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Sur certains cas exceptionnels dans la théorie
des ponts a poutres multiples

Uber Ausnahmefille in der Theorie der Mehrbalkenbriicken

Some Exceptional Cases in the Theory of Multi-Gurder Bridges

CH. MASSONNET A. GANDOLFT
Professeur a I'Université de Liege Assistant a I'Université de Naples?!)
Introduction

La méthode de calcul des ponts a poutres multiples connue généralement
sous le nom de «Méthode GUYON-MASSONNET» [1,2] a re¢u ces derniéres
années de trées nombreuses confirmations expérimentales et est aujourd’hui
pratiquement utilisée dans un grand nombre de pays?).

I1 faut cependant se rendre compte que la méthode a des limitations; elles
découlent de ses deux hypotheses fondamentales, a savoir:

1. Le pont réel est assimilable a un grillage de poutres et d’entretoises.
2. Les rigidités des poutres et des entretoises sont réparties de fagon continue
dans les sens z et .

Les erreurs provenant de 1’hypothése 2 ont été analysées en détail par I’'un
des auteurs dans un mémoire antérieur [3]. Par contre, les erreurs entrainées
par ’hypothése 1 n’ont jamais été discutées en détail, et cette discussion est
précisément le but du présent mémoire.

De maniere générale, on peut dire que la méthode risque de donner des
résultats incorrects pour deux raisons principales:

1. Les ponts réels ont toujours une dalle de roulement, généralement en béton,
et le systéme formé par cette dalle et un ou deux cours de nervures en acier

1) Cette étude a été réalisée pendant le séjour que le second auteur a fait a I'Université
de Liége sous les auspices de la «Fondazione Alberto Beneduce».

2) Un livre consacré a l'exposé complet de cette méthode sous la signature conjointe
de R. BARES et de 'un des auteurs vien de paraitre chez DuNop & Paris. Ce livre donne
la bibliographie complete du sujet.
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ou béton est un systéme n’obéissant pas rigoureusement aux mémes équa-
tions qu’un grillage de poutres.

Le pont peut avoir une structure telle que la déformation des entretoises
par cisaillement ne soit pas négligeable.

(SN

La théorie correcte des systemes formés d’une dalle et d’un cours de ner-
vures excentriques paralleles ou de deux familles de nervures excentriques
perpendiculaires entre elles a été faite par PFLUGER [4] et GIENCKE [5, 6].

Ces deux chercherus ont montré que le comportement de ces systémes
était gouverné par un systéme de deux équations couplées aux dérivées parti-
elles du quatrieme ordre contenant le déplacement transversal w d’un point
du feuillet moyen de la dalle et la fonction de tension ¢ représentant 1’état
plan de tension dans cette dalle. L’'un des auteurs [7], partant de la théorie
de PrLUGER, a montré qu’il n’était pas possible de remplacer un tel systéme
par un grillage continu obéissant & 1’équation classique de Huber:

o w+9 / ot w i ot w (1.1)
5 57 po 4 = i =17, .
Pr G:CLL pPpEaxgoyg pEGyaL 1

en ce sens qu’ils n’existe pas de valeurs des rigidités flexionnelles pp, pg et du
parameétre de torsion « telles que la solution de 1’équation (1.1) représente
correctement le comportement du pont a nervures excentriques. On peut
cependant, par des considérations énergétiques, déterminer des valeurs de
pp pr €t a qui sont optimales en moyenne pour un pont déterminé, mais ces
valeurs dépendent du genre de mise en charge appliquée a I’ouvrage. Heureuse-
ment, 'incertitude sur les valeurs de p, et pj est trés faible et on peut adopter
en pratique les rigidités flexionnelles de deux bandes orthogonales calculées
comme si ces bandes étaitent des poutres. L’excentricité des nervures ne se
fait donc sentir appréciablement que dans le calcul de la rigidité torsionnelle

D, =« 4 prpr pour laquelle I'un des auteurs a proposé [7] une formule de
correction simple. Compte tenu de cette formule, la méthode Guyon-MassoN-
NET donne des valeurs du coefficient de répartition transversale K qui sont
en bon accord avec les résultats expérimentaux et la premiére hypothése est
généralement acceptable. L’hypothese 1 ci-dessus implique cependant aussi
qu’on peut décemment assimiler une bande transversale de pont & une poutre,
dans laquelle on sait que les déformations par cisaillement jouent un role
négligeable.

Cette hypothese n’est plus acceptable si les bandes transversales présentent
une déformabilité élevée au cisaillement. Ce cas se présente dans deux types
de ponts:

a) Les ponts obtenus par 1’accolement de poutres en double té en béton
pré- ou post-constraint qui se touchent par leurs semelles supérieures et infé-
rieures et qui sont solidarisées par une précontrainte transversale (fig. 1). Une
bande transversale d'un tel pont est en fait une poutre Vierendeel & hauteur
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constante, et il est bien connu que les poutres Vierendeel sont des structures
hyperstatiques se déformant bien plus par la flexion locale des membrures
entre montants que par la flexion d’ensemble comme poutre.

Dans ces ponts le nombre de poutres est généralement grand et on montrera
dans le présent mémoire qu’il est possible de considérer la déformation par
cisaillement comme répartie continiiment et ainsi de généraliser la théorie
ordinaire des ponts & poutres multiples pour tenir compte de son effet.

