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Le calcul matriciel des structures continues par la methode
des deplacements

Matrizenberechnung kontinuierlicher Tragwerke mit der Deformationsmethode

The Matricial Calculation of Continuous Structures by the

Method of Displacements

F. CORREIA DE ARAÜJO
Prof. Dr. Ing., Faeuldad© de Engenharia, Universidade do Porto (Portugal)

1. II est bien connu que le probleme general du calcul des structures resis-
tantes consiste dans la determination de l'etat de tension et de l'etat de
deformation, en chacun de leurs points, quand elles sont soumises a l'action des
sollicitations exterieures. Cela implique la consideration d'un certain nombre
de grandeurs inconnues, en chaque point, qui sont les variables du probleme.
Mais ces variables ne sont pas toutes independantes: si les deformations sont
elastiques — comme nous le supposons — les composantes de la tension sont
en rapport avec les composantes de la deformation et Celles-ci avec les composantes

du deplacement.
II s'en suit que l'on peut toujours dire que le probleme se reduit ä la seule

determination de l'etat de tension (ou de l'etat de deformation), duquel il est
possible d'obtenir l'etat de deformation (ou l'etat de tension) en chaque point.

On procede a l'aide d'equations aux derivees partielles qui conditionnent
les composantes de la tension (equations d'equilibre) et les composantes de la
deformation (equations de compatibilite) en tous les points de l'interieur des

corps; et des equations qui imposent certaines restrictions aux deformations,
ou aux tensions, ou aux deformations et aux tensions, dans les points de la
surface du contour oü se fönt les liaisons avec l'exterieur (equations de liaison).

En considerant que ces dernieres equations traduisent les conditions aux
limites du probleme, on peut donc enoncer celui-ci comme consistant: ou dans
la determination des composantes de la tension, introduites comme inconnues,
dans les equations de compatibilite; ou dans la determination des composantes
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de la deformation, en les faisant intervenir, par un changement de variables,
dans les equations d'equilibre. En tous cas, les composantes de la tension
doivent satisfaire aux equations d'equilibre et les composantes de la
deformation aux equations de compatibilite, tout en respectant les equations de

liaison.
Si Ton se limite ä l'etude des structures reticulees, le probleme devient plus

simple, puisque l'etat de tension et l'etat de deformation de ces structures
sont completement dermis par la seule connaiösance des composantes des

efforts (efforts normal et tranchant, moments de flexion et de torsion) et des

deplacements (translations, rotations) dans un nombre limite de sections
transversales des pieces lineaires ou barres dont elles sont eonstituees. Comme
dans le cas general, on peut poser ici le probleme de deux facons differentes:
ou en considerant des equations de compatibilite des deplacements, avec,
comme inconnues, des systemes de forces en equilibre; ou en considerant
comme inconnues des deplacements compatibles, introduits, par un charge -

ment de variables, dans les equations d'equilibre.
Dans les deux cas, nous envisageons des forces generalisees et des deplacements

generalises et nous appelons coordonnees generalisees du Systeme les forces
et les deplacements generalises se correspondant et constituant un ensemble
coherent de variables generalisees.

Tout ce qui suit se rapporte seulement ä des structures reticulees planes,
une generalisation aux structures spatiales ne comportant pas de difficulte.
Nous supposons, en plus, que ces structures sont dotees de liaisons en exces,
exterieures ou interieures, relativement aux liaisons pour lesquelles elles
seraient strictement stables. Cela permet de les definir comme etant des structures

hyperstatiques ou hypergeometriques selon qu'on considere comme inconnues
les reactions des liaisons en exces ou les deplacements correspondants. On voit
aussitöt l'existence de deux methodes de calcul de ces structures, la methode

des forces et la methode des deplacements. Une methode mixte, se revelant par-
fois avantageuse, comporte des inconnues forces et deplacements a la fois.

2. Considerons une structure reticulee, plane, dotee de liaisons en exces,
et soit n le nombre de ses degres de liberte, e'est-ä-dire le nombre fini de
parametres necessaires et suffisants pour definir toutes les positions ou configura-
tions que la structure peut prendre et qui soient compatibles avec ses liaisons.
Nous supposons que ces parametres sont variables avec continuite dans cer-
tains intervalles et qu'on peut passer d'une configuration donnee de la structure

ä une autre, definie par des accroissements infinitesimaux, arbitraires,
des memes parametres: la structure constitue, par definition, un Systeme
holonome ä n degres de liberte.

Si l'on prend comme inconnues les forces ou inconnues hyperstatiques
Xi (i 1, 2,.. n), la determination de ces inconnues peut etre conduite comme
suit:
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— on decompose la structure en structures elementaires, en supprimant les
liaisons dont les reactions sont les inconnues hyperstatiques, la structure
ainsi modifiee etant la structure principale ou Systeme de base;

— on considere, dans la structure principale, la configuration d'equilibre cor-
respondant ä la sollicitation exterieure et l'on determine les deplacements
S^0 correspondant aux inconnues hyperstatiques;

— on considere encore, dans la structure principale, les n configurations d'equilibre,

independantes, correspondant ä une force 1 remplacant chacune des
inconnues hyperstatiques Xj et Ton determine les deplacements 8^-

correspondant a toutes les inconnues hyperstatiques;
— les deplacements correspondant ä chaque inconnue hyperstatique devant

etre compatibles, on ecrit le Systeme des equations de compatibilite:

{8J {8|o} + [8«]{^} 0, (1)

dont les inconnues sont les inconnues hyperstatiques Xj.
C'est la methode des forces.
De l'expression (1) on peut naturellement deduire la signification rapportee

