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Uber die Festigkeit von gedriickten Holzstiben
The Buckling Strength of Compressed Wooden Columns

Sur la résistance des barres comprimées en bois

ARVO YLINEN
Prof., Dr., Technische Hochschule, Finnland

1. Uber die Erweiterung der Bernoullischen Biegungstheorie auf den
unelastischen Bereich

Wir betrachten einen geraden Holzstab, auf den eine exzentrisch angrei-
fende Langskraft F wirkt. Durch den Schwerpunkt S des Stabquerschnittes
denken wir uns ein rechtwinkliges Achsenkreuz y, z gelegt in der Weise, daB
die Achsen mit den Haupttrigheitsachsen des Querschnittes zusammenfallen.
Die Querschnittsfliche des Stabes sei symmetrisch in bezug auf die y-Achse.
Der Angriffspunkt der Kraft F liege auf dieser Symmetrieachse in der Ent-
fernung # vom Schwerpunkt des Querschnittes. Die Symmetrieachse liegt
dann in der Biegungsebene.

Die der Dehnung ¢ entsprechende Spannung ¢ sei durch eine stetige und
eindeutige Forménderungsfunktion

o =ole) (1)

bestimmt. Es wird somit angenommen, dafl einem bestimmten Wert der Deh-
nung ein einziger Wert der Spannung entspricht. Diese Bedingung erfillen
die Materialien im allgemeinen nicht, sondern einem bestimmten Wert der
Dehnung entsprechen verschiedene Werte der Spannung je nachdem, ob es
sich um eine zunehmende oder eine abnehmende Belastung handelt. Von der
Wirkung dieser bleibenden Forménderungen soll hier abgesehen werden. Es
wird somit angenommen, daf3 das Holz dem Forménderungsgesetz (1) unein-
geschrankt folgt.
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Unter der BErRNouLLIschen [1] Annahme, daB die Ebenen, die vor der
Forménderung senkrecht zur Achse des Stabes liegen, auch nach der Form-
dnderung eben bleiben, kann man fiir die Kriimmung der elastischen Achse
des Stabes folgende Reihenentwicklung ableiten [2]

;1 - lies [1£V)+02(I<£[(y))2+03(?7%)3+"']’ (2)
WO Co — — 130" (y)
2 21 1o (y)’

cy = —% [1 -3 ( 1113%4 . AIZ) o’[(a;)(;/”)’]:y)] ’

..........................................

Hier bedeutet p den Kriimmungsradius der elastischen Achse des Stabes, ey die
Dehnung im Schwerpunkt des Stabquerschnittes, M = P« das Biegemoment,
A die Querschnittsfliche, I das Tragheitsmoment des Querschnittes in bezug
auf die z-Achse und I;=[y3dA4, I,=[y*dA ... auf dieselbe Achse bezogene
hohere Momente der Querschnittsfliche. y ist die der mittleren Lingsspannung
o,=F[A entsprechende Dehnung, die durch die Forméinderungsfunktion (1)
als o,, =0 (y) bestimmt ist. ¢’ (y),0” (y) ... sind die Ableitungen von (1) nach
€, wenn e=7y. Wir beschrinken uns bei unserer Betrachtung auf die an der
Druckstauchungsgrenze des Holzes oder unterhalb derselben vorhandenen
Spannungen. Fiir Holz ist dann eg hochstens 0,008. Wir finden, da man eg
in (2), mit Eins verglichen, bei allen technischen Anwendungen ohne erheb-
lichen Fehler weglassen kann.

Die Reihenentwicklung (2) stellt die BERNoULLIsche Biegungstheorie inso-
weit verallgemeinert dar, daf3 sie sowohl unterhalb als oberhalb der Propor-
tionalitidtsgrenze op gilt. Herrscht zwischen der Spannung und der Dehnung
das HooxkEsche Gesetz o(e)=FEe, so ist o' (¢)=0"(y)=FE und die hoheren

Ableitungen o” (y)=0” (y)=-- - =0. Die Folge hiervon ist, daB die Koeffizien-
ten c,=c3="--- =0 und die Reihe (2) sich auf die BErNouLLIsche Formel

1_ 1 & N

p l+e, EI~ EI

reduziert.
Wenn M — 0, so erhilt man aus (2) als Grenzwert fir die Krimmung die
von ENGESSER [3] gegebene Formel

1 M M

 —

- 1+e Lo’ (y) Lo (y)

1
b= (3)

Die Spannungsverteilung im Querschnitt ist durch folgende Reihenent-
wicklung bestimmt
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o= g ar ol ‘%v))z ~55e 0 =250 () ]
o) -2ie 0 )
~a17 1371 e (1)
‘o) 21wy (o)

.........................

