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Le calcul matriciel des structures continues par la méthode
des déplacements

Matrizenberechnung kontinuierlicher Tragwerke mit der Deformationsmethode

The Matricial Calculation of Continuous Structures by the
Method of Displacements

F. CORREIA DE ARAUJO
Prof. Dr. Ing., Faculdade de Engenharia, Universidade do Porto (Portugal)

1. I1 est bien connu que le probléme général du calcul des structures résis-
tantes consiste dans la détermination de 1’état de tension et de 1’état de défor-
mation, en chacun de leurs points, quand elles sont soumises a 1’action des
sollicitations extérieures. Cela implique la considération d’un certain nombre
de grandeurs inconnues, en chaque point, qui sont les variables du probléme.
Mais ces variables ne sont pas toutes indépendantes: si les déformations sont
élastiques — comme nous le supposons — les composantes de la tension sont
en rapport avec les composantes de la déformation et celles-ci avec les compo-
santes du déplacement.

11 s’en suit que 1’on peut toujours dire que le probleme se réduit a la seule
détermination de 1’état de tension (ou de 1’état de déformation), duquel il est
possible d’obtenir 1’état de déformation (ou 1’état de tension) en chaque point.

On procede a l’aide d’équations aux dérivées partielles qui conditionnent
les composantes de la tension (équations d’équilibre) et les composantes de la
déformation (équations de compatibilité) en tous les points de l'intérieur des
corps; et des équations qui imposent certaines restrictions aux déformations,
ou aux tensions, ou aux déformations et aux tensions, dans les points de la
surface du contour ol se font les liaisons avec 1’extérieur (équations de liaison).

En considérant que ces derniéres équations traduisent les conditions aux
limites du probléme, on peut donc énoncer celui-ci comme consistant: ou dans
la détermination des composantes de la tension, introduites comme inconnues,
dans les équations de compatibilité; ou dans la détermination des composantes
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de la déformation, en les faisant intervenir, par un changement de variables,
dans les équations d’équilibre. En tous cas, les composantes de la tension
doivent satisfaire aux équations d’équilibre et les composantes de la défor-
mation aux équations de compatibilité, tout en respectant les équations de
liaison.

Si I’on se limite a 1’étude des structures réticulées, le probléme devient plus
simple, puisque 1’état de tension et 1’état de déformation de ces structures
sont complétement définis par la seule connaissance des composantes des
efforts (efforts normal et tranchant, moments de flexion et de torsion) et des
déplacements (translations, rotations) dans un nombre limité de sections
transversales des piéces linéaires ou barres dont elles sont constituées. Comme
dans le cas général, on peut poser ici le probléme de deux fagons différentes:
ou en considérant des équations de compatibilité des déplacements, avec,
comme inconnues, des systémes de forces en équilibre; ou en considérant
comme inconnues des déplacements compatibles, introduits, par un charge-
ment de variables, dans les équations d’équilibre.

Dans les deux cas, nous envisageons des forces généralisées et des déplace-
menls généralisés et nous appelons coordonnées généralisées du systéme les forces
et les déplacements généralisés se correspondant et constituant un ensemble
cohérent de variables généralisées.

Tout ce qui suit se rapporte seulement a des structures réticulées planes,
une généralisation aux structures spatiales ne comportant pas de difficulté.
Nous supposons, en plus, que ces structures sont dotées de liaisons en exces,
extérieures ou intérieures, relativement aux liaisons pour lesquelles elles
seraient strictement stables. Cela permet de les définir comme étant des struc-
tures hyperstatiques ou hypergéométriques selon qu’on consideére comme inconnues
les réactions des liaisons en exces ou les déplacements correspondants. On voit
aussitot 1’existence de deux méthodes de calcul de ces structures, la méthode
des forces et la méthode des déplacements. Une méthode mixte, se révélant par-
fois avantageuse, comporte des inconnues forces et déplacements & la fois.

2. Considérons une structure réticulée, plane, dotée de liaisons en exces,
et soit » le nombre de ses degrés de liberté, c’est-a-dire le nombre fini de para-
metres nécessaires et suffisants pour définir toutes les positions ou configura-
tions que la structure peut prendre et qui soient compatibles avec ses liaisons.
Nous supposons que ces parameétres sont variables avec continuité dans cer-
tains intervalles et qu’on peut passer d’une configuration donnée de la struc-
ture & une autre, définie par des accroissements infinitésimaux, arbitraires,
des mémes paramétres: la structure constitue, par définition, un systéme
holonome & n degrés de liberté.

Si 'on prend comme inconnues les forces ou inconnues hyperstatiques
X,;(t=1,2,...n), la détermination de ces inconnues peut étre conduite comme
suit:
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— on décompose la structure en structures élémentaires, en supprimant les
liaisons dont les réactions sont les inconnues hyperstatiques, la structure
ainsi modifiée étant la structure principale ou systéme de base;

— on considére, dans la structure principale, la configuration d’équilibre cor-
respondant & la sollicitation extérieure et 1’on détermine les déplacements
;0 correspondant aux inconnues hyperstatiques ;

— on considére encore, dans la structure principale, les » configurations d’équi-
libre, indépendantes, correspondant & une force 1 remplacant chacune des
inconnues hyperstatiques X; et 1’on détermine les déplacements 5;; corres-
pondant & toutes les inconnues hyperstatiques;

— les déplacements correspondant & chaque inconnue hyperstatique devant
étre compatibles, on écrit le systéme des équations de compatibilité:

{8} = {80} +[0;51{X;} = 0, (1)
dont les inconnues sont les inconnues hyperstatiques X;.
C’est la méthode des forces.

De l'expression (1) on peut naturellement déduire la signification rapportée
& chacune des lettres, laquelle justifie les désignations suivantes:

— §;¢ sont les déplacements correspondant aux inconnues hyperstatiques, dans
la structure principale, pour la sollicitation X =0, c¢’est-a-dire, dus & la seule
sollicitation extérieure. Ces déplacements, comme il est bien connu, sont
donnés par des expressions du type:

M, M, N;N, T, Ty

5T ds + BA ds + aA

So 8o So

8;0 = d8+fl\_7ioctds+8iap. (2)
So

— 8;;=20;; sont les déplacements correspondant aux inconnues hyperstatiques,
dans la structure principale, pour la sollicitation X;=1, qui sont donnés
par des expressions du type:

_ (M4, N; N, T, 1;
8’!:]' = "E,—r d8+ —E—A— d8+ —C-T;ZTdS. (3)
So So So

Les intégrales sont prises tout le long de la structure principale et les lettres
y intervenant ont une signification qu’il ne semble pas nécessaire de rappeler.
La matrice-colonne: 89 = — {80} 4)

est nommée matrice de sollicitation ou vecteur de solicitation ; la matrice carré
symétrique: 8 = [8;] (5)
est la matrice de flexibilité de la structure; la matrice-colonne:
X ={X;} (6)

est le vecteur des forces hyperstatiques.