ä chacune des lettres, laquelle justifie les designations suivantes:

— 8i0 sont les deplacements correspondant aux inconnues hyperstatiques, dans
la structure principale, pour la sollicitation X 0, c'est-ä-dire, dus ä la seule
sollicitation exterieure. Ces deplacements, comme il est bien connu, sont
donnes par des expressions du type:

8*° j^Tds + S^RTds + j§§d8 + j Xi0ctd8 + 8iap. (2)

So &o Sq Sq

— 8^ 8^ sont les deplacements correspondant aux inconnues hyperstatiques,
dans la structure principale, pour la sollicitation Xj=l, qui sont donnes

par des expressions du type:

[MM.j CNiNjj CTtTjj
Sq Sq Sq

Les integrales sont prises tout le long de la structure principale et les lettres
y intervenant ont une signification qu'il ne semble pas necessaire de rappeler.

La matrice-colonne: a ra \ /a\

est nommee matrice de sollicitation ou vecteur de solicitation; la matrice carre
symetrique: s [8,,.] (5)

est la matrice de flexibilite de la structure; la matrice-colonne:

X {X,} (6)

est le vecteur des forces hyperstatiques.
On peut donc ecrire plus simplement le Systeme des equations de com-

PatibÜit6: SX S0. (7)
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Dans le cas oü les inconnues du probleme sont les deplacements elementaires

At, correspondant aux degres de liberte de la structure, on peut proceder
d'une facon tout ä fait analogue:

— on modifie la structure en lui imposant les contraintes ou forces de fixation
capables d'empecher la production des deplacements Ai, la structure modifiee

etant, de meme, la structure principale ou Systeme de base;

— on considere la configuration de la structure principale, compatible avec
ses liaisons, due ä l'action de la sollicitation exterieure, et on determine les

forces de fixation correspondantes xi0;
— on considere aussi chacune des configurations compatibles du Systeme prin-

cipal, independantes, correspondant ä un deplacement 1 ä la place de Aj,
les autres Ai (i=¥j) etant nuls, et on determine toutes les forces de fixations

— l'equilibre devant se maintenir en correspondance avec chacun des deplace¬
ments de la structure reelle, on peut ecrire le Systeme des equations d'equi-
Ubre:

{*«} {**.} + [*«]{^} 0, (8)

dont les inconnues sont les deplacements Aj.

C'est la methode des deplacements.
De l'expression (8) on peut naturellement deduire la signification rapportee

ä chacune des lettres, laquelle justifie les designations suivantes:

— xi0 sont les forces de fixations correspondant aux inconnues hypergeo-
metriques, dans la structure principale, pour la configuration A=0, c'est-
ä-dire, dues ä la sollicitation exterieure;

— xij Xji sont les forces de fixation correspondant aux inconnues hyper-
geometriques, dans la structure principale, pour la configuration A^ — l.
La matrice-colonne:

*o -foo} (9)

est maintenant le vecteur de sollicitation; la matrice carre symetrique:

x [*«,] (10)

est nommee la matrice de rigidite de la structure; la matrice-colonne:

j {4> ai)
est le vecteur des deplacements hypergeometriques.

Le Systeme des equations d'equilibre peut donc etre ecrit:

xA x0. (12)

Si les forces et les deplacements generalises, qu'on vient de considerer comme
inconnues, appartiennent au meme Systeme de coordonnees generalisees, les
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matrices de flexibilite et de rigidite sont en rapport l'une avec l'autre, pourvu
qu'elles ne soient pas des matrices singulieres.

En effet, puisqu'on a, par definition:

A =SZ,
X xA,

si Ton porte X dans la premiere de ces expressions, on a:

A =8xA

et, A etant un vecteur arbitraire, on peut deduire:

8x I,
I etant la matrice unitaire du meme ordre que 8 et x. II s'en suit que chacune
de ces matrices est l'inverse de l'autre:

8 x-\
x 8-1,

ce qui peut seulement se produire dans le cas de matrices regulieres.

3. Comme on vient de le verifier, le calcul d'une structure reticulee aux
liaisons en exces depend, quand on a choisi la nature des inconnues, ou bien
de la connaissance des matrices 8 et S0 dans la methode des forces, ou de celle
des matrices x et x0 dans la methode des deplacements.

On a deja remarque que les matrices 8 et 80 peuvent etre determinees par
des procedes connus qui, d'ailleurs, sont d'application tres facile gräce ä de
nombreuses interpretations divulguees dans la litterature specialisee.

Pour ce qui est des matrices x et x0, nous allons montrer comment on peut
les obtenir dans le cas des structures continues, c'est-ä-dire des structures dont
les liaisons des barres sont faites de teile maniere que les angles formes par ses

axes, aux noeuds, restent invariables pendant la deformation. Et, si Ton
observe que ces matrices interviennent dans les equations d'equilibre des
noeuds de la structure (oü justement on a considere les deplacements At) qui
sont les points de croisement des axes des barres, ou extremites des barres,
nous devons commencer par etablir les relations existant entre les forces
appliquees en ces points et les deplacements correspondants, pour une barre
isolee.

Fl

F3 Fe

' F2 F5

"6
Fig. 1.
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Dans la fig. 1, on a indique les sens positifs des forces et des deplacements
correspondants et aussi leurs designations respectives, en prenant comme
axes de coordonnees un axe parallele ä Taxe de la barre et un autre perpen-
diculaire.