Gilt zwischen der Spannung und der Dehnung das Hooxesche Gesetz

o(e)=FEe, so sind die Ableitungen ¢” (y)=0"(y)=---=0. Von der Reihe (4)
bleibt dann tiibrig B _F_ 4 g_l{_ . (5)
g = A I y?

was die bekannte Formel der Normalspannungen von NAVIER [4] darstellt.

2. Exzentrisch belasteter gerader Stab

Der urspriinglich gerade Stab von der Linge ! stehe unter dem Einflufl
einer an dem Hebelarm a angreifenden Léingskraft # (Fig. 1). Wir nehmen
an, daBl die Angriffslinie der Kraft F und die Stabachse A B in derselben
Ebene liegen. Der Stabquerschnitt sei symmetrisch in bezug auf die Haupt-

1
2

X

F ) F X

4
2
A B

y

Fig. 1. Exzentrisch belasteter Stab.

tragheitsachse des groB3ten Triagheitsmomentes und diese liege in der Biegungs-
ebene. Wir beziehen den Stab auf ein rechtwinkliges Achsenkreuz, dessen
x-Achse mit der Wirkungslinie der Kraft zusammenfillt und dessen y-Achse
ihre positive Richtung nach unten hat. Die Biegemomente werden in iiblicher
Weise als positiv betrachtet, wenn sie den Stab nach oben hohl kriimmen.

Nach den Lehren der analytischen Geometrie gilt fiir die Kriimmung der
elastischen Linie des Stabes die Formel

1 y”
p - Ty ©)
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Die Verbindung der Gleichungen (2) und (6) ergibt mit dem Biegemoment
M=Fy

(1‘+Z;:2)3/2 - lies [zf?y)+°2(15?y>)2+“3(7§%5)3+ ] @

Drese Differentialgleichung der elastischen Linte des exzentrisch belasteten geraden
Stabes gilt sowohl unterhalb als oberhalb der Proportionalititsgrenze des Materials.
Weil bei der Ableitung von (2) keine Annahme von der Unveridnderlichkeit
der Querschnitte gemacht wurde, gilt (7) auch fiir den Stab mit verdnderlichem
Querschnitt. Dann sind y, 7 und 4, 13,1, . .., die in den Beiwerten c auftreten,
als Funktionen von « zu betrachten.

Die Festigkeit eines exzentrisch belasteten geraden Holzstabes kann mit
fir die Praxis geniigender Genauigkeit bestimmt werden, indem man auf der
rechten Seite der Differentialgleichung (7) in den eckigen Klammern nur das
erste Glied beriicksichtigt. Diese Vereinfachung kann auf folgende Weise
begriindet werden: Wenn die Exzentrizitit a klein ist, so bleibt auch die
Durchbiegung y bei den gedrungenen Stdben klein und die Restsumme

in den eckigen Klammern kann, verglichen mit dem ersten Glied ¥ y/I ¢’ (y),
ohne erheblichen Fehler weggelassen werden. Bei den schlanken Stdben kann
die Durchbiegung y dagegen ziemlich grole Werte erhalten. Dann ist aber
die mittlere Langsspannung o,, = F/A <op und ¢’ (y) =0” (y)=-- - =0. Infolge-
dessen sind auch die Koeffizienten c,=c3=---=0 und S=0. Bei groflen
Exzentrizititen wird die mittlere Lingsspannung sowohl bei gedrungenen als
bei schlanken Stidben stark herabgesetzt und wenn F/A4 <op, so sind wie-
derum ¢” (y)=0"(y)="---=0 und S§=0. Wir sehen somit, dal die Summe S,
verglichen mit dem ersten Glied F y/I o’ (y), in allen Féllen ohne erheblichen
Fehler vernachlissigt werden darf. Diese Vereinfachung kann ihre weitere
Berechtigung dadurch erhalten, da die mit Hilfe der derart vereinfachten
Differentialgleichung bestimmten Werte der Festigkeit in Ubereinstimmung
mit den Versuchsergebnissen stehen.