On peut donc écrire plus simplement le systéme des équations de com-

tibilité:
patibilité 5X = 35, 1)
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Dans le cas ou les inconnues du probléme sont les déplacements élémen-
taires 4;, correspondant aux degrés de liberté de la structure, on peut procéder
d’une fagon tout & fait analogue:

— on modifie la structure en lui imposant les contraintes ou forces de fixation
capables d’empécher la production des déplacements 4,, la structure modi-
fiée étant, de méme, la structure principale ou systéme de base;

— on considére la configuration de la structure principale, compatible avec
ses liaisons, due & 1’action de la sollicitation extérieure, et on détermine les
forces de fixation correspondantes x;,;

— on considére aussi chacune des configurations compatibles du systéme prin-
cipal, indépendantes, correspondant & un déplacement 1 & la place de 4,
les autres 4, (2 #7) étant nuls, et on détermine toutes les forces de fixations
)

— 1’équilibre devant se maintenir en correspondance avec chacun des déplace-
ments de la structure réelle, on peut écrire le systéme des équations d’équi-

libre : (w2} = {mio} + [2:51{4,} = 0, (8)

dont les inconnues sont les déplacements 4;.

C’est la méthode des déplacements. .
De I’expression (8) on peut naturellement déduire la signification rapportée
a chacune des lettres, laquelle justifie les désignations suivantes:

—x;, sont les forces de fixations correspondant aux inconnues hypergéo-
métriques, dans la structure principale, pour la configuration 4 =0, c’est-

a-dire, dues & la sollicitation extérieure;
— x;;=x;; sont les forces de fixation correspondant aux inconnues hyper-

géométriques, dans la structure principale, pour la configuration 4;=1.

La matrice-colonne:

2y = —{%;0} (9)
est maintenant le vecteur de sollicitation; la matrice carré symétrique:
r = [24] (10)
est nommée la matrice de rigidité de la structure; la matrice-colonne:
4 ={4;} (11)

est le vecteur des déplacements hypergéométriques.
Le systéme des équations d’équilibre peut done étre écrit:

xd = x,. (12)

Si les forces et les déplacements généralisés, qu’on vient de considérer comme
inconnues, appartiennent au méme systéme de coordonnées généralisées, les
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matrices de flexibilité et de rigidité sont en rapport 1’une avec ’autre, pourvu
qu’elles ne soient pas des matrices singuliéres.
En effet, puisqu’on a, par définition:

4 =58X,
X =z4,

si I'on porte X dans la premiére de ces expressions, on a:
4=38x4

et, 4 étant un vecteur arbitraire, on peut déduire:
ox =1,

I étant la matrice unitaire du méme ordre que 6 et x. Il s’en suit que chacune
de ces matrices est 1’inverse de 1’autre:

0 =x1,
x =071,

ce qui peut seulement se produire dans le cas de matrices réguliéres.

3. Comme on vient de le vérifier, le calcul d’une structure réticulée aux
liaisons en exces dépend, quand on a choisi la nature des inconnues, ou bien
de la connaissance des matrices & et 6, dans la méthode des forces, ou de celle
des matrices z et x, dans la méthode des déplacements.

On a déja remarqué que les matrices & et 3, peuvent étre déterminées par
des procédés connus qui, d’ailleurs, sont d’application trés facile grace & de
nombreuses interprétations divulguées dans la littérature spécialisée.

Pour ce qui est des matrices x et z,, nous allons montrer comment on peut
les obtenir dans le cas des structures continues, ¢’est-a-dire des structures dont
les liaisons des barres sont faites de telle maniére que les angles formés par ses
axes, aux nceuds, restent invariables pendant la déformation. Et, si 1’on
observe que ces matrices interviennent dans les équations d’équilibre des
neeuds de la structure (ol justement on a considéré les déplacements 4;) qui
sont les points de croisement des axes des barres, ou extrémités des barres,
nous devons commencer par établir les relations existant entre les forces
appliquées en ces points et les déplacements correspondants, pour une barre
isolée.

A :
"
F3 l [ Fg
Fy Fs
dy dy
N N

d3 de

dz dg Fig. 1.
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Dans la fig. 1, on a indiqué les sens positifs des forces et des déplacements
correspondants et aussi leurs désignations respectives, en prenant comme
axes de coordonnées un axe paralléle & ’axe de la barre et un autre perpen-

diculaire.

On remarquera que les forces généralisées sont représentées par des fleches
simples (droites ou courbes selon qu’il s’agit vraiment de forces ou de moments),
tandis que les déplacements correspondants sont indiqués par des fleches
(droites ou courbes selon qu’il s’agit de translations ou de rotations) coupées
par de petits cercles.

Par définition, on aura:

ou:

est le vecteur de sollicitation,

la matrice de rigidité, et

F =kd,
F = {F;}
k = [ky]
d ={d;}

(13)
(14)
(15)
(16)

le vecteur des déplacements (les indices ¢ et j pouvant prendre les valeurs 1,

2,3, 4,5,6).

CONFIGURATION d,=!

