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Zur Berechnung riaumlicher Stabwerke
The Calculation of Three-dimensional Structures

Sur le calcul des ossatures tri-dimensionnelles

KONRAD SATTLER
Prof. Dr.-Ing., Dr. techn. h. ¢., Graz

Nachfolgend soll gezeigt werden, wie rein schematisch, unter Verwendung
der Matrizenmethode, die Schnittlasten und Verformungen rdumlicher Stab-
werke bestimmt werden kénnen. Die Entwicklungen werden zuerst am unver-
zweigten Stabwerk durchgefiihrt und anschlieBend werden Systemverzweigun-
gen behandelt. Die Systemachse wird zwischen den gewéhlten Knotenpunkten
geradlinig verlaufend angenommen. Auflerdem wird die Entfernung zwischen
den Knotenpunkten so gewihlt, daB einerseits fiir ein Feld die Querschnitts-
groBlen (F,1,1;) konstant angenommen werden konnen, andererseits eine
stetige Belastung bei Einhaltung der iiblichen Rechengenauigkeit durch
Knotenlasten ersetzt werden kann. Samtliche Belastungen wirken somit nur
in den Knotenpunkten, d.h. die Felder selbst sind unbelastet. Dies hat eine
erhebliche Vereinfachung der Rechnung zur Folge, ohne dafl die Genauigkeit
leidet. Bei einem Einfeldtrager zehnfacher Unterteilung und gleichférmig ver-
teilter Belastung betrégt z. B. bei Einfithrung von Ersatz-Einzellasten in den
Knotenpunkten die maximale Abweichung im Moment fiir Punkte zwischen
den Knotenpunkten nur 0,01 M, .. . Eine auf die Feldweite ¢ stetige Belastung
wird zweckmafBig als Trapezlast angenommen und die Knotenlasten nach der

Trapezregel bestimmt, wobei nach Fig. 1 Ki=§(2 Pi+ Piq) Wird.

i i+

p[ }m

K; Kis
l ~ Fig. 1.
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I. Statisch bestimmtes unverzweigtes System

1. Belastung

Im allgemeinen Falle wird im Knotenpunkt ¢ an einem starr gedachten
Hebelarm ¢ —mn eine beliebig gerichtet Kraft B, wirken (Fig. 2), deren Ein-
heitsvektor e, ist.

i+l +Z
mpn;i,zT

: .
pni,zf w y

I On\a*/"
: —>> X

= m .3
Pni;x pn;i,x

Fig. 3.

Fig. 2.

Reduziert man diese Kraft in den Knotenpunkt ¢, so erhilt man mit
Ly,o = Ln— ;s

s’Bn,’i = ;'Bn = Pnepn (1)
und szn;i = rn’iX s,Bn = Pn (tn,zX epn) = P,n mpn.’i, (2)
wobei gilt:
mpn;i,x i I t (yn_yi) epn;z—(zn_zi) epn;y
Mpn;i = Mopn;i,y( = |Tni;e Tnisy Tnige| = (zn_zz) epn;x_(xn_xi) €pn;z (3)
mpn;i,z epn;x epn;y epn;z (xn_xz) epn;y_(yn_yi)epn;z

Der gesamte Belastungsvektor aus der Belastung 9B, lautet somit fiir den
Punkt ¢ (Fig. 3):
on;z = Pni; x>

€on;y = Pni;y>

Con:z = Puni:

- pn;z nit;z?

P’n‘ppn;i - Pn m (4)
PN;t, T

Mpn;i,us

mpn;i,z‘

Greifen mehrere Lasten im Bereich des Knotenpunktes ¢ an, so betrigt die
gesamte Knotenpunktsbelastung

Z Pnppn;i' (5)

Vollig entsprechend ergeben sich die Knotenpunktsbelastungen aus einer
Stiitzbelastung, die am Hebelarm t; ; =g, — 1, angreift.
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Wirkt am Hebelarm ¢ —1 eine Stiitzkraft U; bzw. ein Stiitzmoment D, mit
dem Einheitsvektor e, bzw. e; auf die Unterstiitzung, so erhdlt man ent-
sprechend (1) bzw. (4) als Wirkung der Lagerreaktionen auf das Stabwerk im
Knotenpunkt ¢ die Belastungsvektoren:

€at; ¥ = Pat; x>

€at; y = Pat;y>

€at;z = Pat; 2>
— APy =—Ay . (6)
w M1, 4,0 = (yl'—yz) €al: 2 '_"(Zl_zi) €al; y>
My, i,y = (Zl_zi) €al; » —(xl_xi) €al; 2>
Mor, 5,2 = (xl—"xi) €al; y _(yl_yi) €al; x>

bZW. _‘Dlpdl;i = —Dl (7)

Mar,i,0 = Ca1;4, x>
Ma. i,y = €ar;4,y»

Mgt 4,2 = Cdr4,;2-

Sind die Absolutwerte 4; bzw. D, nach Abschnitt 2 bestimmt, so ergibt sich
der endgiiltige Gesamtbelastungsvektor im Punkt ¢ zu

Pi=Ppiai= 2B Ppnii— 2 A0 i — 2 Di¥ar - (8)

2. Absolutwerte der Stutzbelastung

Legt man in einem Knotenpunkt den Koordinatenursprung @ (Fig. 4)
und stellt die Gleichgewichtsbedingungen fiir Krifte und Momente, bezogen

]
a_Tp

on_ X,—Xso\\

Fig. 4.
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auf diesen Punkt, auf, so erhialt man:

B, -2 =0, | (9)
;(Enx‘ﬁn)—;(&x%)—;@ﬁo- (10)

Die 6 Komponentengleichungen ergeben sich als Skalarprodukte von (9) und
(10) mit den Einheitsvektoren ¢,, e, und e,.

Z.B. wird:
ZPnepn'ex—ZAleaVex:O? (11)
2B, (xaXep,) e, =2 Ai(nyXey) e, — 2 Diegre, =0 usw. (12)
it 1 f 1
Mit (x;Xey)ee,= 12 ¥y 2 |10 =y,e,,—2¢,, USW. (13)
Cnx eny €nz 0

ergibt sich beim Vorhandensein von 3 Wegfesseln und 3 Drehfesseln das nach-
folgende Gleichungssystem I.

