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Zur Berechnung räumlicher Stabwerke

The Calculation of Three-dimensional Structures

Sur le calcul des ossatures tri-dimensionnelles

KONRAD SATTLER
Prof. Dr.-Ing., Dr. techn. h. c, Graz

Nachfolgend soll gezeigt werden, wie rein schematisch, unter Verwendung
der Matrizenmethode, die Schnittlasten und Verformungen räumlicher Stab-
werke bestimmt werden können. Die Entwicklungen werden zuerst am un
verzweigten Stabwerk durchgeführt und anschließend werden Systemverzweigungen

behandelt. Die Systemachse wird zwischen den gewählten Knotenpunkten
geradlinig verlaufend angenommen. Außerdem wird die Entfernung zwischen
den Knotenpunkten so gewählt, daß einerseits für ein Feld die Querschnittsgrößen

(F, I, Id) konstant angenommen werden können, andererseits eine
stetige Belastung bei Einhaltung der üblichen Rechengenauigkeit durch
Knotenlasten ersetzt werden kann. Sämtliche Belastungen wirken somit nur
in den Knotenpunkten, d. h. die Felder selbst sind unbelastet. Dies hat eine
erhebliche Vereinfachung der Rechnung zur Folge, ohne daß die Genauigkeit
leidet. Bei einem Einfeldträger zehnfacher Unterteilung und gleichförmig
verteilter Belastung beträgt z.B. bei Einführung von Ersatz-Einzellasten in den
Knotenpunkten die maximale Abweichung im Moment für Punkte zwischen
den Knotenpunkten nur 0,01 Mmax^. Eine auf die Feldweite c stetige Belastung
wird zweckmäßig als Trapezlast angenommen und die Knotenlasten nach der

Trapezregel bestimmt, wobei nach Fig. 1 Ki ^(2pi + pi+1) wird.

|Pi+i

jpi+i

- |Ki+,
Fig. 1.
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I. Statisch bestimmtes unverzweigtes System

1. Belastung

Im allgemeinen Falle wird im Knotenpunkt i an einem starr gedachten
Hebelarm i — n eine beliebig gerichtet Kraft ^n wirken (Fig. 2), deren
Einheitsvektor epn ist.

mpnj1,z

i+1

i-1

cn,t

Pni .,2
&sF£Jr+)t

9o"v,

Pni;
-? -?+X

Fig. 3.

Fig. 2.

Reduziert man diese Kraft in den Knotenpunkt i, so erhält man mit
*"n, i zn ci»

nrn,i ißn ^n^pn (*¦)

UnC^ "tpn;i *n,iX Vn "ji(V^M Pn^pn;i9 (^)

wobei gilt:

™pn;i

m,pn;%,x
m,'pn; i, y
m,pn;i,z

i
' m; x ' ni;y ' ni;z
^pn;x ^pn;y ^pn;z

\iln~yi) epn;z~ \zn~zi) epn;y
\\zn ~~zi) epn;x~~ \xn~~xi) epn;z

[\xn ~xi) epn;y ~ \Vn "" Vi) epn;x.

(3)

Der gesamte Belastungsvektor aus der Belastung ?$n lautet somit für den
Punkt i (Fig. 3):

P n • P¦*¦ n vpn; x * n

^pn; x Vni; x>

epn; y Pni; y'
&pn;z Pni;z?
m,

(4)
pn ;i,x>

m„
m,pn\ x,z*

Greifen mehrere Lasten im Bereich des Knotenpunktes i an, so beträgt die
gesamte Knotenpunktsbelastung

2 Pn $pn; i • (5)

Völlig entsprechend ergeben sich die Knotenpunktsbelastungen aus einer
Stützbelastung, die am Hebelarm tj,* & —& angreift.
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Wirkt am Hebelarm i — l eine Stützkraft % bzw. ein Stützmoment ®z mit
dem Einheitsvektor eal bzw. edl auf die Unterstützung, so erhält man
entsprechend (1) bzw. (4) als Wirkung der Lagerreaktionen auf das Stabwerk im
Knotenpunkt i die Belastungsvektoren:

'^lPal;i — —Al

bzw. -At>*;< -A

eal; x Pal; x >

^äl; y Pal; y >

eal;z Pal;z">

™al;i,x [yi-yi)^al;z -(*l-*i) ^al;y>

mal; i, y vh~ zi) ecd; x ~(xl~ Xi) edl; z ¦>

m<d;i,z (Xl ~ xi) eat; y ~ (Vl~ Vi) edl;x>

o,
o,
o,

(6)

m(

mt

mt

dl; i,x
dl; i, y

dl; i, z

e,

(7)
dl; i, x '

dl; i,y >

edli,;z*

Sind die Absolutwerte Ax bzw. Dz nach Abschnitt 2 bestimmt, so ergibt sich
der endgültige Gesamtbelastungsvektor im Punkt i zu

Pi Pp+a; i 2j *n Ppn; i~H^l Pal; i~~H^l Pdl; i • ($)

2. Absolutwerte der Stützbelastung

Legt man in einem Knotenpunkt den Koordinatenursprung 0 (Fig. 4)
und stellt die Gleichgewichtsbedingungen für Kräfte und Momente, bezogen

,°*z
*~. p

Vq

o.

x,-x1-^6^

Fig. 4.
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auf diesen Punkt, auf, so erhält man:

2(s»x*»)-2(&x^)-2®i o.
n l l

(9)

(10)

Die 6 Komponentengleichungen ergeben sich als Skalarprodukte von (9) und
(10) mit den Einheitsvektoren ex, tv und ea.

Z.B. wird:
ZPn^pn-^-ZAl^al'^x 0, (11)

Z^»te»xePB).e.B-24I(jIxea,).e.E-ZAe«-e* 0 usw. (12)

Mit (&xen)-ex
i i t 1

xi Vi *t •' 0

p p p°n# ^ny ^nz [oj
=y^nz-Zieny USW. (13)

ergibt sich beim Vorhandensein von 3 Wegfesseln und 3 Drehfesseln das
nachfolgende Gleichungssystem I.