Kn

CONFIGURATION dL =1
Kig

N N
T ’ J 2
Kst Ksg
1 % Ko I
2
4EI K 2ET _ 2EI _4ED
Ky = 25 - 2EL Ky, = 251 Ky =455
134 6EL _BET _SE
K == Kot === Koo ==~ Kgq =-EEL
Ky = 0 Kg = O K= o Koy = 0
CONFIGURATION d,=! CONFIGURATION d, =!
2 —_— e 5
Ka2 KK\R
7N\ 4 y
7 1 %
d a1 ' %ds.x
) z l Ks2 i
K22 Kyp = SEL K, = SEL Kig =< SEL K = ~BEL
2= @ == 5 2 ] Ksg
12ET RETL 2ET 2EL
K22 ~ <55~ Ksz === 5~ Kz =-=3 Kss = =3~
Ky = 0 Kg = © Kyg= 0 Kes = O
CONFIGURATION d3 =1 CONFIGURATION dG =l
dyat dgmi
Kn 42y po e 1 vp .
2 7 1 1 |74
K3 =0 Ky =0 Kig =0 Kg = 0
Ky = 0 Kgy = 0 Kpg = 0 Keg = ©
EA nEA _EA EA
K33 =1 ke =770 K =L Kes =

Planche I
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Les éléments k;; de la matrice de rigidité sont les coefficients de rigidité de
la barre, pour les diverses configurations indépendantes d;=1. Ci-joint (P1. I)
on peut voir la signification mécanique de ces coefficients et leurs valeurs
particuliéres, dans le cas ou la section 4 de la barre et son moment d’inertie
sont constants.

La matrice de rigidité de la barre est donc:

ki kyy ks ki ks ke
koy kyp Fos koy ko5 Kag
kgy kgs ksp kyy kss  kse
k=|- s (17)
by kyy kg ky kg5 kg

s1 ksy Ksz | ksy kss ks

k61 k62 k63 i k64 k65 kﬁﬁ

™
=~

et peut étre fractionnée en quatre sous-matrices:

[[k]ee [k]ed}
b= | e S (18)
[k]de [k]dd

lesquelles, quand elles ont des indices égaux, représentent l’influence dans
une des extrémités, de déplacements dans la méme extrémité et sont appelées
sous-matrices de rigidité directes:

by gy K
[Klee = | kay & k
| kg kg kg
kyy k
ks k
beye K&

[ g

[k]dd = k54
kea

_ (19)

et, quand elles ont des indices différents, représentent 1’influence, dans une
des extrémités, de déplacements dans 1’autre extrémité et sont appelées sous-
maitrices de rigidité croisées ou de tramnsmission, chacune de ces sous-matrices
étant la transposée de ’autre (ce qui résulte de la symétrie de la matrice k):

kyy kys ke
[k]ed = k24 kzs kza = [k]é“e,
L kyy ka5 ks |
_ - (20)
kg ki ks
[k]de = k51 ksz kss = [k]:fz-
- k61 kez kss _

Dans le cas particulier ou A et I sont constants, on obtient:
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61 I

41 0 21 - 0

61 121 61 121
L 12 L T Le

0 0 A o0 0 —4

k=% .......................... - S, . (21)

61 ; 61

2  — 0 41 —— 0

61 121 . 61 _ 121 o
L T IT i T L T IT

0 0 -4 0 0 A

Si les axes de coordonnées font un angle « avec ceux que nous venons de
considérer, la matrice de rigidité peut étre obtenue de (17) ou, le cas échéant,
de (21), par une simple transformation orthogonale. Dans la fig. 2 sont indi-
qués les désignations et les sens positifs des coordonnées généralisées corres-
pondant & ce cas.

R
N

—_— -

s
$s

—————

8 { ' Fig. 2.
5

On peut facilement se rendre compte que ces coordonnées peuvent étre
déduites des précédantes par les transformations:

8=1T4d, ®=1TF,

T étant la matrice de transformation:

10 0 |
0 cosa —sina [0]
0 sine cosa
------------- - . (22)
il 0 0
[0] 0 cosa —sin«

i 0 sina cosa
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Il s’agit d’une matrice orthogonale qui, de ce fait, a son inverse égale &
sa transposée:
T =T%,
Mais nous avons déja vu qu’on a:
F=1FLkd
et comme, d’autre part, on a:
d=T16=T%*s,
il en résulte:
F=FEkET*s.
On peut done écrire:

S®=TKT*s,

ce qui représente la relation de dépendance entre les nouvelles forces et les
nouveaux déplacements. Il en résulte que la matrice de rigidité de la barre,
rapportée aux nouveaux axes, est:

p=TEkT*. (23)
Tout comme £, elle est clairement une matrice symétrique:
Pij = Pji>

et en la décomposant en ses sous-matrices directes et croisées, on peut écrire

[P]ee [P]ed
p = | i —— . (24)
lelae i [Plaa
Le développement des sous-matrices de p s8’écrit comme suit:
[plee = | kgrcosa  kyycos?a+kygsin?a  (kgy—Kkgg)sinacosa |,
| kysina  (kgg—Fyz)sinacoso  kyysin? o+ ka3 cos?a |
"k, ky5cos o kygsine ]
[pleg = | kogcosa kgzcos?a+kygsina  (kg;—Kkgg) sinacosa | = [pld,, (25)

koysino  (kgs—kyg)sinacosa  kyssin? «+ kg cos?a |

k44 k45 COS a k45 SiIl [0 4
[plag = | ksacosa kgscos?a+kggsin?a  (kyy— keg) sin o cos o
| ksysine  (ks5—keg)sinacosa  kyssin o+ kgg cOS%

Sur la planche IT on peut voir la signification mécanique et la déduc-
tion directe des coefficients de rigidité p,;, aussi bien que les valeurs de ces
coefficients dans le cas ot 4 et I sont constants.



Par =Ky

CONFIGURATION =1

SEI cos o

P2 = Ky cosa =

P31 = Kz sena '-S—SL sen o

2€1
= Ky =g

pSY - Kg,r cos o -—% cos o

6ET
Ks; send mmogsend

Paz = Kig cos o
Kgz sen o

CONFIGURATION §,-1

Kgg cos o
Pra2 = Kypcos o
81 Pz = Kip cos ot = 5:121 cos
P = Ky cos2ax + Ky sen? ot =
& esa 2~ ¥p
Kzjsen'a i\ iz = (K~ Ky) sen acos a =
Pa Mg a - (ET - EA) s o
(PR KAZ cos o =% cos o
P52 = K codfa + Kea sen’at =
senzd.

ma12EL 2y . EA
L3 L

Pe =k sz -Kgg) sen acos o =

- (’i -—EEA-) sén « cos &

CONFIGURATION fyu1.

f13=Kyp sen o

CONFIGURATION §,=1

Pra =Ky

K2

933 --K22 sen? o 4 K” cos2 o =

LR E
L3

91,3 = KLZ

psa = (K52 =
-(2&t
L3

043 =Kaz sen

- (12 EL | EA
3 L

L sen2 ¢ 4

sen o m 2=

$ET
12

EA

P13 =Ky sen “"6-51 sen o

sen

P23 '(Kzz‘Kn) sen o cos @ =

‘—‘) sen o Cos o

o

Ps3 =Ky sen? a + Kgy cos? a =

Pre = Ky
P2y = Kz
P3q = Ky
Pag = Koy
Pss = Ky

Poe = Ksy

Planche

2 EL sen o ~£A—cg52 o
3 L

o 2EL
C

cos o uBEL
L2

sen o -8EL
12
.ALEI.

