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Über die Festigkeit von gedrückten Holzstäben

The Buckling Strength of Compressed Wooden Columns

Sur la resistanee des barres comprimees en bois

ARVO YLINEN
Prof., Dr., Technische Hochschule, Finnland

1. Über die Erweiterung der Bernoullischen Biegungstheorie auf den
unelastischen Bereich

Wir betrachten einen geraden Holzstab, auf den eine exzentrisch angreifende

Längskraft F wirkt. Durch den Schwerpunkt S des StabquerSchnittes
denken wir uns ein rechtwinkliges Achsenkreuz y, z gelegt in der Weise, daß
die Achsen mit den Hauptträgheitsachsen des Querschnittes zusammenfallen.
Die Querschnittsfläche des Stabes sei symmetrisch in bezug auf die y-Achse.
Der Angriffspunkt der Kraft F liege auf dieser Symmetrieachse in der
Entfernung u vom Schwerpunkt des Querschnittes. Die Symmetrieachse liegt
dann in der Biegungsebene.

Die der Dehnung e entsprechende Spannung er sei durch eine stetige und
eindeutige Formänderungsfunktion

a a(6) (1)

bestimmt. Es wird somit angenommen, daß einem bestimmten Wert der Dehnung

ein einziger Wert der Spannung entspricht. Diese Bedingung erfüllen
die Materialien im allgemeinen nicht, sondern einem bestimmten Wert der
Dehnung entsprechen verschiedene Werte der Spannung je nachdem, ob es
sich um eine zunehmende oder eine abnehmende Belastung handelt. Von der
Wirkung dieser bleibenden Formänderungen soll hier abgesehen werden. Es
wird somit angenommen, daß das Holz dem Formänderungsgesetz (1)
uneingeschränkt folgt.
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Unter der BERNOULLischen [1] Annahme, daß die Ebenen, die vor der
Formänderung senkrecht zur Achse des Stabes liegen, auch nach der
Formänderung eben bleiben, kann man für die Krümmung der elastischen Achse
des Stabes folgende Reihenentwicklung ableiten [2]

2 1_ r M l M \2 I M \3 ]
P

~ i+esli°'M+C2\i°'Mi +C3\/^)/ +mmmy {)

h °" (y)
wo c9 —

2\Ia'(yY

3!Jo-'(y)|_ \UiAlJ*'(Y)o>'(y)\'

Hier bedeutet p den Krümmungsradius der elastischen Achse des Stabes, €S die
Dehnung im Schwerpunkt des Stabquerschnittes, M Pu das Biegemoment,
A die Querschnittsfläche, / das Trägheitsmoment des Querschnittes in bezug
auf die z-Achse und I3=jysdA, I^=jy*dA auf dieselbe Achse bezogene
höhere Momente der Querschnittsfläche, y ist die der mittleren Längsspannung
am F/A entsprechende Dehnung, die durch die Formänderungsfunktion (1)
als o-m cr(y) bestimmt ist. d (y), a" (y) sind die Ableitungen von (1) nach
€, wenn e y. Wir beschränken uns bei unserer Betrachtung auf die an der
Druckstauchungsgrenze des Holzes oder unterhalb derselben vorhandenen
Spannungen. Für Holz ist dann es höchstens 0,008. Wir finden, daß man es
in (2), mit Eins verglichen, bei allen technischen Anwendungen ohne erheblichen

Fehler weglassen kann.
Die Reihenentwicklung (2) stellt die BERNOULLische Biegungstheorie insoweit

verallgemeinert dar, daß sie sowohl unterhalb als oberhalb der
Proportionalitätsgrenze dp gilt. Herrscht zwischen der Spannung und der Dehnung
das HooKEsche Gesetz or(€) E e, so ist a (e) o' (y) E und die höheren
Ableitungen er"(y) a"(y) - • • =0. Die Folge hiervon ist, daß die Koeffizienten

c2 c3= • • • =0 und die Reihe (2) sich auf die BERNOULLische Formel

1 \_^_ M
p " l+€s EI™ EI

reduziert.
Wenn M -> 0, so erhält man aus (2) als Grenzwert für die Krümmung die

von Engesser [3] gegebene Formel

J.= 1 M M
p l+esIo'(y)™ Io'(y)' (3)

Die Spannungsverteilung im Querschnitt ist durch folgende Reihenentwicklung

bestimmt
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Gilt zwischen der Spannung und der Dehnung das HooKEsche Gesetz
o(e) Ee, so sind die Ableitungen er"(y) a"(y) • ¦ ¦ 0. Von der Reihe (4)
bleibt dann übrig F M

(5)

was die bekannte Formel der Normalspannungen von Navier [4] darstellt.