Hierbei bedeuten xal, yal, zal die Koordinaten der Angriffspunkte von %
usw., xpn, ypn, zpn diejenigen der Angriffspunkte der Lasten ^n usw. (In der
Zahlenrechnung bedeutet xal;k die ^-Koordinate des Punktes k, in dem der

Auflagerdruck Al angreift usw.)

Tafel 1. Gleichungssystem I
1 2 3 4 5 6 7 8

A1 A2 A3 £>i D2 D3 Belastungsglied 0

-eai,x —&a2,x —ea3,x 0 0 0 Zj -Ln,x &pn,x 0

—£a1,y —6a2,y -&a3,y 0 0 0 2j -Ln 6pn, y 0

~~&a 1, z —ea2,z —&a3,z 0 0 0 Z_i An 6pn,z 0

Zal eai,y—

-yai eai,z
Zal ea2,y~
~ya2 Ca2,z

Za3 &a3, y~
—ya3 ea3,z -eai, x —e<i2,x —ea3,x

2a -* w {Vpn €>pn,z—

—Zpn epn, y
0

xai eai,z—
—Zal eai,x

Xa2 ea2,z~
~Za2 ea2,x

Xa3 &a3,z—

—Za3 ea3,x -&dl,y —£d2,y —Zd3,y
2j Jtn [Zpn &pn,x—

—Xpn &pn,z)
0

yal 6ol,ar-
—Xa 1 &al,y

ya2 ea2,x~
—Xa2 &a2,y

ya3 Va3,x-
—Xa3 ea3,y

—&dl,z —ed2,z ~ed3,z
2j ±n \Xpn &pn, y~~

—ypn &pn, x
0

Sind statt Drehfesseln weitere Wegfesseln vorhanden, so sind in den Spalten

4, 5 und 6 den Spalten 1 bis 3 entsprechende Werte einzuführen; z.B. für
A± die Werte — ea±;x usw.

Als Lösung von (I) ergeben sich die Werte A% und Dx und damit die
Reaktionsbelastungen — ^4zeaZbzw. —Dztdl.

Nach (4) bis (8) sind dann alle Knotenbelastungen festgelegt. Schreibt man
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die Nennerdeterminante von (I) in Matrizenform als « — [et]» und die Belastungsglieder

in der Form

[6]-*

epl;x
epl;y
epl;z
yplepl;z~ Zplepl;y
zplepl;x~~~Xplepl;z

ep2; x

_xp iepi;y~~ypiepi;

^pn; x \Pi\

gilt mit 31

A,
A3

Di
D*
D«

bzw. SU

A1
A,

¦[0].« -[&]•$

und 21 [a]-1 [6] • <ft ftf^ [6].% [<W] [6]. % ^.$.
cb et Ol a a

(14)

(15)

(16)

Mit (16) können durch Matrizenmultiplikation alle Stützreaktionen in
Abhängigkeit von den gegebenen Lasten y$n ermittelt werden.

3. Schnittbelastung

Für einen nur in den Knotenpunkten belasteten Stab (n) (Fig. 5) sind die
Schnittlasten an jeder Stelle m durch den Vektor gw, bzw. durch seine 6 Kom-

+Y AZn

AYn
+ X

+ Z

+ Z-i tn

Sn.Zi

m «"*<»n,y

Sn,x "•* ^+x
tn,y

r'n,z

Fig. 5. Fig. 6.

ponenten (Fig. 6), gegeben. Zwischen der Schnittbelastung §n>a am Anfangspunkt

a und §n>e am Endpunkt e besteht die Beziehung:

S«,e [b]-3-„ mit (17)
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*nx,a 1 0 0 0 0 0 0~
*nx,a

t
°ny, a 0 i 0 0 0 0 0 $ny,a

^nz,a 0 0 1 0 0 0 0 ^nz,a
fvnx,a ' %n, e

0 + Azn -Ayn 1 0 0 0 • < ^nx,a

^ny,a -Azn 0 + Axn 0 1 0 0 ^nysa

^nz,a +Ayn -Axn 0 0 0 1 0 ^nz,a
1 0 0 0 0 0 0 1 1

(18)

Mit der Knotenpunktsbelastung nach (8) ergibt sich für den Anfangsstab
(Fig. 4 a) im Punkt 1 die Schnittbelastung

h,a Pl- (19)

%l,a —

Für alle anderen Stäbe «(n+1)» kann die Anfangsschnittbelastung aus der
Endschnittbelastung des jeweils vorherigen Stabes «(n)» mittels der Sprungmatrix

[q] — resultierend aus der Knotenpunktsbelastung pn — erhalten
werden.

8n+la M-8n,e=[q][b]-8n,a- (20)

slx,a Pl,x
Sly,a Pi,y
slz,a Pl,z
hx,a > — < ml,x
tly,a mi,y
hz,a ™>l,z

1 1

Qn+l,a

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

Pn,x **nx, e

Pn,y 8ny,e

Vn,z &nz,e

mn,x •' "nx, e

mn,y ^ny,e

mn,z ^nz,e
1 1

(21)

Durch Anwendung von (20) bzw. (21) können somit alle Schnittbelastungen
— bezogen auf das gewählte Koordinatensystem x,y,z — mittels fortlaufender
Matrizenmultiplikation bestimmt werden. Will man die Schnittbelastung ($n)
auf die Hauptträgheitsachsen 1, 2 und 3 (Fig. 7) beziehen (%'n), wobei die
Achse 1 jeweils mit der zugehörigen Stabachse zusammenfällt, so hat man
den Vektor §n mit der Rotationsmatrix [r] zu multiplizieren.

$'n W-8n-
COSal,x C08ocl,y C0Sal,s 0 0

cos oc2)X cosa22/ cosa20 0 0

cosa3;z, cosa32/ COSag^ 0 0
0 0 0 COSala. COSal2/ COSal5,
0 0 0 cosa2x cosa22/ cos oc2z

COS oc3x COS oc3y COSa3s

Sn,l
Sn,2

Sn,S

tn,l
>

tn,2

tn,3

0

0

0

0 0 0

Jn,x
sn,y

sn,z

(22)

(23)
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Die positive Richtung der Achse 1 folgt dem Stabzug von Punkt 1 bis n. Die
positiven Richtungen der Hauptträgheitsachsen 2 und 3 bilden mit der Achse 1

wieder ein Rechtssystem. Die Querschnittsebene mit den Achsen 2 und 3 steht
senkrecht zur Achse 1 und schneidet die #?/-Ebene in der Geraden (h — h), die
durch den Einheitsvektor eh bestimmt ist.