On remarquera que les forces generalisees sont representees par des fleches

simples (droites ou courbes selon qu'il s'agit vraiment de forces ou de moments),
tandis que les deplacements correspondants sont indiques par des fleches

(droites ou courbes selon qu'il s'agit de translations ou de rotations) coupees
par de petits cercles.

Par definition, on aura:

ou:

est le vecteur de sollicitation,

la matrice de rigidite, et

F kd,

k [kv]
d ={dj}

(13)

(14)

(15)

(16)

le vecteur des deplacements (les indices i et j pouvant prendre les valeurs 1,

2, 3, 4, 5, 6).

CONFIGURATION d, -'

d,-1

2ET
Ki, »_ K,, -

CONFIGURATION 4_

K,, -
6 EI

CONFIGURATION d,-'

<I--1

•

«22 K.„ ..MI 6EI

12 EI
L3

6EI BEI

CONFIGURATION d, -1 CONFIGURATION dc-1

**'\, «<*

K,3 -0

K23 -°
^13 i

Planche I
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Les elements ktJ de la matrice de rigidite sont les coefficients de rigidite de
la barre, pour les diverses configurations independantes d3 l. Ci-joint (PI. I)
on peut voir la signification mecanique de ces coefficients et leurs valeurs
particulieres, dans le cas oü la section A de la barre et son moment d'inertie I
sont constants.

La matrice de rigidite de la barre est donc:

k

#n #12 ^13 #14 %5 ^16

k2i #22 k23 #24 ^25 #26

%i ^32 ^33 #34 %5 ^36

^41 ^42 ^43 ^44 ^45 #46

^51 ^52 %3 ^54 %5 ^56

^61 kQ2 ^63 ^64 ^65 ^66

(17)

et peut etre fractionnee en quatre sous-matrices:

k
Mäe [*],!dd_

(18)

lesquelles, quand elles ont des indices egaux, representent Tinfluence dans
une des extremites, de deplacements dans la meme extremite et sont appelees
sous-matrices de rigidite directes •

\Jc\

[*]«

fC-ii fC-i k

^21 #oo #<v22

^31 #39. #3V31

#dd #4?; &L^44 45 ^46

#54. #£

h
v54

64 #ßc #,v65 66

(19)

et, quand elles ont des indices differents, representent l'influence, dans une
des extremites, de deplacements dans l'autre extremite et sont appelees sous-
matrices de rigidite croisees ou de transmission, chacune de ces sous-matrices
etant la transposee de l'autre (ce qui resulte de la symetrie de la matrice k):

ra6

ra,de

#14 ^15 ^16

#24 ^25 #26 mte

_ 34 %5 ^36
_

#41 #42 #43

^51 ^52 ^53 ras
_

^61 #62 ^63
_

(20)

Dans le cas particulier oü ^4 et 7 sont constants, on obtient:
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6/41 X 0

61 12/
0L X2

E 0 0 A
k 77 6/21 ~T 0

61 121
0L L*

0 0 -A

21 6/
L 0

61 121
L I? 0

0 0 -A

41 6/
L 0

61
L

121
0

0 0 A

(21)

Si les axes de coordonnees fönt un angle a avec ceux que nous venons de
considerer, la matrice de rigidite peut etre obtenue de (17) ou, le cas echeant,
de (21), par une simple transformation orthogonale. Dans la fig. 2 sont indi-
ques les designations et les sens positifs des coordonnees generalisees
correspondant ä ce cas.

o

O.

r^
Fig. 2.

On peut facilement se rendre compte que ces coordonnees peuvent etre
deduites des precedantes par les transformations:

8 Td, 0 TF,
T etant la matrice de transformation:

(22)

1 0 0

0 cosa --sina [0]
0 sina cosa

1 0 0

[0] 0 cosa --sina
0 sina cosa
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II s'agit d'une matrice orthogonale qui, de ce fait, a son inverse egale ä
sa transposee:

rp-l _ y*

Mais nous avons deja vu qu'on a:

et comme, d'autre part, on a:

il en resulte:

On peut donc ecrire:

F kd

d y-is 7*8,

F kT*8.

0 TkT*8,

ce qui represente la relation de dependance entre les nouvelles forces et les

nouveaux deplacements. II en resulte que la matrice de rigidite de la barre,
rapportee aux nouveaux axes, est:

P TkT*. (23)

Tout comme k, eile est clairement une matrice symetrique:

Pij z= Pji>

et en la decomposant en ses sous-matrices directes et croisees, on peut ecrire

P

Iplde

[p]ed

ip\dd_
(24)

Le developpement des sous-matrices de p s'ecrit comme suit:

\fi1ee

#n
k21 cos a
k21 sin a

k12 cos a
k22 cos2 a + &33 sin2 a
(k22 — &33) sin a cos a

&12 sin a
(&22 — ^33) sin a cos a
&22 sin2 a + &33 cos2 a

[p]ed

#14
Ä?24 cos a

k2i sin a

k15 cos a
&35 cos2 a + &36 sin2 a
(&35 — &36) sin a cos a

ß15 sin a
(&35 ~ &3ß) sm a cos a
ß35 sin2 a + &36 cos2 a

[p]£. (25)