Wenn so kleine Durchbiegungen vorausgesetzt werden, dafl y? gegen die
Einheit vernachlissigt werden darf und wenn der Kiirze halber

do
’ = — == 8
o' (7) (d€)€=y B, (8)
bezeichnet wird, wo E, den Tangentenmodul bedeutet, so erhélt man mit

eg=0 aus (7)

o
Y ="g1Y
F
_ 2 — T
oder, wenn o 71 (9)

”

gesetzt wird, y' = —aly. (10)
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Diese vereinfachte Differentialgleichung unterscheidet sich von den iiblichen,
zur Bestimmung der elastischen Linie des exzentrisch belasteten geraden
Stabes unterhalb der Proportionalititsgrenze verwendeten Differentialglei-
chung nur dadurch, daf} in (9) an Stelle des Elastizitdtsmoduls Z der Tangen-
tenmodul (8) getreten ist. Dieselbe Differentialgleichung (10) hétte man auch
dadurch erhalten konnen, dal man y” mit dem ExGEssErschen Wert (3) der
Stabkriimmung gleichsetzt. Die dadurch sich ergebende Differentialgleichung
wiirde aber nur fiir unendlich kleine Stabausbiegungen gelten. Dagegen ist die
Giiltigkeit der formell gleichlautenden Differentialgleichung (10) durch das
Vorhandensein der Reihenentwicklung (7) auf endliche Ausbiegungen, wie sie
bei dem exzentrisch belasteten Stab vorkommen, erweitert.

Die allgemeine Losung der Differentialgleichung (10) ist

y=Asinaex+ Beosaz, (11)
wo 4 und B die Integrationskonstanten sind. Letztere sind aus den Grenz-
bedingungen z = +1/2, y=a zu bestimmen. Daraus folgt

A=0 und B= @

COS dE

Durch Einsetzen dieser Werte in (11) ergibt sich als Gleichung der elastischen
Linie
a

Yy = jCosa. (12)

COS d§

Fiir £ =0 erhilt die Durchbiegung den groBten Wert

Ym = I (13)
CoSs a
Das grof3te Biegemoment ist
Fa
M = Fym = ——z (14)
CoS o=

2

Wenn die grofite Randspannung in dem Stab die Druckfestigkeit o, des
Holzes erreicht, so wachsen die Ausbiegungen schneller als nach der Formel
(13) und die groflte Tragkraft wird danach bald erreicht. Fiir die Bestimmung
der groBten Randspannung benutzen wir an Stelle von (4) die einfache NAVIER-
sche Spannungsformel (5). Indem man in dieselbe den groBten Wert des Biege-
momentes (14) einsetzt, erhdlt man

F Fa
o="F+—"—e,

4 Icosa%

wo e den Abstand der duBlersten Faser von der z-Achse auf der Innenseite des
gebogenen Stabes bedeutet. Es wird somit angenommen, daf3 die Tragfihig-



616 ARVO YLINEN

keit des Stabes nur von der Bruchgefahr am Biegedruckrand abhingt und
daher durch Druckspannungen begrenzt ist. Wird in die obige Formel c=0p
und /=124 eingesetzt — wobei ¢+ den Trégheitsradius des Querschnittes be-
deutet — und auBlerdem (9) beriicksichtigt, so erhélt man durch Auflosung
der Gleichung nach dem der kritischen Druckspannung o, = F|A entsprechen-
den Schlankheitsgrad

ae
E 52 Okr
A= QV L arccos——.
Okr Op — Oy

Bezeichnet man als Exzentrizititsmall m den Quotienten aus der Exzen-
trizitdt a des Kraftangriffes durch die dem Hebelarm gegeniiberliegende Kern-
weite k=W/A, wo W=1/e das Widerstandsmoment des Biegedruckrandes
bedeutet, so ist

a ae
und die obige Gleichung kann
B, '
)\=2]/ L arc cos Tk (16)
Okr Op — Okr

geschrieben werden. Diese ist als unsere Hauptformel fiir die Bestimmung der
Tragfihigkeit eines exzentrisch belasteten geraden Stabes zu betrachten. Die
Formel gilt, solange o}, <op.

Nach (16) ist die kritische Spannung o, unabhingig von der jeweiligen
Querschnittsform des Stabes. Dieses Ergebnis stimmt nicht mit der Erfahrung
iiberein, denn die durch Versuche ermittelten kritischen Spannungen haben
bei den verschiedenen Querschnittsformen fiir dasselbe Exzentrizititsmal3 m
einen voneinander etwas abweichenden Wert. Um diesen Mangel in der Theo-
rie zu beseitigen, miiBte man auf der rechten Seite der Differentialgleichung
(7) und in der Reihenentwicklung (4) mehr Glieder in Betracht ziehen, als im
obigen geschah. Die hier entwickelte einfache Theorie kann dadurch ihre
Berechtigung erhalten, dal die auf Grund derselben ermittelte kritische Span-
nung im allgemeinen unterhalb der tatsdchlichen kritischen Spannung liegt,
daB man also sicher geht, wenn man (16) verwendet.

Wenn die Exzentrizitit a =0, so geht (16) in die Knickspannungsformel

von ENGESSER [3]
_ 772 Et ‘

Okr = )\2

(17)

iiber. Liegt ferner die Spannung unterhalb der Proportionalititsgrenze op des
Materials, so tritt anstelle der Funktion (1) das Hookksche Gesetz o (€)= E «.
Hieraus folgt ¢’ (e)=0’(y)=E und (16) verwandelt sich in die EuLeRsche

Knickspannungsformel
' m K

Opp = )\2 .