2. Exzentrisch belasteter gerader Stab

Der ursprünglich gerade Stab von der Länge l stehe unter dem Einfluß
einer an dem Hebelarm a angreifenden Längskraft F (Fig. 1). Wir nehmen
an, daß die Angriffslinie der Kraft F und die Stabachse AB in derselben
Ebene liegen. Der Stabquerschnitt sei symmetrisch in bezug auf die Haupt-

l 1

2

0

2

F F x

a

tL^____ ym y
1—-—-^

a

3

'

y

Fig. 1. Exzentrisch belasteter Stab.

trägheitsachse des größten Trägheitsmomentes und diese liege in der Biegungsebene.

Wir beziehen den Stab auf ein rechtwinkliges Achsenkreuz, dessen
#-Achse mit der Wirkungslinie der Kraft zusammenfällt und dessen y-Aehse
ihre positive Richtung nach unten hat. Die Biegemomente werden in üblicher
Weise als positiv betrachtet, wenn sie den Stab nach oben hohl krümmen.

Nach den Lehren der analytischen Geometrie gilt für die Krümmung der
elastischen Linie des Stabes die Formel

V1

p (l+y,2)W (6)
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Die Verbindung der Gleichungen (2) und (6) ergibt mit dem Biegemoment
M Fy

(i+W2 ~T+^b^+^7^J +C8(/7&)) + "T
Diese Differentialgleichung der elastischen Linie des exzentrisch belasteten geraden
Stabes gilt sowohl unterhalb als oberhalb der Proportionalitätsgrenze des Materials.
Weil bei der Ableitung von (2) keine Annahme von der UnVeränderlichkeit
der Querschnitte gemacht wurde, gilt (7) auch für den Stab mit veränderlichem
Querschnitt. Dann sind y, I und A, Is, 74 die in den Beiwerten c auftreten,
als Funktionen von x zu betrachten.

Die Festigkeit eines exzentrisch belasteten geraden Holzstabes kann mit
für die Praxis genügender Genauigkeit bestimmt werden, indem man auf der
rechten Seite der Differentialgleichung (7) in den eckigen Klammern nur das

erste Glied berücksichtigt. Diese Vereinfachung kann auf folgende Weise

begründet werden: Wenn die Exzentrizität a klein ist, so bleibt auch die

Durchbiegung y bei den gedrungenen Stäben klein und die Restsumme

+b-"W+"(t^'
in den eckigen Klammern kann, verglichen mit dem ersten Glied F yjld (y),
ohne erheblichen Fehler weggelassen werden. Bei den schlanken Stäben kann
die Durchbiegung y dagegen ziemlich große Werte erhalten. Dann ist aber
die mittlere Längsspannung am F\A < oP und o" (y) d" (y) • • • 0. Infolgedessen

sind auch die Koeffizienten c2 c3=---=0 und S 0. Bei großen
Exzentrizitäten wird die mittlere Längsspannung sowohl bei gedrungenen als
bei schlanken Stäben stark herabgesetzt und wenn F\A <aP, so sind
wiederum er" (y) d" (y) • • • 0 und S 0. Wir sehen somit, daß die Summe S,

verglichen mit dem ersten Glied F y\Id (y), in allen Fällen ohne erheblichen
Fehler vernachlässigt werden darf. Diese Vereinfachung kann ihre weitere
Berechtigung dadurch erhalten, daß die mit Hilfe der derart vereinfachten
Differentialgleichung bestimmten Werte der Festigkeit in Übereinstimmung
mit den Versuchsergebnissen stehen.

Wenn so kleine Durchbiegungen vorausgesetzt werden, daß y2 gegen die
Einheit vernachlässigt werden darf und wenn der Kürze halber

bezeichnet wird, wo Et den Tangentenmodul bedeutet, so erhält man mit
es 0 aus (7)

F
y -EJy

F
%I
-<x?y.

oder, wenn a2 -^—^ (9)
Etl

gesetzt wird, y" —oc2y. (10)
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Diese vereinfachte Differentialgleichung unterscheidet sich von den üblichen,
zur Bestimmung der elastischen Linie des exzentrisch belasteten geraden
Stabes unterhalb der Proportionalitätsgrenze verwendeten Differentialgleichung

nur dadurch, daß in (9) an Stelle des Elastizitätsmoduls E der
Tangentenmodul (8) getreten ist. Dieselbe Differentialgleichung (10) hätte man auch
dadurch erhalten können, daß man y" mit dem ENGESSERschen Wert (3) der
Stabkrümmung gleichsetzt. Die dadurch sich ergebende Differentialgleichung
würde aber nur für unendlich kleine Stabausbiegungen gelten. Dagegen ist die
Gültigkeit der formell gleichlautenden Differentialgleichung (10) durch das
Vorhandensein der Reihenentwicklung (7) auf endliche Ausbiegungen, wie sie
bei dem exzentrisch belasteten Stab vorkommen, erweitert.

