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Zur praktischen Kippberechnung von I-Trägern, belastet durch

Endmomente, Streckenlast und Axialkraft

Practical Calculation of the Lateral Instability of I Beams Subjected

to Terminal Moments, Distributed Load and Axial Load

Sur le calcul pratique de la stabilite des poutres en 1 soumises ä des moments

appliques aux extrimitis, ä des charges lineaires et ä des efforts axiaux

W. LOOS H.-E. GOEBEN H.-W. FRANKE

Dr.-Ing. Dipl.-Ing. Dipl.-Ing.
Hochschule für Bauwesen Leipzig

1. Problemstellung

Im folgenden wird ein Näherungsverfahren zur praktischen Kippberechnung
doppelsymmetrischer I-Träger, belastet durch ungleiche Endmomente,
Gleichstreckenlast und Axialdruckkraft, angegeben. Dieses Problem tritt beispielsweise

beim Nachweis der seitlichen Stabilität von Rahmentragwerken und
durchlaufenden Trägern auf.

Seine Lösung bereitet keineprinzipiellenSchwierigkeiten. So geben Chwalla
[1] und davon ausgehend Witte [2] eine Lösung mit der Energiemethode an.
Der eingliedrige Ansatz liefert die Beziehungen nach [3]. Wechseln die Endmomente

das Vorzeichen, ist ein zweigliedriger und für bestimmte Belastungsver-
hältm||se sogar ein dreigliedriger Ansatz notwendig, um einigermassen genaue
Ergebnisse zu erhalten. Damit wächst aber der Aufwand in einem Maße, daß

er in keinem Verhältnis mehr zum zu lösenden Problem steht.
Man erhält ein relativ einfaches Näherungsverfahren, wenn man Momenten-

und Axialdruckbelastung getrennt behandelt und anschließend überlagert.
Diese Methode wurde für das vorhegende Problem erstmalig von Stüssi [4]

gezeigt. Er behandelt die Lastfälle «M (z) const», «Einzellast in Feldmitte» und

«Einseitiges Randmoment». Salvadobi [5] löste den Lastfall «Ungleiche
Randmomente» (s. a. Bürgebmeistek-Steup [6]). Die Druckkraft ist dabei stets
konstant über die Trägerlänge.
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Die vorhegende Arbeit benutzt die gleiche Methode und stellt damit im
Prinzip eine Erweiterung des Verfahrens von Salvadori dar.

2. Voraussetzungen

Es gelten die gewöhnlichen Annahmen der klassischen Kipptheorie

Gabellagerung beider Stabenden,
Belastung nach Fig. 1 (richtungstreu).

3. Bezeichnungen

By
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Byk2;
C~NKii2;
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Querbiegesteifigkeit;
St. Venantsche Drillsteifigkeit;
Wölbsteifigkeit;
Abstand Lastangriffspunkt-Schubmittelpunkt
(s. Fig. 2; Vorzeichen beachten!);

Koeffizienten nach Fig. 3, 4, 5;
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4. Allgemeine Grundlagen
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Fig. 1. Belastungsbild des untersuchten einfeldrigen doppeltsyrnrnetrischenäpTrägers
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Bei Erreichen der Stabilitätsgrenze weist der Träger nach Fig. 1 folgenden
Verformungszustand an der Stelle z auf:

Pyu)=p(Z]

M,lz)=-M(z
S=M

K(z)

/ + »(2

Fig. 2. Querschnitt des ausgekippten Trägers an der Stelle z.

Die beiden gekoppelten Differentialgleichungen für das Kräftegleichgewicht
am verformten System lauten:

Byr -N£"-(M<p)", (1)

Dcp""-Ccp" -Ni2pcp''-MZ"-pyAcp. (2)

Eine exakte Lösung ist möglich für den Fall M(z) const («Biegedrill-
knicken planmäßig außermittig gedrückter Stäbe»).

Bei der Wahl eines Näherungsverfahrens ist zu beachten, daß im allgemeinen

Belastungsfall nach Fig. 1 die Eigenfunktionen £ und <p über die Trägerlänge

l recht ungleichmäßig verlaufen. Bei Annäherung durch Reihenansätze
sind eine größere Anzahl von Gliedern, bei einem Differenzenverfahren eine

enge Intervallteilung notwendig. Dabei soll aber das Ergebnis in allgemeiner
und möglichst einfacher Form erhalten werden.

Für die Lösung des Problems ist deshalb die Anwendung eines energetischen
Verfahrens, beispielsweise nach Ritz oder Galerkin (siehe Witte [2]; beide
Verfahren stellen für den vorliegenden Fall nur verschiedene Schreibweisen dar
und Hefern die gleichen Ergebnisse), sinnvoll.