TR EEEEE Y e

il
Fig. 2
A B
| 23,
L2y iz a3 B
= —— o 3.
LN Fig. 3

b) Les ponts formés de profils tubulaires tout en béton (fig. 2a), ou partielle-
ment en acier (fig. 2b), reliés par une dalle en béton, mais ne possédant pas
d’entretoises. La grande déformabilité de ces ponts au cisaillement provient
de ce que chaque poutre tubulaire individuelle, telle que celle qui s’étend de
A4 a B (fig. 2a) peut se déformer par cisaillement transversal de la fagon repré-
sentée a la figure 3, ce qui a pour conséquence une dénivellation sensible entre
les points A et B.

L’analyse de ces ponts est réservée a un mémoire ultérieur.

Le présent mémoire a été inspiré par un mémoire [8] publié par un des
deux auteurs.

Chapitre 1
Théorie des ponts a poutres multiples dont la section transversale
forme une poutre Vierendeel
1.1. Déformation d’une poutre Vierendeel sous Ueffet de Ueffort tranchant

En 1950, A. HoumBeERG a analysé dans les Mémoires de I'A.LP.C. [9] le
comportement de poutres qui reposent sur une fondation élastique et qui ne
se déforment que sous ’effet de 1’effort tranchant. Ce mémoire apporte une
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contribution utile au probléeme que nous nous proposons de résoudre dans le
présent chapitre. En particulier, HoLMBERG analyse la déformation sous |'effet
de l’effort tranchant d’une poutre Vierendeel a hauteur constante et nous
n’avons qu’a reproduire ci-dessous I’essentiel de son analyse.

s SR 3 3 Fig. 1.1.

La poutre Vierendeel est supposée reposer sur une série de ressorts de méme
tare placés au droit des montants; elle est chargée par exemple d’une force
concentrée P appliquée au droit d’'un montant (fig. 1.1.).

Nous partons de I’hypothese habituelle que les points d’inflexion des mem-
brures sont situés a mi-distance des montants.

Un élément de poutre compris entre 4 points d’inflexion adjacents est
représenté a la figure 1.2. Les efforts tranchants 7" appliqués aux deux sections
limitant cet élément se divisent en efforts 7} et 7, appliqués aux membrures
supérieure et inférieure respectivement, de sorte que

1
Tt =T (1.1.)
La figure 1.2 montre les déformations de flexion prises par les membrures

et le montant. La Résistance des Matériaux élémentaire nous fournit les
équations suivantes:

(12 Ll a? b a*b A5
31~T1—2-3E13—T236E13— 6E13(T1_?)’ oy
aEenie a*b TN e ae &
% =horwmr> Sﬁ—m(’ff?)’ % =ligrgr
\\ Jﬂ
Tt I L yeoen
SR |6, 1
T TR
T1 I B
\ b
= sz s
SR ) L, ekl
| =
i Bani g 10
L. 2 2 <l 3

Les efforts 7} et 7, sont déterminés par 1’équation d’équilibre (1.1) et
I’équation de compatibilité

O, 40, =08;+8,; (1.3)
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g 6b1,+al
on trouve ainsi T =TI 22—,
12b1, I,+al,Istaly i,

y 6b1,+al,
=i Bt ol L

(1.4)

L’inclinaison moyenne y de I’axe de la poutre dans I'intervalle @ considéré
vaut, d’apres la figure 1.2,
L O]

- (1.5)

b4

5, et 8, étant proportionnels & I'effort tranchant 7', on voit qu’on peut finale-
ment poser

=il
avec S = + - - = =
12E1, 12E 12b1, I,+al,I3+al,l,

1.2. Bquation fondamentale gouwvernant la déformation d’un pont @ structure
cellulaire

Nous considérerons le pont comme un grillage continu, ainsi que nous
’avons fait dans notre mémoire de 1950 [2] et nous compléterons la théorie
développée dans ce mémoire par la prise en compte de la déformation des
entretoises sous leffet de D’effort tranchant. Désignons par B,=EI, la rigi-
dité flexionnelle des poutres espacées de @ et par €, leur rigidité flexionnelle.

Le grillage continu fictif équivalent aura pour rigidités unitaires dans le
sens des poutres:

B C
pp=—2 et y,=—2 (2.1)

a a

D’autre part, si nous découpons dans le pont une bande transversale de
largeur unitaire, nous obtenons la section représentée a la figure 2.1, qui est
formée de deux rectangles inégaux. Nous pouvons évaluer les rigidités flexion-
nelle et torsionnelle de ce profil, que nous désignons par pp et yp respective-
ment.

o w . £ 7 bl
La courbure (— W)’ du feuillet moyen du pont est liée au moment fléchis-

sant unitaire M par la méme relation que dans notre mémoire antérieur [2],
a savoir:
a2 w

s (2

[}
o
S

=

=
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Par contre, I’équation

2

N
s

.J.[ = Pr

Y )

ay
[

Y

?w el
n’est plus correcte. En effet, la courbure ( cy2) peut se subdiviser en une

x . o2 wyr " . g2 wr
courbure due a la flexion — o et une courbure supplémentaire ——— due
= C

32
a la déformation provoquée par 1'effort tranchant 7},

2w Pwy  Pwyp
ARG T B T o ol (&)
ay oy* oy

La courbure due a la flexion est liée au moment 3, par la relation classique

8 u”ﬂ[
ay?