Die allgemeine Lösung der Differentialgleichung (10) ist

y A sin ax + Bcos ax, (11)

wo A und B die Integrationskonstanten sind. Letztere sind aus den
Grenzbedingungen x= ±1/2, y a zu bestimmen. Daraus folgt

A 0 und B - V
COSa g

Durch Einsetzen dieser Werte in (11) ergibt sich als Gleichung der elastischen
Linie

y jcosax. (12)
cosa H

Für x 0 erhält die Durchbiegung den größten Wert

ym 7- (13)l
COS OL

Das größte Biegemoment ist
cosa^r

M Fym=-^1. (14)
cos a-x

Wenn die größte Randspannung in dem Stab die Druckfestigkeit crD des
Holzes erreicht, so wachsen die Ausbiegungen schneller als nach der Formel
(13) und die größte Tragkraft wird danach bald erreicht. Für die Bestimmung
der größten Randspannung benutzen wir an Stelle von (4) die einfache Navier-
sche Spannungsformel (5). Indem man in dieselbe den größten Wert des
Biegemomentes (14) einsetzt, erhält man

F Fa

I COSa^

wo e den Abstand der äußersten Faser von der 2-Achse auf der Innenseite des

gebogenen Stabes bedeutet. Es wird somit angenommen, daß die Tragfähig-
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keit des Stabes nur von der Bruchgefahr am Biegedruckrand abhängt und
daher durch Druckspannungen begrenzt ist. Wird in die obige Formel <j <jd
und I i2A eingesetzt — wobei i den Trägheitsradius des Querschnittes
bedeutet — und außerdem (9) berücksichtigt, so erhält man durch Auflösung
der Gleichung nach dem der kritischen Druckspannung okr F\A entsprechenden

Schlankheitsgrad
ae

are cos2l/-A
1 Ot,„°kr aD ~ °kr

Bezeichnet man als Exzentrizitätsmaß m den Quotienten aus der
Exzentrizität a des Kraftangriffes durch die dem Hebelarm gegenüberliegende Kernweite

k=W/A, wo W I/e das Widerstandsmoment des Biegedruckrandes
bedeutet, so ist

a ae (lß)m =T ~^-k iz

und die obige Gleichung kann

A 2]
1 Et m <jkr

°kr GD — °kr
(16)

geschrieben werden. Diese ist als unsere Hauptformel für die Bestimmung der

Tragfähigkeit eines exzentrisch belasteten geraden Stabes zu betrachten. Die
Formel gilt, solange akr < aD.

Nach (16) ist die kritische Spannung akr unabhängig von der jeweiligen
Querschnittsform des Stabes. Dieses Ergebnis stimmt nicht mit der Erfahrung
überein, denn die durch Versuche ermittelten kritischen Spannungen haben
bei den verschiedenen Querschnittsformen für dasselbe Exzentrizitätsmaß m
einen voneinander etwas abweichenden Wert. Um diesen Mangel in der Theorie

zu beseitigen, müßte man auf der rechten Seite der Differentialgleichung
(7) und in der Reihenentwicklung (4) mehr Glieder in Betracht ziehen, als im
obigen geschah. Die hier entwickelte einfache Theorie kann dadurch ihre
Berechtigung erhalten, daß die auf Grund derselben ermittelte kritische Spannung

im allgemeinen unterhalb der tatsächlichen kritischen Spannung liegt,
daß man also sicher geht, wenn man (16) verwendet.

Wenn die Exzentrizität a 0, so geht (16) in die Knickspannungsformel
von Engesser [3]

rr2Et
Jkr ¦

A2
(17)

über. Liegt ferner die Spannung unterhalb der Proportionalitätsgrenze aP des

Materials, so tritt anstelle der Funktion (1) das HooKEsche Gesetz cr(e) i?e.
Hieraus folgt d (e) d (y) E und (16) verwandelt sich in die EuLERsche
Knickspannungsformel

7T2E

Gkr^-xT- (18)
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Wenn a + 0 und Et E, so geht (16) in die Formel von Föppl [5] über

A 2V—arccos-^^. (19)

Nach Formel (17) entspricht der Knickspannung akr der Schlankheitsgrad

(20)
' Vi,*.