Nähert man sowohl £ als auch cp an durch die Reihe

f(z) 2>isin
TTlZ

TT' (3)

so erhält man als StabiHtätskriterium für den eingliedrigen Ansatz (s. [2])

DK

C+^D-Ni2p
l2 ¦äj

TT2By-Nl2

(4)
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und für den zweigliedrigen Ansatz

DK

C+^-D-Ni2
l2

+ PVA-2
TT

0 l(^+S) t),12l(M-L-M2)

4C+16^Z»

l2
-4Nip+pyA^

7T

0,181 (M1-M2) 2?K + ^+5%)

TT2By-Nl2 0

lßTT2By-4:Nl2

0. (5)

Die Anwendbarkeit des eingliedrigen Ansatzes bleibt bis auf wenige
Ausnahmen beschränkt auf den Fall, daß das Vorzeichen der Biegemomente M (z)
über die Trägerlänge nicht wechselt. Für bestimmte Belastungsverhältnisse —
die Maxima der Kurven in Fig. 3 — entstehen auch beim zweigliedrigen Ansatz
größere Fehler (ca. 30%; die entsprechenden Folgerungen Wittes [2] sind nicht
richtig). Da die Energieverfahren stets zu hohe kritische Werte hefern, ist also
einer allgemeingültigen Lösung mindestens der dreigliedrige Ansatz zugrunde
zu legen. Der Aufwand wird damit unefgräglich. hoch.

Die Rechnung vereinfacht sich beträchtlich, wenn man die Axialkraft N
zunächst außer acht läßt, d. h. das Problem für N 0 löst und anschließend die
Lösung gemäß dem jeweils vorliegenden Einfluß von N korrigiert. Dieses
Verfahren wird auch der Tatsache gerecht, daß in vielen Fällen N tatsächlich gleich
Null ist. Das gilt zum Beispiel oft für Durchlaufttäger.

5. Lastfall A. Mi, M2, py nach Fig. 1, N=0

Um eine einfache Näherungslösung für diesen Fall zu finden, soll ein Weg
beschritten werden, wie er im Prinzip von Stüssi [4], Salvadori [5] u. a. schon
gezeigt wurde.

Zunächst wird angenommen, daß der Querschnitt wölbfrei und die Lastausmitte

yA 0 sind.
Die exakte Lösung der sich aus (1) und (2) ergebenden Differentialgleichung

M2si it¦Gcp =-r-<pBv
(6)
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lautet für M (z) const

MKi J-iByC. (7)

Diese Beziehung bleibt exakt allgemeingültig, wenn man für tt einen nur vom
Lastfall, d. h. vom Verlauf der Funktion M (z) über die Länge l, abhängigen
Koeffizienten kx einführt.

*iM2iKi=^/ByC.i) (8)

Die Genauigkeit dieser Formel hängt also nur von der Genauigkeit des Wertes

ä^ ab. Ein dreigliedriger Ritz-Ansatz ergab in Abhängigkeit von den

Belastungsparametern die Aj-Werte nach Fig. 3.

oy

.JL

9,0

mm

1*1,0

s-- + p

-0,6 -0,2 +0,2 +0,4

Fig. 3. Koeffizienten kx.

Für nicht wölbfreie Querschnitte lautet die Differentialgleichung
M2

Dcp -Ccp =-b-<Bv

und ihre Lösung für M (z) const ist

(9)

(10)

x) Die Berechnung des kritischen Belastungszustandes wird willkürlich auf Mz bezogen.
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Cl2
mit a2 —=r- (11)

4(772
und für das I-Profil a2

R 2. (12)

Eine Verallgemeinerung der Gleichung (10) für M (z) 4= const ist in ähnlicher
Weise möglich, wie das für wölbfreie Querschnitte gezeigt wurde: Für tt2 in der
rechten Wurzel wird ein lastfallabhängiger Koeffizient k eingeführt (s. [4]).
Diese Lösung ist nicht mehr allgemeingültig, sondern hängt ab vom Anteil der
Wölbsteifigkeit an der Gesamtdrillsteifigkeit des Trägers. Der entsprechende
Koeffizient k wächst mit steigenden Werten a2. Die möglichen Fehler sind
jedoch unbedeutend, wenn man der Ermittlung dieser Koeffizienten ein
sinnvolles a2 zugrunde legt. Zum Beispiel ergibt sich für den Belastungfall r — 1,

s 0 und a2 l folgendes Bild (s. a. [5])

(13)

Es wäre also möglich, den Einfluß der Wölbsteifigkeit auf die Größe des
kritischen Momentes MKi in gleicher Weise lastfallabhängig darzustellen, wie das

mit dem Koeffizienten kx in Fig. 3 geschehen ist. Um die praktische Berechnung
jedoch möglichst weitgehend zu vereinfachen, soll darauf verzichtet und für
alle Lastfälle k n2 gesetzt werden. Der dabei begangene Fehler ist relativ
gering. Er beträgt z.B. für s 0 maximal 10% und liegt auf der sicheren Seite.

