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Matrix Formulation of the Force Method for a Structure Curved in Space

Expression matricielle de la méthode des forces appliquée a wune structure tri-
dimensionnelle courbe

Matrizielle Formulierung der Kriftemethode fiir ein rdumlich ‘
gekriommtes Tragwerk

JAMES MICHALOS

Professor of Civil Engineering and Chairman of the Department, New York University,
New York

Introduction

The matrix formulation presented herein is designed for highspeed analysis,
with a digital computer, of space structures. It is tremendously advantageous
when a large number of load combinations must be considered. The method
is applicable to various types of structures, but the present paper deals parti-
cularly with a single branch curved in space and to a lesser extent with systems
of such interconnected branches.

The branches considered in this paper consist of a single flexural structure
curved in any arbitrary fashion in space. This structure may be of variable
cross section and may be subjected to loads in any direction in space. The
effect of externally applied moments about any axis can also be included.

Besides moments and forces along the branch, the procedure yields fixed-
end moments and stiffness coefficients of individual branches for use in the
analysis, by a displacement method, of a structural system conisting of inter-
connected branches. The analysis of such systems has been illustrated in
previous papers [1, 2].

Results for the interconnected system of branches can be obtained by
superimposing, on results for single branches, corrections due to rotations and
displacements at the connections joining the branches. In the previous papers
[1,2], however, the analysis of individual branches and the calculation of
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stiffness coefficients was performed by a numerical procedure [3,4] that is
not particularly suitable for computer operations.

Moment distribution methods have also been used for multibranch net-
works [2, 4, 5, 6].

Sign Convention

Fig. 1 shows a structure continuous between two supports. It may be of
variable cross section and have any shape in space, and it may be subjected
to any system of applied loading. One end is designated a front face and the
other end a back face. Positive moments M about each of three orthogonal
directions, and positive forces V along each of the same directions are shown
at the front face and at the back face. Use the right-hand-screw rule for sense
of moments.
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Fig. 1.

A right-hand system of axes is used in this paper. In a previous method
of analysis [3, 4] a left-hand system was used, although this was later changed
by BaroN [7] who put that method of analysis in matrix form.

In an analysis the structure is subdivided into a number of relatively short
segments with front and back faces. The back face of a segment is that first
reached in traversing from the back face of the structure towards its front face.
For all segments, moments and forces are positive on a front face when they are
in the direction of the axes adopted. Moments and forces are positive on a
back face when they are opposite to the direction of the axes.

The identical sign convention is used for rotations and displacements at
the ends of the structure and for angle changes in each segment of the struc-
ture. Thus, positive rotations or angle changes correspond to the sense of
positive moments shown in Fig. 1, and positive displacements correspond to
the direction of positive forces in the same figure.
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Segment Flexibilities

Before proceeding with the analytical method, a matrix formulation of the
flexibilities of a differential segment, ds, is obtained. Such a segment of a
space structure is shown in Fig. 2. Axes 1, 2, and 3 are principal (and orthogonal)
axes of the cross section of the segment. Section @ —a is taken looking forward
along ds. Axis Y’ is perpendicular to axis 1 and parallel to the XY -plane.
Axis X’ is perpendicular to axis 1 and to axis Y’. The angle ¢ is measured
clockwise from axis X',

e\

& o |az

Section a-a
(enlorqeg)

Flg 2.
Let unit vectors along axes 1, 2, and 3 be ¢,, q,, and ¢, respectively. These

unit vectors can be referred to the general XY Z-coordinate system of the
structure through use of the transformation matrix

QIw 92.’15 Q:m
[t] =%y 92y d3y (1)
Tz 92- Q3z_

the elements of which are the z, y, and z components of the three unit vectors.
Using Fig. 2 to substitute expressions for these components, Eq. (1) becomes
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Cdw —dy —(dz) (dx) ]| Fl 0 0
ds {(da+(dy)* dsV(de)+ (dy)?
| dy dx — (dy) (dz) —si ‘
[¢] = ds Y{de) +(dy)® dsV(dx) + (dy)? 0 cosyp —sinys |, (2)
_% 0 V(dx)zd:: (dy)? ] —0 sin COStﬁ—

If de =dy =0 for any segment of the structure, Eq. (2) is not determinate.
For such a case no angle ¢ is defined. Instead, defining an angle « measured
clockwise when looking forward along the segment (counterclockwise when
looking backward, as in Fig. 3),

0 —sine —cosa
[t]=10 cosa —sSino |, (3)
1 0 0
Y
%

-

Fig. 3.

Since axes 1, 2, and 3 in Fig. 2 are principal axes, the segment flexibility
matrix with respect to those axes is

ds
aJ 0 0
ds
- 0 0 . 4
[lys T, (4)
ds
— O O EI3 =

For numerical calculations, ds is replaced by finite segments, 4 s, in all of the

preceding formulations.
Transformation of the matrix of Eq. (4) to the general coordinate system

is made as follows:

[f]a:,y,z = [t] [f]l, 2,3 [t]Ta (5)
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in which [¢#]7 is the transpose of [t]. The transformed matrix will then be in

# form foo foy fus
[f]x,y,z = fya: fyy fyz s (6)
_f 2z / 2y f 2z_|

in which, for example, f,, represents, for a segment, the angle change about
an z-axis fue to unit moment applied about the z-axis, and f,, represents the
angle change about the y-axis due to unit moment about the z-axis. Because
of reciprocal relations, [f], , , is a symmetric matrix.