(18)
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Wenn a#0 und ;= E, so geht (16) in die Formel von FoppL [5] iiber

K
A=2 arc cos — Tkt _ (19)
Oy Op ~— Oy

Nach Formel (17) entspricht der Knickspannung oy, der Schlankheitsgrad

T (20)

Cker

Dividiert man (16) durch diese Gleichung, so ergibt sich als Verhéltnis der
Schlankheitsgrade eines exzentrisch und eines zentrisch gedriickten Stabes
bei ein und derselben Spannung

—)\a\; = %arc cos;:f—’;;r. (21)
Die Anwendung der Formel (16) setzt die Kenntnis von Tangentenmodul
E, aus. Da die Abhingigkeit zwischen der Spannung und der Drehung nicht
theoretisch bekannt ist, konnen zur Feststellung der Forménderungsfunktion
(1) nur empirische Formeln verwendet werden. Die gewahlte Funktion mul3
geniigend viele freie Beiwerte enthalten, durch deren geeignete Wahl die
Werte der Funktion mit hinreichender Genauigkeit in Einklang mit den Ver-
suchsergebnissen gebracht werden kann. Auflerdem mufl der Ausdruck des
Tangentenmoduls £, ihrer Form nach méglichst einfach und eine Funktion
nur von der Spannung o sein. Aus diesem Grunde empfiehlt es sich eine Annahme
gerade in bezug auf den Ausdruck des Tangentenmoduls #,=do/de zu machen
und zu zeigen, dall die durch Integration aus demselben abgeleitete Form-
anderungsfunktion mit den Versuchsergebnissen iibereinstimmt.
Wir nehmen im folgenden an, dafl im Bereich 0<o=<0,,

_dng op—0

de op—Co

(22)

ist [6]. Dieser Ausdruck enthilt drei Beiwerte E, op und ¢, durch deren geeig-
nete Wahl er in Ubereinstimmung mit den Versuchsergebnissen gebracht wer-
den kann. Von diesen Beiwerten sind der Elastizitdtsmodul £ und die Druck-
festigkeit o, fiir jede Holzart bekannt.

Zur Bestimmung des Beiwertes ¢ brauchen wir die Forménderungsfunktion
(1) selbst. Dafiir bilden wir aus (22) durch Trennung der Verinderlichen die

Differentialgleichung
de = _l [C +£1;c)iD_j| do.
B op—o

Die Losung dieser Differentialgleichung ist
1
€ =—E—[CU—(I—O)GDln(O'D—G)—l—C], (23)

wo (' die Integrationskonstante ist. Weil das Form#nderungsdiagramm durch
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den Koordinatenursprung geht, miissen die Werte e=0, o =0 einander ent-
sprechen. Aus dieser Bedingung folgt

C=(1-c)oplnoy.

Durch Einsetzung dieses Wertes in (23) ergibt sich als Gleichung der Form-

anderungsfunktion
1 o
=— —(1— ——)1. 4
€ E[CO’ (1 C)O’Dhl(l UD)] (24)
Mit ¢c=1 geht diese in das HookEsche Gesetz iiber.

Um eine allgemeine Auffassung iiber die Form der Forménderungsdia-
gramme zu gewinnen, die durch die Funktion (24) dargestellt werden, bringen
wir sie in eine fiir die graphische Darstellung besser geeignete Form, indem
wir sie mit dem Verhéltnis E/o,, multiplizieren, wobei wir finden

—E—~E=ci—(1—c)ln(l—i). (25)
Op Op %p

Diese Form hat, mit (24) verglichen, den Vorzug, dal E /o, nur eine Funk-
tion des Verhiltnisses o/o;, und des Beiwertes ¢ ist. In (24) treten auf der
rechten Seite die Variablen £, o, o5 und ¢ auf.

Nach den Untersuchungen des Verfassers gilt fiir Kiefernholz ¢=0,8...0,875
und fiir Fichtenholz ¢ =0,93. Diese Werte scheinen von den Faktoren, die im
allgemeinen auf die Festigkeit des Holzes einwirken, ndmlich von dem Feuch-
tigkeitsgehalt und der Spétholzmenge, nur schwach abhéingig zu sein. In Fig. 2
sind die entsprechenden Forménderungsdiagramme nach (25) in dimensions-
loser Darstellung wiedergegeben.