Mit den gegebenen Werten für

e,

und

elx COSal,a; ehx

ely COSal,2/ und mit th ehy wird aus

elz cosoclz 0

«l*e* ° und M2 1 eL + elv,

_2üf _c
Hx

e^ ±/r5' e^ Tc/rb

(24)

(25)

Fig. 7.

+3

a) +2

n *-

+3
+ 2

tot ^+ X-«

© + 1 in Richtung des
Sehstrahles

©+Z in Richtung des
Sehstrahles

(+1 +Z) Fig. 8.

Die positive Richtung der Achse 2 wird bei dem gewählten Rechtssystem
durch den Winkel oc, den sie mit der Geraden h — h einschließt, festgelegt
(Fig. 8a).

Der Wert a wird immer positiv und zwischen 0 und 90° angenommen und
entsteht durch Drehung der Geraden h — h im Uhrzeigersinn (in fortschreitender

Stabzugrichtung betrachtet) nach e2. Sind die Komponenten elx, ely und
elz des Einheitsvektors ex positiv, so wird ehy positiv und ehx negativ und man
erhält die Komponenten des Einheitsvektors e2 aus den Bedingungen

e2»e^ cosa, e2»e! 0 und |e2|2 1

zu: ^2x L/Ul/l+<
+ c cos oc + elz sin a)l COSa2,

-2y +

+

Uu/i+(
: (cosa — celzsina) cosa22/] (26)

[sina ,"]

L7T^(ei:c+ceij')J=C0Sa2
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Mit ß 90 + oc ergeben sich damit auch die Komponenten des Einheitsvektors
e3 zu:

(ccosß + elzsinß)\ix~ L/i

iv + |-y=|( + cosß-celssin^)j

[sinß
,1

,- ^lx + cely)\ =COSa3>s.

cosa.3,x>

COSa3l/) (27)

Fällt ex mit der z-Achse zusammen, so wird entsprechend Fig. 8 b

e2x c°sa; e2y sina; eSx —sina; eSy cosa.

Zur schematischen Durchführung der Rechnung werden nachfolgend in der
Tafel 2 für die verschiedenen möglichen Vorzeichen der Komponenten des

Einheitsvektors ex die Vorzeichen vor den eckigen Klammern in (26) und (27)
für die Komponenten der Einheitsvektoren e2 und e3 angegeben, wobei in den
Klammern die Werte elx, ely, elz, c, sin/? und cosß vorzeichengerecht
einzuführen sind. (Mit j8 90-ba ist sinjS cosa und cosjS —sina.)

Tafel 2

eix + _ — + + _ — +
eiy + + - - + + - -
eiz + + + + - - - -
e2x

C3x - + + - - + -h -
C2y

e3y
+ - - + + - - +

Ö2z

C3z
+ - - + + - - +

4. Verformungen eines einseitig eingespannten Feldes

Für einen in a eingespannten Stab (Fig. 9), auf den am frei gedachten
Ende e mit der Vorzeichenfestlegung nach Fig. 6 die Schnittbelastung « — $'e»

-S3 n

s1 -t, Fig. 9.
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in Richtung der 3 Hauptachsen 1, 2 und 3 wirkt, erhält man die Verformungen
des Punktes e gegenüber a mittels der Federmatrix [f] — wenn man die
SchubVerformungen nicht berücksichtigt — zu:

*e m-(%), (28)

»«

/

Ve,l

Ve,2

»e.8

>

9e,l

<Pe,2

<Pe.3
V

c

EF 0 0 0 0 0

0
c3

0 0 0
c2

3EI3 2EI,

0 0
c3

0
c2

0
3FI2 2EI2

0 0 0
c

GId
0 0

0 0
c2

0
c

EI2
0

2EI2

0
c2

0 0 0
c

2 EI. EI,3 J

/ \
<e

52,e

s3,e

• <

*Le

f'l2,e

\

(29)

J2 bzw. J3 sind Trägheitsmomente um die Achse 2 bzw. 3, Jd ist der
Drillungswiderstand.

Treten für eine gegebene Belastung B die Schnittlasten §>'B)n;e in Richtung
der Hauptachsen auf, so gilt für das Feld n mit cn, Fn, J2n, Js)7l, Jd,n :

»B.*je -[f»]-8k»;e- (30)

5. Verformung des Gesamtsystems

Die Verformung an einer bestimmten Stelle des Systems infolge einer
gegebenen Belastung B wird zweckmäßig mit dem Satz von der virtuellen
Arbeit ermittelt. Wird z. B. die Verschiebung v%.u_u des Punktes q in Richtung
u — u (Fig. 4 a) gesucht, so wird als einzige virtuelle Belastung ?ßa l in Richtung

u — u aufgebracht. Nach Abschnitt 2, Gl. (9) bis (16), ergeben sich die
zugehörigen Auflagerdrücke 2tP =1 und nach Abschnitt 3, Gl. (17) bis (27),
die Schnittbelastung $>P =1;n>e.

(31)Aus M„ M, wird VB, u-u M,.
Die innere Arbeit an einem Trägerstück i, i + 1 aus den Verformungen der
Belastung B und den Schnittlasten aus dem Zustand ?$q 1 kann besonders
einfach berechnet werden. Sie ist gleich der Arbeit, die die Endschnittlasten
an den entsprechenden Endverformungen leisten. Fig. 10 zeigt z.B. ein ebenes

Trägerstück i, i + 1, das nach der Verformung des Systems die Lage i', (i + 1)"
einnimmt. Die Endverformungslage i', (i+1)" kann man sich entstanden
denken als Verschiebung des starren Trägerstückes i, (i + 1) in die Lage i', (i + 1)'
und aus den zusätzlichen Verformungen des bei i' starr eingespannten elasti-
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sehen Trägerstückes. Da die Schnittlasten im Punkt i mit denen im Punkt
i +1 ein Gleichgewichtssystem bilden, wird bei der Verschiebung in die Lage
i', (i+1)' keine Arbeit geleistet. Die gesamte innere Arbeit entspricht somit

Mi+1

w~SM")—€jE
_i +

li + 1)

CJ

4C>
Fig. 10.

einzig und allein der Arbeit der Schnittlasten im Punkt i+1 an den
Endverformungen in diesem Punkte des bei i' starr eingespannten elastischen
Trägerstückes.