[p\dd
#44

i54 COS a
ß54 sin a

&45 cos a
k55 cos2 a + k66 sin2 a
(&55 — &66) sin a cos a

k45 sin a
(&55 — &66) sin a cos a
k55 sin2 a + &66 cos2 a

•

Sur la planche II on peut voir la signification mecanique et la deduc-
tion directe des coefficients de rigidite pij} aussi bien que les valeurs de ces
coefficients dans le cas oü A et / sont constants.
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Les forces generalisees 0 aux extremites de la barre sont donnees par:
0 =&0+p8, (26)

oü <P0=TF0

sont les forces de fixation dans la configuration 8 0, c'est-ä-dire, les forces
aux extremites de la barre resultant de la sollicitation exterieure, ces extremites

etant encastrees et sans affaissements.
Dans le cas oü Ton a a 0, A et / etant constants, on arrive sans difficulte

aux formules de Gehler:
4 EI 2 EI 6 EI SEI

Me MQe + ~-j-cpe + -j-cpd + -^ve—jj-vd,
(27)

2 EI 2 EI 6 EI 6 EI¦

q)

L2 e Z,2Md Mod + --r-(pe + —r-cpd + -TY-ve YTvä>

les lettres ayant des significations evidentes. Dans ce cas, les moments aux
extremites, Me et Md, sont accompagnes d'efforts tranchants, Te et Td, et
d'efforts axiaux, Ne et Nd, donnes par:

% _ 6 EI 6 EI 12 EI 12 EI
—jß—vä>

Td m 6 EI 6 EI 12 EI
— 1-ed

jr,2 fe Iß ^ Jß Vß
12 EI

Ls Vd,

Ne
EA EA

N0e+ L ue L ua,

Na
EA EA

N0d L ue+ L Md-

(28)

4. Pour ecrire les equations d'equilibre d'une structure reticulee continue,
il faut commencer par etablir un rapport entre les deplacements et les forces
aux extremites des barres, respectivement, et les deplacements et les forces
correspondants du Systeme de coordonnees generalisees envisage pour la
structure.

Si en chaque nceud, et pour chaque barre y concourant, on connait deja
les forces et les deplacements rapportes a ce Systeme de coordonnees, la matrice
de rigidite de la structure resulte immediatement des sous-matrices qui tra-
duisent l'influence des deplacements de tous les autres noeuds dans chaque
noeud: nous verrons que la sous-matrice directe d'un nceud est la somme des
sous-matrices directes de ce nceud, pour chacune des barres s'y joignant; et
que chaque sous-matrice croisee d'un noeud est la sous-matrice croisee du
meme nceud pour chacune des barres y concourant.

Soit, par exemple, la structure representee dans la fig. 31). Elle a sept

Exemple extrait de Lighfoot, «Moment Distribution» (Ed. Spon. Londres, 1961),
oü il est resolu par une autre methode.
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degres de liberte et on peut choisir comme variables independantes les trois
rotations et les quatre translations indiquees, lesquelles sont designees par
A1,A2,AS,...,A7.

Les equations d'equilibre, chacune correspondant ä un de ses deplacements,
constituent un Systeme lineaire du type (12):

xA — xn.

750 1200 i 700
1 75° I

2;0Gj

P/*\ 8
D

\—^*M

r^ r^

^

Fig. 3.

La matrice de rigidite de la structure peut etre decomposee dans les sous-
matrices qui traduisent l'influence, en chaque nceud, des deplacements uni-
taires en chacun d'eux:

x

^11

C21

^31

^61

^22

^32

v52

^62

°23

^43

C53

°63

o14

C24

°34

^54

C64

^74

"15

r25

VS5

"45

^65

"75

"16

^36

"46

"66

"76

X-17

r27

XL47

v77

Lx]bB [xliBC [x]ßD
[x]cB [xliCC (x]cD
V^JDA lXJDC LX]DD

_

Considerons, par exemple, la sous-matrice [x]BB. Ses elements sont les
forces generalisees en B (moment de flexion, force verticale, force horizontale),
produites quand chacun des deplacements generalises en B a la valeur unite,
tous les autres etant nuls, c'est-ä-dire, produites dans les configurations A1 1,

A2 l, A3=l. Mais le nceud B est l'extremite droite de la barre AB et 1'extremite

gauche de la barre BG: il s'en suit que chacun de ces elements est la
somme des elements correspondants des barres AB et BC, rapportes ä un
meme Systeme d'axes. Et il vient:

m** w+wr
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De la meme facon:

Mdd - MSP-

Pour ce qui est des sous-matrices croisees, il est facile de verifier que
chacune de ces sous-matrices est la sous-matrice croisee de la barre qui la con-
cerne, dans l'extremite coincidant avec le noeud considere, les sous-matrices
traduisant l'influence des deplacements au delä de chaque barre etant nulles:

1*\bo Mäc>
[x]BD 0,

LXJCB MbO'
Mot M2P.
[x]DB 0,
Yx~\dC ~ [X]*D-

Tout se resume donc ä la determination des matrices p des barres, rapportees
a un meme Systeme d'axes, par exemple 1'horizontal et le vertical.

Comme application numerique, supposons que A et I sont constants et
prenons:

A 1,00x1,00 Iocl2xl05,
1,004 1 ,_lBa-l2-Bal20ClXl°11-

Pour la barre AB on deduit facilement de la figure:

L 19,5,

sina 0,923,

cosa 0,385.