.S EL
cos o "]

sen o 8 EL
12

II

sen o

Kg3 cos o
-

5]

cos? o

K63) sen o €os o =

- .E_A) sen o cos o
L

CONFIGURATION §,=1

Kgg cos a

S8 EYL
= K cos « =25 cos«

= Kpgcos2a 4Ky sen? ot m

= -12EL cos?q ~EA sen2
3 T

= (Kgg ~ Kgq) sen o cos o=

/'\ 5
K sen « B
P25
Kog cos o
P2s ¢
~-(2EL _ EA)sen wcos
3 L

= K5 cos « ._%

= Kgg cos? o +Kgg

Pus cos o

055 serfa w
sen? a

= 12EI cos?a (EA
L3 L

= (Kss — Kgg) sen

- (REL .
L3

Pes o oS & =

EA)sen a cos o
L

CONFIGURATION dg=1

6 E
= Kig sen “--—LTI sen o

P2 ‘(KE — Kyg) sen «cos am

~-(ZEI_EA)sen o cos «
3L

‘= Ky sen? d+K3p cos2 om

K25 sen o

«~J2ELl sen? o _EA cos?
[&] L

P = K5 sen oo =-

sen o

6EI
fe6 £

‘(K55—K55) sen o cos &=
= (REI_EA)sen o cos «
G L

Ps6

= Kgg sen? o +Kgg cos? o
~ RZEI 5’“2°<+LA cos? ot
[X] L

ot

4V 5d VIZHE0D 'd

orayv
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Les forces généralisées @ aux extrémités de la barre sont données par:

sont les forces de fixation dans la configuration 6 =0, c’est-a-dire, les forces
aux extrémités de la barre résultant de la sollicitation extérieure, ces extrémi-
tés étant encastrées et sans affaissements.

Dans le cas ou1 ’on a =0, A et I étant constants, on arrive sans difficulté
aux formules de Gehler:

4 K1 2K 6 K1 6 Bl
Me =M06+ L (Pe+ L (Pd'l' 12 Ve — 12 Vg
2HKI 2 K1 6 K1 6 E1
L Pt L Qg+ 1.2 Ve— 12 Va>

(27)
Md =M0d+

les lettres ayant des significations évidentes. Dans ce cas, les moments aux
extrémités, M, et M;, sont accompagnés d’efforts tranchants, 7, et T}, et
d’efforts axiaux, NV, et N;, donnés par:

6 K1 6 K1 12K1 12KE1
716 :‘I})e + 12 (Pe+ 1.2 (Pd+ 13 Ve — 13 Yg>

6 El 6 L1 12EIv_12EIv

Td = ﬂd —'L—zgve_ 12 Pa— 3 e I3 d>

EA EA (28)
No = Nop+—7— thy——F—Ua;

EA EA
Ndz NOd_T ue+Tud.

4. Pour écrire les équations d’équilibre d’une structure réticulée continue,
il faut commencer par établir un rapport entre les déplacements et les forces
aux extrémités des barres, respectivement, et les déplacements et les forces
correspondants du systéme de coordonnées généralisées envisagé pour la
structure.

Si en chaque nceud, et pour chaque barre y concourant, on connait déja
les forces et les déplacements rapportés a ce systéme de coordonnées, la matrice
de rigidité de la structure résulte immédiatement des sous-matrices qui tra-
duisent l'influence des déplacements de tous les autres nceuds dans chaque
nceud: nous verrons que la sous-matrice directe d’un nceud est la somme des
sous-matrices directes de ce nceud, pour chaeune des barres s’y joignant; et
que chaque sous-matrice croisée d’un nceud est la sous-matrice croisée du
méme nceud pour chacune des barres y concourant.

Soit, par exemple, la structure représentée dans la fig. 31). Elle a sept

1) Exemple extrait de Lighfoot, «Moment Distribution» (Ed. Spon. Londres, 1961),
ou il est résolu par une autre méthode.
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degrés de liberté et on peut choisir comme variables indépendantes les trois
rotations et les quatre translations indiquées, lesquelles sont désignées par
4,,4,,4,,...,4,.

Les équations d’équilibre, chacune correspondant a un de ses déplacements,
constituent un systéme linéaire du type (12):

x4 = x,.

44 [

1800

7.50

1200 } 700

-
-

Fig. 3.

La matrice de rigidité de la structure peut étre décomposée dans les sous-
matrices qui traduisent l’influence, en chaque nceud, des déplacements uni-
taires en chacun d’eux:

Xy 12 L33 ¢ X1y Xyp Ty Ty
Loy gy Tag | Tag Xgs Tog | Xog
Tgy Xzg Tg3 | Xgy Xas Xzg | Ty

....... . ey [x]BB [x]BC [x]BD

T =| Tgy Typ Tg3 | Tya Ty5 Ty Ty | =| [®lep [Xloe @lep |-
Ts1 Tsg Ty | Tsa Tss Tse | Loy [*lps [®lpc [*lpp
ZTgy Xg2 Tz | Tga Tes Lgg | Loy ‘

L1 Lqg Tag | Xgg Tgg Tgg | Xpg

Considérons, par exemple, la sous-matrice [x]gzg. Ses éléments sont les
forces généralisées en B (moment de flexion, force verticale, force horizontale),
produites quand chacun des déplacements généralisés en B a la valeur unité,
tous les autres étant nuls, ¢’est-a-dire, produites dans les configurations 4, =1,
4,=1, 4,=1. Mais le nceud B est ’extrémité droite de la barre A B et 1’extré-
mité gauche de la barre BC': il s’en suit que chacun de ces éléments est la
somme des éléments correspondants des barres AB et BC, rapportés & un
méme systéme d’axes. Et il vient:

[x]gs = [pldf +[p1Z°.
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De la méme fagon:
[#]oc = [P1EF + [PIEP
[(]pp = [p1Z8 -
Pour ce qui est des sous-matrices croisées, il est facile de vérifier que cha-
cune de ces sous-matrices est la sous-matrice croisée de la barre qui la con-

cerne, dans ’extrémité coincidant avec le noceud considéré, les sous-matrices
traduisant 1’influence des déplacements au dela de chaque barre étant nulles:

[#]pc = (P15
[«]lgp =0,

[®]los = [®]Ec>
[®lep = [PISP>
[#lpp =0,

[lpe = [*]ép-

Tout se résume donc a la détermination des matrices p des barres, rapportées
a un méme systéme d’axes, par exemple I’horizontal et le vertical.

