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Zur praktischen Kippberechnung von I-Trigern, belastet durch
Endmomente, Streckenlast und Axialkraft

Practical Calculation of the Lateral Instability of T Beams Subjected
to Terminal Moments, Distributed Load and Axial Load

Sur le caleul pratique de la stabilité des poutres en T sowmises a des moments
appliqués aux extrémités, & des charges linéaires et & des efforts azviaux

W. LOOS H.-E. GOEBEN H.-W. FRANKE
Dr.-Ing. Dipl.-Ing. Dipl.-Ing.
Hochschule fiir Bauwesen Leipzig

1. Problemstellung

Im folgenden wird ein Néherungsverfahren zur praktischen Kippberechnung
doppelsymmetrischer I-Triger, belastet durch ungleiche Endmomente, Gleich-
streckenlast und Axialdruckkraft, angegeben. Dieses Problem tritt beispiels-
weise beim Nachweis der seitlichen Stabilitit von Rahmentragwerken und
durchlaufenden Trégern auf.

Seine Losung bereitet keine prinzipiellen Schwierigkeiten. So geben CHWALLA
[1] und davon ausgehend WirTE [2] eine Losung mit der Energiemethode an.
Der eingliedrige Ansatz liefert die Beziehungen nach [3]. Wechseln die Endmo-
mente das Vorzeichen, ist ein zweigliedriger und fiir bestimmte Belastungsver-
héltnisse sogar ein dreigliedriger Ansatz notwendig, um einigermassen genaue
Ergebnisse zu erhalten. Damit wéchst aber der Aufwand in einem Mafle, dal}
er in keinem Verhiltnis mehr zum zu lésenden Problem steht.

Man erhiilt ein relativ einfaches Naherungsverfahren, wenn man Momenten-
und Axialdruckbelastung getrennt behandelt und anschlieBend iiberlagert.
Diese Methode wurde fiir das vorliegende Problem erstmalig von StUsst [4] ge-
zeigt. Er behandelt die Lastfille « M (z) = const», «Einzellast in Feldmitte» und
«Einseitiges Randmoment». SALVADORI [5] 16ste den Lastfall «Ungleiche Rand-
momente» (s. a. BURGERMEISTER-STEUP [6]). Die Druckkraft ist dabei stets kon-
stant iiber die Trégerldnge.
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Die vorliegende Arbeit benutzt die gleiche Methode und stellt damit im
Prinzip eine Erweiterung des Verfahrens von Sarnvaporr dar.

2. Voraussetzungen

Es gelten die gewohnlichen Annahmen der klassischen Kipptheorie

Gabellagerung beider Stabenden,
Belastung nach Fig. 1 (richtungstreu).

3. Bezeichnungen

L .2 .
Bi = B, k3;
Yisjel it AT DS
C = O_.L\/ Ki ?/]7’

B, =K1, Querbiegesteifigkeit;
O =Gy St. Venantsche Drillsteifigkeit;
0= T S5 Wélbsteifigkeit;
Y4 Abstand Lastangriffspunkt-Schubmittelpunkt
(s. Fig. 2; Vorzeichen beachten!);
Fpde 0
PR
Iey5 16 5 ¥4 Koeffizienten nach Fig. 3, 4, 5;
e
=
5 M i
e
[2
=l alY 'vorhwg—gy;
Vi ideelle Sicherheit.
4. Allgemeine Grundlagen
WU T T p(2) = const.
37 )
N—=M,( r—— IMe=—N
l
Y
My | M

P
/2 J E’l“l“lll---' M 2

Fig. 1. Belastungsbild des untersuchten einfeldrigen doppeltsymmetrischen I-Trigers.
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Bei Erreichen der Stabilititsgrenze weist der Trager nach Fig. 1 folgenden
Verformungszustand an der Stelle z auf:

Ai py (2) =plz)

! +olz)

Fig. 2. Querschnitt des ausgekippten Trigers an der Stelle z.
Die beiden gekoppelten Differentialgleichungen fiir das Kriftegleichgewicht
am verformten System lauten:

Byf”” e —ATf"—(M(p)”, (1)
_D(P’”"—O(P” S *J\Ti%(p"—l1f§’l_]3y_dq)' (2)

Eine exakte Losung ist moglich fiir den Fall M (z)=const («Biegedrill-
knicken planméfBig auBermittig gedriickter Stédbe»).