L'extremite A etant fixe, il y a seulement interet ä determiner les sous-
matrices relatives aux deplacements de cette barre en B:

2EI 6EI

^\d

L
6 EI

L2
12 EI

[k]dd

Iß Ls

0 0

4 EI 6EI

10256 -1578 0

0 oc 1578 -162 0

EA 0 0 -61539

L
6 EI

Z,2

12 EI
L2 L3

20513 -1578 0

0 oc -1578 162 0

EA
0 0 61539



¦2 IC7 EA

12Et
_ EA\

L* L

|" 20513 - 607 -1457
oc - 607 5i}461 -21789

| - 1457 -21789 9239

la barre BO. c na:

a obtient les sous

"4 EI SEI

'2 EI
L

6 EI

leiifi-
-4167

[33833
c 4167

L °

.><i<>7 -4167 0"

4167 -694 0

0 0 -10000l\
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4 EI 6 EI

15

WS7 WSso

ff
6 ff/

ff2

ff2
12 ff/

ff3

0 0

0

EA

oc

33333 -4167 0

-4167 694 0

0 0 100000

Pour la barre CD, on a a — ß et:

L =25,0,
sina — sin/3 —0,960,

cosa= cosß 0,280.

En supposant l'extremite gauche en C, on a:

"4^7 6 ,E77

W2°

£ L2
6 EI 12 EI

L2 Z3

0 0

0

0

EA

oc

16000 960 0

960 77 0

0 0 48000

M2P im?D j2|/ e^/ 0){&0()0 960 0}>

[*]:CD
dd -ffl oc [16000].

D'oü les sous-matrices de p:

"4 ff/ 6 EI

w:OD _

ff
6 ff/
ff2

6 ff/
COSa

ff2
12 ff/

cosa
6 ff/

cos2 a +
ffJl

ff2 -sin"(
£3 — - ' x,

12 EI EA

-sur

oc

£3 £
16000 269 -922

269 44243 12882

-922 12882 3834

I sina cosa

TO -sinaLl
12 EI EA\
~lß "~l

12 EI
L } sin a cos a

• 2 EA 2
_„ sin^aH—=— cos^a

LPJed — IPlde ~ \ Jj Iß-{2 EI 6 EI 6 EI
cosa ~^- sina]oc{8000 269 -922},

w:dd =m oc [16000].

Les sous-matrices de la matrice de rigidite de la structure seront donc:
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Mbb M#+M2°oc
20513

- 607

-1457

+

Mbc

Mob —

lx]cc

WSP«:

33333 4167 0

4167 694 0

0 0 100000

16667 -4167
4167 - 694

0 0

-607 - 1457
52461 -21789

-21789 9239

53846 3560
3560 53155

-1457 -21789
0~
0

-100000

Ix]bc ~ w\BC
\ed OC

Mlf+M^«

" 16667

-4167
0

33333

-4167
0

4167

-694
0

-4167
694

0

+
16000

269

-922

269 - 922

44243 12882

12882 3834

0

0

-100000

0

0

100000

49333
-3898
- 922

-3898
44937
12882

[x]CD

Mdj?

Muc
Mz>z>

D'oü

MSP °c{ 8000 269 -922},
0,

[x]%D oc [ 8000 269 - 922 ],
MS* «[16000].

la matrice de rigidite de la structure:

- 1457

-21789
109239

-922
12882

103834

53846
3560

-1457

3560
53155

-21789

- 1457

-21789
109239

16667
4167

0

-4167
- 694

0

0

0

-100000

0

0

0

16667

-4167
0

4167

-694
0

0

0

-100000

49333
-3898
- 922

-3898
44937
12882

-922
12882

103834

8000
269

-922

X oc

0 0 0 8000 269 -922

La matrice de sollicitation est obtenue sans difficulte:

9X10X22

16000

x-10 122 -2,50,

fc=_?i? + M4z^ _0,67,^20 12 12
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2,00,

9X102X2
40

%a(\ —

12,50,
122

9X10 12,5-2,5
-so 12

x70 0

12 -8,33,

En prenant:
#0 {250 67 200 -1250 833 0 0},

la resolution du Systeme:

fournit:

x A — xn

A 0,01496'

A* 0,05313

** 0,12220

\ -0,03826
^5 -0,01705\ 0,11970

^ 0,02631

Les moments dans les extremites des barres sont donnes par l'expression:

M M0 + PMA,

pM etant la matrice formee avec les premieres lignes des sous-matrices de p de
toutes les barres. On a donc:

~MAB~ 0

MBA 0

MBC -250
MCB 1250

MCD 0

MDC 0

0 10256 -607 - 1457 0 0 0 0

0 20513> -607 - 1457 0 0 0 0
>0 33333 4167 0 16667 -4167 0 0
>0 16667 4167 0 33333 -4167 0 0
0 C 0 0 16000 269 -922 8000
0 c 0 0 8000 269 -922 16000

1

0,01496 "-0,569 "

0,05313 0,966
0,12220
0,03826

xio-2 -0,966
5,165

0,01705 -5,165
0,11970 0

0,C?2631



18 F. CORREIA DE ARAUJO

5. L'imiuence de la deformation axiale des barres des structures reticulees
continues, sur la valeur des efforts, etant generalement tres petite, il est
habituel de ne pas la eonsiderer. De l'invariabilite de la longueur des barres,
ainsi supposee, decoulent des relations de dependance entre les deplacements
qui definissaient les degres de liberte de la structure et le nombre de ces degres
de liberte diminue.

Soit, par exemple, la structure dont nous venons de nous occuper et suppo-
sons que toutes ses barres sont incompressibles et inextensibles. En designant
par A'^A'z,. .,A!^ les deplacements generalises representes auparavant par
A1}A2, A7, le diagrame des deplacements de la structure, pour le deplace-
ment independant A% (fig. 4), permet de deduire:

cotga
-cotgjS

1

AL

Fig. 4.