M, Mi+1 A cpB; ,+1 + Ni+1 A cB; x - Qi+1 AcB;z.

Für ein Trägerstück des räumlichen Systems ergibt sich die innere Arbeit
somit aus dem Produkt der Verformungen nach (30)

)B, n, e — [fn] %'B.
n> e und der Schnittbelastung £P̂q=l; n, e •

Da nach Fig. 6 die Schnittlasten +3P =i;n,e am Trägerende e entgegengesetzt
den positiven Richtungen der Verformungen wirken, wird die geleistete Arbeit
am Gesamtsystem

aB,u [f]n - {%B; e)n ' {%P,,=1; e)n

"[fl]-^;l,
0

0

0

[f2]'^;2,e

0

0

0

$Pq=l;l,e

%Pq=l; 2, e

%'t
Pq=l; n, e.

(32)

P]B-{«P<-l;Jn- (33)

[\n\'%B;n,e

Bei der Ermittlung von gegenseitigen Verschiebungen, Drehungen, gegenseitigen

Drehungen usw. werden sinngemäß Doppelkräfte sßfl=l, Momente
(SRq= 1, Doppelmomente Wtq= 1 usw. angenommen.

II. Statisch unbestimmtes unverzweigtes System

1. Verformungsgrößen an den Wirkungsstellen der statisch unbestimmen Größen Xu

Nach der Schnittbelastungsmethode wird ein statisch unbestimmtes in ein
statisch bestimmtes System verwandelt, indem entweder an den Wirkungsstellen

von Stützbelastungen oder an denen von Schnittbelastungen freie
Bewegungsmöglichkeiten in Wirkungsrichtung der betreffenden Belastung
geschaffen werden. Z.B. wird das 2-fach statisch unbestimmte System der
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Fig. 4 a mittels Durchschneiden der Stützstäbe 0 und p in das statisch bestimmte
Grundsystem verwandelt, während das zu q symmetrische 6-fach statisch
unbestimmte System der Fig. 4b durch eine völlige Durchschneidung in q in 2

statisch bestimmte Grundsysteme der Fig. 4a zerfällt, Die Verformungsgrößen
aik am statisch bestimmten Grundsystem in Wirkungsrichtung der Unbekannten

Xu können nach Abschnitt I, 5 als virtuelle Arbeiten bestimmt werden.
Für eine Belastung B ist mit (32) und (33):

aB,u ffl# * {%Xu=>li e)n •

Weiter gilt: auu [i]Xu=1. {Z'Xu=1; e}n, (34)

auv KlxM=l' {^Ze=l; efn•

2. Statisch unbestimmte Größen Xu

Aus der Bedingung, daß an den Wirkungsstellen der Unbekannten Xu in
Wirklichkeit keine gegenseitigen Verformungen der Schnittstellen auftreten
können, und unter Beachtung des Superpositionsgesetzes erhält man das
bekannte Gleichungssystem II zur Berechnung der Absolutwerte Xu.

Gleichungssystem II
XB1axl + XB2a21 +aB1 0,
^-.51^12 ~^XB2a22 -\-aB2 0,

(35)

XB1alk + XB2a2k +aBk

3. Endgültige Schnittbelastung

Hierfür gilt allgemein:

*B9n $B,n + XBlKn + XB2$2;n-\ (36)

III. Verzweigte Systeme

Für statisch bestimmte verzweigte Systeme (z.B. Fig. lla-c) kann die
Stützbelastung unter Zugrundelegung eines beliebigen Koordinatenursprunges

wieder nach Abschnitt 1,2 bestimmt werden.
Für Systeme nach Fig. IIa kann die Schnittbelastung für die Teile A und

B, von a bzw. b beginnend, nach Abschnitt 1,3 berechnet werden, und zwar
jeweils bis zum Teilungspunkt t±. Beim Weiterschreiten über den Punkt t±

hinaus ist nur für die Schnittbelastung im beginnenden Teil C statt (20) die
neue Gleichung

%+l,a [q]-(X,e + ^;,e) (37)
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einzuführen, wobei A%Ute und B%n e
die Endschnittbelastungen der Teile A und

B am Teilungspunkt sind.
Für Systeme nach Fig. IIb wird man den Koordinatenursprung zweckmäßig

auf der verzweigten Seite annehmen und die Berechnung in Richtung
a — tx bzw. b — ti durchführen.

Teil C

a) Teil

d [ y>
Teil B

Teil B

o t>

Teil C

\e
Teil C

Teil

'I N

er t b

*? Fig. 11.

Symm. Achse

Xl"X6/

Fig. 12.

Ist eine mehrfache Verzweigung vorhanden (z.B. Fig. 11c), so wird man
zur Bestimmung der Stützbelastung z.B. den Koordinatenursprung © wählen.

Für die Bestimmung der Schnittbelastung der Teile A, B und C wird man
mit 0 in Richtung a — tx, bzw. b — tx, bzw. t± —12 vorgehen, während man für
die Teile D und E in Richtung d — t2, c — t2 weiterschreiten wird.