~ Hierbei bedeuten x,, y,, 2, die Koordinaten der Angriffspunkte von ¥
USW., Xpy s Ypns Zpn diejenigen der Angriffspunkte der Lasten B, usw. (In der
Zahlenrechnung bedeutet z,.;, die x-Koordinate des Punktes k, in dem der
Auflagerdruck A4, angreift usw.) '

Tafel 1. Gleichungssystem 1

1 2 3 4 5 6 7 8
A Ao As D, D, Ds Belastungsglied | 0
—€ql,z —€a2,x —€a3,x ZPn,x €pn,x
—€aql,y —€a2,y —€a3,y ZPn €pn,y
—€al,z —€a2,z —€a 3,z ZPn epn,z
Zal€al,y— | 2a2€a2,y— | 2a3¢€a3,y— 2 Pn (Ypn epn,o—
—€d1, —€az2, —€
—Yal€al,z —Ya2 €a2,z ~Ya3 €a3,z z z a3,z —Zpn €pn,y
Lal €al,z— La2 €aq2,z— Xa3 €a3,z— Z P, (Zpn €epn,a—
—€d1 —€ —€,
—Zal €al,x —Za2 €a2,z —Za3 €a3,x ¥ a2,y a3,y —Xpn epn,z)
Yal€al,z— Ya2 a2, z— Ya3 €a3,z— 2 Pn(®pnepn,y—
—€d —€ —e
~—Zal €al,y —La2 €a2,y ~—Za3 €43,y 1.2 2,2 43,2 —Ypn Cpn,z

Sind statt Drehfesseln weitere Wegfesseln vorhanden, so sind in den Spal-
ten 4, 5 und 6 den Spalten 1 bis 3 entsprechende Werte einzufithren; z. B. fiir
A, die Werte —e, ., usw.

Als Losung von (I) ergeben sich die Werte 4; und D, und damit die Reak-
tionsbelastungen —A4;e,; bzw. —D,e ;.

Nach (4) bis (8) sind dann alle Knotenbelastungen festgelegt. Schreibt man
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die Nennerdeterminante von (I) in Matrizenform als « — [a]» und die Belastungs-
glieder in der Form

epl;x ep2;a: epn;:c—T -Pl
€p1;y Pz
e C e P,
b]. P/ =| PL? .73 14
[] SB Yp1€p1;2 " %p1p1;y . . . ( )
Zp1€p1;0 " Tp1€p1;e
 Tp1€p1:.Y ~Yp1%1 % - .- - | |5
4, 4,
A, A,
gilt mit A = g?* bzw. A = j3 , (15)
1 4
D, Ay
D, A4
—[a]- o = —[b]-
Apai a,q;1 [0 ¢
wmd = [a]r[p]-p = el gy qp - [ ] g [l op (16)

Mit (16) konnen durch Matrizenmultiplikation alle Stiitzreaktionen in Ab-
hingigkeit von den gegebenen Lasten ‘B, ermittelt werden.

3. Schnittbelastung

Fiir einen nur in den Knotenpunkten belasteten Stab (n) (Fig. 5) sind die
Schnittlasten an jeder Stelle m durch den Vektor 3, , bzw. durch seine 6 Kom-

+Z

o /

+Y AZ,

n AYn

Fig. 5. Fig. 6.

ponenten (Fig. 6), gegeben. Zwischen der Schnittbelastung 8, , am Anfangs-
punkt @ und 8, , am Endpunkt e besteht die Beziehung:

Bne = [b]'gn,a mit (17)
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S 1 0 0 0 0 0 0] [Susa

' Suy,a 0 1 0 0 0 0 0| |8y

Spsa 0 0 1 0 0 0 0] |84
8na=1ltwa'i Bne=| O +dz, —dy, 1 0 0 0|dt...t (18)

- -4z, 0 +dz, 0 1 0 0| |tya

bz, a +d4y, —d«, 0 0 0 1 0 Jty,

1 0 0 0 0 0 0 1 1

Mit der Knotenpunktsbgla,stung nach (8) ergibt sich fir den Anfangsstab
(Fig. 4a) im Punkt 1 die Schnittbelastung

81,0 = P1- (19)
Slx,a pl,w
Sly,a pl,y
Slz,a pl,z
§l,a = tlx,a (= ml,x
tly,a ml,y
tlz,a ml,z
1 1

Fiir alle anderen Stdbe «(n+1)» kann die Anfangsschnittbelastung aus der
Endschnittbelastung des jeweils vorherigen Stabes «(n)» mittels der Sprung-

matrix [q] — resultierend aus der Knotenpunktsbelastung p, — erhalten
werden.

§n+1 a = [q] * Q’n,e = [q] [b] ° 6n,oz . (20)

(1 0 0 0 0 0 Puy | [Seae

01 0 0 0 0 p,, Sny.e

00 1 0 0 0 P, |Sse
Bpi1,a=|0 0 0 1 0 0 my,, bz, e (21)

00 0 0 1 0 my,| |tuy.

000 0 0 1 my,| |twe.

00 0000 1 1

Durch Anwendung von (20) bzw. (21) konnen somit alle Schnittbelastungen
— bezogen auf das gewéhlte Koordinatensystem x, y, z — mittels fortlaufender
Matrizenmultiplikation bestimmt werden. Will man die Schnittbelastung (3,,)
auf die Haupttrigheitsachsen 1, 2 und 3 (Fig. 7) beziehen (3,), wobei die
Achse 1 jeweils mit der zugehorigen Stabachse zusammenfillt, so hat man
den Vektor 8, mit der Rotationsmatrix [t] zu multiplizieren.

8, = [r]-8,. (22)
Sn,1 [ cos oy, COSety , COSoy , 0 0 0 | Sp.x
Sp,2 COS oty , COSeLy , COSy , 0 0 0 Sn.y
5 — Sp,3| _ | COSay, COSay, COSay, 0 0 0 Sn,z (23)
b1 0 0 0  cosoy, cOSy, COSOy, -
bn.2 0 0 0 cosa,, COSa,, COSwy, bn,y
by, 3 0 0 0  cosas, cosay, cosay, | |i,,
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Die positive Richtung der Achse 1 folgt dem Stabzug von Punkt 1 bis n. Die
positiven Richtungen der Haupttragheitsachsen 2 und 3 bilden mit der Achse 1
wieder ein Rechtssystem. Die Querschnittsebene mit den Achsen 2 und 3 steht
senkrecht zur Achse 1 und schneidet die zy-Ebene in der Geraden (h—%), die
durch den Einheitsvektor e, bestimmt ist.