Setzt man den Ausdruck des Tangentenmoduls aus (22) in (16) ein und
beriicksichtigt, dafl o =0y, ist, so erhélt man

E op,—0 mao
A= 2V —D__kr_arccos — % (26)
Opr Op —C Oy Op — Oy
1.0
- AP ===
9p %Q %chte, ¢=0,93
08 \ Kiefer, ¢ =0,875
Kiefer, c=0,8
0.7
0.6 //
05 ,/
0.4
0.3
0.2
0.1
(o] 0l 02 03 04 05 06 07 08 09 10 I 12 I3 g_e 1.5
D

Fig. 2. Die Forménderungsdiagramme von Kiefern- und Fichtenholz nach Formel (25).
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Diese ist als unsere Hauptformel fiir die praktische Berechnung der Tragfahig-
keit eines exzentrisch belasteten geraden Stabes zu betrachten. Die Formel
gilt in dem Bereich 0 <o, <o,.

Wenn man Knickbiegeversuche mit gewohnlichem Holz ausfithrt und die
kritische Spannung oy, in iiblicher Weise als Funktion des Schlankheitsgrades A
darstellt, so zerstreuen sich die Versuchspunkte stark, weil die Druckfestigkeit
und der Elastizitdtsmodul des Holzes und infolgedessen auch die Knickbiege-
festigkeit betrichtlich schwanken. Die hierauf beruhende Streuung der Ver-
suchspunkte kann vermieden werden [7], indem man die Gleichung (26) auf

beiden Seiten mit %]/%D multipliziert und die auf diese Weise sich ergebende

Gleichung I
Okr Okr
A O'D 2 O'D 1 B op L op
—V= = — —————arccos (27)
=l K ”T Orr 1 — ¢ 2k ]
oD ap

zur Auswertung der Versuchsergebnisse verwendet. Diese Form hat, verglichen

mit (26) den Vorzug, dafl die GroBe 3}/%3 eine Funktion allein des Exzentrizi-

tatsmalles m und des Verhiltnisses oy, /oy, ist.

Als Beispiel fiir die Anwendung dieser Methode nehmen wir die Versuche,
die OSTENFELD [8] mit Holzstiben aus Kiefernholz ausgefiihrt hat. Die Ver-
suche wurden mit Schlankheitsgraden A=40, 60, 80, 100, 120, 160, 200 und
Exzentrizitatsmassen m=0,1,2,5,10 durchgefiihrt. Die verwendeten Quer-
schnittsformen waren quadratisch oder kreisférmig. Das Holzmaterial der
quadratischen Stdbe war siidschwedischen Ursprungs, 4 Jahre hindurch gela-
gert, und der kreisformigen Stdbe polnische Kiefer, 2 Jahre gelagert. Die

m=0

1.0 | T 1 |

,:\ Euler —Hyperbel

ap ; .,_" N \ [
Engesser -X.. “va—|Engesser - K&rmén

TN

e St‘\onley \\\\{\
0.7 x\
AN
o.s}mz! Ll‘t \x
' N

R

0.4

¥

b
0.3 : ?T
“\m\i\*r&L N
b

0.2 H— —+ — — y
1l d oo . J};%E%L

Q

o.1 —t-

|

0 02 04 06 08 10 l2 14 16 |8 20 22 24 26 )\-ll oy 30
TV E

Fig. 3. Knickbiegeversuche mit Kiefernholzstében.
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QuerschnittsgroBen waren 5x 5 cm fiir die quadratischen und 6 cm Durch-
messer fiir die kreisformigen Stabe. Mit diesen ziemlich kleinen Querschnitts-
abmessungen war es von Wichtigkeit, moglichst astfreies, gleichartiges Holz-
material zu wihlen. Die Druckfestigkeit des Holzes variierte in den Grenzen
op=1(297...758)kp/ecm? und der Elastizititsmodul X =(83000...188000)
kp/em?2. :

Die Ergebnisse der Knick- und Knickbiegeversuche sind teilweise in Fig. 3
angegeben. Bei den Stiben mit quadratischem Querschnitt lag der Kraft-
angriffspunkt entweder in einer mit den Seiten gleichlaufenden Achse (in der
Fig. 3 mit + bezeichnet) oder in der Diagonale (X ). Die Ergebnisse mit den
kreisformigen Stében sind mit kleinen Zirkeln (O) angedeutet. Die durch die
Versuchspunkte laufenden Kurven geben graphisch die Funktion (27) wieder,
mit ¢=0,8. Der Ubersichtlichkeit wegen wurden fiir das ExzentrizititsmaB
nur die Werte m =0, 1, 2, 5 gewéhlt. Die dem Wert m = 0 entsprechende unterste
Kurve ist identisch mit der Knickspannungslinie von ENGESSER nach Formel
(17). Bei der gestrichelten Linie wurde die Wirkung der bleibenden Form-
anderungen mit Hilfe des von KArMAN fiir den rechteckigen Querschnitt
abgeleiteten ENcEssERschen [9] Knickmoduls