Bei statisch unbestimmten Systemen (z. B. Fig. 12) können die Verformungs-
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großen aik entsprechend Abschnitt 1,4 und 1,5 berechnet werden. Da die
Richtung des Fortschreitens bei der Ermittlung der a^fc-Werte gleichgültig ist,
kann das oben Gesagte sinngemäß unter Verwendung von (32) und (33)
angewendet werden: Die Berechnung der Unbekannten Xu und Schnittlasten %'B

erfolgt dann entsprechend Abschnitt IL

IV. Zusammenfassung

Für ein beliebiges räumliches System, das statisch bestimmt gelagert ist,
sind die Auflagerdrücke durch zwei vektorielle Gleichungen bestimmt. Schreibt
man letztere in Matrizenform, so sind die Einzelglieder nur von den Einheitsvektoren

der Lasten und Auflagerdrücke und den Koordinaten der System-
punkte und der Belastungsangriffspunkte abhängig und können schematisch
angeschrieben werden. Es sind dies die einzigen Eingabedaten bei einer
elektronischen Rechenanlage. Die Systemunterteilung wird so gewählt, daß man
unter Beibehaltung einer Rechengenauigkeit von rund 1% die Belastung nur
in den Knotenpunkten wirkend annehmen kann. Dies bedingt eine wesentliche
Vereinfachung der Rechnung, da alle Schnittlasten durch Matrizenmultiplikation

fortlaufend erhalten werden. Die Verformungen an beliebiger Stelle
werden über die Federmatrix der Einzelstäbe ebenfalls durch Matrizenmultiplikation

gewonnen.
Bei beliebigen statisch unbestimmten räumlichen Systemen können die

Verformungsgrößen aik usw. des statisch bestimmten Grundsystems auf
gleiche Weise ermittelt werden, damit die Unbekannten Xu und die endgültigen

Schnittlasten.
Mit obigem Verfahren kann mit einem einmal aufgestellten grundsätzlichen

Programm jedes räumliche Stabwerk, für das die Schnittlastenmethode zweckmäßig

ist, berechnet werden. An einem einfachen Beispiel soll die Durchführung

der Berechnung nachfolgend gezeigt werden.
An dieser Stelle sei meinem Assistenten, Herrn Dipl.-Ing. H. Passer, für

die Mitarbeit und Durchführung der Zahlenrechnung bestens gedankt. Besonders

danken möchte ich aber Herrn Dr.-Ing. H. K. Bändel, New-York, da ich
durch von ihm nicht veröffentlichte Untersuchungen zu dieser Arbeit angeregt
wurde.

V. Zahlenbeispiel

a) Statisch bestimmtes System

Das System und die Wirkungsrichtungen der gegebenen Belastung (*ß3,

^4,^ß6) sowie die Stützstäbe (%± bis 2l6) sind in Fig. 13 im Aufriß und Grundriß

dargestellt (siehe auch Fig. 14).
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»5
2£

2,545
V6

,45°^ U45,5
2.5

P45(2

o

*3l P3 V X
2,530° ä,^0,5

5,0 5.0

¦v
OfTfl P6

5.5 2.5
0,5P4

-©
X|.4P3 1.5

«3 1.00,5

Fig. 13.

Koordinaten der Systempunkte

Tafel 3

Pkt. 0 1 2 3 4 5 6 7

X

y
z

0
0
0

0

0

-0,5

+5,0
-1,0
-2,5

+5,0
-0,5
-2,0

+7,5
+1,5

0

+10,0
+ 4,0
+ 2,5

+10,5
+ 4,0
+ 2,5

+4,5
+4,0
+5,0

Einheitsvektoren der Stützstabrichtungen vom System weggerichtet

Tafel 4

ea,i e«,2 ea,3 ea,4 e«,5 ea,e

1 1
ea,x 0 0 -1 Vf 0 "Tf
Va,y 0 -1 0

1
0 0

ea,z -1 0 0
1

/3
-1 i

V2
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Einheitsvektoren der Kräfte in Wirkungsrichtung

Tafel 5

eP,3 ep,4 £p,6

&p,x
&p, y
6p, z

+0,48
-0,83
-0,28

0
0

-1,0

0

0

-1,0

Belastungsvektoren m für Einheitsbelastung nach (3) und. (6)
z.B. mpZ.%x (y^-y^)ep^z-(zz-z2)epZ.y +0,275,

ma4;5 ma5;7 ma6;l "»

da die Stützstäbe in den Systempunkten angreifen.

Tafel 6

mpz,2 Wlj)4;4 Wp6;5 Wfll;0 ma2,o ma3;0

mx
my

+0,275
+0,240
-0,240

0
0
0

0

+0,50
0

0

0

0

-0,5
0
0

0
+0,5

0

Matrix [a]

Es sind die negativen Werte des Gleichungssystems / einzuführen, z.B.
eal.z —1,0 und mit den Koordinaten des Angriffspunktes 1 von 9l3:

ZaS;lea3;x-XaS;lea3;z ~ 0,5 - 1,0) - 0,0 + 0,5 USW. (s. Tafel 4 U. 3).
'

0 0-1,0 +0,578 0 +0,707"
0 -1,0 0 +0,578 0 0

-1,0 0 0 -0,578 -1,0 -0,707
0 -0,5 0 -3,757 -4,0 -2,828
0 0 +0,5 +7,225 +4,5 +6,716
0 0 0 +3,468 0 -2,828_

Mit den Unterdeterminanten, bei denen jeweils bereits die Vorzeichen (— l)i+k
berücksichtigt sind,

A21 A22

[o]

erhält man in transponierter Anordnung

[<W1
^11 ^21
-^19. A 22
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[<W

+ 2,452 -13,689 -87,442 +27,377 + 4,904 + 6,742"

+ 3,269 -91,120 0 + 7,356 + 6,538 + 8,989
-79,269 - 9,195 0 +18,389 +16,346 + 0,612
+ 5;656 - 6,363 0 +12,726 +11,312 +15,552
-10,216 +22,884 0 -45,766 -21,250 - 7,354
+ 6,936 - 7,803 0 +15,606 +13,872 -11,849

Weiter wird

(fc*[a]=a +(-l)(+^1B) + + 0,578)(+^14) + + 0,707)( + 416)

- 1) (- 79,269) + 0,578 • 5,656 + 0,707 • 6,936 + 87,442.

Matrix [b]

Es gilt (14),
z.B. epS;z -0,28,

yP3ep3;z-zpSep3.y (-0,5)(-0,2S)-(-2,0)(-0,83) -l,52
(s. Tafel 3 und 5).

+ 0,48 0 0

-0,83 0 0

-0,28 -1,0 - 1,0

-1,52 -1,5 - 4,0
+ 0,44 + 7,5 + 10,5

-3,91 0 0

[*>]

Matrix [c]

Diese wird entsprechend (16) nach folgendem Schema (Zeile mal Spalte)
berechnet:

¦• 6x3

6x6
[c]

6X3

z.B. c12 (-87,442) (-1,0)+ 27,377 (-1,5)+ 4,904-7,5 +83,157.