Dividiert man (16) durch diese Gleichung, so ergibt sich als Verhältnis der
Schlankheitsgrade eines exzentrisch und eines zentrisch gedrückten Stabes
bei ein und derselben Spannung

A 2 makr /rk,._ —are cos ^-. (21)
A0 77 oD — akr

Die Anwendung der Formel (16) setzt die Kenntnis von Tangentenmodul
Et aus. Da die Abhängigkeit zwischen der Spannung und der Drehung nicht
theoretisch bekannt ist, können zur Feststellung der Formänderungsfunktion
(1) nur empirische Formeln verwendet werden. Die gewählte Funktion muß
genügend viele freie Beiwerte enthalten, durch deren geeignete Wahl die
Werte der Funktion mit hinreichender Genauigkeit in Einklang mit den
Versuchsergebnissen gebracht werden kann. Außerdem muß der Ausdruck des

Tangentenmoduls Et ihrer Form nach möglichst einfach und eine Funktion
nur von der Spannung a sein. Aus diesem Grunde empfiehlt es sich eine Annahme
gerade in bezug auf den Ausdruck des Tangentenmoduls Et da/de zu machen
und zu zeigen, daß die durch Integration aus demselben abgeleitete
Formänderungsfunktion mit den Versuchsergebnissen übereinstimmt.

Wir nehmen im folgenden an, daß im Bereich 0 ^ o ^ aD

dJL E^^- (22)de aD — C(j

ist [6]. Dieser Ausdruck enthält drei Beiwerte E, aD und c, durch deren geeignete

Wahl er in Übereinstimmung mit den Versuchsergebnissen gebracht werden

kann. Von diesen Beiwerten sind der Elastizitätsmodul E und die
Druckfestigkeit aD für jede Holzart bekannt.

Zur Bestimmung des Beiwertes c brauchen wir die Formänderungsfunktion
(1) selbst. Dafür bilden wir aus (22) durch Trennung der Veränderlichen die
Differentialgleichung

*-ih^?]*
Die Lösung dieser Differentialgleichung ist

6 =^tccr~(l-c)(72)ln(ajD-a)-|-0], (23)

wo C die Integrationskonstante ist. Weil das Formänderungsdiagramm durch



618 ARVO YLINEN

den Koordinatenursprung geht, müssen die Werte € 0, a 0 einander
entsprechen. Aus dieser Bedingung folgt

C (1 —c)GD\noD.

Durch Einsetzung dieses Wertes in (23) ergibt sich als Gleichung der
Formänderungsfunktion

e=-l[ca-(l-0)^1^1-^-)]. (24)

Mit c 1 geht diese in das HooKEsche Gesetz über.
Um eine allgemeine Auffassung über die Form der Formänderungsdiagramme

zu gewinnen, die durch die Funktion (24) dargestellt werden, bringen
wir sie in eine für die graphische Darstellung besser geeignete Form, indem
wir sie mit dem Verhältnis EjaD multiplizieren, wobei wir finden

Ee ° -(l-c)ln(l-^). (25)c-

Diese Form hat, mit (24) verglichen, den Vorzug, daß E €JuD nur eine Funktion

des Verhältnisses <j\<jb und des Beiwertes c ist. In (24) treten auf der
rechten Seite die Variablen E, a, aD und c auf.

Nach den Untersuchungen des Verfassers gilt für Kiefernholz c 0,8. 0,875
und für Fichtenholz c 0,93. Diese Werte scheinen von den Faktoren, die im
allgemeinen auf die Festigkeit des Holzes einwirken, nämlich von dem
Feuchtigkeitsgehalt und der Spätholzmenge, nur schwach abhängig zu sein. In Fig. 2

sind die entsprechenden Formänderungsdiagramme nach (25) in dimensionsloser

Darstellung wiedergegeben.
Setzt man den Ausdruck des Tangentenmoduls aus (22) in (16) ein und

berücksichtigt, daß o vkr ist, so erhält man

A 2|/JL «fr""*
"

Gkr Vn-Z^kr
kr m &krKr arccos ^L-

°D - °kr
(26)

1.0

er

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

faY ^<<^Fichte,c=0,93
\^Kiefer,c=0,875^^ Kiefer, c =0,8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 l.l 1.2 1.3 I_P 1.5