La courbure supplémentaire due & 7, se déduit de

Y= g (1.6)

ay?

en dérivant partiellement par rapport a », ce qui donne

0% W & E}TU
Gy oA
e
Substituant les valeurs ci-dessus de Gatj;” ot 2 T dans (a), on trouve
ot w oT
M —— — —S—1]. 2.3
YR (@ y cy) S

De méme, les équations liant les moments de torsion unitaires dans les

~e

; X 2 Rw :
poutres et entretoises M, et M, & la torsion ———, & savoir
& = oxdy

2w 2w
Mz M -
ypGSL J v = yhal(’l/

ne sont plus correctes parce qu'une partie W, =M, (x,y) de la déformée du
pont provient de la déformation de I’entretoise unitaire sous 1’effet de 1'effort
tranchant transversal 7). En effet, en dérivant partiellement (11.6) par
rapport a x, on trouve la partie

I'12 . "

P w, oT,

—L =49

e bE (2.4)
ox oy ox

de la torsion du feuillet moyen qui est imputable & la déformation produite

o2

har T En soustrayent cette partie de la torsion - —l on trouve la partie
I b P 7oy’ I

2

c*w ar,

8 =— — _§ (
0x oy ox

o
Ct
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de la torsion qui est produite par les moments de torsion unitaires dans les
poutres et entretoises:

O n 02 oy am
o*w ¢ 0% w c
ﬂ/I = -8 = A 1 M. = — ’ ”'_F——S‘ = & 5 2.6
oy = Vo (Cl a1y dx [’ vx YE\G % dy ox ()
: d A e 7
TYT /Myx
7
S /=My
A /
dx/ y pdxdy / Mo+ Oy
7 Mxy ST x
// -— . - ——fs——/ X
. / M+ o
e Mx/ / & / Y o
/‘ / Tx +8x dx
bt
My
=5 My+*ay— dy
S
& W/ ' Ty*%l}dy
Y
Fig. 2.2
L’équilibre de 1’élément de grillage (fig. 2.2) fournit les équations:
aM, aM,
= + vz
; ox oy
7 _aMy_oM_w :
Y 55 o) > (-.7)
ay cx
e G
—2 = ULh — 0.
ox ay

En remplacant dans les deux premiéres équations (2.7) les moments par leurs
expressions (2.2), (2.3) et (2.6), on trouve

i > w 03w EZTU
2= TPpys T VE dx dy? dx dyl’ A
2.8
2w 2T 3w 2T (&:8)
= —ppl=—=—S-—"L| -y, [—-5-—"2)-
Y dys oy 2Ndpdy gt

Comme ’expression (2.8) de 7, contient les dérivées de ce méme 7, il
n’est pas possible d’obtenir 1’équation fondamentale de déformation en w en
opérant comme dans la théorie classique des plaques orthotropes, c¢’est-a-dire

en substituant les valeurs (2.8) de 7, et 7, dans 1’équation d’équilibre de
translation

Gl s

o _;(:+C U'*‘p:O‘ (27)

cx oy
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Au contraire, ’élimination de 7), entraine des calculs trés complexes qui
sont d’ailleurs tres semblables & ceux exécutés pour éliminer les efforts tran-
chants 7, et 7, dans la théorie perfectionnée par REISsNER des plaques iso-
tropes [10] ou orthotropes [11] pour tenir compte des déformations dues aux
efforts tranchants. Le calcul «exact» des ponts & section transversale en forme
de poutre Vierendeel est donc possible, mais il est si complexe qu’il ne peut
rendre aucun service aux bureaux d’études. (’est pourquoi nous développons
ci-apreés une méthode approchée simple, suffisamment exacte pour les besoins
de la pratique.

Quand le parameétre S introduit au paragraphe précédent est égal a zéro,
le pont obéit a la théorie développée dans notre mémoire de 1950 [2] (premier
cas extréme).

Quand le parametre S a une valeur trés grande, le pont ne se déforme en
section transversale que par cisaillement. Le comportement correspondant
du pont sera étudié au paragraphe 1.3 ci-aprés. Il constitue le deuxiéme cas
extréme opposé au cas S=0.

Enfin, en réalité, le parameétre S a une valeur finie et bien déterminée et le
comportement du pont réel peut s’obtenir approximativement en combinant
linéairement les deux cas extrémes définis ci-dessus, comme on le montrera
au paragraphe 1.4.

