
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 27 (1967)

Artikel: Sur certains cas exceptionnels dans la théorie des ponts à poutres
multiples

Autor: Massonnet, Ch. / Gandolfi, A.

DOI: https://doi.org/10.5169/seals-21544

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-21544
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur certains cas exceptionnels dans la theorie
des ponts ä poutres multiples

Über Ausnahmefälle in der Theorie der Mehrbalkenbrücken

Some Exceptional Cases in the Theory of Multi-Oirder Bridges

CH. MASSONNET A. GANDOLFI
Professeur ä l'Universitö de Liege Assistant ä l'Universitö de Naples1)

Introduction

La methode de calcul des ponts ä poutres multiples connue generalement
sous le nom de «Methode Guyon-Massonnet» [1,2] a recu ces dernieres

annees de tres nombreuses confirmations experimentales et est aujourd'hui
pratiquement utilisee dans un grand nombre de pays2).

II faut cependant se rendre compte que la methode ä des hmitations; elles

decoulent de ses deux hypotheses fondamentales, ä savoir:

1. Le pont reel est assimilable ä un grillage de poutres et d'entretoises.
2. Les rigidites des poutres et des entretoises sont reparties de facon continue

dans les sens x et y.

Les erreurs provenant de l'hypothese 2 ont ete analysees en detail par l'un
des auteurs dans un memoire anterieur [3]. Par contre, les erreurs entrainees

par l'hypothese 1 n'ont jamais ete discutees en detail, et cette discussion est

precisement le but du present memoire.
De maniere generale, on peut dire que la methode risque de donner des

resultats incorrects pour deux raisons principales:

1. Les ponts reels ont toujours une dalle de roulement, generalement en beton,
et le Systeme forme par cette dalle et un ou deux cours de nervures en acier

x) Cette etude a <5t6 realisöe pendant le sejour que le second auteur a fait ä FUniversitö
de Liege sous les auspices de la «Fondazione Alberto Beneduce».

2) Un livre consacre' a l'expose complet de cette möthode sous la signature conjointe
de R. Bares et de l'un des auteurs vien de paraitre chez Dtjnod ä Paris. Ce livre donne
la bibliographie complete du sujet.
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ou beton est un Systeme n'ob6issant pas rigoureusement aux memes equa-
tions qu'un grillage de poutres.

2. Le pont peut avoir une structure teile que la deformation des entretoises

par cisaillement ne soit pas negligeable.

La theorie correcte des systemes formes d'une dalle et d'un cours de ner-
vures excentriques paralleles ou de deux familles de nervures excentriques
perpendiculaires entre elles a ete faite par Pelüger [4] et Giencke [5,6].

Ces deux chercherus ont montre que le comportement de ces systemes
etait gouverne par un Systeme de deux equations coupMes aux derivees partielles

du quatrieme ordre contenant le deplacement transversal w d'un point
du feuillet moyen de la dalle et la fonction de tension cp representant l'etat
plan de tension dans cette dalle. L'un des auteurs [7], partant de la theorie
de Pelüger, a montre qu'il n'etait pas possible de remplacer un tel Systeme

par un grillage continu obeissant ä l'equation classique de Huber:

dx* dx2dy2 dy*

en ce sens qu'ils n'existe pas de valeurs des rigidites flexionnelles pP, pE et du
parametre de torsion a telles que la Solution de l'equation (1.1) represente
correctement le comportement du pont ä nervures excentriques. On peut
cependant, par des considerations energetiques, determiner des valeurs de

pP, pB et <x qui sont optimales en moyenne pour un pont determine, mais ces
valeurs dependent du genre de mise en charge appliquee ä l'ouvrage. Heureuse-
ment, l'incertitude sur les valeurs de pP et pE est tres faible et on peut adopter
en pratique les rigidites flexionnelles de deux bandes orthogonales calculees
comme si ces bandes 6taitent des poutres. L'excentricite des nervures ne se

fait donc sentir appreciablement que dans le calcul de la rigidite torsionnelle

Dxy oc Vprpe pour laquelle l'un des auteurs a propose [7] une formule de
correction simple. Compte tenu de cette formule, la methode Guyon-Masson-
net donne des valeurs du coefficient de repartition transversale K qui sont
en bon accord avec les resultats experimentaux et la premiere hypothese est
generalement acceptable. L'hypothese 1 ci-dessus implique cependant aussi
qu'on peut decemment assimiler une bände transversale de pont k une poutre,
dans laquelle on sait que les deformations par cisaillement jouent un röle
negligeable.

Cette hypothese n'est plus acceptable si les bandes transversales presentent
une deformabilite elevee au cisaillement. Ce cas se presente dans deux types
de ponts:

a) Les ponts obtenus par l'accolement de poutres en double te en beton
pre- ou post-constraint qui se touchent par Murs semelles superieures et
inferieures et qui sont solidarisees par une precontrainte transversale (fig. 1). Une
bände transversale d'un tel pont est en fait une poutre Vierendeel ä hauteur



DES CAS EXCEPTIONNELS DANS LA THEORIE DES PONTS 1 POUTRES MULTIPLES 75

constante, et il est bien connu que les poutres Vierendeel sont des structures

hyperstatiques se deformant bien plus par la flexion locale des membrures

entre montants que par la flexion d'ensemble comme poutre.
Dans ces ponts le nombre de poutres est generalement grand et on montrera

dans le present memoire qu'il est possible de considerer la deformation par
cisaillement comme repartie continüment et ainsi de generaliser la theorie
ordinaire des ponts ä poutres multiples pour tenir compte de son effet.