Fig. 2. Die Formänderungsdiagramme von Kiefern- und Fichtenholz nach Formel (25).
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Diese ist als unsere Hauptformel für die praktische Berechnung der Tragfähigkeit
eines exzentrisch belasteten geraden Stabes zu betrachten. Die Formel

gilt in dem Bereich 0 ^ akr ^ aD.
Wenn man Knickbiegeversuche mit gewöhnlichem Holz ausführt und die

kritische Spannung akr in üblicher Weise als Funktion des Schlankheitsgrades A

darstellt, so zerstreuen sich die Versuchspunkte stark, weil die Druckfestigkeit
und der Elastizitätsmodul des Holzes und infolgedessen auch die Knickbiegefestigkeit

beträchtlich schwanken. Die hierauf beruhende Streuung der
Versuchspunkte kann vermieden werden [7], indem man die Gleichung (26) auf

beiden Seiten mit -V^ multipliziert und die auf diese Weise sich ergebende
TT 1 Ml

Gleichung

D
E

Q/cr

OD
m-

- are cos -

kr 1-c^l
OD

OJcr

OD

(27)

zur Auswertung der Versuchsergebnisse verwendet. Diese Form hat, verglichen

mit (26) den Vorzug, daß die Größe -V^r eine Funktion allein des Exzentrizitätsmaßes

m und des Verhältnisses akr\aB ist.
Als Beispiel für die Anwendung dieser Methode nehmen wir die Versuche,

die Ostenfeld [8] mit Holzstäben aus Kiefernholz ausgeführt hat. Die
Versuche wurden mit Schlankheitsgraden A 40, 60, 80, 100, 120, 160, 200 und
Exzentrizitätsmassen m 0,1,2,5,10 durchgeführt. Die verwendeten
Querschnittsformen waren quadratisch oder kreisförmig. Das Holzmaterial der
quadratischen Stäbe war südschwedischen Ursprungs, 4 Jahre hindurch gelagert,

und der kreisförmigen Stäbe polnische Kiefer, 2 Jahre gelagert. Die

1 0

o"kr

m=0

^^^
V Euler-Hyperbel

08

07

0 6

0 5

04

Engess er -* \— Engesser - Kormön

srlonley
v \

\ V

§C

m 1

¦

Fl \\\o
:: ^

m 2
+

*"
[

+

0 3

02 * ti * + ^**>

m=5
1

X

1 o o X t!o_ 0 Tt + —
0 1 1—<

*

0 02 04 06 08 10 12 14 16 18 20 22 24 2 6 _X-.Fö^ 30
tt r e

Fig. 3. Knickbiegeversuche mit Kiefernholzstäben.
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Querschnittsgrößen waren 5x5 cm für die quadratischen und 6 cm Durchmesser

für die kreisförmigen Stäbe. Mit diesen ziemlich kleinen Querschnitts-
abmessungen war es von Wichtigkeit, möglichst astfreies, gleichartiges
Holzmaterial zu wählen. Die Druckfestigkeit des Holzes variierte in den Grenzen

gd (297. 758) kp/cm2 und der Elastizitätsmodul E (83000. 188000)

kp/cm2.
Die Ergebnisse der Knick- und Knickbiegeversuche sind teilweise in Fig. 3

angegeben. Bei den Stäben mit quadratischem Querschnitt lag der
Kraftangriffspunkt entweder in einer mit den Seiten gleichlaufenden Achse (in der
Fig. 3 mit + bezeichnet) oder in der Diagonale (x). Die Ergebnisse mit den

kreisförmigen Stäben sind mit kleinen Zirkeln (o) angedeutet. Die durch die
Versuchspunkte laufenden Kurven geben graphisch die Funktion (27) wieder,
mit c 0,8. Der Übersichtlichkeit wegen wurden für das Exzentrizitätsmaß
nur die Werte m 0,1, 2, 5 gewählt. Die dem Wert m 0 entsprechende unterste
Kurve ist identisch mit der Knickspannungslinie von Engesser nach Formel
(17). Bei der gestrichelten Linie wurde die Wirkung der bleibenden
Formänderungen mit Hilfe des von Karman für den rechteckigen Querschnitt
abgeleiteten ENGESSERschen [9] Knickmoduls

T= *EE±-
'

(28)
(iE+iEt)2

berücksichtigt. Die Wirkung des SHANLEY-Effektes [10] auf die Knickspannung

der Stäbe mit rechteckigem Querschnitt ist auf Grund des

Formänderungsgesetzes (24) nach den Untersuchungen von Larsson [11] durchgeführt
und in der Abbildung mit punktierter Linie dargestellt. Sie liegt etwas höher
als die ENGESSERsche Knickspannung, ist aber immer kleiner als die Engesser-
KÄRMANsche Knickspannung. Als kritische Spannung kann die ENGESSERsche

Knickspannung betrachtet werden.
Die Versuchsergebnisse von den zentrisch gedrückten Stäben (m 0)

schließen sich sehr gut an die theoretischen Knickspannungskurven von
Engesser und Shanley an. Dagegen befinden sich die den exzentrisch belasteten