Comme application numérique, supposons que A et I sont constants et

prenons:
A =1,00x1,00 =1cc12x 105,
1,000 1

— — 5
I 15 12oc1><10.

Pour la barre 4 B on déduit facilement de la figure:

L =195,
sine = 0,923,
cosa = 0,385.

L’extrémité 4 étant fixe, il y a seulement intérét a déterminer les sous-
matrices relatives aux déplacements de cette barre en B:

‘T2EI 6EI 0
L L2
6Bl 1231 10256 —1578 0
*lea = |75~ — 73 0 oc| 1578 —162 0],
. . B4 0 0 —61539
3 L |
T4EI 6EI a
L L2
6TI 15 EI 20513  —1578 0
[klaa = | 5 73 0 oc | —1578 162 0|,
. . A i 0 0 61539
L —
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Les sous-matrices de p s’en déduisent:

(2 BT 6 EI GEI
L — ——LTCOSOC L Slnoc
P 6 EI 12E1 EA ., 12E1 EA .
[pl4P = ~fa C08x —|—gg—cosfat—u—sinfal — 5= ———sinecosx
6 £l . 12E1I EA\ . 12E1 EA
N 75 T sin o cos o »—L—smoc+Teos2
10256 — 607 — 1457
oC 607 —52461 21789 |,
1457 21789 — 9239
- 4 EI 6EI GEI ]
T L COS L SanC
uB 6 EI 12E1 EA . 12E1 EA)\ .
lpl4f = ~ —fa €08« —F—coszcx—l-—L—smzoc 75— 7 |sinecosa
6Elsin (12EI EA) sin « cos 1 Elsin2 +——EAcosza
T\ T L xEORE TR *TL
205613 — 607 — 1457
| — 607 52461 —21789
== 1457 —21789 9239
Pour la barre BC, on a:
L =120,
a =0,
p =k.
' Par suite on obtient les sous-matrices de p:
4 E1 6 E1 ‘O N
L L2
6 Bl 12 EI 33333 4167 0
B A 0 0 100000
0 0 E——
B L
2 BT 6 EI 0 ]
- 2
6ZI 1512[ 16667 —4167 0
(P10 = K = | 5 — 5 0 |oc| 4167 —694 0l
0 0 —100000
0 0 _£4
R L]
[ 16667 4167 0
[p1BC = [p]*BCoc| —4167 —694 01,
B 0 0 —100000
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[ 4EI 6EI 0 ]
L L?
6 B 12 Bl 33333 —4167 0
()2 = hlEf = | — 7= 75 0 |oc| —4167 694 0,
o . EA 8 0 0 100000
- L -
Pour la barre CD, on a « = —f et:
L =250,

sina = —sinfB = — 0,960,
cose = cosf = 0,280.

En supposant ’extrémité gauche en C, on a:

(4 EI 6 E1 0
L L2
16000 960 0
6Kl 12K1 .
0 0 48000
0o 0 £4
- L p—

[kl = [kli® = {ﬂf—l G—Ii—{ 0} {8000 960 0}.

[k]$P = [% oc [16000].

D’ou les sous-matrices de p:

F4EI 6 K1 .
'—L—— “L—ZCOSOC —L—Z-SIHOC
op _ | 6EI 12BI , EA_., (12E1 EA._
[plSP = T2 CoSa —g5—COs oc+~L-—sm o 7 T T |Smxcosx
6 EI 1281 EA . 12B] ., EA
—-L—z‘Slna i —_— L Sin o COS & TS]D d+—L——COS o

16000 269 —922
oc 269 44243 12882 |,
—922 12882 3834

2 6
(PISP = [pl3EP = {—f—l —f;—lcosoc % sinoc} oc{8000 269 —922},

1P = [#] o< t16000).

Les sous-matrices de la matrice de rigidité de la structure seront donec:
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20513  —607 — 1457
[@lpp = [pldP +[p]BCoc| — 607 52461 —21789
—1457 —21789 9239
33333 4167 0 53846 3560 — 1457
+| 4167 694 0 |=| 3560 53155 —21789 |,
0 0 100000 —1457 —21789 109239
16667 —4167 0
[®]po = [p]BPoc| 4167 — 694 0 |,
0 0 —100000
[*]pp = 0, _
16667 4167 0
0 0 —100000
33333 —4167 0
[#lce = [p)EF + (PP oc | —4167 694 0
0 0 100000
16000 269 —922 49333 —3898  —922
+| 269 44243 12882 | =| —3898 44937 12882 |,
—922 12882 3834 — 922 12882 103834
[lop = [PISP oc{ 8000 269 —922},
[x]pp =0,
[z]pp = [p]Gd o[ 16000 ].
D’ou la matrice de rigidité de la structure:
[ 53846 3560 — 1457 | 16667 —4167 0 | 0|
3560 53155 —21789 | 4167 — 694 0 0
— 1457 —21789 109239 | 0 0 —100000 0
xoc| 16667 4167 0 | 49333 —3898  —922 | 8000
—4167  —694 0 | —3898 44937 12882 269
0 0 —100000 | — 922 12882 103834 . —922
B 0 0 0 8000 269  —922 | 16000 |

La matrice de sollicitation est obtenue sans difficulté:

9% 10 x 22

Z10="""192 =—2,50,
9x2 12,5—2,5

Tag = — s+ 2 — 0,67,

12 12




LE CALCUL MATRICIEL DES STRUCTURES CONTINUES

g9 = — 2,00,
2% 2
Z4o = gx_11202_><—=12,50,
9x10 12,5-2,5
S TR T
Zgo= O,
Lo =

En prenant:
x,={250 67 200 —1250 833 0 0},

la résolution du systeme: |
xd =z,

fournit:

0,01496 |
0,05313
0,12220
—0,03826 |.
—0,01705
0,11970
2] | 0,02631

W N -

(= )

‘mmmp&mmm
I

17

Les moments dans les extrémités des barres sont donnés par 1’expression:

M= My+pyd,

py étant la matrice formée avec les premiéres lignes des sous-matrices de p de

toutes les barres. On a done:

M, [ 0 10256 —607 —1457 0 0 0
My, 0 | 20513 —607 —1457 0 0 0
My —250 | 33333 4167 0 16667 —4167 0
Myp || 1250 | 16667 4167 0 33333 —4167 0
My 0 0 0 0 16000 269 —922
Mpe| | O 0 0 0 8000 269 —922
- -
0,01496 —0,569 |
0,05313 0,966
0,12220 —0,966
—0,03826 | <197 =] 5165
—0,01705 —~5,165
0,11970 0
| 0,02631 - -

0]
0
0
0

8000

16000 |
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5. L’influence de la déformation axiale des barres des structures réticulées
continues, sur la valeur des efforts, étant généralement trés petite, il est
habituel de ne pas la considérer. De 1’invariabilité de la longueur des barres,
ainsi supposée, découlent des relations de dépendance entre les déplacements
qui définissaient les degrés de liberté de la structure et le nombre de ces degrés
de liberté diminue.

Soit, par exemple, la structure dont nous venons de nous occuper et suppo-
sons que toutes ses barres sont incompressibles et inextensibles. En désignant

par 4;,4,,...,4; les déplacements généralisés représentés auparavant par
4,,4,,...,4,, le diagrame des déplacements de la structure, pour le déplace-
ment indépendant 4; (fig. 4), permet de déduire:

44 cotg «

4; |=| —cotgB |4;.

4 1

%‘"

Fig. 4.

Les relations de dépendance entre les déplacements étant done trois, il s’en
suit qu’il y a seulement 7—3 =4 déplacements indépendants. Et en adoptant
la notation (fig. 5):

Al = A{s
4, = 4,,
Aa = 43,
4, = 4,

tous les anciens déplacements peuvent étre exprimés en fonction des nouveaux:

471 [1 0 o 0]

4; 0 0 cotga O

4, 0 0 1 0 4,
3 4
d;1=10 1 0 0 AZ
4; 0 0 —cotgB O A‘"
4; 0 0 1 0 .

4,1 [0 0 0 1
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Le probléme n’a done que quatre inconnues au lieu de sept. Pour les déter-
miner, il faut, tout comme auparavant, résoudre un systéme d’équations
linéaires:

xd = x,,

x étant la nouvelle matrice de rigidité et x, le nouveau vecteur de sollicitation.
Les déplacements des extrémités des barres étant d, et F représentant les
forces correspondantes (fig. 1), les déplacements 4 des nceuds de la structure

_\!3d9
4

Fig. 5. Fig. 6.

sont en rapport avec les déplacements d:
d=04, (29)

O étant une matrice de transformation la mairice de liaison, dont les colonnes
sont constituées par les composantes d de chacune des configurations 4;=1.
Le travail virtuel produit par les forces F, en raison des déplacements d,

est donné par:
U=F*d.

Ce travail étant égal au travail virtuel produit par les forces ¢, correspon-
dant aux déplacements 4, en raison de ces derniers déplacements:

U=Q*4,
on aura: Q*4 =F*d =F*0@4.
Comme cette égalité doit étre vérifiée pour toute valeur de 4, il en résulte:
Q* = F*0O
ou: Q@ =0O*F,
Mais, entre les forces @ et les déplacements correspondants 4, il y a, par

définition, la relation:
Q=uz4, (30)

tout comme entre les forces F et les déplacements d on a la relation:
F=rFd. (31)
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En portant la valeur de @ en (30), on trouve:

xd =0*F
et en prenant la valeur de F':
x4 =0*kd
ou, en tenant compte de (29):
x4 =0*k04.

Cette expression étant valable pour toute valeur de 4, il s’en suit:
x=0%k0, (32)

ce qui fournit 1’expression de la matrice de rigidité de la structure. La matrice
de rigidité k des barres étant connue, tout se résume donc & déterminer la

CONFIGURATION A =1 CONFIGURATION A,=1

dy=dy-t dg = dy =1
dy = d, = dg = dg - d) = dy=dy=d, =g
=dy=dg=dg-0 - dg=dg=0
CONFIGURATION A3-l CONFIGURATION A, =1

dg_q d
‘.“: &

dg

dy = 1 cosec o d
d, = 1 cotg «
dg =-1 cotg ] =d. = d
d8 =-1 cosec @

d.’ = d3-d5-d7-d9-0

Planche I1T
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matrice @, de transformation des déplacements 4 de la structure, en déplace-
ments d des barres.

Pour ce qui est du vecteur de sollicitation x,, sa détermination est évidente.

L’expression (32) est tout-a-fait générale et nous allons la développer pour
la structure que nous avons considérée.

Soient d,,d,, . . .,dg,dy les déplacements des extrémités des barres (fig. 6).
La matrice de transformation ® peut étre obtenue, colonne & colonne, en
considérant successivement les configurations 4,=1, lesquelles sont représen-
tées sur la planche III.

Pour 4,=1, il n’y a que d, et d; différents de zero:

Pour 4,=1, il y a seulement:

Pour 4;=1: dy = coseca = 1,082,
dy = cotga = 0417,
dg = —cotgB =—0,292,
dg = —cosecf = —1,041.

Pour 4,=1: dy = 1.