1.3. Etude dw cas limite du pont extrémement déformable sous Ueffet de I’effort
tranchant T,

: « - ; Sl CETN :
Si S est tres grand, la torsion géométrique du pont 325, Mésulte unique-

9y
ment de la déformation par effort tranchant et les moments de torsion M,
M, . sont négligeables. La déformation du pont dans le sens des x découle de
la déformation par flexion des poutres, soit

> w
IWI:_Ppaxg' (31)

La courbure du pont dans le sens des y provoquée par M, est également
négligeable et la déformation du pont dans ce sens est due uniquement & la
déformation par cisaillement des entretoises déduite de (1.6)

1 dw
T =——., B2
S e )
En dérivant (3.1) par rapport & z, on trouve
B w 5
Tm = _Ppﬁ' (3.3)

Substituant ensuite les valeurs (3.2) et (3.3) de 7, et 7, dans l’équation
d’équilibre vertical
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L e
Ceis St (2.7)
oxsaaay
on trouve l’équation de déformation du pont
dteos s 102w
e Wi 3.4
Proat — 8 oy* P )

Considérons a présent (fig. 3.1) un pont de portée [ et de largeur 2b, chargé
suivant une parallele a 1’axe longitudinal, d’excentricité e, d’une ligne de
charges réparties suivant la demi-onde de sinusoide

T L
D —) 1! ;T (3.5)
b
| orls £ ik Tl el x
e
o e Az
L Fig. 3.1.
y

Le pont est simplement appuyé sur ses culées, de sorte que les conditions
aux limites correspondantes s’écrivent

pour x=0oul, w=0 M _=—0. (3.6)

Il est libre sur ses bords latéraux et les conditions aux limites correspon-
dantes sont:
- e cw i
pour y = +b, Ty = 0 c’est-a-dire — = 0. (3.7)
ay
L’intensité des charges p, est partout nulle, sauf le long de la ligne de
charges y=e, donc I’équation de déformation est partout, sauf le long de
cette ligne, 1’équation homogene
G b (3.8)
Proxt S 397 =
On vérifie de suite que cette équation admet, pour la déformée du pont, la
solution & variables séparées

w(@,y) = fu (y)sin "7, (3.9)

qui vérifie les conditions aux limites le long des deux bords appuyés x =0 ou .
La fonection f,, (y) doit satisfaire a 1’équation différentielle déduite de (3.8)

= mi 7t

fm.(g/)_SpprmZO' (310)
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4. 4
En posant Sp, ?7%;1. = g2 (@l

On peut mettre 1'équation (3.1()) sous la forme

f)ll Bzfﬁl Y ot ') (:3'12)
dont I'intégrale générale est
fr(gli—tdiele? - B ofay, (3.12)

Puisque les moments de torsion sont nuls, nous savons par notre mémoire
antérieur [3] qu’une entretoise du pont se comporte comme une poutre sur
appuis élastiques, qui dans le cas actuel ne se déforme que par cisaillement.
La recherche de la déformée d’une telle poutre a déja été effectuée par Horm-
BERG [9], mais nous suivrons une méthode un peu différente, basée sur le
principe de superposition, comme dans notre mémoire de 1950 [2].

Considérons d’a,bord un pont infiniment large (b=co) chargé d’une ligne

de charge p,,sin ——— appliquée le long de I’axe des x. Alors, il suffit par symé-

trie de considérel la portion de droite de la déformée (3.12). La déformée
devant s’annuler pour ¥ — o0, 4 =0 et

fm (y) = BePny. (3.13)

L’effort tranchant est donné par (3.2), qui s’écrit ici
T, = 5’" Be- Bu'ysmznz-r—x. (3.14)

Le long de I'axe des @, on a

Py WD

(Ty)u=0 =t sin S
b I,y ]))H,S
d’ou Bi=
ZBIH
et () = P’”S eFmv, (3.15)

m

Considérons maintenant le pont réel chargé suivant une parallele a son axe
d’excentricité e (fig. 3.1); sa déformée transversale peut s’obtenir en ajoutant
a la déformée du pont de largeur indéfinie
}))HLS
2
Bm

la déformée (3.12) du pont non chargé; on obtient ainsi

e—Bmly—el

fm (y) — ]))—nék_g Q_Bm |ly—el + A e,Bm Y 2l B 8_'8’” Yy (316)
5 . D SR S : L b
d’ou ksquzﬁe Pm Y c‘bgny—i-BmAe m?l_BmBe By (311)
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Les constantes d’intégration 4 et B se déterminent en exprimant que 1'effort

¥

’ , 5 S ST
tranchant s’annule sur les bords latéraux, c’est a dire que 79,,;‘! =0 pour y = +b;

P

on trouve ainsi les conditions

PSS, Bu(b+e) 4 4 g—Bnb _ BeBub —

24
/)é (3.18)
[)m o —B(b—c) —l—AeB’"b BeﬁB,”b —=10)
= m
g S Bm ot ﬁm()b €)
d’ont Pon déduit o et ol i e B
"le e* 2fub GG Pub
(01) (3.19)

Pm S e*Bm At G*Bm (2b—e)
') 2 I”I —_— 72 m b
= )8111 € B : e B,

: L : 5 5 s T
Considérons maintenant le cas particulier ot m=1 et p=p,sin—-.
Si la ligne de charges sinusoidales était étalée uniformément sur la largeur

2b du pont, celui-ci prendrait la déformation moyenne

U e T
2bp, FSII’IT. (3.20)

W —

On appelle par définition coefficient de répartition transversale K. comme
dans la méthode GUuyoN-MAssONNET, le rapport

]{' . uf',-éd(e, Z/) (3 .)1)
w? :
Pour obtenir les lignes d’influence du coefficient K, il suffit de diviser la
déformée réelle pour m =1, a savoir:

T

ul_fl ) l

par la déformée moyenne w”:; on trouve ainsi, en tenant compte de ce que

B=7%18p,

Be _ p—B@b+e) —Be _ p—B(2b—0) p—BY
, L ePe—e e e e e
K (&'!/) = bIB |:€_B(U—()+€?T‘5’b__e:?.ﬁi}€BJ+ ; QZBEje*ZBb} (322)
On peut vérifier aisément que la valeur moyenne de K, c’est-a-dire
+0
1
S J K (e, y) dy (3.23)

—-b

est bien égale & 1'unité, comme cela doit étre.
On peut constluue des tables donnant les lignes d’influence de K (e.y) pour

1
e O a ) ) f
du parametre sans dimensions 0. En introduisant comme dans notre mémoire

antérieur [2] les notations

et Iet 5 variant par quarts de (—1) a (+ 1). Ces tables dépendent
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m2bh

i e
11:7}. — =g, 3. =fb = P

/Sp, (3.24)

on peut mettre la formule (3.21) sous la forme suivante:

: 685 675(’Ts ,~5€ —5(“—6 7
K(e,n) =8 {e—ﬁw ey v+—€:ﬁ3fe b‘v] (3.25)
ou encore sous la forme:
cosh 8 (e +7) —e 22 cosh 8 (e —7)
K =9 l5=¢] . - : 3.26
e = [ 55 sinh 23 ] j ( )

qui se préte mieux aux calculs numériques.

1.4. Théorie approchée des ponts & poutres multiples déformables sous [effet de
Ueffort tranchant T',

Comme déja dit la fin du paragraphe 1.2, nous admettons que le déplace-
ment transversal w du pont sous 'effet d’une ligne des charges sinusoidales p
est formé de deux parties qui sont dans un rapport constant, le méme en tous
les points du pont, qu’on désigne par w; et w, respectivement; w=w, +w,. La
partie w, correspond au pont non déformable sous l'effet de 7, et la partie
w, au pont infiniment déformable sous 'effet de 7). étudié au paragraphe 1.3.

Nous posons done,

oy (e A = (1_A)w(e,y)sinil"f,

oy
we=Aw=Aw (e,y)sm—l—,
ott 4 est un coefficient constant, le méme pour tous les points (x,7) du pont.

D’aprés I'hypothése introduite, la partie (1 —A4)w de la déformée du pont
obéit en moyenne & 1’'équation classique de HUBER, qui s’écrit:

o*w ot w ot w :
(1 A)P])-«_ +2 Oﬁ]ppp],(l A)mz'i_(l_A)Pb(y = D1, (4’2’)

tandis que la partie complémentaire 4w obéit en moyenne a 1’équation (3.4)

des ponts infiniment déformables sous 1'effet de 7),:

crtw A Pw

avec Py + ps=1Pp-
En additionnant (4.2) et (4.3). on obtient l’équation de déformation

approchée du pont réel:

tw o* A 2w tw
—_— 1—A4 —_—— 1—A4)pn = P. 4.4
Pp + ( )aIPpPEtcl (J S 6y2+( )PLfy'l P ( )
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La déformée du pont étant de la forme

w(@,y) = fy)sin", (4.5)

on trouve en remplacant dans (4.4), que la déformée transversale f(y) obéit
en-dehors de la ligne des charges a 'équation différentielle

1

, — A7, .
(1—A4)puf ()~ [M(l—Anp,,pE%Jrg}z () +3rppf () = 0. (4.6)

Pour un pont orthotrope classique de rigiditées p,, py et de parametre de
torsion «’, la déformée transversale obéit a 1’équation

SRR ) 4
pie I ()= |26V | £0) + G 0) = O (47

Tdentifions les coefficients de 1V, /" et /, de maniére a obtenir la méme défor-
mée transversale dans les deux cas; on trouve:

Pr = Pp>
pr = (1—A4)pg, (4.8)

[ e ]
2 ]/PpPETz = 2“(1—44)1/P1:PE‘Z?+§-

Les deux premiéres égalités (4.8) entrainent que le paramétre d’entre-

toisement du pont devient
B e o
6 = — II == n sl (49)
LY pE )

Remplacons dans la troisiéme égalité (4.8) py, par sa valeur (1—A) py, puis
résolvons par rapport a «; il vient:

! — AP .
O e —_ (4.10)
2728Y1—A Vp,pr
En introduisant les parametres sans dimensions
2 - 4 52 TR
5% =b—j-Sp, et 62=—]/@, (4.11)
/4 1 12 g
On peut mettre la formule (4.10) sous sa forme finale:
— fm26* 1
N (R (4.12)

IR R T

Les formules (4.9) et (4.12) permettent, une fois qu’est connue la valeur 4,
de déterminer les valeurs corrigées des parameétres «' et 6" et d’en déduire les
lignes d’influence de K. des tables de K et K; par la relation connue:

f7

B Bt (R =K Ve
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Le probleme se réduit donc a la détermination de la valeur de 4. On peut
dire, & ce sujet, que 4 est une valeur, variable entre 0 et 1, fonction des carac-
téristiques géométriques et statiques du pont examiné: on peut alors choisir
comme parametre représentatif de A, le rapport 6/5. La figure (4.1) montre
les courbes A4 («') obtenues par le calcul pour différentes valeurs du rapport
0/6 et pour «=1.