Stäben (m + 0) entsprechenden Versuchspunkte vorwiegend beträchtlich
oberhalb der theoretisch ermittelten Kurven. Dies kommt davon her, daß die
einfache NAViERsche Formel (5) nicht richtig die in dem Stab entstehende
größte Randspannung in dem Bruchstadium wiedergibt. Nach Ostekfeld [8]
kann die Formel (5) trotzdem für exzentrisch beanspruchte Holzstäbe bis zum
Bruch angewandt werden, wenn ein Beiwert ß von der Größe

ß ^ (29)
orB

zum Momentenglied in der Formel hinzugefügt und die Formel also in der
Form

a ^+ßTe (30)
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geschrieben wird. Das Verhältnis (29), wobei aD die Druckfestigkeit und aB
die Biegefestigkeit des Holzes bedeutet, ist sowohl von der Krümmung des

Druckstauchungsdiagrammes als von der Form des Querschnittes abhängig.
Je größer die Abweichung des Druckstauchungsdiagrammes von der Geraden,
und je mehr die Querschnittsfläche in der Nähe der Nullinie konzentriert ist,
um so kleiner wird ß. Nach den Untersuchungen von Ostenfeld beträgt der
Mittelwert dieser Verhältniszahl etwa

für rechteckigen Querschnitt (+) ß 0,80,
für rechteckigen Querschnitt (x) ß 0,61, (31)
für kreisförmigen Querschnitt (o) ]8 0,70.

Wird in die Formel (30) o oD, I i2A und der Ausdruck des größten
Biegemomentes aus (14) eingesetzt und im übrigen genau so verfährt wie vorher

bei der Ableitung der Gleichung (27), so erhält man schließlich

ujcrl-J^l
E ojcr

OD OD— are cos -
kr l—c- 1 Qkr

od

(32)

Diese unterscheidet sich von der Gleichung (27) nur dadurch, daß an Stelle
des Exzentrizitätsmaßes m in (27) in Gleichung (32) das reduzierte Exzentrizitätsmaß

ßm steht.

In Fig. 4 ist o-kr\oB als Funktion von der Größe -\-j=t, mit ßm als

Parameter, nach (32) dargestellt. Vergleicht man den Verlauf der Kurven mit den
in der Fig. 3 angegebenen Versuchspunkten, so sieht man, daß die
Übereinstimmung gut ist.

1.0

°"kr

m =0

0.8

0.7

0.6

05

0.4

0.3

m=0.5 t¦ |

m=l t
¦ t

m 2

""¦

m 5

U.<d

0.1

¦

0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 Wöjk 3.0
tri E

Fig. 4. Nomogramm zur Bestimmung der kritischen Spannung eines exzentrisch gedrück¬
ten Holzstabes nach Formel (32).
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3. Zentrisch belasteter ursprünglich gekrümmter Stab

Bei dem schwach gekrümmten Stab von der Länge l mit drehbar gelagerten
Enden greife die axiale Druckkraft F an. Der Stabquerschnitt sei symmetrisch
in bezug auf die Hauptträgheitsachse des größten Trägheitsmomentes und
diese liege in der Krümmungsebene. Wir beziehen den Stab in der in Fig. 5

jEzg^'
Fig. 5. Zentrisch belasteter Stab mit ursprünglicher Krümmung.

angedeuteten Weise auf ein rechtwinkliges Achsenkreuz, dessen x-Achse mit
der Wirkungslinie der Kraft F zusammenfällt und dessen ^/-Aehse ihre positive
Richtung nach unten hat. Der an der Stelle x vorhandene Abstand der Stab-
mittellinie von der x-Achse sei vor der Verformung u. Wir nehmen an, daß die
anfänglich gebogene Stabmittellinie mit dem Pfeile /0 genau genug als Bogen
einer Cosinuslinie betrachtet werden kann, daß also

U f0 COS 77 (33)

ist. Bezeichnet man mit y den Abstand der Stabmittellinie von der Wirkungs-
linie der Kraft F nach der Verformung, so ist das an der Stelle x erzeugte
Biegemoment

M Fy. (34)

Dabei ist zu beachten, daß das Moment als positiv betrachtet werden muß,
wenn es bestrebt ist, den Krümmungsradius p des Stabes zu verkleinern.