Les relations de dependance entre les deplacements etant donc trois, il s'en
suit qu'il y a seulement 7 — 3 4 deplacements independants. Et en adoptant
la notation (fig. 5):

A1 A[,
^2 ^4,
^3 ^3,
^4 ^>

öments peuvent etre exj>rii

'^r " 1 0 0 0

^2 0 0 cotga 0

K 0 0 1 0

K 0 1 0 0

K 0 0 --cotg/J 0

K 0 0 1 0

^ 0 0 0 1

A«
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Le probleme n'a donc que quatre inconnues au Heu de sept. Pour les deter-
miner, il faut, tout comme auparavant, resoudre un Systeme d'equations
lineaires:

X ZA ^— Xq

x etant la nouvelle matrice de rigidite et x0 le nouveau vecteur de sollicitation.
Les deplacements des extremites des barres etant d, et F representant les

forces correspondantes (fig. 1), les deplacements A des nceuds de la structure

r\ r~\

?>

r~\1?^>
•V jö7

^d9

Fig. 5.

sont en rapport avec les deplacements d:

d @A,

Fig. 6.

(29)

0 etant une matrice de transformation la matrice de liaison, dont les colonnes
sont constituees par les composantes d de chacune des configurations Ai—1.

Le travail virtuel produit par les forces F, en raison des deplacements d,
est donne par:

U F*d.

Ce travail etant egal au travail virtuel produit par les forces Q, correspon-
dant aux deplacements A, en raison de ces derniers deplacements:

onaura: Q*A F*d F*0A.

Comme cette egalite doit etre verifiee pour toute valeur de A, il en resulte:

Q* F*@

ou: Q =©*#.

Mais, entre les forces Q et les deplacements correspondants A, il y a, par
definition, la relation:

Q=xA, (30)

tout comme entre les forces F et les deplacements d on a la relation:

F kd. (31)
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En portant la valeur de Q en (30), on trouve:

xA =©*F
et en prenant la valeur de F:

xA =&*lcd
ou, en tenant compte de (29):

xA =@*Jc@A.

Cette expression etant valable pour toute valeur de A, il s'en suit:

x &*k@, (32)

ce qui fournit l'expression de la matrice de rigidite de la structure. La matrice
de rigidite Je des barres etant connue, tout se resume donc ä determiner la

CONFIGURATION A, - 1 CONFIGURATION A?-1

w

d. - d, -1 "3

d~ - d, - dr - d
2 " UA~ u5~ "6

_d„-d«-d„-0

d^ - d„ - 1

5 "7

d. - d„- d„- d, - d
I 2 3 4 6

- d.-do-O

CONFIGURATION A,- 1 CONFIGURATION A,«1

Jki?*
>^Jd<

d2 * 1 cosec oc

dA - 1 cotg oc

d6 —1 cotg ß

d. --1 cosec (S

d. » d^-dc-dy-dg — 0

d9- 1

d1 -d2.d3.d4-

Planche III
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matrice ©, de transformation des deplacements A de la structure, en deplacements

d des barres.
Pour ce qui est du vecteur de sollicitation x0, sa determination est evidente.
L'expression (32) est tout-ä-fait generale et nous allons la developper pour

la structure que nous avons consideree.
Soient dx,d2,. ,,d8,d9 les deplacements des extremites des barres (fig. 6).

La matrice de transformation 0 peut etre obtenue, colonne ä colonne, en
considerant successivement les configurations At l, lesquelles sont represen-
tees sur la planche III.

Pour Ax 1. il n'y a que dx et dz different«* de zero*

d± dz 1.

Pour A2 — 1, il y a seulement:

d5 d7 1.

Pour J8=l: d$5 coseca 1,082,

d4l cotg a 0,417,

d,} -cotg/3 =- 0,292,

d,i - cosec ß — 1,041.

Pour J4=l: d,>
1.

D'oü la matrice @: "
1 0 0 0~
0 0 1,082 0

1 0 0 0

0 0 0,417 0

© 0 1 0 0

0 0 --0,292 0

0 1 0 0

0 0 --1,041 0

0 0 0 1

La matrice de rigidite des barres s'ecrit:

~Wab [0] [0]

k= [0] MBc [0]

_
[0] [0] [k]CD

ses sous-matrices etant:

Wab

4 EI 6 EI ~

L L2 20513 - 1578"

6 EI 12 EI
OC

-1578 162

U- L3
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[fc]BC —

\MöD —

4 EI
L

6 EI

6 EI 12 EI
L3

2 EI
L

6 EI

6 EI 12 EI

2 EI 6 EI

L2 L*

L
6 EI

L2

4 EI
L

6 EI
L2

L2

12 EI
~lß~

6 EI
L2

12 EI
Iß

oc

33333 4167 16667 -4167
4167 694 4167 - 694

16667 4167 33333 -4167
-4167 -694 -4167 694

4 EI 6 EI 2 EU
L L2 L

6 EI 12 EI 6 EI
L2 I?

2 EI 6 EI

L2

4 EI
L2

oc

16000 960 8000"

960 77 960

8000 960 16000

II s'en suit:

Jc

20513

-1578
1578

162

33333 4167 16667 -4167
4167 694 4167 - 694

16667 4167 33333 -4167
-4167 -694 -4167 694

16000 960 8000
960 77 960

8000 960 16000

La matrice de rigidite de la structure est obtenue par la double-multiplica-
tion (32).

x ©*k@cc

53846 16667 1247 0
16667 49333 1955 8000

1247 1955 620 -999
0 8000 -999 160000
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Le vecteur de sollicitation est compose par:

9X10X22

23

x10 122 -2,5,

^20
9X102X2

122
12,5,

^30 -2 (9X2- 12,5-2,5'
12

^40 0.