W

-28,794
+ 33,747

-53,569
-67,178
+ 64,875
+ 38,518

+ 83,157

+ 38,401

+ 95,012
+ 65,751
-90,726
+ 80,631

+ 29,426

+ 39,225
+ 98,077
+ 67,972
-40,061
+ 83,232
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Auflagerdrücke

Für den Fall P3 P4 P6= 1,0 erhält man nach (16) mit

91 ^.$,
a

«, A,
A, 87,442

[c]-
p3=ll
A l

+ 0,958
+ 1,268
+ 1,595

+ 0,759
-0,753
+ 2,313

Auf das System wirken die Reaktionskräfte Ai in Richtung « — ea^>>.

Rotationsmatrizen [r]

Die Lagen der Hauptträgheitsachsen sind aus Fig. 14 ersichtlich. Stab

0-2:
elx cos oclx

tl \ ely COSal,i/

clÄ eosaM

+ 0,8804
-0,1761

- 0,4402

Nach (24) wird c ^ -0,200.

Mit a 30° (Fig. 8a) ergibt sich nach (26) und Tafel 2 mit cosa 0,866,
sina 0,500

*5

3
*£

j^
01=30° /

>^?S B__"ÄS<_.
C/ h | | h \/Stab 0-2 Stab 2-5 Stab 5-7

QUERSCHNITTE

Fig. 14.
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und mit

Stab 2—5:

e _ [ *_(- 0,2 »0,866 -0,4402 -0,5)1 +0,3857,
Lj/1 + 0,04 J

e2y +[ + 0,8060] +0,8060,

e2z =+[0,4489] +0,4489,

|g 90 + a, sin|3 cosa, cos ß —sina,

e3x + 0,2758, e3y - 0,5651, e3z + 0,7775.

ti

Stab 5—7:

ti

+ 0,5773
+ 0,5773

+ 0,5773

-0,9104
0

+ 0,4138

a 0, c=l, sina 0, cosa=l.

a 45°, c 0, sina cosa 0,7071.

Mo-2

[t]2-5

[t]5-7

+ 0,8804 -0,1761 -0,4402
+ 0,3857 +0,8060 +0,4489
+ 0,2758 -0,5651 +0,7775

+ 0,5773 +0,5773 +0,5773
-0,7071 +0,7071 0

-0,4082 -0,4082 +0,8164

-0,9104 0 +0,4138
+ 0,2926 -0,7071 +0,6437
+ 0,2926 +0,7071 +0,6437

+ 0,8804 -0,1761 -0,4402
+ 0,3857 +0,8060 +0,4489
+ 0,2758 -0,5651 +0,7775

+ 0,5773 +0,5773 +0,5773
-0,7071 +0,7071 0

-0,4082 -0,4082 +0,8164

-0,9104 0 +0,4138
+ 0,2926 -0,7071 +0,6437
+ 0,2926 +0,7071 +0,6437

Schnittbelastung
3

Mit §0-2, a ~"l]^2paz,o ergibt sich aus Tafel 4 und 6 und Multiplikation
i

mit den Werten Al9 A2 und A3
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^0-2, a

+ 1,5950
+ 1,2680

+ 0,9580
+ 0,6340
-0,7975

0

1,0

Nach (17) und (18) wird:

^0-2, e —

1

0

0

0

+ 2,5

-1,0
0

0
1

0

-2,5
0

-5,0
0

0

0

1

+ 1,0

+ 5,0
0

0

Nach (20) und (21) erhält man mit ep/.

0

0

0

0

0
1

0

und m

^0-2,«

+ 1,5950

+ 1,2680

+ 0,9580
-1,5780
+ 7,9800
-7,9350

1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0
1

0

0

0

0

0

0

0
1

0

p32 (Tafel 5, 6 und 7)

+ 0,480"] +1,5950
-0,830 +1,2680
-0,280 +0,9580
+ 0,275 J -1,5780
+ 0,240 +7,9800
-0,240 -7,9350

1 1

In gleicher Weise fortschreitend ergeben sich sämtliche Schnittlasten in allen
Systempunkten nach Tafel 7.

Tafel 7. Schnittlasten aus äußerer Belastung

^O—2,a 3o—2,e ^2—4, a §2~4,e #4—5, a ^4—5,e §5~7, a §5-7, e

Sx +1,5950 +1,5950 +2,0750 +2,0750 +2,0750 +2,0750 +1,6363 +1,6363
Sy +1,2680 +1,2680 +0,4380 +0,4380 +0,4380 +0,4380 -0,0007 -0,0007~0
Sz +0,9580 +0,9580 +0,6780 +0,6780 -0,3220 -0,3220 -0,8833 -0,8833
*x +0,6340 -1,5780 -1,3030 -1,9030 -1,9030 -0,0030 -0,0030 -0,0030~0
ty -0,7975 +7,9800 +8,2200 +4,7275 +4,7275 -1,2650 -0,7650 +0,0024~0
tz 0,0 -7,9350 -8,1750 -4,0825 -4,0825 +0,0100 +0,0100 +0,0100~0
1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

Bei der Berechnung von 35_7ja ist nach (8) zu berücksichtigen

Zur Kontrolle berechnet man §5_7e auch direkt aus den Auflagerdrücken
2T5und2t6.
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2,313(-0,707) -1,636 *

0

2,313-(0,707)-0,753 +0,8830
-35-7,eH °

0

0
1

Mit %n sind nach (22) und (23) auch die Schnittlasten $'n [x]n*$n bekannt.
Sie sind in Tafel 8 eingetragen.

Tafel 8. Schnittlasten aus äußerer Belastung, bezogen auf die Hauptträgheitsachsen

§0-2, a §0-2, e §2-4, a §2-4,e §4-5, a §4-5, e §5-7, a §5-7, e

Sl +0,7592 +0,7592 +1,8422 +1,8422 +1,2649 +1,2649 -1,8548 -1,8548
S2 +2,0672 +2,0672 -1,1575 -1,1575 -1,1575 -1,1575 -0,0897 -0,0897
S3 +0,4682 +0,4882 -0,4723 -0,4723 -1,2887 -1,2887 -0,0897 -0,0897
h +0,6986 +0,6984 -0,7262 -0,7262 -0,7262 -0,7303 0 0

h -0,3983 +2,2612 +6,7337 +4,6884 +4,6884 -0,8945 +0,5409 0
t3 +0,6255 -11,1142 -9,4976 -4,4859 -4,4859 +0,5164 -0,5409 0

Für die Maschinenrechnung sind nur die Systemkoordinaten und die
Richtungen der Auflagerdrücke und Belastungen sowie die Größen der letzteren
anzugeben und alle Schnittlasten und Lagerdrücke werden ausgedruckt.

b) Statisch unbestimmtes System

Das im Abschnitt a) behandelte System wird zusätzlich im Punkt 4 durch
einen starren Stab in Richtung von X± 4 gestützt (Fig. 13, 14).