_4EBE,
(VE+VE,)?

beriicksichtigt. Die Wirkung des SHANLEY-Effektes [10] auf die Knickspan-
nung der Stdbe mit rechteckigem Querschnitt ist auf Grund des Forménde-
rungsgesetzes (24) nach den Untersuchungen von Larssox [11] durchgefiihrt
und in der Abbildung mit punktierter Linie dargestellt. Sie liegt etwas hoher
als die ENGEssERsche Knickspannung, ist aber immer kleiner als die ENGESSER-
KArMANsche Knickspannung. Als kritische Spannung kann die ENGESSERsche
Knickspannung betrachtet werden.

Die Versuchsergebnisse von den zentrisch gedriickten Stiaben (m=0)
schlieBen sich sehr gut an die theoretischen Knickspannungskurven von
ENGESSER und SHANLEY an. Dagegen befinden sich die den exzentrisch belaste-
ten Staben (m =0) entsprechenden Versuchspunkte vorwiegend betrichtlich
oberhalb der theoretisch ermittelten Kurven. Dies kommt davon her, daf die
einfache Naviersche Formel (5) nicht richtig die in dem Stab entstehende
grofite Randspannung in dem Bruchstadium wiedergibt. Nach OSTENFELD [8]
kann die Formel (5) trotzdem fiir exzentrisch beanspruchte Holzstédbe bis zum
Bruch angewandt werden, wenn ein Beiwert 8 von der Groe

(28)

=D
B=" (20)
zum Momentenglied in der Formel hinzugefiigt und die Formel also in der
Form 7

G=Z+B—]I%e (30)
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geschrieben wird. Das Verhéltnis (29), wobei o5, die Druckfestigkeit und og
die Biegefestigkeit des Holzes bedeutet, ist sowohl von der Kriimmung des
Druckstauchungsdiagrammes als von der Form des Querschnittes abhingig.
Je grofler die Abweichung des Druckstauchungsdiagrammes von der Geraden,
und je mehr die Querschnittsfliche in der Nahe der Nullinie konzentriert ist,
um so kleiner wird 8. Nach den Untersuchungen von OSTENFELD betrigt der
Mittelwert dieser Verhidltniszahl etwa

fir rechteckigen Querschnitt (+) B = 0,80,
fiir rechteckigen Querschnitt (x) B = 0,61, (31)
fiir kreisférmigen Querschnitt (0) B = 0,70.

Wird in die Formel (30) o=0,, =>4 und der Ausdruck des groBten
Biegemomentes aus (14) eingesetzt und im iibrigen genau so verfihrt wie vor-
her bei der Ableitung der Gleichung (27), so erhilt man schliellich

1— Okr IBmUk‘r

A 2 '
A |/fl_) =212 % arccos 2. (32)

Tl B ”T Okr 1 — 2% | LA

gp ap

Diese unterscheidet sich von der Gleichung (27) nur dadurch, daB an Stelle
des Exzentrizititsmalles m in (27) in Gleichung (32) das reduzierte Exzentrizi-
tatsmafl Bm steht.

op
ET}
meter, nach (32) dargestellt. Vergleicht man den Verlauf der Kurven mit den
in der Fig. 3 angegebenen Versuchspunkten, so sieht man, daB die Uberein-

stimmung gut ist.

In Fig. 4 ist o4,/op als Funktion von der GréBe 3 mit Bm als Para-

1.0 m =0
Z <
08| o1 — AN
07 T\ \\ t
06 é m$\\\w S t
a5 TQE& \ t
P Q%\ \\
RERE=Ss \‘\Q N
0.3 e
=== S
. ——
o.i

O ©02 04 06 08 10 12 14 16 18 20 22 24 26 Ao 30
wiE

Fig. 4. Nomogramm zur Bestimmung der kritischen Spannung eines exzentrisch gedriick-
ten Holzstabes nach Formel (32).
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3. Zentrisch belasteter urspriinglich gekriimmter Stab

Bei dem schwach gekrimmten Stab von der Lange [ mit drehbar gelagerten
Enden greife die axiale Druckkraft F an. Der Stabquerschnitt sei symmetrisch
in bezug auf die Haupttragheitsachse des groBten Tragheitsmomentes und
diese liege in der Kriimmungsebene. Wir beziehen den Stab in der in Fig. 5

Fig. 5. Zentrisch belasteter Stab mit urspriinglicher Kriimmung.