En posant:

X 0,417-/9X10 12,5 -2,5'
12

¦ + 12 )x -0S 292 0,15,

xn —

250

-1250
-15

0

les equations d'equilibre s'ecrivent:

53846 16667 1247 0

16667 49333 1955 8000
1247 1955 620 -999

0 8000 -999 16000

et fournisseilt:

~a~\ 250

A* -1250
A - 15

W 0

A" 0,01406
¦0,03884
0,11263
0,02645

Les deplacements des extremites des barres sont donnes par (29):

1 0 0 0

0 0 1,082 0
1 0 0 0

0 0 0,417 0

d @A 0 1 0 0
0 0 -0,292 0
0 1 0 0

0 0 -1,041 0

0 0 0 1

0,01406
-0,03884

0,11263
0,02645

0,01406
0,12187
0,01406
0,04697

-0,03884
-0,03289
-0,03884
-0,11725

0,02645

et les moments dans ces extremites, par:
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M
M

AB
BA

MBC

CB

10256 -1578
20513 -1578

-250 33333 4167 16667
1250 16667 4167 33333

-4167
-4167

16000
8000

960
960

8000
16000

xio- -2 __

-0,481
0,961

-0,959
5,225

-5,224
0

0,01406
0,12187
0,01406
0,04697

-0,03884
-0,03289
-0,03884
-0,11725

0,02645
6. Dans les structures continues, formees de barres orthogonales, quand

on ne considere pas l'effet de la deformation axiale des barres, la determination
formelle de la matrice de rigidite est simplifiee, specialement dans le cas oü le
moment d'inertie de chaque barre est constant ou s'il a une loi de Variation
symetrique en relation au milieu de la barre.

Soit la structure representee sur la planche IV, ayant neuf degres de liberte.
On choisit comme deplacements independants les sept rotations Al9A2,. ,,A7
et les deux translations AS,A9 indiquees.

En supposant que les barres sont de moment d'inertie constant, incom-
pressibles et inextensibles, les coefficients de rigidite des deux extremites de

chaque barre ont les modules:
4 EI 2 EI 6 EI 12 EI

L2 I?
Ayant calcule les valeurs numeriques de ces coefficients, on les inscrit (ou

des valeurs qui leurs soient proportionnelles) dans le Schema de la structure,
sur Taxe de la barre les concernant, avec la disposition suivante, que cet axe
soit horizontal ou vertical:

axe

axe

4 EI
L

2 EI
L

4 EI
L

2 EI
L

6 EI 12 El
L3

6 EI 12 EI
L3



]

200 300
|

300
j

200
j

12000 kg 12000 kg |2000kg

aF
1200 kg/r

Tmmmmf J
500 5.00 500

r ^[MmiC^-

^mrn^Wm^ t^rann

SYSTEME PRINCIPAL

CONFIGURATION A, -!

x„-2400 x21-1200

*3t " x41 - "51-x61 ~ x7f*x81 - X9,-0

CONFIGURATION A.-1
-i« x55

3 Wr-

X15-x25-X35"° \5-240 x55"' 2°°+"»-<6*

x65-600 x75"° x85"-240 "gs"*»

CONFIGURATION Ar-1

,,-240 x, -0'16 *26 u "36 ftu x46 u x
56

X66-2 880 x^-600 x^-240 Xgg-0

CONFIGURATION A7«

* ^
17" ° X27-240 x37"x47-x57-°

"67-°"" *77 ¦480+1200-1680 x87—240 xa7—330

CONFIGURATION A?-1

SK r^

CONFIGURATION Afl-1

r.

V'200 x^-2 400+480+2 400+ 720-6 000 *£W®

x42*x52-x62"° x72"240 «« —240 xg2~720

Tm xr,

x18-u x28-x38"x48-x58-x68-x78-'2A0

x88 -3 x 160 -480 Xgg-0

CONFIGURATION A-, -1

x,3-0 x23-1200 x33-2400 + 2400+480-5280

x^-1200 X53.0x63.240 x^-O „gj-MOXjj-C

CONFIGURATION AQ-1

79 2n r^' rzxr

**>r„ 4? -sx49
31 *

V° V720 X39-° x49-720

x59-360 x69-0 X79--360 xeg-o Xj,.2x144+2x288-864

CONFIGURATION A, -1

^-
*K-A24"U x34"'^
X^- 2400 + 480-2880 x5A-240

x64-x74-° x84-2« "94-720

CONFIGURATION A-0

20 '30

--25O0 x -010 20 30

x4O-2a00+300-28O3 Xg, -1440 -300 -1K0

x60-°x70-1«0 x^-600 X^-9408

Planche IV
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Pour determiner la matrice de rigidite x [x^], de la structure, on considere
successivement les configurations A1=1,A2 1,... A9=l, enles representant
graphiquement par des Schemas sur lesquels on indique les forces de fixation
correspondantes, avec les sens imposes par la deformee particuliere de chaque
configuration. II convient de rappeler que, dans la configuration Ai l, tous
les deplacements Ajy pour ?=M> sont interdits par des forces de fixation Xjt.

Ainsi, dans la configuration A1 l, puisqu'on a Aj 0(j^=l), la deformee
du Systeme principal est manifestement celle qui est representee dans le
Schema correspondant: eile concerne seulement la barre AB, en raison du
bloquage de tous les nceuds ä l'exception du noeud A oü justement le deplace-
ment Ax l se produit. Dans ces conditions, la deformation n'etant pas trans-
mise au delä de B, il n'y a forces de fixation qu'aux extremites de A B et on
peut ecrire:

AEI\
IAB

11= -H «2400,

*21 H-H «:1200,

x31 #41 x51 xQ1 x71 xsl x91 0.