Es wird X14=l als einzige Belastung am statisch bestimmten Grundsystem

aufgebracht. Es ist

eXi,4

-0,7071
0

+ 0,7071

und nach (14) [hXl]

-0,7071
0

+ 0,7071

+ 1,0607

-5,3033
+ 1,0607

Mit [aadj] nach a) wird

[c]Xi
6x1

[<W
6x6 [Ckx

-53,3814"
-19,6473
-10,4823
-33,9958
+ 63,8637
-74,4868
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und man erhält die zugehörigen Auflagerdrücke

** ^L3

A,
1

87,442 [Ckx-(^l=l)

-0,6101
-0,2246
-0,1198
-0,3886
+ 0,7300
-0,8514

Entsprechend Abschnitt a) werden die Schnittlasten berechnet (Tafel 9).

Tafel 9. Schnittlasten infolge X\ 1

§0-2,a §0-2, e §2-4, a §2-4, e §4-5, a §4-5, e §5-7, a §5-7, e Kontr.

Sx -0,1198 -0,1198 -0,1198 -0,1198 -0,8269 -0,8269 -0,6023 -0,6023 -0,6019
Sy -0,2246 -0,2246 -0,2246 -0,2246 -0,2246 -0,2246 0 0 0
Sz -0,6101 -0,6101 -0,6101 -0,6101 +0,0970 +0,0970 -0,1276 -0,1276 -0,1281
tx -0,1123 -0,1609 -0,1609 +0,8029 +0,8029 -0,0010 ~0 0 0

ty +0,0599 -3,2901 -3,2901 -4,5159 -4,5159 -2,2062 -2,2062 +0,0013 0
tz 0 +1,2428 +1,2428 +1,5048 +1,5048 -0,0009 ~0 0 0
1 1 1 1 1 1 1 1 1 1

Mit $n werden nach (22) und (23) die Schnittlasten §^ [r]w.§w berechnet
(Tafel 10).

Tafel 10. Schnittlasten infolge Xi 1 bezogen auf die Hauptträgheitsachsen

§0-2, a §0-2, e §2-4, a §2-4, e §4-5, a §4-5, e §5-7, a §5-7, e

Sl +0,2026 +0,2026 -0,5510 -0,5510 -0,5510 -0,5510 +0,4950 +0,4950
S2 -0,5011 -0,5011 -0,0741 -0,0740 +0,4259 +0,4259 -0,2586 -0,2586
S3 -0,3805 -0,3805 -0,3575 -0,3575 +0,5084 +0,5084 -0,2586 -0,2586
h -0,1094 -0,1094 -1,2748 -1,2748 -1,2748 -1,2736 0 0
t2 +0,0050 -2,1560 -2,2127 -3,7609 -3,7609 -1,5600 +1,5600 0
t3 -0,0648 +2,7811 +2,4233 +2,7442 +2,7442 +0,9006 -1,5600 0

Zur Berechnung der Verformungsgrößen sind die Querschnittswerte
erforderlich. Es wird für den gesamten Stabzug ein konstanter Querschnitt nach
Fig. 15 gewählt. Damit ergeben sich mit Jc 65 016 cm4 die Verhältniswerte:

F 0,03 m2, 2,00, 4*= 1,0 und -— 3,00.

EMit den Längen c0_2 5,68 m, c2_4 c4_5 4,33 m, c5_7 6,04 m und -^ 2,6
1

erhält man nach (29) — wenn man den Multiplikator -^r- heraushebt — die
EIC

nachfolgenden Federungsmatrizen:
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+ 0,1704 0 0 0 0 0

0 +183,2504 0 0 0 + 48,3936

[f]0-2
0

0

0

0
+ 61,0829

0

0

+ 29,5360
-16,1312

0

0

0

0 0 -16,1312 0 + 5,6800 0

0 + 48,3936 0 0 0 + 17,0400
" + 0,1299 0 0 0 0 0

0 + 81,1827 0 0 0 + 28,1234

ffl2-4 0 0 + 27,0606 0 -9,3745 0

[f]4-5 0 0 0 + 22,5159 0 0

0 0 - 9,3745 0 + 4,3300 0

0 + 28,1234 0 0 0 +12,9900
" + 0,1812 0 0 0 0 0

0 + 220,3489 0 0 0 + 54,7224

[f]5-7
0

0

0

0
+ 73,4489

0

0

+ 31,4080
-18,2408

0

0

0

0 0 -18,2408 0 + 6,0400 0

0 + 54,7224 0 0 0 + 18,1200

4+3

+2

30

±

30
300

- 400

Fig. 15.

Zur Ermittlung der statisch unbestimmten Größe sind nach (32) und (33)
die Verformungssprünge aB1 und au zu berechnen.

'[f]o-

aB1

2*%B,0-2, o 0 0 %Xlf0-2;e
0 LTJ2-4'3^,2-4; o 0 ^Xi,2-4; e

0 0 [f]4-5*3j3,4-5 o ^i,4-5; e

0 0 0 [Uz-T$B,5-l;e_ ßxlth-l;e^
Da es sich um eine Diagonalmatrix handelt, kann der Gesamtwert zeilenweise
bestimmt werden.

Für die erste Zeile gilt z. B.:

[f]o-2*^,0-2;e tf lo-2 ' '

+ 0,7592 + 0,1294
+ 2,0672 -159,0408
+ 0,4882 - 6,6521

+ 0,6984 + 20,6278
+ 2,2612 + 4,9684
-11,1142 -89,3466

und
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?l;0-2 — \lU0-2' %B,0-2; eS * %Xi,0~2; e — -179,1977.