The use of Eq. (5) for obtaining segment flexibilities has advantages over
previous expressions [3,4] when a digital computer is used. Those expressions
will, however, give identical results because the difference in direction of
measurement of ) compensates for the left-hand coordinate system previously
used.

Matrix Formulation of the Analysis

The column matrix of moments can be obtained as

{M} = {Mo}+[u]{X} (7)
or {M} = [6]{Q} + [u]{X}, (8)
in which, as further defined subsequently, {M,} or its equivalent [b]{Q} repre-
sents the moments consistent with a statically possible assumed solution, and
[u]{X} represents the corrections necessary to restore continuity. As indicated
later, once {X} is known, Eq. (8) can also be used to obtain forces {V}.
Let

k = number of segments into which the structure is divided,
p = total number of load points,
n = degree of statical indeterminateness (six for the fixed end space struc-
ture).
Then

{M} = matrix partitioned into kX 1 submatrices of final moments about =,
y, and z axes,

{M,} = matrix partitioned into k X 1 submatrices of assumed statically possible
moments about z, y, and z axes,

[4] = matrix partitioned into kxn submatrices of moments due to unit
moment or force applied successively at the chosen redundants,

{X} = mx1 matrix of redundant moments and forces,

[b] = matrix partitioned into kX p submatrices of moments in the assumed

statically determinate structure due to unit load applied successively
in the z, y, and z directions at one load point at a time,

{Q} = matrix of loads partitioned into p X1 submatrices of 3xX 1 order (one
load in each of the three orthogonal directions).
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By using p columns in [b] and p rows in {@Q}, a perfectly general solution
results for loading applied in any possible combination.

In Eq. (8) the matrices [b] and [«] can be straightforwardly compiled as
discussed in the next section of the paper. The values of X are obtained from
the simultaneous equations that express the requirements of geometry. In
matrix notation,

{X} = -[F]7{4}, (9)

in which [F]~! represents the inverse of the nXn flexibility matrix of the
structure, and {4} is the n X 1 column vector of the errors in geometry resulting
from the assumed solution. The flexibility matrix can be obtained from

[F] = [w]*[{][w], (10)

in which [#]7 is the transpose of [u], and [f] is a k£ Xk quasi-diagonal matrix
of the flexibilities [f], , , of the individual segments of the structure.
The errors in geometry are obtained as

{4} = [u]" [f1{M o} = [w])" [[1[b]{Q} (11)
and if we introduce [0] = [w]7 [f][b] (12)
the expression becomes {4} = [C1{Q}. (13)
From Egs. (9) and (13),  {X} = —[F]'[C]{Q} (14)

and Eq. (8) can now be written as follows:

{M} = [b{Q} — [u] [FI [C1{Q} (15)
Finally, introducing [B] = [b]—[«][F]([C] (16)
we obtain ' {M} = [B]{Q}. : (17)

With {X} known, values of the forces {V'} acting on each segment can be
obtained from Eq. (8) by using forces due to unit loads for the elements of [b]
and by using forces due to unit forces for the elements of [«]. Similarly, the
non-redundant moments and forces at the end of the structure can be obtained
from Eq. (8) by using the appropriate values of [b] and [«] for the end. See
Eq. (23).

Note that [ B] of Eq. (16) is a matrix of influence values in the actual struc-
ture. Thus [b] is a matrix of influence values for the assumed solution, and the
matrix product [«] [F]1[C] represents the corrections due to statical indeter-
minateness. If the overall form and dimensions of the structure are set, only
the matrix [f] is changed in any successive analyses that may be required to
arrive at an acceptable design. The matrices [b] and [u] are generated only
once. -
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Matrices for the Analysis

The solution requires the compilation of three matrices. These are [u], [6],
and [f].

The [«] matrix for a fixed-end space structure consists of £ X 6 submatrices
or cells, with one row of cells for each segment, as follows:

1 0 0 0 2 -y
0 1 0 -2 0 z
0 0 1 y | - 0
10 b0 0 2 iy
0 110 =2 | 0| w
[u] = 0 0 1 y —x | 0 |5 (18)
10 00z iy
1 -2 0 x
0 1 y 0 |

with z, y, 2 measured from the redundant end. The first row of each submatrix
represents moments about the xz-axis of the segment, the second row represents
moments about the y-axis, and the third row represents moments about the
z-axis. All moments in the first column of submatrices are due to a unit moment
applied about the x-axis at the redundant end, and the moments in the other
five columns are due, respectively, to unit moment about the y-axis, unit
moment about the z-axis, unit force along the z-axis, unit force along the
y-axis, and unit force along the z-axis.