Fig. l.

Fig. 2.

Fig. 3.

b) Les ponts formes de profus tubulaires tout en beton (fig. 2a), ou partielle-
ment en acier (fig. 2b), relies par une dalle en beton, mais ne possedant pas
d'entretoises. La grande deformabilite de ces ponts au cisaillement provient
de ce que chaque poutre tubulaire individuelle, teile que celle qui s'etend de

Ak B (fig. 2 a) peut se deformer par cisaillement transversal de la facon repre-
sentee ä la figure 3, ce qui a pour consequence une denivellation sensible entre
les points A et B.

L'analyse de ces ponts est reservee ä un memoire ulterieur.
Le present memoire a ete inspirö par un memoire [8] püblie par un des

deux auteurs.

Chapitre 1

Theorie des ponts ä poutres multiples dont la section transversale
forme une poutre Vierendeel

1.1. Deformation d'une poutre Vierendeel sous l'effet de l'effort tranchant

En 1950, A. Holmberg a analyse dans les Memoires de l'A.I.P.C. [9] le

comportement de poutres qui reposent sur une fondation elastique et qui ne

se deforment que sous l'effet de l'effort tranchant. Ce memoire apporte une
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contribution utile au probleme que nous nous proposons de resoudre dans le

present chapitre. En particulier, Holmberg analyse la deformation sous l'effet
de l'effort tranchant d'une poutre Vierendeel ä hauteur constante et nous
n'avons qu'ä reproduire ci-dessous l'essentiel de son analyse.

>u/hus///v*777777777777". /?////7/V/7'/'//7//'////y///s//

La poutre Vierendeel est supposee reposer sur une serie de ressorts de meme
tare places au droit des montants; eile est chargee par exemple d'une force
concentree P appliquee au droit d'un montant (fig. 1.1.).

Nous partons de l'hypothese habituelle que les points d'inflexion des mem-
brures sont situes ä mi-distance des montants.

Un element de poutre compris entre 4 points d'inflexion adjacents est
represente ä la figure 1.2. Les efforts tranchants T appliques aux deux sections
h'mitant cet element se divisent en efforts Tx et T2 appliques aux membrures
superieure et inferieure respectivement, de sorte que

Tx + T2 T. (1.1.)

La figure 1.2 montre Ms deformations de flexion prises par les membrures
et le montant. La Resistance des Materiaux eiementaire nous fournit Ms

equations suivantes:

rt

32

31

2i

2 3 EI« T22 QEI,

8,

a2b

GEL

24 EI-, 6EI*

Zi- T

T0 Oi S* T224EZ
(1-

Fig. 1.2.

Les efforts Tx et T2 sont determines par l'equation d'equilibre (1.1) et
l'equation de compatibilite

§i + §2 83 + 84; (1-3)
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6bl2 + al3
on trouve ainsi T±= T Ilicy, T T n T r „ ?¦ t >

Ll2bI1I2 + al1l3 + al2l3
66A + 0/,

2_ 2l2bI1I2 + aI1I3 + aI2I3

L'inclinaison moyenne y de l'axe de la poutre dans l'intervalle a considere

vaut, d'apres la figure 1.2,

mmm. (i.5)
i a

Sx et 82 etant proportionnels a l'effort tranchant T, on voit qu'on peut finale-

ment poser

y ST
ab a2 3bl1 + 3bl2 + al3

avec b- 12EIs + i2E 12b I1I2 + aI1I3 + aI2I3
[1.6)

1.2. Equation fondamentale gouvernant la deformation d'un pont ä structure

cellulaire

Nous considererons le pont comme un grillage continu, ainsi que nous

Tavons fait dans notre memoire de 1950 [2] et nous completerons la theorie

developpee dans ce memoire par la prise en compte de la deformation des

entretoises sous l'effet de l'effort tranchant. Designons par Bp EIp la rigidite

flexionnelle des poutres espacees de a et par Cp leur rigidite flexionnelle.

Le grillage continu fictif equivalent aura pour rigidites unitaires dans le

sens des poutres:

p
=5e et yp -^- (2-1)rp a v a

D'autre part, si nous decoupons dans le pont une bände transversale de

largeur unitaire, nous obtenons la section representee k la figure 2.1, qui est

formee de deux rectangles inegaux. Nous pouvons evaluer les rigidites flexionnelle

et torsionnelle de ce profil, que nous designons par pB et yE respective-

ment.