+ 0,2026
-0,5011
-0,3805
-0,1094
-2,1560
+ 2,7811

Die Summe über alle 4 Zeilen gibt aB1 —519,7733. In gleicher Weise ergibt
sich

BU-^Mia 0 0 0"

0 [fW 8*1,2-4;* 0 0

Nach (35) wird:

XBl
VB1

hl
-519,7733
+ 350,5280

^Xi,0-2;e
^Xi,2-4;e

+1,4827.

+ 350,5280.

Der Multiplikator -=-=- in aB1 und an hat sich dabei gekürzt. Mit (36) erhält
man schließlich die endgültigen Schnittlasten

$B,n ~ ^.w + ^Bl^i,»'
Mit den Zahlen der Tafeln 8 und 10 ergibt sich z.B.:

&B,0-2;e ~

+ 0,7592 + +0,3003
+ 2,0672 + -0,7430

+ 1,0595

+ 1,3242

Die Gesamtschnittlasten sind in Tafel 11 zusammengestellt.

Tafel 11. Gesamtschnittlasten aus der Belastung des statisch unbestimmten Systems bezogen
auf die Hauptträgheitsachsen

§0-2, a §0-2, e §2-4, a §2-4, e §4-5, a §4-5, e §5-7, a §5-7, e

Sl +1,0595 +1,0595 +1,0252 +1,0252 +0,4479 +0,4479 -1,1207 -1,1207
S~2 +1,3242 +1,3242 -1,2674 -1,2672 -0,5260 -0,5260 -0,4732 -0,4732
S3 -0,0960 -0,0760 -1,0024 -1,0024 -0,5347 -0,5347 -0,4732 -0,4732
h +0,5364 +0,5362 -2,6165 -2,6165 -2,6165 -2,6187 0 0

h -0,3909 -0,9358 +3,4527 -0,8882 -0,8882 -3,2077 +2,8541 0

h +0,5293 -6,9902 -5,9046 -0,4166 -0,4166 +1,8517 -2,8541 0

Rechnet man mit den endgültigen Schnittlasten &'B n unter Beachtung des
Reduktionssatzes die Verformung des statisch bestimmten Grundsystems in
Richtung der Wirkung von Xl9 so muß diese zur Kontrolle den Wert Null
ergeben.
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Mit (32) und (33) gilt wieder:

aB1 —

"[f]o-!-*i.O-*e ° 0 °"

0 [fW*k«-4:« 0 0
»Xi,0-2;e

^Xi, 2-4; 6 0.

Unter Einsetzung der Zahlenwerte von Tafel 11 und 10 wird

aB1 - 145,2816 + 145,0256 - 0,2560 ^ 0!

Man ersieht aus der Zahlenrechnung, daß sämtliche Schnittlasten und
Verformungen von statisch bestimmten und unbestimmten Systemen durch
fortlaufende Matrizenmultiplikationen in einfacher Weise erhalten werden können.
Damit ist eine einfache Berechnungsweise für Rechenautomaten gegeben.

Zusammenfassung

Die Schnittbelastungen und Verformungen räumlicher Stabwerke können
in besonders einfacher Weise mittels fortlaufender Matrizenmultiplikation
gefunden werden, wenn man die Belastung (auch die Lagerbelastung) nur in
gedachten Knotenpunkten aufbringt. Von Knotenpunkt zu Knotenpunkt
wird dabei, unter Zugrundelegung jeweils konstanter Querschnittswerte, die
Stabachse der einzelnen Stäbe geradlinig verlaufend angenommen. Der
Zusammenhang zwischen den Schnittbelastungen eines Stabendes, über den Knoten
hinweg, zum nächsten erfolgt mittels Übertragungsmatrizen. Die Verformung
an einer bestimmten Stelle eines statisch bestimmten Systems kann mittels
des Satzes von der virtuellen Arbeit über die Arbeit der Einzelstäbe ermittelt
werden. Jeder Einzelstab kann hierbei als einseitig eingespannter Stab behandelt

werden, was besondere Rechenvorteile bringt. Auf gleiche Weise können
die zur Berechnung statisch unbestimmter Systeme erforderlichen
Verformungsgrößen ermittelt werden. Damit ist auch die Berechnung statisch
unbestimmter räumlicher Stabwerke einfach möglich.

Summary

It is an extremely simple matter to determine, by means of repeated matri-
cial multiplications, the stresses and deflections of three-dimensional structures,

if the loads (and also the stresses at the supports) are applied solely
at the requisite joints. By taking into account the constants associated with
each section, it may be assumed that from one Joint to another the axes of
the various bars are rectilinear. The transfer matrices make it possible to
ensure the connection of the stresses between the end of one bar and that of
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the following bar which is separated from the first by a Joint. The deflection
at a given point in an isostatic system may be determined by application of
the principle of Virtual work to the isolated bar. Each individual bar may be
regarded as a bar with a fixed end on one side only, which is particularly
advantageous for the calculation. A similar procedure can be used to determine

those deflections, the value of which must be known in order to be able
to calculate hyperstatic Systems. The calculation of three-dimensional hyper-
static structures can thus also be carried out in a simple manner.

Resume

A l'aide de multiplications matricielles successives, il est extremement
simple de determiner les efforts et les deformations des ossatures tri-dimen-
sionnelles, si on applique les charges (celles des appuis egalement) seulement
ä des noeuds fictifs. On admet que les axes des diverses barres sont rectilignes
entre les noeuds, dans l'hypothese que leur profil reste constant. Des matrices
de report definissent la relation entre les efforts aux extremites des barres
aboutissant ä un meme noeud. La deformation en un point donne d'un Systeme
isostatique peut etre determinee par application du principe des travaux vir-
tuels ä chacune des barres. Chaque barre peut etre consideree comme une
barre encastree d'un seul cote, ce qui est particulierement avantageux pour le
calcul. On peut proceder de la meme maniere pour determiner les deformations
entrant dans le calcul des systemes hyperstatiques. Le calcul des ossatures
hyperstatiques tri-dimensionnelles peut ainsi, lui aussi, s'executer d'une
facon simple.



Leere Seite
Blank page
Page vide


	Zur Berechnung räumlicher Stabwerke