The [f] matrix is a kX k quasi-diagonal matrix with each submatrix along
the leading diagonal consisting of the matrix of Eq. (6) for the corresponding
segment.

The matrix [b] consists of kX p submatrices whose elements are moments
in the assumed statically determinate structure due to unit load applied
successively at all load points. Each submatrix consists of

0 b, b,
byy 0 by |, A (19)
b, b, O

in which, for example, b,, represents the moment about the z-axis of a segment
due to unit load applied along the positive y-axis of another segment. If, in
the analysis, the structure is assumed cantilevered from one end, then for
unit load applied in the positive x, y, and z directions at a segment j, the
moments at a segment ¢ are
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—bmy_ 2;— z]_
bxz yj yz
byz .’,UZ - .’17] )
bzw Y T Yy ]

| oy x;—x,

Note that b,, is not equal to b,,, b,, is not equal to b,,, and b,, is not equal
to b,,.

Stiffness Coefficients and Fixed-end Moments and Forces for Analysis of Inter-
connected Space Structures

The stiffness coefficients for a branch are the moments and forces induced
by successively applying unit rotation and unit displacement with respect to
each axis at each end, in each case preventing all other possible rotations and
displacements at both ends. This, in the general case of a branch 4B fixed at
both ends, results in a 12th order symmetrical matrix which can be partitioned
into four 6th order submatrices as follows [1]:

(945] = [SAASAB] (21)

in which [S,,] consists of the stiffness coefficients at end 4 due to unit dis-
placements and rotations at end A4, and [S_ 5] consists of the stiffness coeffi-
cients at end A due to unit displacements and rotations at end B. The sub-
matrices [Szz] and [Sp,] consist of the corresponding stiffness coefficients
at B.

Submatrix [S, 4] is the inverse of the flexibility matrix obtained by applying
Eq. (10) to end 4. Submatrix [Szp] is obtained by the same equation for end B.
Because matrix [S48] of Eq. (21) is symmetrical, submatrice [S 5] is the
transpose of submatrice [Sg,]. Thus it is necessary to determine only one of
these. For example, with submatrix [S,,] known,

[Spal = [upl [S.44l, (22)
in which [up] is the 6 X 6 matrix of moments and forces at end B due to unit
moments and forces applied at end A.

After the stiffness matrix of each branch is determined, the stiffness matrix
of the entire system of interconnected branches can be compliled by addition
of values for the individual branches meeting at each joint.

With the previously determined column vector {X ,} of fixed-end moments
and fixed-end forces at A, the three fixed-end moments M5 and the three
fixed-end forces V; at B can be obtained by modifying Eq. (8) as follows:

(7] = B @+ sl (. (23)
B
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in which [b;] is partitioned into 6 X p submatrices of moments and forces at
end B in the assumed statically determinate structure due to unit load applied
successively at all load points.

Unbalanced moments and forces at each joint of an interconnected system
are obtained by combining the fixed-end values of all branches framing into
the joint. Analysis of the system by use of the displacement method can then
be made [1, 2].
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Trans-

Summary

A matrix formulation of the force method is presented for the analysis of
a single-branch structure curved in space in any arbitrary manner and sub-
jected to any possible static loading condition. The method, when programmed
for a digital computer, is particularly advantageous when a large number of
loading conditions must be considered.

The procedure is also used to determine the stiffness coefficients and the
fixed-end moments and forces of single branches. This information makes
possible the analysis, by the displacement method, of an interconnected system
of branches curved in space.

Résumé

La méthode des forces est présentée sous forme matricielle en vue de cal-
culer une structure a une barre ayant une courbure quelconque dans 1’espace
et soumise & des cas de charges statiques quelconques. Programmée pour étre
exploitée sur un calculateur numéral, cette méthode acquiert un intérét tout
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particulier lorsqu’il y a lieu de prendre en considération un grand nombre
d’états de charges différents.

On l’applique également pour déterminer les coefficients de rigidité ainsi
que les moments d’encastrement et les efforts dans les barres. Ces résultats
obtenus, il est possible en appliquant la méthode des déplacements, de calculer
des systémes constitués par plusieurs barres solidaires courbes dans 1’espace.

Zusammenfassung

Die Kriaftemethode wird in matrizieller Form dargestellt fiir die Unter-
suchung eines durch einen einzigen rdumlich gekriimmten Stab gebildeten
Tragwerkes, das durch beliebige Lasten beansprucht wird. Wenn diese Methode
fiir einen digitalen Rechner programmiert wird, erweist sie sich als besonders
vorteilhaft, falls eine groe Anzahl von Belastungsfillen betrachtet werden
miissen.

Das Verfahren wird ebenfalls benutzt fiir die Bestimmung des Steifigkeits-
koeffizienten sowie der Einspannmomente und der Krifte in Einzelstédben.
Mit diesen Werten kann die Untersuchung, unter Verwendung der Defor-
mationsmethode, auch fiir ein aus verschiedenen rdumlich gekriimmten Stiben
zusammengesetztes System durchgefiihrt werden.
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