Mit den gegebenen Werten fiir

e].(l: = COS “l,a: ehx
e; =€, =cosa;,« und mit e, = e, wird aus
6lz = COS al’z O

e;re, =0 und [ef =1=¢f,+6},

e e
Zhe 1y (24)
ehy €1z

und

Vs (25)

® +1 in Richtung des
Sehstrahles

® +Z in Richtung des
Sehstrahles

(+1=+2) Fig. 8.

Fig. 7.

Die positive Richtung der Achse 2 wird bei dem gewidhlten Rechtssystem
durch den Winkel «, den sie mit der Geraden Ak —#% einschliet, festgelegt
(Fig. 8a).

Der Wert « wird immer positiv und zwischen 0 und 90° angenommen und
entsteht durch Drehung der Geraden h—A im Uhrzeigersinn (in fortschreiten-
der Stabzugrichtung betrachtet) nach e,. Sind die Komponenten e, ,, ¢,, und
e;, des Einheitsvektors e, positiv, so wird ¢, positiv und e, negativ und man
erhilt die Komponenten des Einheitsvektors e, aus den Bedingungen

€y ), = COSa, egee; =0 und [e,?=1
zZu: oy = —[ : +62(+c 003a+elzsina)] = COS &y 4,
1 .
€yy =+ Mo (cosa—cep,sina)| = cosay ,, (26)
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Mit 8=90+ « ergeben sich damit auch die Komponenten des Einheitsvektors
es Zu:

1 .
o = — (ocosB+ey,sinB)| = cosa.,

V1 + ¢

[ 1
L V1 +c?

[ sin
l/—l_‘%(em-l-cely)] = COS o3 , .

(+cosfB—c elzsinﬁ)] = COS ag ,, (27)

Fallt e; mit der z2-Achse zusammen, so wird entsprechend Fig. 8b
€yy = COSX; €y, =SInoa; ez, =—slna; ez, = COSA.

Zur schematischen Durchfiihrung der Rechnung werden nachfolgend in der
Tafel 2 fiir die verschiedenen moglichen Vorzeichen der Komponenten des
Einheitsvektors e; die Vorzeichen vor den eckigen Klammern in (26) und (27)
fiir die Komponenten der Einheitsvektoren e, und e; angegeben, wobei in den
Klammern die Werte ¢,,, e;,, ¢;,, ¢, sinf und cos B vorzeichengerecht einzu-
fithren sind. (Mit 8 =90+« ist sinf=cos« und cosf = —sina.)

Tafel 2
o1z + = -+ o+ = =4
€1y + + — - + + - -
e1z + o+ o+ o+ = = = =
e2zx
R S S SR
€3z
e2y
T T
63y
€2z
. + - - o+ o+ = -+
3z

4. Verformungen eines einseitig eingespannten Feldes

Fir einen in a eingespannten Stab (Fig. 9), auf den am frei gedachten
Ende ¢ mit der Vorzeichenfestlegung nach Fig. 6 die Schnittbelastung «—3)»

> P —— |

]
7]
ol @
I;
['d
)
N
25|
-
o
=
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in Richtung der 3 Hauptachsen 1, 2 und 3 wirkt, erhilt man die Verformungen

des Punktes e gegeniiber a mittels der Federmatrix [f] — wenn man die
Schubverformungen nicht beriicksichtigt — zu:
= [f]-(8), (28)
Ve 1 —cj,— 0 0 0 0 0 81 ¢
3 o2
0 !
Ve, O 3E7, S 2ET,| | ™
c? e ,
’06’3 0 0 3E 12 0 - m 0 83,6
b, = = . . . (29)
(Pe, 1 O 0 O 57(; O 0 t{, e
c? c
0 o . 14
Pzl | ° sEI, °  EBIL fa.e
c? c ,
Pe.3 _0 3BT, 0 0 0 BT, | ta,e

J, bzw. J; sind Tragheitsmomente um die Achse 2 bzw. 3, J; ist der Drillungs-
widerstand.

Treten fiir eine gegebene Belastung B die Schnittlasten 8% ,,., in Richtung
der Hauptachsen auf, so gilt fiir das Feld n mit c,, F,, J, ,,, J3 ., g

2,n? Y3,n>»

bB,n;e = —[Tn]'gh,’n;e‘ (30)

5. Verformung des Gesamisystems

Die Verformung an einer bestimmten Stelle des Systems infolge einer
gegebenen Belastung B wird zweckmiBig mit dem Satz von der virtuellen
Arbeit ermittelt. Wird z. B. die Verschiebung v}%.,_, des Punktes q in Richtung
u—u (Fig. 4a) gesucht, so wird als einzige virtuelle Belastung %¥,=1 in Rich-
tung « —u aufgebracht. Nach Abschnitt 2, Gl. (9) bis (16), ergeben sich die
zugehorigen Auflagerdriicke p _; und nach Abschnitt 3, GL (17) bis (27),
die Schnittbelastung 8, _;.,, .-

Aus v4,="4, wird v} ,.,="4;. (31)

Die innere Arbeit an einem Tragerstiick ¢, ¢+ 1 aus den Verformungen der
Belastung B und den Schnittlasten aus dem Zustand %,=1 kann besonders
einfach berechnet werden. Sie ist gleich der Arbeit, die die Endschnittlasten
an den entsprechenden Endverformungen leisten. Fig. 10 zeigt z. B. ein ebenes
Trigerstiick ¢, ¢ + 1, das nach der Verformung des Systems die Lage ¢', (+ +1)"’
einnimmt. Die Endverformungslage ¢’, (i+1)” kann man sich entstanden
denken als Verschiebung des starren Trigerstiickes 7, (2 + 1) in die Lage 2’, (¢ + 1)’
und aus den zusédtzlichen Verformungen des bei i’ starr eingespannten elasti-
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schen Trigerstiickes. Da die Schnittlasten im Punkt ¢ mit denen im Punkt
t+1 ein Gleichgewichtssystem bilden, wird bei der Verschiebung in die Lage
¢/, (¢+1)" keine Arbeit geleistet. Die gesamte innere Arbeit entspricht somit

) —l
[
__l

r Mit4
N —-—’ﬁ}'w.”

v
|+1

q(lf-;) A‘P

dcx

iyit1

Fig. 10.

einzig und allein der Arbeit der Schnittlasten im Punkt ¢+1 an den End-
verformungen in diesem Punkte des bei ¢’ starr eingespannten elastischen
Tragerstiickes.

PA; =M Ao i+ Ny deg ,— Qe .