Bei der Wahl eines Naherungsverfahrens ist zu beachten, daf3 im allgemei-
nen Belastungsfall nach Fig. 1 die Eigenfunktionen ¢ und ¢ {iber die Triger-
linge [ recht ungleichmafig verlaufen. Bei Anndherung durch Reihenanséitze
sind eine groBere Anzahl von Gliedern, bei einem Differenzenverfahren eine
enge Intervallteilung notwendig. Dabei soll aber das Ergebnis in allgemeiner
und moglichst einfacher Form erhalten werden.

Fiir die Losung des Problems ist deshalb die Anwendung eines energetischen
Verfahrens, beispielsweise nach Ri1z oder GALERKIN (sieche WiTTE [2]; beide
Verfahren stellen fiir den vorliegenden Fall nur verschiedene Schreibweisen dar
und liefern die gleichen Ergebnisse), sinnvoll.

Nihert man sowohl ¢ als auch ¢ an durch die Reihe

TIZ

f(@) =2 a;8n 7 (3)

so erhilt man als Stabilitiatskriterium fiir den eingliedrigen Ansatz (s. [2])

2
C’+—7§-D—Nig -
e E (ﬂ11+1V[2+f—6)
Dy = +p Yas ; g =0 (4)

b o~

| mB,-NZ&



64 W. LOOS - H.-E. GOEBEN - H.-W. FRANKE

und fiir den zweigliedrigen Ansatz

Dy =
O+ D-Nd |
2 0 | f) (M1 W j: é ) 0,721(M,— M,)
TPYa— ¥ S

—
| p e el S Yo TR it S|
| 4C+16=D | 12
| 0181(M,— M) 21(1111+1112+—5p5—6
‘—4Nifj+py:17\ :

w | |

n*B,—NI | 0

1672 B, — 4 N 2
—0. (5)

Die Anwendbarkeit des eingliedrigen Ansatzes bleibt bis auf wenige Aus-
nahmen beschrankt auf den Fall, dal} das Vorzeichen der Biegemomente M (z)
tiber die Trigerlinge nicht wechselt. Fiir bestimmte Belastungsverhiltnisse —
die Maxima der Kurven in Fig. 3 — entstehen auch beim zweigliedrigen Ansatz
groBere Fehler (ca. 30%,; die entsprechenden Folgerungen WiTTES [2] sind nicht
richtig). Da die Energieverfahren stets zu hohe kritische Werte liefern, ist also
einer allgemeingiiltigen Losung mindestens der dreigliedrige Ansatz zugrunde
zu legen. Der Aufwand wird damit unertriglich hoch.

Die Rechnung vereinfacht sich betrichtlich, wenn man die Axialkraft N
zunichst auller acht 1a6t, d. h. das Problem fiir N =0 16st und anschlieBend die
Losung gemifl dem jeweils vorliegenden Einflull von N korrigiert. Dieses Ver-
fahren wird auch der Tatsache gerecht, dafl in vielen Fillen N tatsichlich gleich
Null ist. Das gilt zum Beispiel oft fiir Durchlauftriger.

5. Lastfall A. My, M2, py nach Fig. 1, N=0

Um eine einfache Néaherungslosung fiir diesen Fall zu finden, soll ein Weg be-
schritten werden, wie er im Prinzip von STUSSI [4], SALVADORI [5] u. a. schon ge-
zeigt wurde.

Zunichst wird angenommen, dafl der Querschnitt wolbfrei und die Lastaus-
mitte y =0 sind.

Die exakte Losung der sich aus (1) und (2) ergebenden Differentialgleichung

—(Co¢" = @ (6)
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lautet fiir M (z) = const

Mg, =— VB

/B, C. (7)

y

Diese Beziehung bleibt exakt allgemeingiiltig, wenn man fiir 7 einen nur vom
Lastfall, d. h. vom Verlauf der Funktion M (z) iiber die Lidnge [/, abhéngigen
Koeffizienten k; einfiihrt.

k / f
My g = *f VB,C.%) (8)

Die Genauigkeit dieser Formel hingt also nur von der Genauigkeit des Wer-
tes &, ab. Ein dreigliedriger Ritz-Ansatz ergab in Abhdngigkeit von den Bela-
stungsparametern die &,-Werte nach Fig. 3.