100 A
0/5 = 0200 L
\ o 0/6 Z03 V

080 N2

EANNG e

Iy, \ LZ /

=, g

060 N\ 9'6/

0,40 A
' N
0,20 \
L 020 040 0,60 080 100 1.20 140 160 180 a

Fig. 4.1.

En examinant ces courbes, on note que, pour chacune d’entre elles, il
correspond a une valeur déterminée de «’ deux valeurs différentes de 4, donc
de 8', sauf si 'on adopte pour 4 la valeur qui correspond au minimum de o'

Or, si pour un rapport 6/6 donné, on exige d’avoir des valeurs correspon-
dantes o’ et ', univoquement déterminées, il faut choisir sur la courbe 4 (&),
une valeur de o' qui définisse univoquement A4 et par conséquent 6°. Il est
donc naturel de poser que la valeur optimale de 4 est celle qui rend «" mini-
mum. Pour justifier cette hypothese., on peut noter en outre qu’elle conduit
a des valeurs correctes de «" et 8’ dans les deux cas limites, c¢’est-a-dire:

1. Déformabilité par cisaillement négligeable, c’est-a-dire & trés petit. Dans
ce cas, 0/0 est trés grand et la méthode GUYON-MASSONNET donne:

hilt— ol e =)
Effectivement, la courbe 4 =f(«’) est tout entiére a droite du point 4 =0,
o =, de gorte que 4, =0
Tres grande déformabilité au cisaillement c’est-a-dire 6 tres grand. Dans
ce cas, 0/5 est tres petit et 1'on doit avoir, d’apres le par. 1.3

o

/4

o= OEVR0E—ee

ce qui correspond bien au minimum de la courbe 6/6=0 (fig. 4.1), qui a
lieu pour 4 =1.

A partir de ces valeurs de 4 qui rendent minimum ', on a construit le
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diagramme ' (6/3) représenté a la figure 4.2, qui permet, dés que le rapport
6/8 est connu, de déterminer la valeur de «'.

En procédant de la méme facon, on a construit le diagramme figure 4.3,
4;—1—; en fonction du rapport 6/5, qui permet, une fois que
yl1—A4
les valeurs /8 sont connues, de déterminer 6.

En définitive, pour tenir compte de facon approchée de la déformation

transversale additionnelle due aux efforts tranchants 7, . il faut:

de I'expression -

I. Caleuler les rigidités du pont p,. pg. y, +ve et S.

o

. Calculer les parameétres de référence

pa _ Ak
0 = 71/2]’7‘; a = —Vf',lf"—; & = "—l-) VSp,- (4.13)
2 Vpp Pr B

3. Déduire du rapport 6/3 la valeur o’ par la courbe o' (6/5) qui, pour a=1,
est donnée a la figure 4.2.

1,00 5
a' 1
Vi-a 8'= 0 =
1-A
080 4
|
060 / 3
i / - \\
020 1 \
010 020 030 040 6/ 010 020 030 040 8%
ni 5 NEE
Fig. 4.2. Fig. 4.3.

4. Déduire du rapport 8/5 la valeur de 1’expression 4; qui, pour «=1, est

donnée a la figure 4.3, puis déduire par (4.9) la valeur de 6".

5. Déduire les lignes d’'influence de K .. des tables K et K,, comme d’habitude,
par la relation connue

B = Ko € = Kghker,

On peut noter que, pour des valeurs du rapport /6 plus grandes que 0,32,
les valeurs de « et # ne subissent aucune correction.

Pour les ponts ayant ces valeurs du rapport 8/3, la méthode Guyon-Masson-
net reste valable sans correction.
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1.5. Exemple numérique

Soit un pont (26=27m, [=20m), composé de 18 poutres en béton pré-
contraint de sections définies par la figure (5.1) (mesures en cm); on trouve:
26 = (w+1)b; = 18-1.50.=27'm,
pp =1, =110-370 cm*/cm,
pr = Lz = 98-200 cm?*/cm,

b4 for 13,54 /TT0370
ISR 6 e YRS 2 - = 0696
d’ou > l/pE 20 ]/ 98200

0

10

o

ol ™

g °
\
|

b e T
2 150,

|
TR

Le pont formant une dalle cellulaire, on peut admettre que le paramétre
de torsion « vaut approximativement 1 unité.
La formule (1.6) donne, pour une tranche de un centimétre
32,25
E ’

S =

d’ott par la formule (4.13),

T w21350}/32.25
= / i e e ) b Yo — 6.3
8= VSp, T 0,370 £ = 6,3

On obtient alors:
0,696

6,300

= 0.111.

0
5

Par la courbe de la figure 4.2, on obtient o’ =0,476, puis par la courbe de la
figure 4.3, 8’ =1,40.

Chapitre 2

Vérification de la théorie par un essai sur modéle

2.1. Description du modéle

Un modele en plexiglas du pont examiné dans l’exemple numérique ci-
avant a été construit et chargé au laboratoire de Résistance des Matériaux de
1’Université de Liege.