Fig. 2.1.
^^Sm

La courbure (-1^), du feuillet moyen du pont est hee au moment flechissant

unitaire Mx par la meme relation que dans notre memoire anterieur [2],

a savoir:
32Ö"W

Mx -Pij^- (2-2)
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Par contre, l'equation

M, Pe-^
d2w

dy2

n'est plus correcte. En effet, la courbure (—ö-d peut se subdiviser en une
courbure due a la flexion —-~- et une courbure suppMmentaire —^f due

li la deformation provoquee par l'effort tranchant T
d2w d2wM d2wT

~lhf ~~dy~2 8~yT~' ^
La courbure due ä la flexion est liee au moment My par la relation classique

d2wM

La courbure suppMmentaire due ä Ty se deduit de

dWir, „ _
V JyT STv (]-6)

en derivant partiellement par rapport a y3 ce qui donne

<Jrp Wm.
dy2 dy

Substituant les valeurs ci-dessus de _ f et .W.T dans (a), on trouve
oy2 ay2 v jg

1 [d2w „dTv\f^P^^^p Mv" -pEw-8wi- wkWkmm
De meme, les equations liant les moments de torsion unitaires dans les

poutres et entretoises M_„ et M„_ a la torsion 1—^-, k savoirxy yx dxdy '

iir d2W> d2W
M™ Vpj^jt,' Mvx Wmm'dxdy' vx r*-dxdy'

ne sont plus correctes parce qu'une partie WT MT(x,y) de la deformee du
pont provient de la deformation de l'entretoise unitaire sous l'effet de l'effort
tranchant transversal Ty. En effet, en derivant partiellement (11.6) par
rapport ä x, on trouve la partie

l^=S^ (2 4)
dxdy dx

de la torsion du feuillet moyen qui est imputable a la deformation produite

par Ty. En soustrayent cette partie de la torsion on trouve la partie

S-& (2-5)dxdy dx
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de la torsion qui est produite par Ms moments de torsion unitaires dans Ms

poutres et entretoises:

M„ dx dy
-S dT M.

1 ld2w sdTy\
yx \dxdy dx f

d«

yrwiyx

Ddxd

<*' dx

'4
äM.

VU +

^r
* T„ +^dSy ">

Wie. 2.2

(2.6)

L'equilibre de 1'eMment de grillage (fig. 2.2) fournit Ms equations:

TMx

TMy

dT

dM„, dM„
dx

dM,
dy
dT,

dy
dM„

ox dy

(2.7)

En remplacant dans les deux premieres equations (2.7) les moments par leurs

expressions (2.2), (2.3) et (2.6), on trouve

T

T,=

crw
-ppdxa ys\dxdy2

d*w 82Ty
~pE[jy*~ü~dy^

d3w d2Ty

Yp

dxdyj'

dx2dy dx2

(2.8)

Comme l'expression (2.8) de Ty contient les derivees de ce meme Ty, il
n'est pas possible d'obtenir l'equation fondamentale de deformation en w en

operant comme dans la theorie classique des plaques orthotropes, c'est-ä-dire
en substituant les valeurs (2.8) de Tx et Ty dans l'equation d'equflibre de

translation a m „„,
-1-* + -iru- +p=0. 2.7
dx dy
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Au contraire, l'ehmination de Ty entraine des calculs tres complexes qui
sont d'ailleurs tres semblables ä ceux executes pour efiminer les efforts tran-
chants Tx et Ty dans la theorie perfectionnee par Reissner des plaques
isotropes [10] ou orthotropes [11] pour tenir compte des deformations dues aux
efforts tranchants. Le calcul «exact» des ponts ä section transversale en forme
de poutre Vierendeel est donc possible, mais il est si complexe qu'il ne peut
rendre aucun service aux bureaux d'etudes. C'est pourquoi nous developpons
ci-apres une methode approchee simple, suffisamment exacte pour les besoins
de la pratique.

Quand le parametre S introduit au paragraphe precedent est egal ä zero,
le pont obeit ä la theorie developpee dans notre memoire de 1950 [2] (premier
cas extreme).

Quand le parametre S a une valeur tres grande, le pont ne se deforme en
section transversale que par cisaillement. Le comportement correspondant
du pont sera etudie au paragraphe 1.3 ci-apres. II constitue le deuxieme cas
extreme oppose au cas S 0.

Enfin, en realite, le parametre S a une valeur finie et bien determinee et le
comportement du pont reel peut s 'obtenir approximativement en combinant
lineairement les deux cas extremes definis ci-dessus, comme on le montrera
au paragraphe 1.4.