20 20
ki Ky
10 > / /,<\/ 10
,OV 0‘0 Bl / / \\ /
8 ) % "‘01 g5 / \( P
o A ) L
6 % z/ /7\/ 6\ ”/'lfa M )\ 6
/ B{ ’/'\6 \
| L =3
G /§ = ><///><\\ E )
< L > . >%‘Q’
3 ~ : %)
/><‘>< ! '{:"‘0_5‘
I < | (g Sr“,O =d .
S53+].5 [ 5=-30
e e
C s e e
a B
L -0,6 = | +d,2 ‘ +ol,4 T

Fig. 3. Koeffizienten k.

Fiir nicht wolbfreie Querschnitte lautet die Differentialgleichung

M2
D A A Ll 5 9
" —Ceo e (9)
und ihre Losung fiir M (z) =const ist
My, =7 VB,C L+ (10)

1) Die Berechnung des kritischen Belastungszustandes wird willkirlich auf M» bezogen.
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D)
mit 1= DZ (11)
402
T DI 9
und fir das 1-Profil a B (12)

Eine Verallgemeinerung der Gleichung (10) fiir M (z) == const ist in éhnlicher
Weise moglich, wie das fiir wolbfreie Querschnitte gezeigt wurde: Fiir #2 in der
rechten Wurzel wird ein lastfallabhéngiger Koeffizient & eingefiihrt (s. [4]).
Diese Losung ist nicht mehr allgemeingiiltig, sondern hingt ab vom Anteil der
Wolbsteifigkeit an der Gesamtdrillsteifigkeit des Triagers. Der entsprechende
Koeffizient k wichst mit steigenden Werten a?. Die mdoglichen Fehler sind je-
doch unbedeutend, wenn man der Ermittlung dieser Koeffizienten ein sinn-

volles @® zugrunde legt. Zum Beispiel ergibt sich fiir den Belastungfall »= —1,
s=0 und a®*=1 folgendes Bild (s. a. [5])
AMy g [%]
Q=] 50
— 1l +2,5 (13)
— 100 +2.9

Es wire also moglich, den EinfluBl der Wolbsteifigkeit auf die Gro3e des kri-
tischen Momentes M ., in gleicher Weise lastfallabhéingig darzustellen, wie das
mit dem Koeffizienten k, in Fig. 3 geschehen ist. Um die praktische Berechnung
jedoch moglichst weitgehend zu vereinfachen, soll darauf verzichtet und fiir
alle Lastfille &k =n? gesetzt werden. Der dabei begangene Fehler ist relativ ge-
ring. Er betrigt z. B. fir s =0 maximal 109, und liegt auf der sicheren Seite.

Fiir M (z) #+const gilt also die Beziehung

ki ?
M2,Ki=TII/By0}/1+EQ_- (14)
Eine exakte Losung der Differentialgleichung (9) mit v 0
nn " ‘M2 —
De"-Co" = (B#—Py,‘l)so (15)
v

fiir einen praktisch realisierbaren Lastfall existiert nicht. Exakt 16sbar ist die
Differentialgleichung (15) nur fir den fiktiven Fall M (z) = const, p (z) = const.
Es ergibt sich dann mit

12
My, =Z—,;Byy;1+}/(l—223yy:l) + 7B, 0(1+ 7). (a7)

Analog dem Vorangegangenen kann auch diese Losung auf M (z) & const er-
weitert werden. Mit Gleichung (14) ergibt sich
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TR
*Mz,mz by ok ][(Z’B J,i) Z}B C(1+ ) (18)

Da die beiden Belastungsanteile in (15) verschiedene Funktionen von z dar-
stellen, wird der Verlauf der Eigenfunktion ¢ tiber die Linge [ auch vom Ver-
hiltnis dieser beiden Werte zueinander, letztlich also vom Verhiltnis der Drill-
steifigkeit des Trégers zu seiner Querbiegesteifigkeit und von der GréBe der
Ausmitte v, bestimmt.