angedeuteten Weise auf ein rechtwinkliges Achsenkreuz, dessen z-Achse mit
der Wirkungslinie der Kraft F zusammenfillt und dessen y-Achse ihre positive
Richtung nach unten hat. Der an der Stelle  vorhandene Abstand der Stab-
mittellinie von der x-Achse sei vor der Verformung «. Wir nehmen an, dafl die
anfinglich gebogene Stabmittellinie mit dem Pfeile f, genau genug als Bogen
einer Cosinuslinie betrachtet werden kann, daB also

u = f,cos w% (33)
ist. Bezeichnet man mit y den Abstand der Stabmittellinie von der Wirkungs-
linie der Kraft F nach der Verformung, so ist das an der Stelle x erzeugte

Biegemoment
M=Fy. (34)

Dabei ist zu beachten, dall das Moment als positiv betrachtet werden muf,
wenn es bestrebt ist, den Kriimmungsradius p des Stabes zu verkleinern.
Geht man ebenso wie beim geraden Stab auch bei dem urspriinglich ge-
krimmten Stab von der BErNoULLIschen Annahme aus, nach welcher die
Ebenen, die vor der Verformung senkrecht zur Achse des Stabes liegen, auch
nach der Verformung eben verbleiben, so kann man fiir die Kriitmmung 1/p
des Stabes eine der Formel (2) entsprechende Reihenentwicklung ableiten.
Unter der Annahme, dal die Querschnittshhe im Vergleich zum kleinsten
Kriimmungsradius p, der Anfangskrimmung der Stabachse klein ist, daf} es
sich also um einen «schwach gekriimmten» Stab handelt, beginnt diese Reihen-

entwicklung folgendermafien
1 1 1 M
= e 35
PP lt+e Io'(y) (39)

Fiir die Bestimmung der Tragfihigkeit eines schwach gekriimmten Stabes
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geniigt es ebenso wie bei dem geraden Stab, nur diesen linearen Teil der Reihen-
entwicklung zu beriicksichtigen. Setzt man M =Fy ein und vernachlissigt
man eg gegen Eins, so geht diese Gleichung in

1 1 F

b pe Lo ()

iiber oder, wenn man sich auf so kleine Verformungen beschriankt, dafl anné-
hernd 1/p=y" und 1/p,=u" gesetzt werden konnen,

F
" — o — - . 36
Yy To )Y (36)
2
Nach (33) ist u' = — (le) fo cos 77%.

Wird dieser Wert in die Gleichung (36) eingesetzt und die Abkiirzung (9)
o?=F|E,I benutzt, so ergibt sich als Differentialgleichung der elastischen
Linie des schwach gekriimmten Stabes

2
y' = _azy_(fll) fOCOSTr%. (37)

Dres gilt sowohl unterhalb als oberhalb der Proportionalititsgrenze des Materials.
Die allgemeine Losung dieser Differentialgleichung ist

y=Asinocx+Bcos<xx+fGOS7rg—l3, (38)
wo A und B die Integrationskonstanten sind und mit f abkiirzungshalber der
Ausdruck f

f=—" (39)

=

bezeichnet ist. Die Integrationskonstanten sind aus den Grenzbedingungen

x= +1/2, y=0 zu bestimmen. Daraus folgt 4 =0 und B =0. Mit diesen Werten
erhidlt man aus (38) als Gleichung der elastischen Linie des Stabes

y = fcos o

l

Aus dieser Gleichung geht die geometrische Bedeutung von f deutlich hervor.

Fiir x=0 erhilt y den groBten Wert f. Es ist somit die gro3te Ausbiegung, die

die Stabmitte infolge der urspriinglichen Kriimmung und unter der Last F

erfahrt.
Wenn man den Wert (9) von « in die Formel (39) einsetzt, so erhilt man

(40)

fmto (41)

Darin kann B, = (42)
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als die Knickkraft eines zentrisch gedriickten geraden Stabes von der Lénge I,
mit einem Querschnitt gleich dem des gegebenen Stabes und mit dem Elastizi-
tatsmodul gleich Z, gedeutet werden.
Das groflte Biegemoment ergibt sich aus (34) mit Riicksicht auf (41) als
Ff,
iR

-7

Wir fassen nochmals die Ermittelung der Tragfahigkeit des zentrisch
gedriickten Stabes mit urspriinglicher Kriimmung als Spannungsproblem auf.
Die urspriingliche Kriimmung des Stabes fithrt zu der Frage, inwieweit die
fiir den geraden Stab geltende Naviersche Formel (5) in der von OSTENFELD
korrigierten Form (30) auch fiir die Bestimmung der Spannungen bei dem
urspriinglich gekriimmten Stab verwendet werden darf. Unter den bei (35)
gemachten Voraussetzungen kann man zeigen, daf3 die Spannungsformel (30)
auch firr den schwach gekrimmten Stab mit in der Praxis geniigender Genauig-
keit gilt.