Dans la configuration A2 l, les seules quatre barres convergeant en B se

deforment et il est evident que l'on a:

^12

^22

ocl200,
(AB

I2EI\" \ L
I4:EI\ I4:EI\ t±EI\ /4 EI\

BH
oc 2400 + 480 + 2400 + 720 6000,

2EI\
(: ocl200,L Ibc
Xh1 ~~ X62 ~~ ^?

2EI\
BG

-jr-) oc240,L li-

-(•£) oc-240,L*!bg

oc -720.lßEI\
-\-V-)bc

Et ainsi successivement pour toutes les configurations Ai \ correspondant
ä des rotations de noeuds.

Pour la configuration J8= 1, les seuls barres BG, GF et DE se deforment,
en raison de la translation horizontale des noeuds E, F, G et l'on a:
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**a8 ~~ ^ 3

oc -240,
BG

x -J«*I\
/6#) oc-240,

&EI\
TP I•" IDE

(6 EI\

CF

oc -240,

&EI\
L2 JcF

oc -240,x --I
X78 I

/12.E7A I12EI\ l\2EI\ n ,„„ Änn

«5L«-~-
88 ' IBG \ ¦*-r ICF \ ^' I DE

X9S 0.

Dans la configuration A9 l, seules les quatre barres BG, CD, EF, FG
se deforment, en raison de la translation verticale des noeuds C, F et l'on a:

x19 0,
/ß ET\

oc-720,

^) OC720,
¦^ /CD

^^) oc360,
¦^ I EF

x79 — I

^89 ^

(12EI\ /12£7\ 712^ /12 EI\

oc-360,W Ibo
0,

L*)BG

FG
OC2X144 + 2X288 864.

Toutes ces valeurs peuvent etre obtenues facilement du simple examen
des Schemas des differentes configurations Ai=l et l'on doit confirmer au für
et ä mesure la loi de reeiprocite xtj xn.
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On peut donc ecrire la matrice de rigidite:

x

2400 1200 0 0 0 0 0 0 0

1200 6000 1200 0 0 0 240 -240 -720
0 1200 5280 1200 0 240 0 -240 0

0 0 1200 2880 240 0 0 -240 720
0 0 0 240 1680 600 0 -240 360

0 0 240 0 600 2880 600 -240 0

0 240 0 0 0 600 1680 -240 -360

0 -240 -240 -240 -240 -240 -240 480 0

0 -720 0 720 360 0 -360 0 864

Le vecteur de sollicitation x0 — {xi0}, correspondant ä la configuration
A =0, peut etre obtenu sans difficulte:

1200 X52
12 -2500,

#20 —

#30 —

°40

#50 —

#60 —

#70 — ~~

1200 X52 1200 X52
12 12

0,

1200 X52
12

1200 X52
12

0,

1200 X52
12

'
400 X 32

12
2800,

2000X2X32
52

400 X32
12

1140,

2000X22X3
52

2000X22X3 A
52 -°>

2000X2X32
K2 -1440,

#80 ~~

^90

400x3
600,

•2000-2X 2000x2
+ 2x 1440-960 -1200X5 -9408.

5 5

On a donc:

:z0 {2500 0 0 -2800 -1140 0 1440 -600 9408}.

La resolution du Systeme

x A x0

fournirait les valeurs de Ai, la determination des forces generalisees aux extremites

des barres etant obtenue en poursiuvant comme auparavant.
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Resume

On presente une systematisation de la methode des deplacements pour le
calcul des structures reticulees hyperstatiques, analogue ä la systematisation
classique qui est generalement adoptee dans la methode des forces, ce qui met en
evidence la loi de dualite existant entre ces deux methodes. On en fait l'appli-
cation au calcul des structures continues, en general, tenant compte ou non
des effets des deformations axiales, et l'on considere ensuite le cas particulier
des portiques formes de barres orthogonales.

Le calcul est presente sous la forme matricielle, ce qui le rend approprie
aussi bien ä l'utilisation des computateurs automatiques comme ä l'emploi
des simples calculatrices de bureau.

Zusammenfassung

Die Anwendung der Deformationsmethode bei der Berechnung statisch
unbestimmter Stabwerke wird systematisch dargestellt, wie dies analog für
die Kraftmethode normalerweise geschieht. Die Dualität der beiden Verfahren
wird somit hervorgehoben. Die Methode wird allgemein auf die Berechnung
kontinuierlicher Tragwerke angewendet, mit oder ohne Berücksichtigung der
Verformungen infolge der Längskräfte. Als Sonderfall werden rechtwinklige
Rahmen untersucht.

Die Berechnung ist in Matrizenform dargestellt; sie eignet sich daher sowohl
für Rechenautomaten als auch für einfache Rechenmaschinen.

Summary

A systematisation of the method of displacements for the calculation of
hyperstatic reticulated structures is presented, which is similar to the con-
ventional systematisation which is generally adopted in the method of forces
and shows the law of duality subsisting between these two methods. The
method is applied to the calculation of continuous structures, in general,
taking into account, or omitting, the effects of axial deformations. Thereafter,
the special case of portal frames with orthogonal bars is considered.

The calculation is presented in the matricial form which makes it suitable
for use either with automatic Computers or with simple office calculating
machines.
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