Damit ist &, auBer von den beiden Belastungsparametern » und s noch von
einem dritten Freiwert abhéingig.

Im vorliegenden Fall, bei gleichmiiB3ig verteilter Streckenlast, sind beide Be-
lastungsanteile stetige Funktionen iiber die Trigerlinge. Dadurch wird der
obengenannte EinfluB} relativ klein. Es geniigt deshalb, die Koeffizienten &, nur
in Abhiingigkeit von den Verhiltnissen » und s unter Zugrundelegung eines be-
stimmten Triigers und einer bestimmten Ausmitte y , zu ermitteln. Fiir die Be-
rechnung der Koeffizienten k, nach Fig. 4 wird gewihlt:

I30(TGL 0-1025), 1=6,0m, y,=—15cm,
B, = 9,47-10° Mpcem?,
C = 4,94.10* Mpcm?, (19)
D =0().

Eine willkiirliche Annahme D=0 vereinfacht die Berechnung der Koeffi-
zienten k,. Die Wolbsteifigkeit hat geringen Einflull auf diese Werte. Aullerdem
nehmen die Fehler mit zunehmender Wolbsteifigkeit ab.

200 200
ke | L E k2
! _
100 j . — - 100
; // \S(/
—\74/ //
50 o] 50
[ ]
* BESZapas SO L Y
20 . / | 5 / SR /‘ 20
| 9%2‘ 1S i | ’ | | s
| 2 7OX 0 | : |
104= S e oot = e 10
A B T =t s
7725 24 2k 2 i\ P e ] |
e S 3 7&>(/ .
- - H |
3 :Ll_{-?»f ‘Q‘( -3:0 3
=+ :“\\—".:: 4-:"""—} ‘ ‘ o AR
2 =t | : | 2
— —— r\ | 3
| [ \N\ i
| ; ‘
i | ! - —~ |
r l ‘ | 1 | | r
= -0,6 -0,2 +0,2 FOI6 2 e

Fig. 4. Koeffizienten k.
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Die nach (19) errechneten Werte k, liefern bei einer Anderung der Quer-
schnittsparameter und der Lastausmitte folgende Fehler:

a) Beispiel nach (19). jedoch verschiedene Werte y ,:

Yalom] by Mo %)
—35 11,48 2 )
—25 11.33 —0,4
—15 11,14 0 (20)
+15 10,43 2o}
+25 10:17 o
+ 35 9.90 =900

b) Beispiel nach (19). jedoch verschiedene Werte B:

B, [Mpem?] ky My ki [%]
9,47-10% 11,14 0
19,94-10° 11,26 —0,2

Eine Anwendung dieses Verfahrens auf unstetige Querbelastung (z. B. Ein-
zellast in Feldmitte) ist in der angegebenen Weise nur fiir kleine Ausmitten noch
moglich (s. a. [7]).

6. Lastfall B. My, M3, p,, N nach Fig. 1

Die exakte Losung der Differentialgleichungen (1) und (2) fiir den fiktiven
Lastfall M (z) =const, p(z) =const, N =0 fithrte auf die Gleichung (17). Ent-
sprechend ergibt sich fiir N 40

o e o e e |
=t 12
= T
L iV Z}‘z) (23)
0
a*? = at—. (24)

Man kann also das Kipp-Problem eines Triigers bei Biegung mit Liangskraft
als ein Kipp-Problem ohne Langskraft auffassen, wenn die Trigersteifigkeiten
durch die Langskraft entsprechend abgemindert werden.

Fiir einen allgemeinen Lastfall nach Fig. 1 ergibt sich analog Lastfall A

ky s Won s = NBE el s A .
Mo,k = Bl . +]/(Z.; B y,I) g BRGH (1 o a”—) (25)
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Fig. 5. Koeffizienten k3.
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mit BY =B, k3, (26)
0% = COk,, (27)
a*? = a?—%. (28)

In Fig. 5 sind die Koeffizienten &, dargestellt in Abhiingigkeit vom Lastfall,
d. h. von den Verhéltnissen » und s und von