Die grofite Spannung im Stab tritt am Innenrand des Mittelquerschnittes
auf. Nach (43) erhilt man aus der Spannungsformel (30)

M=Ff= (43)

F FBfye
RERTI=)

wo e den Abstand der duBersten Faser von der z-Achse auf der Innenseite des
gebogenen Stabes bedeutet. Wenn o =0, so ist die Tragfihigkeit des Stabes
erreicht und die dullere Last F kann nicht mehr gesteigert werden. Die grote
Tragkraft F mufl3 daher der Gleichung

F FBfe
op =+ —B’t"—F (44)
1{1=5)
geniigen. Fithrt man I =142 4 ein, bezeichnet gemal} (15)
,_To _ foe
m = ZO = —;;)7 (45)

das Exzentrizitdatsmal und beachtet (42), so ergibt die Auflosung der Glei-
chung (44) nach dem der kritischen Spannung o, =F/A entsprechenden

Schlankheitsgrad 7 -
/\=7r}/ ’(1-—'8m "’"). (46)

Ok Op —Opr

Setzt man den Ausdruck des Tangentenmoduls aus (22) ein und beriicksich-
tigt, daf darin jetzt o =0y, ist, so kann (46) geschrieben werden

(47)

— °D ’
Ayfen o —HHE™)
ml B 1—¢ 2% )

oD
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W

Diese Form hat, im Vergleich zu (46), den Vorzug, dall die GroBe ~} &

Funktion allein des reduzierten ExzentrizitdtsmalBes 8m’ und des Verhéltnisses
or/op ist.

In der Praxis kommt oft der Fall in Betracht, daB der Schlankheitsgrad
des Stabes bekannt ist und man die ihm entsprechende kritische Druckspan-
nung oy, zu wissen wiinscht. Lost man die obige Gleichung in bezug auf das
Verhéltnis oy,/o, so erhdlt man

U'kr ’7T2 E

Op o QCO'DAZ

eine

2 2\ 2 2
[1 +,8m’+‘:£2, — (1 +/3m’+(;22) —40%12)—2—]. (48)
Unterhalb der Proportionalitdtsgrenze, wo E,=FE und infolgedessen die
Gleichung (42) die EuLERsche Knickkraft eines zentrisch gedriickten geraden
Stabes von der Linge [ und mit einem Querschnitt gleich dem des gegebenen
Stabes darstellt, ist (44) identisch mit der Formel von KAysgr [12].
Dividiert man (46) durch (20), so ergibt sich als Verhéltnis der Schlank-
heitsgrade eines urspriinglich gekriimmten Stabes und eines geraden Stabes
bei ein und derselben Spannung

B 2
7:\; _ 1/1— : 2, (49)

In Fig. 6 ist oy, /o, als Funktion von der GroBe 3]/% mit Sm’ als Parameter

nach (47) dargestellt. Der Ubersichtlichkeit halber wurden fiir das Exzentrizi-
tatsmal nur die Werte m'=0,0,5,1,2, 5 gewahlt.

1.0 m'=0
gl
08 __.A\ m=Q5 N ?
0.7 ?;§
o = \%‘\ N ?—
Sl g
os| " \bgi\\ \\ !
* | .
o4 Eﬁ \§ \\
os . Q\ \
’ ¢ |m'=5 T3 \
023 = ]
0.1 b‘s%

o} 02 04 06 08 10 12 14 16 18 20 22 24 26 %—V’%ﬁ. 30

Fig. 6. Nomogramm zur Bestimmung der kritischen Spannung eines urspriinglich
gekriummten Stabes nach der Formel (47).
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Weil Versuchsergebnisse von den zentrisch belasteten urspriinglich ge-
kriimmten Holzstiben dem Verfasser nicht bekannt gewesen sind, ist ein
Vergleich von den in der Fig. 6 angegebenen theoretisch ermittelten Kurven
mit den Versuchswerten nicht méglich gewesen.
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Zusammenfassung

Der Verfasser untersucht die Knickbiegefestigkeit eines exzentrisch belaste-
ten geraden Holzstabes und eines zentrisch belasteten urspriinglich gekriiomm-
ten Holzstabes. Die Resultate werden mit den Versuchsergebnissen von
OSTENFELD verglichen.

Summary

The author investigates the buckling strength of an eccentrically-loaded
straight wooden column and a centrally-loaded, initially warped column. The
results are compared with those obtained in the tests made by OSTENFELD.

Résumé

L’auteur examine la résistance des barres droites en bois, comprimées par
les forces excentriques, et des barres courbes comprimées par les forces cen-
trées. Les résultats sont comparés avec les essais d’OSTENFELD.
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