1.3. Etude du cas limite du pont extremement deformable sous l'effet de l'effort
tranchant Ty

Si S est tres grand, la torsion geometrique du pont !° resulte unique-
ment de la deformation par effort tranchant et les moments de torsion Mxy,
Myx, sont negligeables. La deformation du pont dans le sens des x decoule de
la deformation par flexion des poutres, soit

d2 wM* -PpJ-2- (3-1)

La courbure du pont dans le sens des y provoquee par My est egalement
negligeable et la deformation du pont dans ce sens est due uniquement ä la
deformation par cisaillement des entretoises deduite de (1.6)

m 1 dw
T»=H-dy- M

En derivant (3.1) par rapport ä x, on trouve

„ d3w
Jx -Pvjtf- (3-3)

Substituant ensuite les valeurs (3.2) et (3.3) de Tx et Ty dans l'equation
d'equilibre vertical



DES CAS EXCEPTIONNELS DANS LA THEORIE DES PONTS A POUTRES MULTIPLES 81

dTx dTy
dx dy

on trouve l'equation de deformation du pont

'2.7

d*w 1 d2w
'ää*~'$¦Iy2

7)

(3.4)

Considerons ä present (fig. 3.1) un pont de portee l et de largeur 26, charge
suivant une parallele ä l'axe longitudinal, d'excentricite e, d'une ligne de

charges reparties suivant la demi-onde de sinusoiide

p pmsm- l (3.5)

1 0 _.J
e

bI

L

y

Fig. 3.1.

Le pont est simplement appuye sur ses cuMes, de sorte que les conditions
aux hmites correspondantes sMcrivent

pour x 0oul, w Q, MX Q. (3.6)

II est libre sur ses bords lateraux et les conditions aux hmites correspondantes

sont:

pour y — ±b, Ty 0 c'est-ä-dire öw
dy

0. (3.7)

L'intensite des charges p, est partout nulle, sauf le long de la ligne de

charges y e, donc l'equation de deformation est partout, sauf le long de

cette ligne, l'equation homogene
lW> 1 d2'i

Pp dx* S dy2
0. (3.8)

On verifie de suite que cette equation admet, pour la deformee du pont, la
Solution ä variables separees

m,TTX
w(x,y) fm(y) sin-

l (3.9)

qui verifie les conditions aux hmites le long des deux bords appuyes a; 0oul.
La fonction fm(y) doit satisfaire ä l'equation differentielle deduite de (3.8)

,„ „ m*TT*I
lmVy)~Spv—^—fm 0. (3.10)
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En posant
m*TT*

_bPp^T~ ßm> (3.11)

On peut mettre l'equation (3.10) sous la forme

fm(y)-ß2fm(y) o (3.i2)

dont 1'integrale generale est

fm(y) =AeP~v + Berß»v. (3.12)

Puisque les moments de torsion sont nuls, nous savons par notre memoire
anterieur [3] qu'une entretoise du pont se comporte comme une poutre sur
appuis elastiques, qui dans le cas actuel ne se deforme que par cisaillement.
La recherche de la deformee d'une teile poutre a dejä ete effectuee par Holmberg

[9], mais nous suivrons une methode un peu differente, basee sur le

principe de superposition, comme dans notre memoire de 1950 [2].
Considerons d'abord un pont infiniment large (6 oo) charge d'une ligne

de charge pmsin—-.— appliquee le long de l'axe des x. Alors, il suffit par syme-

trie de considerer la portion de droite de la deformee (3.12). La deformee
devant s'annuler pour y -4-. oo, A 0 et

fm(y) Be-^v. (3.13)

L'effort tranchant est donne par (3.2), qui s'ecrit ici

Ty zßüLBe-^ysin7^. (3.14)

Le long de l'axe des x, on a

irrw Pm • m7TX
(Ty)y=0 -^sin-—,

Vm®d'oü B
2|8„

et fm{y)=fÄe-ßmy. (3.15)
Pm

Considerons maintenant le pont reel charge suivant une parallele ä son axe
d'excentricite e (fig. 3.1); sa deformee transversale peut s'obtenir en ajoutant
ä la deformee du pont de largeur indefinie

Vm® -ßm\V-e\
2iSm

la deformee (3.12) du pont non charge; on obtient ainsi

L(y) ^^-e-^y-ä + Ae^y + Be-^y (3.16)
Pm

d'oü STy=^^-e-ß^y-e^Sgny + ßmAeß-y-ßmBe-ß"'y. (3.17)
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Les constantes d'Integration A et B se determinent en exprimant que l'effort
o rn

tranchant s'annule sur les bords lateraux, c'est ä dire que " 0 pour y= ± b;
Pm

on trouve ainsi les conditions

e-ß*>(b+e) + A e-ßm b _ B ßßm 6 o,

d'oü l'on deduit A

B

PmS
2ßm

|a£ e-ßm'b-e) + Ae^b-B e-ft»6 0
Pm

pmS eft»e-e-0»<26+e>

2ßm e2P"b-e-2P»-b '

pmSe-^e-e-ß^2"-^

(3.18)

(0!) (3.19)

2ßm eißmb_e-2ßmb

Considerons maintenaÄ le cas particuher oüm=l et p=p1 sin-y-.
Si la ligne de charges sinusoidales etait etaMe uniformement sur la largeur

2 6 du pont, celui-ci prendrait la deformation moyenne

n Pl 77'4^- 7rX in on\
w=2bp~l*8mT- (3-20)

On appelle par definition coefficient de repartition transversale K, comme
dans la methode Guyon-Massonnet, le rapport

K wrM(e,y)

Pour obtenir les lignes d'influence du coefficient K, il suffit de diviser la
deformee reelle pour m 1, ä savoir:

TTX
™i /1(2/)sm-^-,

par la deformee moyenne w°; on trouve ainsi, en tenant compte de ce que
w2 J~ii/ c-pibPx.