Fiir ein Tréagerstiick des rdumlichen Systems ergibt sich die innere Arbeit
somit aus dem Produkt der Verformungen nach (30)

V5. ne=—[fn]85 s und der Schnittbelastung 3%

=Ln,e

Da nach Fig. 6 die Schnittlasten +8p _,;,, , am Trigerende e entgegengesetzt
den positiven Richtungen der Verformungen wirken, wird die geleistete Arbeit
am Gesamtsystem

w=[{ln- {Q’E?; e}n y {§}q=1; o (32)
[fl] * élB 1, e O O g3°q=1; 1,e
0 [fol- 539_; 2,¢ 0 . 5}(,?1; 2,e| _ [f]g - {§}>q=1; Ja. (33)

0 0 [fn] * é;39; n,e, g}>q=1; n,e

Bei der Ermittlung von gegenseitigen Verschiebungen, Drehungen, gegensei-
tigen Drehungen usw. werden sinngemifl Doppelkrifte B, ,=1, Momente
M, =1, Doppelmomente M,=1 usw. angenommen.

II. Statisch unbestimmtes unverzweigtes System

- 1. Verformungsgrépen an den Wirkungsstellen der statisch unbestimmen Groflen X,

Nach der Schnittbelastungsmethode wird ein statisch unbestimmtes in ein
statisch bestimmtes System verwandelt, indem entweder an den Wirkungs-
stellen von Stiitzbelastungen oder an denen von Schnittbelastungen freie Be-
wegungsmoglichkeiten in Wirkungsrichtung der betreffenden Belastung ge-
schaffen werden. Z.B. wird das 2-fach statisch unbestimmte System der
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Fig. 4a mittels Durchschneiden der Stiitzstédbe 0 und p in das statisch bestimmte
Grundsystem verwandelt, wihrend das zu ¢ symmetrische 6-fach statisch
unbestimmte System der Fig. 4b durch eine v6llige Durchschneidung in ¢ in 2
statisch bestimmte Grundsysteme der Fig. 4a zerfallt. Die Verformungsgréf3en
a;;, am statisch bestimmten Grundsystem in Wirkungsrichtung der Unbekann-
ten X, konnen nach Abschnitt 1,5 als virtuelle Arbeiten bestimmt werden.
Fiir eine Belastung B ist mit (32) und (33):

ap,u = (flz- {53{“=1; e}n .
Weiter gllt Ay = [f]Xu=1 ¢ {63(,4=1: e}n ’ (34’)

Qyy — [f]Xu=1 * {5.,7(‘,=1; e}n .

2. Statisch unbestimmte Grofen X,

Aus der Bedingung, dafl an den Wirkungsstellen der Unbekannten X, in
Wirklichkeit keine gegenseitigen Verformungen der Schnittstellen auftreten
konnen, und unter Beachtung des Superpositionsgesetzes erhdlt man das
bekannte Gleichungssystem II zur Berechnung der Absolutwerte X, .

Gleichungssystem II

Xp10y +Xpstey ... +ag; =0,
Xp1@1s +Xpatgy ... +ags =0,
(35)
Xp1013+Xpotay ... +ap, =0.
3. Endgiiltige Schnittbelastung
Hierfiir gilt allgemein:
g_IB,n = g35‘,7&4")(B1§{,11,_*')(]5’2§é;n'l_ ot (36)

ITI. Verzweigte Systeme

Fiir statisch bestimmte verzweigte Systeme (z.B. Fig. 11a—c) kann die
Stiitzbelastung unter Zugrundelegung eines beliebigen Koordinatenursprun-
ges wieder nach Abschnitt I, 2 bestimmt werden.

Fiir Systeme nach Fig. 11a kann die Schnittbelastung fiir die Teile 4 und
B, von a bzw. b beginnend, nach Abschnitt I,3 berechnet werden, und zwar
jeweils bis zum Teilungspunkt ¢,. Beim Weiterschreiten iiber den Punkt ¢,
hinaus ist nur fiir die Schnittbelastung im beginnenden Teil C statt (20) die
neue Gleichung

an+1,a = [q] * (Ag;t, et Bg;"’ e) (37)
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einzufithren, wobei 48, . und B8, , die Endschnittbelastungen der Teile 4 und
B am Teilungspunkt sind.

Fiir Systeme nach Fig. 11b wird man den Koordinatenursprung zweck-
mafig auf der verzweigten Seite annehmen und die Berechnung in Richtung
a —t, bzw. b—t, durchfiihren.

Fig. 11.

Symm. Achse
R

Xy —Xg ,’

V.E.
/ Fig. 12.

Ist eine mehrfache Verzweigung vorhanden (z.B. Fig. 11¢), so wird man
zur Bestimmung der Stiitzbelastung z. B. den Koordinatenursprung @ wéh-
len. Fiir die Bestimmung der Schnittbelastung der Teile 4, B und C wird man
mit @ in Richtung a—t,, bzw. b—1,, bzw. ¢; —¢t, vorgehen, wihrend man fiir
die Teile D und E in Richtung d —t,, ¢ —t, weiterschreiten wird.

Bei statisch unbestimmten Systemen (z. B. Fig. 12) konnen die Verformungs-



ZUR BERECHNUNG RAUMLICHER STABWERKE 433

groBen a,, entsprechend Abschnitt 1,4 und I,5 berechnet werden. Da die
Richtung des Fortschreitens bei der Ermittlung der a,,-Werte gleichgiiltig ist,
kann das oben Gesagte sinngemil3 unter Verwendung von (32) und (33) ange-
wendet werden: Die Berechnung der Unbekannten X, und Schnittlasten 3%
erfolgt dann entsprechend Abschnitt II.

IV. Zusammenfassung

Fiir ein beliebiges rdumliches System, das statisch bestimmt gelagert ist,
sind die Auflagerdriicke durch zwei vektorielle Gleichungen bestimmt. Schreibt
man letztere in Matrizenform, so sind die Einzelglieder nur von den Einheits-
vektoren der Lasten und Auflagerdriicke und den Koordinaten der System-
punkte und der Belastungsangriffspunkte abhingig und kénnen schematisch
angeschrieben werden. Es sind dies die einzigen Eingabedaten bei einer elek-
tronischen Rechenanlage. Die Systemunterteilung wird so gew#hlt, dafl man
unter Beibehaltung einer Rechengenauigkeit von rund 1%, die Belastung nur
in den Knotenpunkten wirkend annehmen kann. Dies bedingt eine wesentliche
Vereinfachung der Rechnung, da alle Schnittlasten durch Matrizenmultipli-
kation fortlaufend erhalten werden. Die Verformungen an beliebiger Stelle
werden iiber die Federmatrix der Einzelstibe ebenfalls durch Matrizenmulti-
plikation gewonnen.