2 2
= ATK?IWQZB” =l l\r'z:urh;il—‘B_y' (29)
Sie sind praktisch exakt fir ¢, =0 und wolbfreie Querschnitte. Daran &n-
dert eine Wélbbehinderung entsprechend den vorangegangenen Betrachtungen
nichts Wesentliches. Auf eine Untersuchung, inwieweit die Koeffizienten #k,
abhéangig sind von der Grofle der Ausmitte . kann verzichtet werden. Dieser
Einflul} ist sehr gering. Das kann man schon daraus ersehen, daf3 die Kurven in
Fig. 5 in relativ geringem Mafe von der Art des Lastfalles abhingig sind. Er-
rechnet wurden die Werte nach Fig. 5 mit einem zweigliedrigen Ansatz fiir das
Beispiel (19).
Der «Einflull des Drillknickens» auf M ,; ist in den meisten praktischen
Fillen klein. Die Werte &, werden deshalb unabhéingig vom Lastfall bestimmt

und ergeben sich zu
y 2
g 1_Arm%, (30)
das heillt, C'* kann nach Gleichung (23) ermittelt werden.

Treten M und N in kombinierter Form auf (z. B. exzentrischer Angriff der
Langskraft), so mull die kritische Last durch Iteration gewonnen werden. Die
Berechnung des kritischen Momentes M, ,; wird dabei, ausgehend von einem
geschitzten Anfangswert N ., so oft wiederholt, bis das der Rechnung als Fest-
wert zugrunde liegende Verhéltnis M, /N x; erreicht ist. Mit Hilfe bekannter
Iterationsverbesserungen (siehe z. B. [8]) erhédlt man in der Regel nach einer
Wiederholung der Berechnung bereits ausreichend genaue Ergebnisse.
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Zusammenfassung

Untersucht wird das Problem der Kippstabilitit doppeltsymmetrischer,
gabelgelagerter I-Triger, die durch ungleiche Endmomente, Gleichstreckenlast
und axiale Druckkraft belastet sind.

Eine Losung mit der Energiemethode und einem Sinusreihenansatz fiir die
Eigenfunktion ist fiir die praktische Berechnung zu aufwendig. da fiir den allge-
meinen Belastungsfall mindestens drei Reihenglieder beriicksichtigt werden
miussen.

Mit relativ geringem Aufwand und guter Néherung kann die kritische Last
aus einer Beziehung ermittelt werden, die sich durch Einfithrung lastfallab-
hiingiger Koeffizienten aus der exakten Losung des Problems fiir M, (z) = const,
N =0 ergibt. Bei Vorhandensein einer Axialkraft werden nur die Trégersteifig-
keiten B, und C' in der Losung fir N =0, dem Einflufl der Axialkraft beim je-
weiligen Lastfall entsprechend, abgemindert.

Summary

The problem of the lateral instability of doubly-symmetrical I beams with
fork bearings and which are subject to unequal terminal moments, uniform dis-
tributed load and axial pressure is considered.

A solution using the energy method and a sine series formula for the charac-
teristic function is too expensive for practical calculation purposes, since at
least three series elements must be considered for the general type of loading.

A satisfactory approximation of the critical load can be made relatively
cheaply by using an equation obtained by inserting coefficients, which are a
function of the type of loading, from the precise solution of the problem
when M, (z) =const and N =0. Where an axil load exists, only the beam rigi-
dities B, and C in the solution where N =0 are reduced in accordance with the
effect of the axial load of the relevant type of loading.

Résumé
Le probléme étudié est celui de la stabilité latérale des poutres en I & double

symétrie reposant sur des fourches, soumises a des moments inégaux aux extré-
mités, & des charges uniformément réparties et & des compressions axiales.
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La méthode de I’énergie et le développement de la fonction propre en une
série de sinus représentent un procédé trop laborieux dans la pratique, étant
donné que, dans un cas de charge général, il faut retenir au moins trois termes
du développement en série.

On peut déterminer la charge critique avec une bonne précision et d’une
maniere relativement simple en partant d’une relation qui s’établit & partir de
la solution particuliere exacte correspondant & M, (z)=cste et N =0 en intro-
duisant des coefficients caractérisant 1’état de charge. En présence d’un effort
axial, seules sont réduites, conformément a I’influence de ’effort axial pour cha-
que état de charge, les rigidités B, et ' de la poutre intervenant dans la solu-
tion correspondant a N = 0.
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