K(e,y) bß
eße_e-ß(2b+e) ße_ ßi2b-e)e-ßtt

e-^y-e) + -ötr: *mr eP* +e2ßb_e-2ßb c | eißb_er2.ßb

On peut verifier aisement que la valeur moyenne de K, c'est-ä-dire

T£\K(e,y)dy

(3.22)

(3.23)

-6

est bien egale ä l'unite, comme cela doit etre.
On peut construire des tables donnant les lignes d'influence de K (e, y) pour

r- 0, -r, -s, 7 et 1 et j- variant par quarts de — 1) ä + 1). Ces tables dependent

du parametre sans dimensions ß b. En introduisant comme dans notre memoire
anterieur [2] les notations
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V' 8=ßb=^lfSp~p

on peut mettre la formule (3.21) sous la forme suivante:

-8e_„-8(2-e)
Z(ejl?) 8 e-8lir-el +__ inr-e^-r-e28-e-28 e28_e-28

i—Si;

ou encore sous la forme:

K(e,r>) j-8 |i)-el _j_
cosh 8 (e +17) — e~2S cosh S (e — 77)

sinh 2 8

qui se prete mieux aux calculs numeriques.

(3-24)

(3.25)

(3.26)

1.4. Theorie approchee des ponts ä poutres multiples deformables sous l'effet de

l'effort tranchant Ty

Comme dejä dit la fin du paragraphe 1.2, nous admettons que le deplacement

transversal w du pont sous l'effet d'une ligne des charges sinusoidales p
est forme de deux parties qui sont dans un rapport constant, le mime en tous

les points du pont, qu'on designe par w1 et w2 respectivement; w w1 + w2. La
aÄlie wx correspond au pont non deformable sous l'effet de Ty et la partie
w2 au pont infiniment deformable sous l'effet de Ty, etudie au paragraphe 1.3.

Nous posons donc,
TT X

w1 (1 — A)w (1 — A) w(e, y)sin-y,

w2 Aw Aw(e,y) sin
TTX

oü A est un coefficient constant, le meme pour tous les points (x, y) du pont.
D'apres l'hypothese introduite, la partie (1— A)w de la deformee du pont

obeit en moyenne ä l'equation classique de Huber, qui s'ecrit:

:i-4)ft
cTW

+ 2cc]/ppPE(l-A)
d*w % d*w
-^-2 + (l-A)pE-^[ p1, (4.2)

d x2 d y2

tandis que la partie compMmentaire Aw obeit en moyenne ä l'equation (3.4)
des ponts infiniment deformables sous l'effet de Ty:

d*w A d2w
A Pp dx* S dy2 Vu (4.3)

avec px + p2 p.
En additionnant (4.2) et (4.3), on obtient requation de deformation

approchee du pont reel:

d*w A d2

PpJ^+2(1-A)a^PpPB^Z,2-^k^+^1~Ä'P^,,'dx* ¦dx2dy2 S dy2 oy*
V- (4.4)
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La deformee du pont etant de la forme

w'x, y) f(y) sin-
l

(4.5)

on trouve en remplacant dans (4.4), que la deformee transversale f(y) obeit
en-dehors de la ligne des charges ä l'equation differentielle

/"(2/)+yPP/(2/) 0. (4-6)(l-A)PEr(y)- 2cc(l-A)fP~p~p~El2+-g

Pour un pont orthotrope classique de rigiditees p'p, p'E et de parametre de

ilipion a', la deformee transversale obeit ä l'equation

p'Er(y) 2cc'fppPB^2 r<3/)+1rPpfto) 0- (4.7)

Identifions les coefficients de /IV, /" et /, de maniere ä obtenir la meme deformee

transversale dans les deux cas; on trouve:

Pp =PP>

Pe {1~A)Pe> (4.8)

2a'/Z^W 2ix(l-A)Vp^EW +
A

l2 S

Les deux premieres egalites (4.8) entrainent que le parametre d'entre
toisement du pont devient

ö' |l/§
1 V Pe

(4.9)

fl^J
Remplaconsdans la troisieme egalite (4.8) p'E par sa valeur {1—.4) Pe> P™8

resolvons par rapport ä a'; il vient:
AI2

oci/l-A-\--
2TT2sfmfp~p~P~E

En introduisant les parametres sans dimensions

ÄillS'K §2=¥^ et ö2=¥]/^'

On peut mettre la formule (4.10) sous sa forme finale:

I 7 0 7T202 1
a ail-A-V 2 S2 /ITTJ

(4.10)

(4.11)

(4.12)

Les formules (4.9) et (4.12) permettent, une fois qu'est connue la valeur A,
de determiner les valeurs corrigees des parametres a! et 9' et d'en deduire les

lignes d'influence de Ka, des tables de K0 et E1 par la relation connue:

Ke, K0 + (K1-K0)lf*'.
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Le probleme se reduit donc ä la determination de la valeur de A. On peut
dire, ä ce sujet, que A est une valeur, variable entre 0 et 1, fonction des

caracteristiques geometriques et statiques du pont examine; on peut alors choisir
comme parametre representatif de A, le rapport 0/8. La figure (4.1) montre
les courbes A (et!) obtenues par le calcul pour differentes valeurs du rapport
0/8 et pour a=l.

woä-~~-

080 Ss>„\
iv«.*»

Hg£5-—-——

0.60

«.NNW \
o ^o. .9

•|6,
?€^

0.40

0,20

0,20 0.40 0.60 0.80 ' 'wo 120 1.40 1.60 i.eo a

Fig. 4.1.