Les dimensions du modele en mm sont: 810 x 603 x 45.
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Les 4mes au nombre de 18 ont 3 mm d’épaisseur et 39 mm de hauteur;
elles sont collées aux deux plaques inférieure et supérieure de 3 mm d’épaisseur.
Deux entretoises de 3 mm d’épaisseur et 39 mm de hauteur sont collées sur
les Ames et les plaques aux endroits des appuis. La photographie fig. 2.1 donne
une vue du modele, de ses appuis et des comparateurs utilisés pour mesurer
ses déformations.

2.2. Appareils de mesure

Neuf comparateurs au micron ont été placés au milieu du pont & des dis-
tances de 0, +1/,b, +1/,b, +3/,b, +b du centre 0.

Dix-huit comparateurs au micron ont été placés a des distances égales sur
les appuis.

Neuf fleximétres a jauges de contrainte, placés au milieu du pont et reliés
a un appareil «Data-logger» [12], ont permis d’effectuer des mesures instan-
tanées. La photographie fig. 2.2 donne une vue d’ensemble du «Data Logger»
avec I'imprimante I.B.M. On a pu ainsi mesurer les déplacements au moment
de la mise en charge et suivre leur évolution dans le temps sous charge cons-
tante, en effectuant des lectures toutes les cinq minutes.

On a pu constater qu’au bout d’une demi-heure, il n’y avait plus de fluage
observable et que les déplacements correspondant a des charges différentes
vérifiaient la loi de Hooke.

Ceci établi, nous avons effectué systématiquement les lectures aux com-
parateurs une demi heure apres la mise en charge et la décharge.

2.3. Charges

Les charges nécessaires pour évaluer les déplacements w, ont été appliquées
directement par des poids disposés en lignes de charge sinusoidale a des dis-
tances de 0, +1/,b, +1/,b, +3/,b, de ’axe longitudinal, du modele. Les onze
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charges totalisant un poids de 73,814 kg, ont été calculées pour étre égales
aux aires partielles comprises entre la sinusoide et des ordonnées équidistantes;
elles ont été (fig. 2.3) pendues au modeéle par I’intermédiaire de crochets fixés
par collage a la plaque inférieure (fig. 2.4).

Le déplacement Wj,,,,., au milieu du pont, di & une charge P = 73,814 kg
distribuée selon une surface a directrice sinusoidale et & génératrices recti-
lignes, a été évalué, et en appliquant une charge de ce type, et en mesurant
expérimentalement la valeur du module #£/.

La figure 2.5 montre la ligne d’'influence du coefficient K pour la poutre 0,
obtenue expérimentalement (courbe @), en appliquant la méthode proposée

-b 34b -pb b 0 Kb egb  aYb ® -b -3b -lpb -l4kb 0  +lkb  +lhb +3b  +b
0 0 0
Ny | e PR | [P

a e N d b/ 2
: NN /. ! : N\ A
w\_/ w\_ % T
2 k % 2 2 ; 2
Y\b %
3 a 3 3 3
a
4 \ 4 4 ] / 4
5 5 5 / 5
6 d 3 6 L 6
Fig. 2.5. Fig. 2.6.

a) courbe expérimentale, b) méthode proposée, ¢) méthode Guyon-Massonnet, d) pont
extrémement déformable par cisaillement.
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o

(2'=0,476, ' =1,40; courbe b) en appliquant la méthode Guyon-Massonnet
(x=1, #=0,696; courbe c¢) et en appliquant la théorie développée au para-

graphe 1.3 (courbe d).

-b -Y%b -lb -Yb 0 +lub +lpb +Yb +b
0 0

F— 1

"\\ \'
~INN| |

Fig. 2.7.

Fig. 2.9. a)—d) voir fig. 2.5.

b -%b -l/Ab -Wub 0 sub  +Vab %D obo
0
< | E\\‘b\ d e
\\\
1 \ k\ 1
2 k c 2
3 \ “/ 3
\Y b
4 4
\ d
5 5
6 \ 6
7 Y 7
Fig. 2.8.
-b -¥%b -¥4b -Vib 0O b sVab b b
0 0
~—
“—c-ﬁ'\ 2 | B\N\d
\\§
1 1
N
2 \‘ 2
: \\\ :
4 \\ 4
5 \ 5
6 \\\ 6
7 7
d b\
8 8
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Les figures 2.6, 2.7, 2.8, 2.9 montrent les mémes lignes d’influence réspec-
tivement pour les poutres +1/,b, +1/5b, +3/,b, +5b3).

Le tableau I donne les valeurs de K (e, ) pour e et » variables, obtenues
expérimentalement.

Tableaw I. Valeurs expérimentales du Excentricité de la  Charge

Yoy e o Position 3b b b b b b
coefficient de répartition K poure] = |- |- |-% [ 0 [+& |3 [+% ]|
0 0,251 | 0349|0600 | 1336 | 3047|1336 | 0600 0349|0251
1,2 0,128 | 0167 | 0,269( 0525| 1336 | 3002 | 1434 | 0749 | 0,582

1,0 0058 | 0080 [0,142 | 0,269] 0,600( 1,434 | 3248 1,605 | 1,181
3,5 0036 [ 0053[0,080] 0167 | 0,343 0,749 1,605 | 3535] 2720
b [0020]0036] 0058/ 0128 | 0,251 | 0,592 1,181 [ 2,720] 70986

Le tableau Il donne les valeurs correspondantes de K obtenues en appli-
quant la méthode Guyon-Massonnet (=1, §=0,696).