Bei beliebigen statisch unbestimmten rédumlichen Systemen koénnen die
Verformungsgrolen a, usw. des statisch bestimmten Grundsystems auf
gleiche Weise ermittelt werden, damit die Unbekannten X, und die endgiilti-
gen Schnittlasten.

Mit obigem Verfahren kann mit einem einmal aufgestellten grundsétzlichen
Programm jedes rdumliche Stabwerk, fiir das die Schnittlastenmethode zweck-
mifig ist, berechnet werden. An einem einfachen Beispiel soll die Durchfiih-
rung der Berechnung nachfolgend gezeigt werden.

An dieser Stelle sei meinem Assistenten, Herrn Dipl.-Ing. H. Passer, fir
die Mitarbeit und Durchfithrung der Zahlenrechnung bestens gedankt. Beson-
ders danken mochte ich aber Herrn Dr.-Ing. H. K. Bandel, New-York, da ich
durch von ihm nicht versffentlichte Untersuchungen zu dieser Arbeit angeregt
wurde.

V. Zahlenbeispiel

a) Statisch bestimmies System

Das System und die Wirkungsrichtungen der gegebenen Belastung (‘B;,
Ba, Be) sowie die Stiitzstibe (A, bis W) sind in Fig. 13 im Aufri und Grund-
rif} dargestellt (siehe auch Fig. 14).
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. As
Q. £ 5/’
A5 / Pe
J 5,5 l 2,5
! 05
P4 g ’ et
ol \1)3 b 1,5
o--q —X —§-
oy 60% 43 1,0
5 2 2 _;::13}5 4
| | | Fig. 13.
1 T "
Koordinaten der Systempunkte
Tafel 3
Pkt. 0 1 2 3 4 5 6 7
x 0 0 +5,0 +5,0 +7,5 +10,0 +10,5 +4,5
Yy 0 0 -1,0 -0,5 +1,5 + 4,0 + 4,0 +4,0
2 0 -0,5 -2,5 -2,0 0 + 2,5 + 2,5 +5,0

Einheitsvektoren der Stiitzstabrichtungen vom System weggerichtet

Tafel 4
€a,1 €q,2 €q,3 €q,4 €a,5 €a,6
e 0 0 1 +L 0 -i—l
€a,y 0 -1 0 +—1— 0 0
3
1 1
€a, -1 0 0 - -1 -
“* V3 2
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Einheitsvektoren der Krifte in Wirkungsrichtung

Tafel 5
€p,3 €p,4 €p,6
ep,z +0,48 0 0
ep,y -0,83 0 0
ep,z -0,28 -1,0 -1,0

Belastungsvektoren m fiir Einheitsbelastung nach (3) und (6)

z.B. m

da die Stiitzstdbe in den Systempunkten angreifen.

p3;2,0 = (Ys—Ya)eps;;— (23— 2s) €p35;y = + 0,275,

Maa;5 = My, = Mge;7 = 0,

435

Tafel 6
mps3;2 Mpa;a mpe;5 Ma1;0 Ma2;0 Ma3;0
My +0,275 0 0 0 -0,5 0
My +0,240 0 +0,50 0 0 +0,5
My -0,240 0 0 0 0 0
Matriz [a]

Es sind die negativen Werte des Gleichungssystems I einzufithren, z. B.

€

a1;z = — 1,0 und mit den Koordinaten des Angriffspunktes 1 von %;:

243:1€a3:0 —%a3:13:2 = — 0,5 (—1,0)—0,0 = +0,5 usw. (s. Tafel 4 u. 3).

0 0 —1,0 40,578

0 —10 0 +0,578
=10 0o o -—o0578
lal=1 o _os5 o —3757
0 0 +0,5 +17,225

| 0 0 0 +3468

0
0
~1,0
—4,0
+4,5
0

+0,707 |
0
—0,707
— 2,828
+6,716
— 2,828

Mit den Unterdeterminanten, bei denen jeweils bereits die Vorzeichen (— 1)i+k

beriicksichtigt sind,
Ay Ay, - ;]
Apy Ay,

erhilt man in transponierter Anordnung

Ay Ay ..
[Ggaj]l = | A1p Agp - ..
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[+ 2,452 —13,689 —87,442 +27,377 + 4,904 + 6,742
+ 3,269 —91,120 0 + 7,356 + 6,538 + 8,989
—179.269 — 9,195 0 +18,389 116,346 -+ 0,612
[9aas] = | | 5656 — 6363 0 +12,726 +11,312 + 15,552
—10,216 +22,884 0 —45766 —21,250 — 7,354
|+ 6,936 — 7,803 0  +15606 +13,872 —11,849 |
Weiter wird

detl[al =a = +(—1)(+A3) +(+0,578) (+A14) +(+0,707) (+ Ayg) =
(— 1) (—179,269)+0,578-5,656 4+ 0,707- 6,936 = + 87,442,

Matriz [b]

Es gilt (14),

z.B. e,3.,=—0,28,
Yp3€p3s:z—2p3Cpasy = (—0,5)(—0,28)—(—2,0)(—0,83) = —1,52

(s. Tafel 3 und 5).

[ +0,48 0 0
—0,83 0 0
-028 —-1,0 — 1,0
[b] = -1,62 —-15 — 4,0
+0,44 +75 +10,5
| —3,91 0 0 |

Maitrix [c]

Diese wird entsprechend (16) nach folgendem Schema (Zeile mal Spalte)
berechnet:

(6]
o 6x3
[aadj] [C]
6XxX6 | 6x3

z.B. ¢ = (—87,442)(—1,0)+27,377(—1,5) +4,904-7,5 = + 83,157.

[ — 28,794 +83,157 + 29,426 ]
+33,747 +38401 +39,225
| —53,569 495012 +98,077
[el=1 _67178 +65751 +67972
4+ 64,875 —90,726 —40,061
| +38,518 +80,631 83,232 |
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Auflagerdricke
Fiir den Fall P,= P,= F;=1,0 erhilt man nach (16) mit
o= 91,
a ?

A, +0,958
A, +1,268

P=1 ’
A, 1 > +1,595

= _ - . P = - ’
Ap Aﬁ g7.44z L] I i +0,759
A, 6 —0,753
A, +2,313

Auf das System wirken die Reaktionskrifte 4; in Richtung «—e, ;».