En examinant ces courbes, on note que, pour chacune d'entre elles, il
correspond ä une valeur determinee de a! deux valeurs differentes de A, donc
de 9', sauf si l'on adopte pour A la valeur qui correspond au minimum de a!.

Or, si pour un rapport 0/8 donne, on exige d'avoir des valeurs correspon-
dantes a! et 0', univoquement determinees, il faut choisir sur la courbe A (a').
une valeur de a! qui definisse univoquement A et par consequent 0'. II est
donc naturel de poser que la valeur optimale de A est celle qui rend a'
minimum. Pour justifier cette hypothese, on peut noter en outre qu'elle conduit
ä des valeurs correctes de a! et 0' dans les deux cas hmites, c'est-ä-dire:

1. Deformabilite par cisaillement negligeable, c'est-ä-dire 8 tres petit. Dans
ce cas, 0/8 est tres grand et la methode Guyon-Massonnet donne:

a =a=l; 0 =0.
Effectivement, la courbe A=f(oc') est tout entiere ä droite du point A 0,

a' 1, de sorte que Amin 0.

2. Tres grande deformabilite au cisaillement c'est-ä-dire 8 tres grand. Dans
ce cas, 0/8 est tres petit et l'on doit avoir, d'apres le par. 1.3

a' 0; 0' oo,

ce qui correspond bien au minimum de la courbe 0/8 0 (fig. 4.1), qui a
heu pour .4 1.

A partir de ces valeurs de A qui rendent minimum a', on a construit le
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diagramme a' (0/8) represente ä la figure 4.2, qui permet, des que le rapport
0/8 est connu, de determiner la valeur de a.

En procedant de la meme facon, on a construit le diagramme figure 4.3,

de 1'expression T
W en fonction du rapport 0/8, qui permet, une fois que

/1-.4
les valeurs 0/8 sont connues, de determiner 0'.

En definitive, pour tenir compte de facon approchee de la deformation
transversale additionnelle due aux efforts tranchants Ty, il faut:-

1. Calculer les rigidites du pont pp, pB, jv + Ye e* &•

2. Calculer les parametres de reference

bi ILe-iVw Yp+Ye.
lipppE 8-yys^;. (4.13)

3. Deduire du rapport 0/8 la valeur od par la courbe a'(0/8) qui, pour a=l,
est donnee ä la figure 4.2.

a

020 030 040 e/s

Fig. 4.2.

U^x
e'=e -ziL=

0.10 0,20

Fig. 4.3

030 0.40

4. Deduire du rapport 0/8 la valeur de l'expression -j— - qui, pour a= 1, est
yi-^L

don|||l||iia figure 4.3, puis deduire par (4.9) la valeur de 0'.

5. Deduire les lignes d'influence de K^, des tables-Z0 et Kx, comme d'habitude,

par la relation connue
K5K<

Ka. K0 + (K1-K0)yOc'.

On peut noter que, pour des valeurs du rapport 0/8 plus grandes que 0,32,

les valeurs de a et 0 ne subissent aucune correction.
Pour les ponts ayant ces valeurs du rapport 0/8, la methode Guyon-Masson-

net reste valable sans correction.
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1.5. Exemple numerique

Soit un pont (2 6 27 m, Z 20m), compose de 18 poutres en beton pre-
contraint de sections definies par la figure (5.1) (mesures en cm); on trouve:

26 (»4-1)6! 18-1,50 27 m,

Pp Ip 110-370 cm4/cm,

d'oü

Pe Ie 98-200 cm4/cm,

bt/ßp
Pe

13,5*/ll0370
20 98 200

0,696.

=i Fig. 5.1.

Le pont formant une dalle cellulaire, on peut admettre que le parametre
de torsion a vaut approximativement l'unite.

La formule (1.6) donne, pour une tranche de un centimetre

32,25S=- E '

d'oü par la formule (4.13),

8 ^jö-fSppV v /2ÖÖÖ2

tt2 1350 J 32,25
E --110,370.0 6,3.

On obtient alors:
0,696
6,300

0,111,

Par la courbe de la figure 4.2, on obtient et' 0,476, puis par la courbe de la
figure 4.3, 0'=1,4O.

Chapitre 2

Verification de la theorie par ün essai sur modele

2.1. Description du modele

Un modele en plexiglas du pont examine dans 1'exemple numerique ci-
avant a ete construit et charge au laboratoire de Resistance des Materiaux de
l'Universite de Liege.

