13 for each loading case, they consist of the
reactions as calculated from the prehminary infinite plate Solution, the reactions
calculated for the rectangular plate as depicted in Fig. 12 and the reactions
measured by Best and West.

There is reasonable agreement with the measured results although it is noted
that there is a general tendency for the measured values to be optimistic and
this is consistent with the presence, in the experiment, ofelasticity in the supports
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(i. e. in the load measuring deviees). In particular, for the five loading cases in
bays A, B, C, D and E the maximum column reaction as calculated by the

present method for the rectangular plate is respectively some 7, 8, 8, 6 and 13

per cent larger than the measured value. The sum of the five loading cases gives
an approximation to a uniformly distributed load and the present method

provides a maximum column reaction for the rectangular plate which is some
15 per cent larger than that measured by Best and West. In order to examine
the accuracy of the results the calculations for the loading case in bay B were
repeated with the Fourier series truncated after n= 130 and it was found that
there was no change in any of the column reactions listed in Table 13.

The calculations for the present method commence with the prehminary
hiünite plate Solution which is, in itself, a fairly trivial calculation. The results
of this prehminary infinite plate Solution are recorded in the Table because they
are seen to provide, in this instance, a good approximation to the actual column
reactions. In fact, for the five loading cases in bays A, B, C, D and E the maxi-

Table 14. Column reactions caused by 0.005 in settlement at columns 5 and 8 in the model

of the Cumberland Basin elevated road system. Poisson's ratio v 0.15, flexural rigidity
D= 500000 1b. in.

0.005 in settlement 0.005 in settlement

Column
No.

at column 5 at column 8

IrdOnite Rectangular Infinite Rectangular
plate plate plate plate

1 -48 -33 -6 0

2 87 80 13 4

3 -49 -35 -12 -3
4 333 278 -80 -80
5 -694 -608 50 54

rf&r,r 357 293 -37 -29
7 19 10 165 151

8 50 54 -513 -448
9 -27 -19 293 233

10 -30 -23 184 159

11 -8 -3 -16 -12
12 -4 4 -53 -50
13 16 4 19 24

14 — 5 -1 -15 -9
15 — 5 -1 -4 3

16 8 0 16 4

17 -3 0 -5 1

18 — 2 -1 -3 -1
19 4 1 6 2

20 _2 -1 — 5 -1

N.B. All loads are in Ib.
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mum column reactions are predicted to within accuracies of 8, 0.5, 6, 0.5 and 8

per cent respectively, while for the sum ofthe loading cases the maximum column
reaction is predicted to within - 5 per cent. These values he within the bounds
of normal experimental error and it follows, moreover, that in this model the
column reactions are virtually independent of Poisson's ratio.

The most heavily loaded columns for the sum of the loading cases are columns
5 16) and 8 13) and it is of interest to examine the effect of relative settlement

at these positions. The column reactions resulting from a 0.005 inch settlement

of these columns are recorded in Table 14 where it is seen that this modest
||||||ement causes as much as 25 per cent change in the value of the maximum
column reafläon and this emphasizes, once again, the grave difficulties which
have to be surmounted in experimental work on column supported plates. The
Table shows also that the prehminary infinite plate Solution again provides a
reasonable estimate of the column reactions for this model.

Appendix A
The Singular Solution for the Orthotropic Plate

In order to extend the aforegoing analysis to the problem of the orthotropic
plate it is necessary to have available the singular Solution of the governing
partial differential equation

_ Pw 11 Pw i Pw
D*w+2H1^7Y+D»W 0 (AJ)

appropriate to a concentrated force of unit intensity acting at the origin of
coordinates in a plate of infinite extent. The fundamental equations for orthotropic

plates are given in the book by Tmoshenko and Woinowsky-Krieger
[5]; in Eq. (A.l) Dx and Dy are the flexural rigidfies in the x and y directions
respectively while H includes the plate shear rigidity together with a couphng
rigidity arising from the Poisson ratio effect.

It is convenient to introduce the notation

DAW H
(A.2)\Dyf ' *" (DXDV)W

so that the general Solution to Eq. (A.l) may be written

w(x,y) =F1(x + yy)+F2(x + yy)+F3{x-yy)+Fi{x-yy)) (A.3)

where y is root of the characteristic equation

y4 + 2/xy2A2 + A4 0 (A.4)

and y is the complex conjugate of y. The required root of Eq. (A.4) is
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y -7={(l-i*)iy2+;(l+j")1/2}>
i/2

yi+*72 say>
(A.5)

where i= /-T. The singular Solution of Eq. (4.1) for the case of isotropy sug

gests, in conjunction with Eq. (A.3), that we consider the singular Solution

w(x,y) C{y{x+yy)2log(x + yy)2 + y(x + yy)2log(x + yy)2

+ y(x-yy)2log(x-yy)2+y(x-yy)2log{x-yy)},
(A.6)

where C is a constant, the value of which is determined later. It is necessary
to pay careful attention to the value of log (x + yy)2 which is a multi-valued
function for, on using Eq. (A.5),

log (x+yy)2 \og{(x+yxy) +iy2y}2>

log{(x + y1y)2 + y2y2} + 2itain^-^-.
(A.7)

Fig. 13. Convention for the multi-
yzyvalued function tan-1 -

x + yiy

"r,,

The Convention for the multi-valued part is illustrated in Fig. 13. Thus, for

x < 0 and y + 0

log(x + yy)2 21ogcc + 2i7r;

\og(x—yy)2 21og£ — 2i7r;

and similariy for x < 0 and y — 0

log(x+yy)2 2\ogx-2iTT;
log (x — yy)2 — 2 log x + 2 i tt ;

log(x + yy)2 21oga; — 2%tt;

log (x — yy)2 2loga; + 2i7r;

log (x + yy)2 21og£ + 2i77-;

log(x—yy)2 21oga; —2t7T.