Rotationsmatrizen [t]

Die Lagen der Haupttrigheitsachsen sind aus Fig. 14 ersichtlich. Stab
P—-2:

€1, = COSay 4, 40,8804
€, =€, =Cosa , =1 —0,1761
€1, = COSay , —0,4402
Nach (24) wird ¢ = ?ﬂ = —0,200.
1lx

Mit «=30° (Fig. 8a) ergibt sich nach (26) und Tafel 2 mit cosa«=0,866,
sin o = 0,500

Stab 0-2 Stab 2-5 Stab 5-7

QUERSCHNITTE
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(—0,2-0,866 —0,4402- 0,5)] = +0,3857,

" 1
o, = — | ———
2z [Vl +0,04 ‘
ea, = +[+0,8060] = +0,8060,
€5, = +[0,4489] = +0,4489,

und mit
B=90+«, sinf =cosa, cosf = —sine,
es, = +0,2758, ez, = —0,5651, ez, =+0,7775.
Stab 2—5:
+0,5773
=14 +0,5773 }, «=0, c=1, sina=0, cosa=1.
+0,5773 |
Stab 5—7: .
—0,9104
T = 0 , a=45° ¢=0, sina=cosa=0,7071.
| +0,4138

+0,8804 —0,1761 —0,4402
40,3857 +0,8060 +0,4489
| +0,2758 —0,5651 40,7775
[toe = +0,8804 —0,1761 —0,4402 |’
+0,3857 +0,8060 +0,4489
40,2758 —0,5651 +0,7775

[ +0,5773 +0,5773 40,5773

—0,7071 +0,7071 0
—0,4082 —0,4082 +0,8164
[t]-s = +0,56773 40,5773 40,5773 |’
—0,7071 +0,7071 0
i —0,4082 —0,4082 +0,8164
[ —0,9104 0 +0,4138 ]

+0,2926 —0,7071 40,6437
| 40,2926 40,7071 40,6437
()57 = —0,9104 0 +0,4138 |°
4+0,2926 —0,7071 +0,6437
+0,2926  +0,7071  +0,6437 |

Schnittbelastung

3
"Mit 8g_54=—2 A3Pg0 ergibt sich aus Tafel 4 und 6 und Multiplikation
1
mit den Werten 4,, 4, und 4,
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+1,5950
+1,2680
+0,9580
8g_2.q =1 +0,6340 ;.
—0,7975
0
1,0
Nach (17) und (18) wird:
1 0 0 0 0 0 O] +1,5950
0 1 0 0 0 0 0 +1,2680
0 0 1 0 0 0 O +0,9580
8y 9,0 = 0 —25 +1,01 0 0 0.8 ,,=1 —1,5780
+25 0 4500 1 0 0 + 17,9800
-1,0 —-50 0 0 0 1 0 — 17,9350
0 0 0 0 0 0 1] 1
Nach (20) und (21) erhilt man mit ¢, 3 und m,; , (Tafel 5,6 und 7)
1 0 0 0 0 0 +0,480] ( +1,5950
01 0 00 0 —0830]| |+1,2680
0 01 00 0 —0,280| |+0,9580
8y 40=|0 0 0 1 0 0 +0,275|.0 —1,5780
0 0 0 0 1 0 +0,240| | 47,9800
00 00 0 1 —0240]| |—17,9350
(000000 1 | 1

In gleicher Weise fortschreitend ergeben sich sdmtliche Schnittlasten in allen
Systempunkten nach Tafel 7.

Tafel 7. Schnittlasten aus dupferer Belastung

80—2,a B0—2,¢ 82—4,a 824, ¢ 845, 0 84—5,¢ 85—7,a 85—7,¢
sy | +1,6950 | +1,5950 | +2,0750 | +2,0750 | +2,0750 | +2,0750 | +1,6363 | +1,6363
sy | +1,2680 | +1,2680 | +0,4380 | +0,4380 | +0,4380 | +0,4380 | —0,0007 | —0,0007~0
s, | +0,9580 | +0,9580 | +0,6780 | +0,6780 | —0,3220 | —0,3220 | —0,8833 | —0,8833
t, | +0,6340 | —1,5780 | -1,3030 | —-1,9030 | —1,9030 | —0,0030 | —0,0030 | —0,0030~0
ty | —0,7975 | +7,9800 | +8,2200 | +4,7275 | +4,7275 | —1,2650 | —0,7650 | +0,0024~0
t; 0,0 -7,9350 | -8,1750 | —4,0825 | —4,0825 | +0,0100 | +0,0100 | +0,0100~0
1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

Bei der Berechnung von 3;_, , ist nach (8) zu beriicksichtigen

Ps = PgP,65—AsPass5-
Zur Kontrolle berechnet man 3; ,, auch direkt aus den Auflagerdriicken
A, und As.
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2,313-(—0,707) = — 1,636
0
2,313-(0,707) - 0,753 = +0,8830
—85- 7,6 = 0 >
0
0
1

Mit 3, sind nach (22) und (23) auch die Schnittlasten 8, =[r], -8, bekannt.
Sie sind in Tafel 8 eingetragen.

Tafel 8. Schnittlasten aus dupPerer Belastung, bezogen auf die Haupltragheitsachsen

7 ’ 7 Y4 ’ v ’ 14
80-2,a 80-2,¢ 82-4,a 82-4,¢ $4-5,a 84-5,¢ 85-7,a 85-7,¢

81 +0,7592 | +0,7592 | +1,8422 | +1,8422 | +1,2649 | +1,2649 | —1,8548 | —1,8548
S2 +2,0672 | +2,0672 | -1,1575 | -1,1575 | -1,1575 | —1,1575 | —0,0897 | —0,0897
83 +0,4682 | +0,4882 | —0,4723 | -0,4723 | —1,2887 | —1,2887 | —0,0897 | —0,0897
h +0,6986 | +0,6984 | —0,7262 | —0,7262 | -0,7262 | —0,7303 0 0
12 -0,3983 | +2,2612 | +6,7337 | +4,6884 | +4,6884 | —0,8945 | +0,5409 0
t3 +0,6255 |-11,1142.| —9,4976 | —4,4859 | —4,4859 | +0,5164 | —0,5409 0

Fir die Maschinenrechnung sind nur die Systemkoordinaten und die Rich-
tungen der Auflagerdriicke und Belastungen sowie die GroBen der letzteren
anzugeben und alle Schnittlasten und Lagerdriicke werden ausgedruckt.

b) Statisch unbestimmtes System

Das im Abschnitt a) behandelte System wird zusatzlich im Punkt 4 durch
einen starren Stab in Richtung von X, , gestiitzt (Fig. 13, 14).