Les dimensions du modele en mm sont: 810 x 603 X 45.
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Les ämes au nombre de 18 ont 3 mm d'epaisseur et 39 mm de hauteur;
elles sont colMes aux deux plaques inferieure et superieure de 3 mm d'epaisseur.
Deux entretoises de 3 mm d'epaisseur et 39 mm de hauteur sont colMes sur
Ms ämes et les plaques aux endroits des appuis. La Photographie fig. 2.1 donne

une vue du modele, de ses appuis et des comparateurs utilises pour mesurer
ses deformations.

IT?F
jggy)

WM
War''- r¥*:'

1 .-«m|

Fig. 2.1.
Fig.

2.2. Appareils de mesure

Neuf comparateurs au micron ont ete places au milieu du pont ä des dis-

tances de 0, ±1lib, ±1l2b, ±3/46, +6 du centre 0.

Dix-huit comparateurs au micron ont ete places ä des distances egales sur
les appuis.

Neuf fleximetres ä jauges de contrainte, places au milieu du pont et relMs

ä un appareil «Data-logger» [12], ont permis d'effectuer des mesures instan-
tanees. La Photographie fig. 2.2 donne une vue d'ensemble du «Data Logger»

avec 1'imprimante I.B.M. On a pu ainsi mesurer les deplacements au moment
de la mise en charge et suivre leur evolution dans le temps sous charge
constante, en effectuant des lectures toutes les cinq minutes.

On a pu constater qu'au bout d'une demi-heure, il n'y avait plus de fiuage
observable et que les deplacements correspondant ä des charges differentes
verifiaient la loi de Hooke.

Ceci etabli, nous avons effectue systematiquement les lectures aux
comparateurs une demi heure apres la mise en charge et la decharge.

2.3. Charges

Les charges necessaires pour evaluer les deplacements wx ont ete appliquees
directement par des poids disposes en lignes de charge sinusoidale ä des

distances de 0, ±1lib, ±1/26, ±3/46, de l'axe longitudinal, du modele. Les onze
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charges totalisant un poids de 73,814 kg, ont ete calculees pour etre egales
aux aires partielles comprises entre la sinusoiide et des ordonnees equidistantes;
elles ont ete (fig. 2.3) pendues au modele par rintermediaire de crochets fixes
par collage ä la plaque inferieure (fig. 2.4).

Fig. 2.3.
¦^^W- ¦ i M

Fig. 2.4.

Le deplacement W0moyen au milieu du pont, du ä une charge P= 73,814 kg
distribuee selon une surface ä directrice sinusoidale et ä generatrices
rectilignes, a ete evalue, et en apphquant une charge de ce type, et en mesurant
experimentalement la valeur du module EI.

La figure 2.5 montre la ligne d'influence du coefficient K pour la poutre 0,
obtenue experimentalement (courbe a), en apphquant la methode proposee

-b -tyb -yzb -Hb 0 *yt,b +V5b +3*,b +bb -3/4 b -y& -Vsb 0 .y4b »14b .3/ib .b

1

.^^c *^\ x^
iy

yb c

3

b/7

/a /

4

¦i

6
Id

\ — y/—¦ c

d

Fig. 2.5. Fig. 2.6.

a) courbe experimentale, b) methode proposee, e) methode Guyon-Massonnet, d) pont
extremement deformable par cisaillement.
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(a' 0,476, 0' 1,4O; courbe 6) en apphquant la methode Guyon-Massonnet

(<x-l, 0 0,696; courbe c) et en apphquant la theorie developpee au
paragraphe 1.3 (courbe d).

-b -%b -J4b -Vib 0 *)4b *'/frb *%b .b^

-t -*A b -\A b -K b *lA b *y: b +a/t b + b

—Pq bVAd i1
zi

ä

\\ a>7

1 \*/ll

1 Id

Fig. 2.7. Fig. 2.8.

a)—d) voir fig. 2.5.

-b -&b -yib -Kb 0 -fjib ./2b .^ib *b

Fig. 2.9. a)—d) voir fig. 2.5. ¦dl I
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Les figures 2.6, 2.7, 2.8, 2.9 montrent les memes lignes d'influence respec-
tivement pour les poutres + 1lib, ->r1/2b, +3/46, +63).

Le tableau I donne les valeurs de K(e,rj) pour «et i; variables, obtenues
experimentalement.

Tableau I. Valeurs expirimentales du
coefficient de repartition K

Excentriclte de la Charge
Positfoc
poutre -b 3b

-zr
b b

X 0 m ,b m b

0

Kb
l/2 b

3/4 b

b

0,251

0,128

0,058

0.036

0349 0,600 1,336 3P47 1,336 0,600

1,434

0,349

0,74 9

1,605

0,251

0,592

1,181

2^20

0,167 0,269 0.525 1,336

0,600

0,349

0,251

3,002

0.080 0,142 0,269

0,167

0.128

1,434

0,749

0.592

3,248

0,053 0,060

0.058

1,605

1,181

3,535

0,020 0/136 2,720 7,096

Le tableau II donne les valeurs correspondantes de K obtenues en
apphquant la methode Guyon-Massonnet (<x 1, 0 0,696).