Tableaw 11. Valeurs du coefficient de Excentricité de la Charge

répartition K pour =1, §=0,696. poutre] b [ -2 -2 | o L

0 |07113 |08341|0,99271)715 | 1274511715 | 0,9927| 0,8341| 07113
14, 04847 | 05935| 07431[09442[ 11715 [13267] 12799/ 11586 | 10476
Y5 03381)04292[0,5570] 07431 0992712799 15088 | 15501 | 15241

34,5 (02453 [0,3210[0,4292 0,5935| 08341 11586 | 15501] 19234] 2)587
Lb 01814 | 0,2453| 0,3381| 0,4847| 07113 | 10476 | 1,5241( 2)587] 29230

Le tableau IIT donne les mémes valeurs de K obtenues en appliquant la
théorie développée au paragraphe 1.3.

Tableaw I11. Valeurs du coefficient de ré- Excentricite de la Charge

S Poslti
partition K pour les ponts extrémement poutre]=b |- -5 |- 1 T
déformables au cisaillement 0 00236

0,0560| 0,2700| 1,3034 | 6300 | 13034 | 0,2700| 0,0560| 00236
14, 100047 {00120 0,0560{02700 | 1,3034[ 6,300 | 13053 | 0,2814 | 0,120
1, b |00014 |00025[00M5 [00560| 0,2700[13053 [6,3115 | 1,3601 [ 0,5399
3,5 |00003[00018[00025/ 00120 | 0,0560 02814 |1,3601 | 65699 260689
b 0 [00003]0,0014]00047|0,0236] 0,120 | 05389 |2069]12600

Le tableau IV enfin, donne les valeurs obtenues par la méthode proposée.

Tableaw IV. Valeurs du coefficient de = Excentricité de la Charge
répartition K pour o« =0,476, ' = 1,40 Roslion T D LD D | DR R )

poutre | ~ 08 | R | S (0] +—4— 4_2_. 7

0 [-0,0130 |02571 (07757 | 17305 |25013 {17305 | 07757 02571 00130
4,® | 00038 (00653 | 02529 [07569 [17305 [25324 | 17670 | 08057 | 01375
¥%" | 00226 | 00186 [00620[0,2529|07757 17670 | 26420| 19341 | 08950
%0 0024000154 | 60186 | 00653|0,2571 |0,8057 [ 19341 | 32279] 33514
b [00211 [00240] 0022600038 00130 |0,1375 | 0,3950[33514] 79028

+b

%) La ligne d’influence expérimentale du coefficient K, pour la poutre +b, a été obtenue
en tenant compte du théoreme de Betti et de la relation

b
1 ~
EJK (e, ) dy = 1.
—b
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Compte tenu de ce que les valeurs S et p, ne sont pas évaluées expéri-
mentalement, on peut noter une bonne correspondance entre les résultats
expérimentaux (tableau I) et les valeurs de K qui sont proposées (tableau 1V),
correspondance qui est loin d’étre vérifiée, dans ce cas particulier, par les valeurs
obtenues (tableau II) par la méthode classique de Guyon-Massonnet.
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Résumé

Les auteurs analysent le cas des ponts a structure cellulaire et tels que la
déformation des entretoises par cisaillement n’est pas négligeable.

Ils montrent que la généralisation rigoureuse des ponts & poutres multiples,
en tenant compte de la déformation par cisaillement, conduit a des calculs
laborieux.

Ils présentent une théorie approchée qui a ’avantage d utiliser les tables
existantes de la méthode Guyon-Massonnet en corrigeant simplement les
valeurs des parametres caractéristiques o« et 6.

Un essai sur modele en plexiglas, réalisé par les auteurs, montre que les
résultats expérimentaux sont en accord satisfaisant avec la théorie approchée
en question.
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Zusammenfassung

Die Verfasser untersuchen Briicken in Zellenbauart und solche, deren Quer-
trigerverformung infolge Schub nicht vernachlissighar ist.

Sie zeigen, dall die strenge Verallgemeinerung von Mehrbalkenbriicken
unter Beriicksichtigung der Schubkriifte zu aufwendigen Rechnungen fiihrt.

Die Verfasser geben eine Niherungsberechnung, bei der die vorhandenen
Tabellen der Methode Guyon-Massonnet Verwendung finden, sofern die
charakteristischen Parameter « und 6 berichtigt werden.

Ein von den Verfassern an einem Plexiglasmodell durchgefiihrter Versuch
hat gezeigt, daBl die Versuchsergebnisse mit der betreffenden Niherungs-
berechnung hinreichend iibereinstimmen.

Summary

The authors analyse the case of bridges having a cellular structure and
such that deformation of the cross-members due to shear is not negligible.

They demonstrate that the strict generalisation of multi-girder bridges,
taking into account deformation due to shear, leads to laborious calculations.

They present an approximate theory which has the advantage of making
use of the existing tables of the Guyon-Massonnet method by merely correcting
the values of the characteristic parameters « and 6.

A test on a perspex model, carried out by the authors, shows that the
experimental results are in satisfactory agreement with the approximate
theory in question.
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