D’ou la matrice ©: 1 0 0 0|

0 0 1,082 0
1 0 0 0
0 0 0,417 0
@=|0 1 0 0
0 0 —-0,292 0
0 1 0 0
0 0 —1,041 O
L 0 0 0 1 ]

La matrice de rigidité des barres s’écrit:

ses sous-matrices étant:

4EI 6 EI
K], = L Iz 20513 —1578
48T 6EI  12EI —1578 162 |

L2 L3
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 4EI 6EI | 2EI 6EI
L L L I
6EI 12EI{ 6EI 12EI
L2 L3 Lz L3
[klpe =
2EI 6EI | 4EI 6EI
L Lr L T I?
6EI 12EI | 6EI  12EI
Y 7 Y I3
33333 4167 16667 —4167
4167 694 4167 — 694
16667 4167 33333 —4167 |’
—4167 —694 —4167 694
(4Bl 6E1 | 2EI]
L 1* | L
6EI 12Kl i 6EI 16000 960 8000
(Klep = |7z ~ 15 | Iz |<| 960 77 960 |
: 5 8000 960 16000
2EI 6EI | 4EI
| L I | L
Il s’en suit:
" 20513 —1578 7
—1578 162

33333 4167 16667 —4167 |
4167 694 4167 — 694
k= 16667 4167 33333 —4167 )
—4167 —694 —4167 694

16000 960 8000
960 77 960
8000 960 16000 |

La matrice de rigidité de la structure est obtenue par la double-multiplica-
tion (32):

53846 16667 1247 0
16667 49333 1955 8000

=0*k0O
v=0%kOx| 1o41 1955 620 —999

0 8000 —999 160000
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Le vecteur de sollicitation est composé par:

9 10 x 22
xlo—_T——_2,5,
9x102x 2
x20= '—122—‘=12,5,
9x2 12,5-—-25 9x10 12,5—2,5 _
x30——2—(12 -t )><0,417—( 5t 1o )><—O,292_O,15,
Tyo= 0.
En posant:
250
o | —1250
0Tl —15]°
0
les équations d’équilibre s’écrivent:
53846 16667 1247 0 | [4, 250
16667 49333 1955 8000 4, | —1250
1247 1955 620 —999 4, | - 15
0 8000 —999 16000 4, 0

et fournissent:

4, 0,01406
4, | —0,03884
4, 0,11263 |’
4, 0,02645

Les déplacements des extrémités des barres sont donnés par (29):

1 0 0 0 0,01406
0 0 1,082 0 0,12187
1 0 0 0 - 0,01406
0 0 0,417 0 _g’g;‘;gz 0,04697
d=04=|0 1 0 0 011263 | = | —0:03884
0 0 —0,292 0 002645 —0,03289
0 1 0 0 ’ —0,03884
0 0 —1,041 0 —~0,11725
| 0 0 0 1| 0,02645 |

et les moments dans ces extrémités, par:



24 F. CORREIA DE ARAUJO

i 110256 — 1578 i
My, 20513 —1578
Myo | | —250] 133333 4167 16667 —4167|
Mo 1250 | 116667 4167 33333 —4167
M, 116000 960 8000
Mpo | | | 8000 960 16000 |
- _
0,01406
0,12187 [ —0,481 |
0,01406 0,961
0,04697 —0,959
) -2 J
—0,03884 |10 5,225 |’
—0,03289 — 5,224
—0,03884 o0
—0,11725
| 0,02645

6. Dans les structures continues, formées de barres orthogonales, quand
on ne considére pas I’effet de la déformation axiale des barres, la détermination
formelle de la matrice de rigidité est simplifiée, spécialement dans le cas ou le
moment d’inertie de chaque barre est constant ou s’il a une loi de variation
symétrique en relation au milieu de la barre.

Soit la structure représentée sur la planche IV, ayant neuf degrés de liberté.
On choisit comme déplacements indépendants les sept rotations 4,,4,,...,4,
et les deux translations 44, 44 indiquées.

En supposant que les barres sont de moment d’inertie constant, incom-
pressibles et inextensibles, les coefficients de rigidité des deux extrémités de
chaque barre ont les modules:

4E1 2EI 6 E1 12 K1
L’ L’ L2’ L3

Ayant calculé les valeurs numériques de ces coefficients, on les inscrit (ou
des valeurs qui leurs soient proportionnelles) dans le schéma de la structure,
sur ’axe de la barre les concernant, avec la disposition suivante, que cet axe
soit horizontal ou vertical:

axe

4EI| 2EI 4EI| 2Kl
o | L | L L | L
6 EI | 1281 6 EI | 12EI
r | I3 Lt | I3




4200, 300 300, 200
12000 kg lmm’ 12!!1)!(9
F

G E

© 40 kg/m

e e P T
]

g

SYSTEME PRINCIPAL

CONFIGURATION 4,

*n
hY

Xyy=2400 Xpy=1 200

g =R 7 Ys =Ygy " Y= Xg = ¥91 =0

CONFIGURATION A,=1

- 282

y

=1
%3 200

X" Xgp " X" 0 X200 gy ~—240 :Sz--m

CONFIGURATION Ay=1

- - - 4 =5280
L 0 3 1200 Xa 240042400+ 480

X3~ 120 Xga=0 Xg3a2l Xp320 Xg3=-240%g3=0

CONFIGURATION A=)

N

Xy Xpum [ xaL-IZOO
Xz, 2400 +480 =2880 Xgy = 240

¥6a™ X = 0 Xgu=-240 Xg; =720

xn-zmoomnax]wzo-som x3;1zoo

CONFIGURATION Ag=1

X g™ Xog = X350 5= 240 xss-rzoouao-rsao

Xg5= 600  Xp=0  xpem 20  xgg= 360

CONFIGURATION Ag =1

Yot Xt XgmHO gm0 kg w6

Xggm 2080 Xpgm 600 xgg=-20  xggm O

CONFIGURATION A 72t

== SFOVRATN &

*n g7

*87

X770 %y =260

Xy =Xy = Xgy =0
Xg7 =600 Xy =l0 1Z0=160 xg =20 xgym-35D

CONFIGURATION gl
X

r '/x“ r e e
? ‘”rf /L 2

X8 =0

X = X3 =¥ =Xcg ~¥gg =Xzg=240
xgg =3 x 160 =480  xgg=0

CONFIGURATION bg=1

2 NPIVURATIVON &

x19-0 ng-—m x”-o Xg= 720

X530 xgg=0 x79=-3680 xgg=0 Xgg=2x144+2x 288-B64

CONFIGURATION A =m0
k]

x‘o-—zsoo xm-o :30-0

Xi0= 2500 43002800 xgp=1440 ~300 = 1140

X0 Xpg=-1440 xw.soo x%.-sws

Planche IV
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Pour déterminer la matrice de rigidité x =[x;;], de la structure, on considére
successivement les configurations 4,=1,4,=1,...44=1, en les représentant
graphiquement par des schémas sur lesquels on indique les forces de fixation
correspondantes, avec les sens imposés par la déformée particuliere de chaque
configuration. Il convient de rappeler que, dans la configuration 4;=1, tous
les déplacements 4;, pour j =+, sont interdits par des forces de fixation x;;.