Geht man ebenso wie beim geraden Stab auch bei dem ursprünglich
gekrümmten Stab von der BERNOULLischen Annahme aus, nach welcher die
Ebenen, die vor der Verformung senkrecht zur Achse des Stabes liegen, auch
nach der Verformung eben verbleiben, so kann man für die Krümmung \jp
des Stabes eine der Formel (2) entsprechende Reihenentwicklung ableiten.
Unter der Annahme, daß die Querschnittshöhe im Vergleich zum kleinsten
Krümmungsradius p0 der Anfangskrümmung der Stabachse klein ist, daß es

sich also um einen «schwach gekrümmten» Stab handelt, beginnt diese
Reihenentwicklung folgendermaßen

I l 1 M
p p0 l + €s la (y)

Für die Bestimmung der Tragfähigkeit eines schwach gekrümmten Stabes
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genügt es ebenso wie bei dem geraden Stab, nur diesen linearen Teil der
Reihenentwicklung zu berücksichtigen. Setzt man M Fy ein und vernachlässigt
man es gegen Eins, so geht diese Gleichung in

1 1 F
p Po I(J (y)

über oder, wenn man sich auf so kleine Verformungen beschränkt, daß annähernd

\\p y" und l/p0 u" gesetzt werden können,

la (y)

Nach (33) ist u" -ijYf0 COS77y.

Wird dieser Wert in die Gleichung (36) eingesetzt und die Abkürzung (9)
cc2 FjEtI benutzt, so ergibt sich als Differentialgleichung der elastischen
Linie des schwach gekrümmten Stabes

y" -oc2y-lj\ /0cos7r|. (37)

Dies gilt sowohl unterhalb als oberhalb der Proportionalitätsgrenze des Materials.
Die allgemeine Lösung dieser Differentialgleichung ist

x
y A sina:r +J3cosa# + /cos77y, (38)

i

wo A und B die Integrationskonstanten sind und mit / abkürzungshalber der
Ausdruck /'-^
bezeichnet ist. Die Integrationskonstanten sind aus den Grenzbedingungen
x= ± Z/2, y 0 zu bestimmen. Daraus folgt ^4 0 und B 0. Mit diesen Werten
erhält man aus (38) als Gleichung der elastischen Linie des Stabes

x
y /cos77y. (40)

Aus dieser Gleichung geht die geometrische Bedeutung von / deutlich hervor.
Für x 0 erhält y den größten Wert /. Es ist somit die größte Ausbiegung, die
die Stabmitte infolge der ursprünglichen Krümmung und unter der Last F
erfährt.

Wenn man den Wert (9) von a in die Formel (39) einsetzt, so erhält man

t=-Kr. (41)

Darin kann F0 —^— (42)
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als die Knickkraft eines zentrisch gedrückten geraden Stabes von der Länge l,
mit einem Querschnitt gleich dem des gegebenen Stabes und mit dem
Elastizitätsmodul gleich Et gedeutet werden.

Das größte Biegemoment ergibt sich aus (34) mit Rücksicht auf (41) als

M Ff=-^r. (43)

Wir fassen nochmals die Ermittelung der Tragfähigkeit des zentrisch
gedrückten Stabes mit ursprünglicher Krümmung als Spannungsproblem auf.
Die ursprüngliche Krümmung des Stabes führt zu der Frage, inwieweit die
für den geraden Stab geltende NAviERsche Formel (5) in der von Ostenfeld
korrigierten Form (30) auch für die Bestimmung der Spannungen bei dem
ursprünglich gekrümmten Stab verwendet werden darf. Unter den bei (35)
gemachten Voraussetzungen kann man zeigen, daß die Spannungsformel (30)
auch für den schwach gekrümmten Stab mit in der Praxis genügender Genauigkeit

gilt.
Die größte Spannung im Stab tritt am Innenrand des Mittelquerschnittes

auf. Nach (43) erhält man aus der Spannungsformel (30)

(r=I[+Fßf0e
A '(•-*)'

wo e den Abstand der äußersten Faser von der 2-Achse auf der Innenseite des

gebogenen Stabes bedeutet. Wenn a aD, so ist die Tragfähigkeit des Stabes
erreicht und die äußere Last F kann nicht mehr gesteigert werden. Die größte
Tragkraft F muß daher der Gleichung

«.=4 + r^%T («)
'('-£)

genügen. Führt man I i2A ein, bezeichnet gemäß (15)

m' j ff (45)

das Exzentrizitätsmaß und beachtet (42), so ergibt die Auflösung der
Gleichung (44) nach dem der kritischen Spannung akr FjA entsprechenden
Schlankheitsgrad

A „VA/i-^M. (46)
' Gkr \ VD-Vkrl

Setzt man den Ausdruck des Tangentenmoduls aus (22) ein und berücksichtigt,

daß darin jetzt o okr ist, so kann (46) geschrieben werden

E
--(l+|3m')"kr (47)
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eineDiese Form hat, im Vergleich zu (46), den Vorzug, daß die Größe -V^~ eir