Es wird X, ,=1 als einzige Belastung am statisch bestimmten Grund-
system aufgebracht. Es ist

[ —0,7071]
0
—0,7071
’ +0,7071
€x, , = 0 und nach (14) [bx,]= +1.0607
7071 ’
+0,707 —5,3033
+1,0607 |
Mit [a,4,] nach a) wird
" 53,3814
[blx, — 19,6473
(el — 6x1 1 1 _10,4823
=N T | —33,9958
[aadj]
66 | [€lx + 63,8637
| — 74,4868 |
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und man erhilt die zugehérigen Auflagerdriicke

A, —0,6101
A4, —0,2246
9I)fl - A4 = 87,44:2 ¢ [C]Xl * (‘X1= 1) == _0,3886 *
A, +0,7300
Ag —0,8514

Entsprechend Abschnitt a) werden die Schnittlasten berechnet (Tafel 9).

Tafel 9. Schnittlasten infolge X1=1

30-2,a 802, ¢ 82-4,a B2-4,¢ 84-5,a 84-5,¢ 85-7,a 85-7,¢ Kontr.

8z | -0,1198 | -0,1198 | —0,1198 | —0,1198 | —0,8269 | —0,8269 | —0,6023 | —0,6023 | —0,6019

sy | —0,2246 | —0,2246 | —-0,2246 | —0,2246 | —0,2246 | —0,2246 0 0 0
s; |-0,6101 | -0,6101 | -0,6101 | —0,6101 | +0,0970 | +0,0970 | —0,1276 | —0,1276 | —0,1281
tz | —0,1123 | -0,1609 | —0,1609 | +0,8029 | +0,8029 | —-0,0010 | ~ O 0 0
ty | +0,0599 | —3,2901 | -3,2901 | —4,5159 | —4,5159 | -2,2062 | —2,2062 | +0,0013 0
t 0 +1,2428 | +1,2428 | +1,5048 | +1,5048 | -0,0009 | ~ 0O 0 0
1 1 1 1 1 1 1 1 1 1

Mit 3, werden nach (22) und (23) die Schnittlasten 38), =[1], -3, berechnet
(Tafel 10).

Tafel 10. Schnittlasten infolge X1 =1 bezogen auf die Haupttrigheitsachsen

’ ’ ’ 7 ’ 7 7 ’
50—2,11 30—2,e 52—4,11 52—4,43 —34—-5,(1 §4—5,e §5—7,w 35-7,e

81 +0,2026 | +0,2026 | —0,5510 | -0,5510 | —0,5510 | —0,5510 | +0,4950 | +0,4950
S2 -0,5011 | —0,5011 | -0,0741 | —0,0740 | +0,4259 | +0,4259 | —0,2586 | —0,2586
S3 -0,3805 | —0,3805 | —0,3575 | —0,3575 | +0,5084 | +0,5084 | —0,2586 | —0,2586

t -0,1094 | —0,1094 | —1,2748 | —1,2748 | —-1,2748 | —1,2736 0 0
to +0,0050 | -2,1560 | —2,2127 | -3,7609 | —3,7609 | —1,5600 | +1,5600 0
t3 —0,0648 | +2,7811 | +2,4233 | +2,7442 | +2,7442 | +0,9006 | —1,5600 0

Zur Berechnung der Verformungsgrolen sind die Querschnittswerte erfor-
derlich. Es wird fiir den gesamten Stabzug ein konstanter Querschnitt nach

Fig. 15 gewdhlt. Damit ergeben sich mit J,=65016 cm* die Verhaltniswerte:
I

=¢ = 0,03 m?2,

1, 1 1
7 ,00, A 1,0 und 3,00

I, Iy
Mit den Léngen ¢, »=5,68 m, ¢, y=c4 5=4,33 m, ¢;_,=6,04 m und g=2,6
erhilt man nach (29) — wenn man den Multiplikator E’lT heraushebt — die

nachfolgenden Federungsmatrizen:
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—_—

[ 4+0,1704 0 0 0 0 0
0 +183,2504 0 0 0 + 48,3936
B 0 0 + 61,0829 0 —16,1312 0
[Flo-2= 0 0 0 + 29,5360 0 0
0 0 —16,1312 0 + 5,6800 0
0 + 48,3936 0 0 0 +17,0400 |
[ +0,1299 0 0 0 0 0 |
0 + 81,1827 0 0 0 + 28,1234
[Flos= 0 0 + 27,0606 0 —9,3745 0
[Flas = 0 0 0 + 22,5159 0 0
0 0 — 9,3745 0 +4,3300 0
0 +28,1234 0 0 0 +12,9900 |
[ +0,1812 0 0 0 0 0 |
0 +220,3489 0 0 0 + 54,7224
0 0 +173,4489 0 — 18,2408 0
[{ls—2= 0 0 0 + 31,4080 0 0
0 0  —18,2408 0 + 6,0400 0
0 + 54,7224 0 0 0 +18,1200 |
e
Fig. 15.

Zur Ermittlung der statisch unbestimmten Grofle sind nach (32) und (33)
die Verformungsspriinge ag, und a,; zu berechnen.

[f]0—2 * Q’SB, 0—2;¢ 0 0 0 é,Xl,0—2; e

ap, = 0 [ﬂ2—4 * ‘333‘, 2—4;e 0 0 g:X1, 2—4;e .
0 0 [ﬂ4~5 * 633, 4—5;e 0 gX1,4—5; e
0 0 . 0 [f]5—7 * 523, 5—7se ?’:3(1,5—7; e

Da es sich um eine Diagonalmatrix handelt, kann der Gesamtwert zeilenweise
bestimmt werden.
Fiir die erste Zeile gilt z. B.:

+ 0,7592 + 0,1294

+ 2,0672 —159,0408

) B + 0,4882| | — 16,6521
[Tlo-2°8B,0-2;¢ = [Tlo-2- + 0,6984( )| + 20,6278 und

+ 2,2612 + 4,9684

—11,1142 — 89,3466
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+0,2026
—0,5011

, , .| | —o0,3805
’aB1;0—2 = {[f]0—2'53,0—2;8}'62{1,0—2;6 = . ¢ —0.1094 =- 179’1977'