Für M (z) 4= const gilt also die Beziehung

*M2iKi [%]
a2= 1 4-0

10 4-2,5
100 4-2,9

M2iKi ^{ByV^l+£. (14)

Eine exakte Lösung der Differentialgleichung (9) mit yA=¥0

IM2 \
D9"''-Ccp" \^--pyAjcP (15)

für einen praktisch realisierbaren Lastfall existiert nicht. Exakt lösbar ist die

Differentialgleichung (15) nur für den fiktiven Fall M (z) const, p(z) const.
Es ergibt sich dann mit

M =-^t-p, (16)2k/
MKi=^ByyA + i^ByyAJ + ^Byc{l+^. (17)

Analog dem Vorangegangenen kann auch diese Lösung auf M (z) 4= const
erweitert werden. Mit Gleichung (14) ergibt sich
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M, kiByyA + mByyA)\%B (18),72 V VA\ • 72

Da die beiden Belastungsanteile in (15) verschiedene Funktionen von z

darstellen, wird der Verlauf der Eigenfunktion 9 über die Länge l auch vom
Verhältnis dieser beiden Werte zueinander, letztlich also vom Verhältnis der Drill-
steifigkeit des Trägers zu seiner Querbiegesteifigkeit und von der Größe der
Ausmitte yA bestimmt.

Damit ist k2 außer von den beiden Belastungsparametern r und s noch von
einem dritten Freiwert abhängig.

Im vorliegenden Fall, bei gleichmäßig verteilter Streckenlast, sind beide

Belastungsanteile stetige Funktionen über die Trägerlänge. Dadurch wird der

obengenannte Einfluß relativ klein. Es genügt deshalb, die Koeffizienten k2 nur
in Abhängigkeit von den Verhältnissen r und 5 unter Zugrundelegung eines

bestimmten Trägers und einer bestimmten Ausmitte yA zu ermitteln. Für die
Berechnung der Koeffizienten k2 nach Fig. 4 wird gewählt:

130 (TGL 0-1025), 1 6,0 m, yA - 15 cm,

By 9,47-105Mpcm2,
C 4,94-10*Mpcm2, (19)
D =0(!).

Eine willkürliehe Annahme D 0 vereinfacht die Berechnung der
Koeffizienten k2. Die Wölbsteifigkeit hat geringen Einfluß auf diese Werte. Außerdem
nehmen die Fehler mit zunehmender Wölbsteifigkeit ab.

200 200

oo00

zzs

z
20

m ^

S I

-0,6 -0,2 +0,2 +0,6

Fig. 4. Koeffizienten kz.
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Die nach (19) errechneten Werte k2 liefern bei einer Änderung der
Querschnittsparameter und der Lastausmitte folgende Fehler:

a) Beispiel nach (19), jedoch verschiedene Werte yA:

(20)

Va [°m] k2 M2,Ki[°/o\
-35 11,48 -1,0
-25 11,33 -0,4
-15 11,14 0

4-15 10,43 -1,0
4-25 10,17 -2,3
4-35 9,90 -3,9

jedoch verschiedene Werte By:

[Mpcm2] K M2,Kd%1
9,47-IO5 11,14 0

19,94-IO5 11,26 -0,2

Eine Anwendung dieses Verfahrens auf unstetige Querbelastung (z. B.
Einzellast in Feldmitte) ist in der angegebenen Weise nur für kleine Ausmitten noch
möglich (s. a. [7]).

6. Lastfall B. Mi, M2, py, N nach Fig. 1

Die exakte Lösung der Differentialgleichungen (1) und (2) für den fiktiven
Lastfall M (z) const, p (z) const, N 0 führte auf die Gleichung (17).
Entsprechend ergibt sich für N =j= 0

mit

^(W^-ßMBSM (21)

— I2
BV By~-^Ki^~2'

TT
(22)

0~* =0-NKii%, (23)

c*ä*2 a2—^-.
0

(24)

Man kann also das Kipp-Problem eines Trägers bei Biegung mit Längskraft
als ein Kipp-Problem ohne Längskraft auffassen, wenn die Trägersteifigkeiten
durch die Längskraft entsprechend abgemindert werden.