Funktion allein des reduzierten Exzentrizitätsmaßes ßm' und des Verhältnisses

In der Praxis kommt oft der Fall in Betracht, daß der Schlankheitsgrad
des Stabes bekannt ist und man die ihm entsprechende kritische Druckspannung

akr zu wissen wünscht. Löst man die obige Gleichung in bezug auf das
Verhältnis akrjaD, so erhält man

ukr 7T2E

2caDX2

Unterhalb der Proportionalitätsgrenze, wo Et E und infolgedessen die
Gleichung (42) die EuLERsche Knickkraft eines zentrisch gedrückten geraden
Stabes von der Länge l und mit einem Querschnitt gleich dem des gegebenen
Stabes darstellt, ist (44) identisch mit der Formel von Kayser [12].

Dividiert man (46) durch (20), so ergibt sich als Verhältnis der
Schlankheitsgrade eines ursprünglich gekrümmten Stabes und eines geraden Stabes
bei ein und derselben Spannung

^-= /1-
ßm t ojcr

Qkr

od

(49)

In Fig. 6 ist akrjaD als Funktion von der Größe -V^=r mit j8m' als Parameter

nach (47) dargestellt. Der Übersichtlichkeit halber wurden für das Exzentrizitätsmaß

nur die Werte m! 0,0,5,1, 2, 5 gewählt.
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Fig. 6. Nomogramm zur Bestimmung der kritischen Spannung eines ursprünglich
gekrümmten Stabes nach der Formel (47).
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Weil Versuchsergebnisse von den zentrisch belasteten ursprünglich
gekrümmten Holzstäben dem Verfasser nicht bekannt gewesen sind, ist ein
Vergleich von den in der Fig. 6 angegebenen theoretisch ermittelten Kurven
mit den Versuchswerten nicht möglich gewesen.

Bibliographie

1. Jacob Bernotjlli: Acta eruditorum. Leipzig 1691; Opera, Bd. I, S. 451. Genf 1744;
Memoires de Paris. 1705; Oeuvres, Bd. I, S. 976. Genf 1744.

2. Arvo Ylinen : Erweiterung der BERNOULLischen Biegungstheorie auf den unelasti¬
schen Bereich. Annales Acad. Scient. Fenn. Ser. A. Tom. LVII, No. 7. Helsinki 1941.

3. F. Engesseb: Über die Knickfestigkeit gerader Stäbe. Zeitschrift des Arch.- u. Ing.-
Vereins zu Hannover. 1889. S. 455.

4. C. L. Navier : Resume des lecons sur l'application de la mecanique ä l'etablissement
des constructions et des machines. Paris 1826; 3. ed. par B. de Saint-Venant,
Paris 1864.

5. A. Föppl : Zitiert im Bericht über die II. internationale Tagung für Brückenbau und
Hochbau. Wien 1928, S. 342.

6. Arvo Ylinen: Publ. IABSE, Vol. XVI, p. 529. Zürich 1956.
7. Vgl. A. Ylinen: Die Knickfestigkeit eines zentrisch gedrückten geraden Stabes im

elastischen und unelastischen Bereich. Diss. T. H. Helsinki 1938.
8. A. Ostenfeld: Exzentrisch beanspruchte Säulen. Versuche mit Holzsäulen.

Querschnittsbestimmung. Ingeniorvidenskabelige Skrifter, A Nr. 19. Kobenhavn 1929.
9. F. Engesser: Über Knickfragen. Schweizerische Bauzeitung. Band XXVI (1895),

S. 24.
10. F. R. Shanley: Journ. Aeronaut. Sei., Vol. 13 (1946), S. 678, und Vol. 14 (1947),

S. 261.
11. H. Larsson: Journ. Aeronaut. Sei., Vol. 23 (1956), S. 867.
12. H. Kayser: Über die Berechnung von Druckstäben. Zentralblatt der Bauverwal¬

tung. 1912, S. 121.

Zusammenfassung

Der Verfasser untersucht die Knickbiegefestigkeit eines exzentrisch belasteten

geraden Holzstabes und eines zentrisch belasteten ursprünglich gekrümmten

Holzstabes. Die Resultate werden mit den Versuchsergebnissen von
Ostenfeld verglichen.

Summary

The author investigates the buckling strength of an eccentrically-loaded
straight wooden column and a centrally-loaded, initially warped column. The
results are compared with those obtained in the tests made by Ostenfeld.

Resume

L'auteur examine la resistanee des barres droites en bois, comprimees par
les forces excentriques, et des barres courbes comprimees par les forces cen-
trees. Les resultats sont compares avec les essais d'OsTENFELD.
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