—2.1560
12,7811

Die Summe iiber alle 4 Zeilen gibt agz, = —519,7733. In gleicher Weise ergibt
sich

[f]O—Z ° 6,2I1,0—2; e 0 0 0 g,2I1,0—~2; e
“11 — 0 [ﬂ2—4' 9X1,2——4;e 0 0 R gX1,2—4;e = + 350,5280.
Nach (35) wird:
. —519,7733
= —-———_-——— = 1 .
Xm=—7" +350,5280 — T L4827

Der Multiplikator E_'II: in ap, und a,, hat sich dabei gekiirzt. Mit (36) erhilt
man schliefllich die endgiiltigen Schnittlasten

88.m = 8Bt XpB18%,a-
Mit den Zahlen der Tafeln 8 und 10 ergibt sich z.B.:

+0,7592 + 40,3003 +1,0595
+2,0672 + —0,7430 + 1,3242

Y4
8B,0-2;¢ = . ’ =

Die Gesamtschnittlasten sind in Tafel 11 zusammengestellt.

Tafel 11. Gesamtschnittlasten aus der Belastung des statisch unbestimmten Systems bezogen
auf die Hawpttrdagheitsachsen

1 4 —r = w4 — = b—¢ 4 =7
80-2,a 80-2,¢ 82-4,a 82-4,¢ 84-5,a 84-5,¢ 85-7,a 85-7,¢

S1 +1,0595 | +1,0595 | +1,0252 | +1,0252 | +0,4479 | +0,4479 | -1,1207 | —-1,1207
Sz +1,3242 | +1,3242 | -1,2674 | —1,2672 | —0,5260 | —0,56260 | —0,4732 | —0,4732
83 -0,0960 | —0,0760 | —1,0024 | —-1,0024 | -0,5347 | —0,5347 | —0,4732 | —0,4732

[ +0,5364 | +0,5362 | -2,6165 | —2,6165 | —2,6165 | —2,6187 0 0
2 -0,3909 | —0,9358 | +3,4527 | —0,8882 | —0,8882 | —3,2077 | +2,8541 0
ts +0,5293 | —6,9902 | —5,9046 | —0,4166 | ~0,4166 | +1,8517 | —2,8541 0

Rechnet man mit den endgiiltigen Schnittlasten 33 , unter Beachtung des
Reduktionssatzes die Verformung des statisch bestimmten Grundsystems in
Richtung der Wirkung von X,, so muf} diese zur Kontrolle den Wert Null
ergeben.
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Mit (32) und (33) gilt wieder:

[ﬂo—z ¢ 335’, 0—2;e 0 00 53{1’0_2; e
0 [f]2—4 * gi?, 2—4: e 00 . g:’(1, 2—4:e

[
o

ap1 =

Unter Einsetzung der Zahlenwerte von Tafel 11 und 10 wird

Gy, = —145,2816 + 145,0256 = — 0,2560 ~ 0!

Man ersieht aus der Zahlenrechnung, daf sdmtliche Schnittlasten und Ver-
formungen von statisch bestimmten und unbestimmten Systemen durch fort-
laufende Matrizenmultiplikationen in einfacher Weise erhalten werden kénnen.
Damit ist eine einfache Berechnungsweise fiir Rechenautomaten gegeben.

Zusammenfassung

Die Schnittbelastungen und Verformungen rdumlicher Stabwerke konnen
in besonders einfacher Weise mittels fortlaufender Matrizenmultiplikation
gefunden werden, wenn man die Belastung (auch die Lagerbelastung) nur in
gedachten Knotenpunkten aufbringt. Von Knotenpunkt zu Knotenpunkt
wird dabei, unter Zugrundelegung jeweils konstanter Querschnittswerte, die
Stabachse der einzelnen Stébe geradlinig verlaufend angenommen. Der Zusam-
menhang zwischen den Schnittbelastungen eines Stabendes, iiber den Knoten
hinweg, zum nichsten erfolgt mittels Ubertragungsmatrizen. Die Verformung
an einer bestimmten Stelle eines statisch bestimmten Systems kann mittels
des Satzes von der virtuellen Arbeit iiber die Arbeit der Einzelstibe ermittelt
werden. Jeder Einzelstab kann hierbei als einseitig eingespannter Stab behan-
delt werden, was besondere Rechenvorteile bringt. Auf gleiche Weise kénnen
die zur Berechnung statisch unbestimmter Systeme erforderlichen Verfor-
mungsgroBen ermittelt werden. Damit ist auch die Berechnung statisch unbe-
stimmter raumlicher Stabwerke einfach maoglich.

Summary

It is an extremely simple matter to determine, by means of repeated matri-
cial multiplications, the stresses and deflections of three-dimensional struc-
tures, if the loads (and also the stresses at the supports) are applied solely
at the requisite joints. By taking into account the constants associated with
each section, it may be assumed that from one joint to another the axes of
the various bars are rectilinear. The transfer matrices make it possible to
ensure the connection of the stresses between the end of one bar and that of
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the following bar which is separated from the first by a joint. The deflection
at a given point in an isostatic system may be determined by application of
the principle of virtual work to the isolated bar. Each individual bar may be
regarded as a bar with a fixed end on one side only, which is particularly
advantageous for the calculation. A similar procedure can be used to deter-
mine those deflections, the value of which must be known in order to be able
to calculate hyperstatic systems. The calculation of three-dimensional hyper-
static structures can thus also be carried out in a simple manner.

Résumé

A Taide de multiplications matricielles successives, il est extrémement
simple de déterminer les efforts et les déformations des ossatures tri-dimen-
sionnelles, si on applique les charges (celles des appuis également) seulement
a des noeuds fictifs. On admet que les axes des diverses barres sont rectilignes
entre les noeuds, dans 1’hypothése que leur profil reste constant. Des matrices
de report définissent la relation entre les efforts aux extrémités des barres
aboutissant & un méme noeud. La déformation en un point donné d’un systéme
isostatique peut étre déterminée par application du principe des travaux vir-
tuels & chacune des barres. Chaque barre peut étre considérée comme une
barre encastrée d’un seul coté, ce qui est particulierement avantageux pour le
calcul. On peut procéder de la méme maniére pour déterminer les déformations
entrant dans le calcul des systemes hyperstatiques. Le calcul des ossatures
hyperstatiques tri-dimensionnelles peut ainsi, lui aussi, s’exécuter d’une
facon simple.
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