Tableau II. Valeurs du coefficient de

riparUUon K pour a= 1, 9 0,696.
Excentriclte de la Charge

Position
poutre -b 3b b b

0
b

*~ZT
b 3b

*"2T + b

0

m
M
b

0.7113

0,4647

0,3381

02453

0,8341

0,5935

0,4292

0,9927

0^431

i;7i5 ^2745 1J715 0,9927

1.2799

0,8341 0^113

0,9442 1,1715

0,9927

0,8341

0,7113

1,3267 1,15861 1,0476

0,5570 0,7431

0.S93S

0,4847

1,2799

1,1586

ip476

1,5088 15501 1,5241

0,3210 0,4292

0,3361

1,5501

1,5241

1,9234 2,1587

0,1814 0,2453 2;587 29230

Le tableau III donne les memes valeurs de K obtenues en apphquant la
theorie developpee au paragraphe 1.3.

Tableau III. Valeurs du coefficient de

repartition K. pour les ponts extremement
deformables au cisaillement

Excentriclte de la Charge
Poeltloi
poutre - b

3b
4

b b
4 0

b b 1 3b
*T r 4

+ b

0

k"
l/2b

hb
b

0.0236

00047

0,0014

0.0003

0,0560

0,0120

0,0025

0,2700

0,0560

1,3034 6,300 13034 0,2700 0,0560 00236

0,1120

0,5399

2,6069

02700 1,3034

0,2700

6,300 1,3053 0,2814

0,0115 0,0560

0,0120

1,3053 6,3115 1,3601

0,0019 0,0025 0,0560 0,2814 1,3601

(15399

6,569!
0 0,0003 0/1014 0,0047 0,0236 0,1120 2,6069 12,600

Le tableau IV enfin, donne les valeurs obtenues par la methode proposee.

Tableau IV. Valeurs du coefficient de

repartition K pour a! ¦= 0,476, 6'= 1,40
Excentriclte de la Charge

fcsltlor
poutre -b 3b

4
b b

4 O
b b 3b

+ b

0

kb

3/4b

•0,0130

0,0038

0,0226

0.0240

0,2571

0,0653

00186

07757

0,2529

1,7305 2,5013 7305 07757 0,2571 -0,0130

0f1375

09950

33514

0.7569 ^7305

0,7757

0,2571

2,5324 17670 0,8057

00620 0.2529 17670

0,8057

2,6420 1,9341

0,0154 0,0186 0,0653 19341

0,9950

3,2279

" 0.0211 0,0240 00226 0,0038 -0,0130 0,1375 33514 7,9028

3) La ligne d'influence experimentale du coefficient K, pour la poutre + 6, a tSte obtenue
en tenant compte du thöoreme de Betti et de la relation

+6

2^JK(e,y)dy= 1.
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Compte tenu de ce que les valeurs S et pp ne sont pas evahMes
experimentalement, on peut noter une bonne correspondance entre les resultats
experimentaux (tableau I) et les valeurs de K qui sont proposees (tableau IV),
correspondance qui est Min d'etre verüMe, dans ce cas particulier, par les valeurs
obtenues (tableau II) par la methode classique de Guyon-Massonnet.
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Resume

Les auteurs analysent le cas des ponts a structure celmlaire et tels que la
deformation des entretoises par cisaillement n'est pas negligeable.

Ils montrent que la generalisation rigoureuse des ponts ä poutres multiples,
en tenant compte de la deformation par cisaillement, conduit a des calculs
laborieux.

Ils presentent une theorie approchee qui a l'avantage d'utüiser les tables
existantes de la methode Guyon-Massonnet en corrigeant simplement les
valeurs des parametres caracteristiques a et 9.

Un essai sur modele en plexiglas, reahse par les auteurs, montre que les
resultats experimentaux sont en accord satisfaisant avec la theorie approchee
en question.
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Zusammenfassung

Die Verfasser untersuchen Brücken in Zellenbauart und solche, deren
Querträgerverformung infolge Schub nicht vernachlässigbar ist.

Sie zeigen, daß die strenge Verallgemeinerung von Mehrbalkenbrücken
unter Berücksichtigung der Schubkräfte zu aufwendigen Rechnungen führt.

Die Verfasser geben eine Näherungsberechnung, bei der die vorhandenen
Tabellen der Methode Guyon-Massonnet Verwendung finden, sofern die
charakteristischen Parameter cc und 9 berichtigt werden.

Ein von den Verfassern an einem Plexiglasmodell durchgeführter Versuch
hat gezeigt, daß die Versuchsergebnisse mit der betreffenden Näherungs-
bereehnung hinreichend übereinstimmen.

fxaiimmaiy

The authors analyse the case of bridges having a cellular structure and
such that deformation of the cross-members due to shear is not negligible.

They demonstrate that the strict generahsation of multi-girder bridges,
taking into account deformation due to shear, leads to laborious calculations.

They present an approximate theory which has the advantage of making
use ofthe existing tables ofthe Guyon-Massonnet method by merely correcting
the values of the characteristic parameters a and 6.

A test on a perspex model, carried out by the authors, shows that the
experimental results are in satisfactory agreement with the approximate
theory in question.
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