Ainsi, dans la configuration 4;=1, puisqu’on a 4,;=0(j 1), la déformée
du systéme principal est manifestement celle qui est représentée dans le
schéma correspondant: elle concerne seulement la barre 4 B, en raison du
bloquage de tous les nceuds & 1’exception du neeud A ou justement le déplace-
ment 4, =1 se produit. Dans ces conditions, la déformation n’étant pas trans-
mise au deld de B, il n’y a forces de fixation qu’aux extrémités de 4 B et on
peut écrire:

Xy) = Ty = Xy = Lgy = Xqq = Lg; = Loy = 0.

Dans la configuration 4,=1, les seules quatre barres convergeant en B se
déforment et il est évident que ’on a:

e (2 o

. (4EI) +(4EI) +(4E’I) +(4E’I)
22 L AB L BC L BG L BH

oc 2400 + 480 + 2400 + 720 = 6000,

2EI)
T = [222) 1200,
52 (L BC
Xyg= Xgp =g =0,
2EI)
T, = (22 240,
2= (1),
6E’I)
Tgy = oc — 240,
w==15),
ST L
BC

Et ainsi successivement pour toutes les configurations 4, =1 correspondant
a des rotations de nceuds.

Pour la configuration 4g=1, les seuls barres BG, CF et DE se déforment,
en raison de la translation horizontale des nceuds E, F, G et ’on a:
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CC18= 0,
Bl
x28 = - L2 )BG oC ""“24:0,
6 EI
Xgg = —( ' )OFoc — 240,

E
6 K1

Zgg = —( 72 )CF oc — 240,
6 Bl

Xqg = —( 72 )BGoc — 240,
12E1 12E1 12E1

os = L? | pa * (T)C’F (T)DEOC:;X 160 =450,

Dans la configuration 4,=1, seules les quatre barres BC, CD, EF, F(
se déforment, en raison de la translation verticale des noeuds C, F et 1’on a:

= O,
E1
729 = = (12 )Booc—'mo,
6 L1 6 E1
x39——( L? )BC’+ (—l_iz_)ODOC_720+720=O,
6 K1
24y = (L2 )CDoc720,
6 £l
g9 = (L2 )EFoc360,
6 B1 6 1
%9:_( = )EF+(—L2—-)FGOC—720—I—720 0,
6 K1
72y = — 1 )BGoc—360,
Tgg = 0, ‘
_ (12E'I) +(12EI + IQEI) +(12EI)
oo = L | po L Jep L ) gp L? | pa

oCc2X 1444 2% 288 = 864.

Toutes ces valeurs peuvent étre obtenues facilement du simple examen
des schémas des différentes configurations 4;=1 et 1’on doit confirmer au fur

et & mesure la loi de réciprocité x;;=x;;.



28 F. CORREIA DE ARAUJO

On peut donc écrire la matrice de rigidité:

[ 2400 1200 0 0 0 0 0! 0 0 ]
1200 6000 1200 0 0 0 240 | —240 —720
0 1200 5280 1200 0 240 0 —240 0
0 0 1200 2880 240 0 0 —240 720
v = 0 0 0 240 1680 600 0: =240 360
0 0 240 0 600 2880 600 | —240 0
0 240 0 0 0 600 1680 ; —240 —360
0 —240 -—240 —240 —240 —240 -—240 480 0

i 0 —-720 0 720 360 0 =360 0 864 |

Le vecteur de sollicitation x, = —{x;,}, correspondant & la configuration

4 =0, peut étre obtenu sans difficulté:

12 52
1200 x 52 1200 x 52
T20 = 2 " 12 %
120052 1200x 57
30 = 12 12
1200 x 52 400 x 32
2000x2x 32 400x 32
Lo = - - —5— = 1140,
2000 22%x3 2000x22x3
Lo = 52 - 52 = 0’
2
x70=—2000>5<22><3 — _ 1440,
4
v = 200X3_ 00
9 -
g = — 2000 —2 X 002X2+2x 14405 960 _ 1200 % 5 = —9408.
On a done:

xo=1{2500 0 0 —2800 —1140 0O 1440 —600 9408}.

La résolution du systéme
zd = gz,

fournirait les valeurs de 4;, la détermination des forces généralisées aux extré-
mites des barres étant obtenue en poursiuvant comme auparavant.
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Résumé

On présente une systématisation de la méthode des déplacements pour le
calcul des structures réticulées hyperstatiques, analogue a la systématisation
classique qui est généralement adoptée dans la méthode des forces, ce qui met en
évidence la loi de dualité existant entre ces deux méthodes. On en fait 1’appli-
cation au calcul des structures continues, en général, tenant compte ou non
des effets des déformations axiales, et ’on considére ensuite le cas particulier
des portiques formés de barres orthogonales.

Le calcul est présenté sous la forme matricielle, ce qui le rend approprié
aussi bien & l’utilisation des computateurs automatiques comme & 1’emploi
des simples calculatrices de bureau.

Zusammenfassung

Die Anwendung der Deformationsmethode bei der Berechnung statisch
unbestimmter Stabwerke wird systematisch dargestellt, wie dies analog fiir
die Kraftmethode normalerweise geschieht. Die Dualitét der beiden Verfahren
wird somit hervorgehoben. Die Methode wird allgemein auf die Berechnung
kontinuierlicher Tragwerke angewendet, mit oder ohne Beriicksichtigung der
Verformungen infolge der Léngskréifte. Als Sonderfall werden rechtwinklige
- Rahmen untersucht.

Die Berechnung ist in Matrizenform dargestellt; sie eignet sich daher sowohl
fir Rechenautomaten als auch fiir einfache Rechenmaschinen.

Summary

A systematisation of the method of displacements for the calculation of
hyperstatic reticulated structures is presented, which is similar to the con-
ventional systematisation which is generally adopted in the method of forces
and shows the law of duality subsisting between these two methods. The
method is applied to the calculation of continuous structures, in general,
taking into account, or omitting, the effects of axial deformations. Thereafter,
the special case of portal frames with orthogonal bars is considered.

The calculation is presented in the matricial form which makes it suitable
for use either with automatic computers or with simple office calculating
machines.
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