(A.8a)

(A.8b)

The Solution of Eq. (A.6) must conform with certain conditions. The Solution

is obviously real and the constant C can be adjusted to correspond with a

concentrated load of unit intensity at the origin of eo-ordinates but, in view of
Eq. (A.7), it is necessary also that w and its first four derivatives with respect to

y be continuous across the line y 0. Since

w(x,y) w(x, —y) (A.9)
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the continuity oiw, d2wfdy2 and Pwfdy4, is assured. Furthermore,

— 2Cyy{(x+yy)log(x + yy)2 + (x + yy) + (x + yy)log(x + yy)2+(x + yy)

-(x-yy)log(x-yy)2-(x-yy)-(x—yy)log(x-yy)2-(x-yy)}
(A.10)

and from Eqs. (A.8a) it is seen for x<0 and y= +0 that dw/dy 0 as is

required. The third derivative is

^ 40yy-{-^- + -^_--^—&4 (A.11)
dy3 ''{x + yy x + yy x-yy x-yy)

and clearly d3wldy3 0 for y 0.

The singular Solution of Eq. (A.6) provides shearing forces

0 —in — H—\^x~ dx\ xdxz+ dy2}' (A.12a)

-4c(y (Dx + Hy2) (—!— + __L_\ +y (D^ + fi'y2) (—L- + —L-
Yy x Y'\x + yy x-yy] x r)\x + yy x-yy

and

^ d Ij. d2w jjd2
^v~~oTy\ vdry2+ Jx2f (A.12b)

-4:C{y(Dyy3+Hy)(— —)+y(Dyy° +Hy)(—K- '

|/v w/ "\a; + ry z-yy/ y/ n\x + yy x-:-yy

The value of the constant C is now obtained from the fact that the concentrated
load at the origin of co-ordinates is of unit intensity and so

f(xQx + yQy)dd l. (A.13)
— TT

In evaluating this integral it is noted that

'm^'r \xT^de=ih[e+yXog{x+yy)]'

||j^R- $xTyjd9= TTyj^$$+y^
and, in virtue of Eqs. (A.8),

.de -^—dd
x +yy J x — yy 1—iy'

TT

2tt

(A.14)

f—^—(W= f— /
J z + yy J x-y y 1+iy
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y _
v

<*l/
x—vv

w
1 —iv '

(A.14)

y de
x-yy

2iri
1 —iy

y de-
2tt%

x+yy

-ü-de
x+yy J x-yy i+iy

— TT —TT

Thus, when Eq. (A.12)issubstituted into Eq. (A.13) and use made of Eqs. (A.15),

(A.2) and (A.4), the value of C is found to be

— i\2
(A.15)

1/2 „-7^,2 _„12\ ¦

lSTT(DxDy)U2y(y2-y
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Summary

The theoretical analysis is given for the static behaviour of a thin flat iso-
tropic plate which is rectangular in planform and is supported upon many diversely

spaced columns and loaded by concentrated forces normal to its plane.
The analysis employs the exact techniques which are associated with the
classical theory of plate bending. A Computer program has been prepared in
conjunction with the analysis; it provides all the column reactions as well as the
bending and twisting moments at any required Station. Numerical examples are
given along with extensive comparisons with the results of other authors and,
in particular, with tests on the model of part ofthe elevated road system for the
Cumberland Basin in Bristol.

An Appendix deals with the basic equations for orthotropic plates.

Resume

On presente l'etude theorique du comportement statique d'une dalle mince
plane isotrope, rectangulaire dans le plan, appuyee sur un grand nombre de
piliers diversement espaces et soumise ä des charges constituees par des forces
concentrees normales ä son plan. Pour le calcul, il est fait usage des methodes
rigoureuses qui correspondent ä la theorie classique de la flexion des plaques.
En liaison avec 1'analyse, on a etabli un programme de calcul electronique;
celui-ci donne toutes les reactions des piliers ainsi que les moments flechissants
et Ms moments de torsion en tout point considere. Des exemples numeriques sont
presentes et l'on procede a de nombreuses comparaisons avec les resultats
obtenus par d'autres auteurs ainsi que, notamment, avec ceux des essais effectues
sur le modele d'une partie du complexe de routes surelevees prevu pour l'ame-
nagement du Cumberland Basin de Bristol.

Les equations fondamentales des plaques orthotropes sont traitees en annexe.

Zusammenfassung

Die theoretische Analyse wird dargelegt für das statische Verhalten einer
dünnen, flachen, isotropischen Rechteckplatte, welche auf vielen, in verschiedenen

Abständen angeordneten Säulen hegt und von senkrechten Einzellasten
beansprucht wird. Bei der Analyse werden die genauen Verfahren angewandt,
die zur klassischen Biegetheorie der Platte gehören. Im Zusammenhang mit der
Analyse ist ein Programm für den Elektronenrechner ausgearbeitet worden, das
alle Säulenreaktionen sowie die Biege- und Drülmomente an jeder erforderlichen

Stelle liefert. Es werden Zahlenbeispiele und umfangreiche Vergleiche
mit den Ergebnissen anderer Verfasser und insbesondere Versuche am Modell
eines Teils des Hochstraßensystems für das Cumberland Basin in Bristol
gegeben.

Im Anhang sind die Grundgleichungen für orthotrope Platten behandelt.
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