Für einen allgemeinen Lastfall nach Fig. 1 ergibt sich analog Lastfall A

M2,Ei ^B*yA + j^BZyAy + %B*C*(l +-^, (25)
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Fig. 5. Koeffizienten fcs.
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mit B*=Byk2, (26)

C* =Cki} (27)

C*
a*2 a2—-. (28)

C

In Fig. 5 sind die Koeffizienten k3 dargestellt in Abhängigkeit vom Lastfall,
d. h. von den Verhältnissen r und s und von

l2 l2
t Ki7T,iß vKi-Nvorh 2ß - (29)

Sie sind praktisch exakt für yA 0 und wölbfreie Querschnitte. Daran
ändert eine Wölbbehinderung entsprechend den vorangegangenen Betrachtungen
nichts Wesentliches. Auf eine Untersuchung, inwieweit die Koeffizienten k3

abhängig sind von der Größe der Ausmitte yA, kann verzichtet werden. Dieser
Einfluß ist sehr gering. Das kann man schon daraus ersehen, daß die Kurven in
Fig. 5 in relativ geringem Maße von der Art des Lastfalles abhängig sind.
Errechnet wurden die Werte nach Fig. 5 mit einem zweigliedrigen Ansatz für das

Beispiel (19).
Der «Einfluß des Drillknickens» auf MKi ist in den meisten praktischen

Fällen klein. Die Werte &4 werden deshalb unabhängig vom Lastfall bestimmt
und ergeben sich zu

hlMMm§> (30)

das heißt, C* kann nach Gleichung (23) ermittelt werden.
Treten M und N in kombinierter Form auf (z. B. exzentrischer Angriff der

Längskraft), so muß die kritische Last durch Iteration gewonnen werden. Die
Berechnung des kritischen Momentes M2Ki wird dabei, ausgehend von einem
geschätzten Anfangswert NKi, so oft wiederholt, bis das der Rechnung als Festwert

zugrunde liegende Verhältnis M2Ki/NKi erreicht ist. Mit Hilfe bekannter
Iterationsverbesserungen (siehe z. B. [8]) erhält man in der Regel nach einer
Wiederholung der Berechnung bereits ausreichend genaue Ergebnisse.
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Zusammenfassung

Untersucht wird das Problem der Kippstabüität doppeltsymmetrischer,
gabelgelagerter I-Träger, die durch ungleiche Endmomente, Gleichstreckenlast

und axiale Druckkraft belastet sind.
Eine Lösung mit der Energiemethode und einem Sinusreihenansatz für die

Eigenfunktion ist für die praktische Berechnung zu aufwendig, da für den
allgemeinen Belastungsfall mindestens drei Reihenglieder berücksichtigt werden

müssen.
Mit relativ geringem Aufwand und guter Näherung kann die kritische Last

aus einer Beziehung ermittelt werden, die sich durch Einführung lastfallab-

hängiger Koeffizienten aus der exakten Lösung des Problems für Mx (z) const,

N 0 ergibt. Bei Vorhandensein einer Axialkraft werden nur die Trägersteifig-
keiten By und C in der Lösung für N 0, dem Einfluß der Axialkraft beim

jeweiligen Lastfall entsprechend, abgemindert.

Summary

The problem of the lateral instabihty of doübly-symmetrical I beams with
fork bearings and which are subject to unequal terminal moments, uniform
distributed load and axial pressure is considered.

A Solution using the energy method and a sine series formula for the characteristic

function is too expensive for practical calculation purposes, since at
Mast three series elements must be considered for the general type of loading.

A satisfactory approximation of the critical load can be made relatively
cheaply by using an equation obtained by inserting coefficients, which are a
function of the type of loading, from the precise Solution of the problem
when Mx (z) const and N 0. Where an axil load exists, only the beam
rigidities By and C in the Solution where N 0 are reduced in accordance with the
effect of the axial load of the relevant type of loading.

Resume

Le probleme etudie est celui de la stabilite laterale des poutres en I ä double

symetrie reposant sur des fourches, soumises ä des moments inegaux aux
extremites, ä des charges uniformement reparties et ä des compressions axiales.
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La methode de l'energie et le d6veloppement de la fonction propre en une
serie de sinus representent un procede trop laborieux dans la pratique, etant
donne que, dans un cas de charge general, il faut retenir au moins trois termes
du developpement en serie.

On peut d6terminer la charge critique avec une bonne precision et d'une
maniere relativement simple en partant d'une relation qui s'etablit ä partir de
la Solution particuhere exacte correspondant ä Mx (z) cste et N=0 en
introduisant des coefficients caracterisant l'etat de charge. En presence d'un effort
axial, seules sont röduites, conformement k 1 'influence de 1'effort axial pour chaque

6tat de charge, les rigidites By et C de la poutre intervenant dans la Solution

correspondant k N 0.
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