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Toward a Generalized Treatment of Delayed Elasticity in Concrete
Vers un traitement généralisé de 1 élasticité differée dans le béton

Zu einer allgemeinen Behandlung der verzogerten Elastizitdtstheorie vm Beton

DOUGLAS McHENRY

Technical Consultant, Research and Development Division, Portland Cement Association,
Skokie, Illinois, U.S.A.

Introduction

It has become increasingly important, as structural design concepts become
more advanced and more precise in character, that the creep of concrete must
be recognized as an important structural property. The discussion which
follows is directed toward the development of simplified means for introducing
this property into structural design procedures, particularly when the loading
is a function of time. The mathematician will find that the presentation is
lacking in rigor; and the materials research scientist will find that the postu-
lated properties of concrete do not conform to his observations. Nevertheless,
it is hoped that the structural engineer will find some guide-lines which will
be helpful in evaluating certain effects which are too often neglected in design.

Experimental work during recent years by various investigators has ap-
parently confirmed, as a reasonable working basis, a principle for the super-
position of creep effects in concrete which has been stated as follows [1]:

The strains produced in concrete at any time ¢ by a stress increment applied
at time f,(¢>t,) are independent of the effects of any stress applied either
earlier or later than ¢,. The stress increment may be either positive or negative,
but stresses which approach the ultimate strength are excluded.

Among those who have investigated its applicability, mention may be made
of BacksTroM [2], SEED [3], Ross [4], Davigs [5], and PirTz and CARLSON [6].
The experimental work indicates that concrete behaves only in approximate
conformance with the principle, but that acceptable accuracy may be expected
for stress levels less than about one-half the ultimate strength. It is presumed,
of course, that the creep characteristics are known for the concrete used, the
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exposure conditions, and the dimensions of the member. (Transfer of data
from a 15-cm-prism to a full-size member may be highly uncertain when
drying is involved.) The change in elastic and creep properties with increased
hydration (related to age) must be taken into account in any precise calcu-
lation; but for certain approximate or comparative calculations this added
complication may sometimes be neglected. It has also been suggested that
environmental and other factors which influence creep might be introduced
by suitably distorting the time scale, a suggestion which offers significant
possibilities.

In the discussion which follows it will be assumed that the principle as
stated above is acceptable, and it will be shown that in consequence many
problems involving creep of concrete may be solved by the conventional
methods of the theory of elasticity, utilizing a simplifying mathematical device
which permits transferring the time-dependent effects from the material to
the boundary conditions.

In general, simplifying assumptions are necessary in all design problems
which involve creep of concrete. Frequently the effect of a difference between
the environment of the laboratory and that of the service condition is neglected,
either for simplicity or from lack of adequate information. Perhaps the greatest
deviation from reality is in the assumption often adopted that the elastic and
creep properties are stable, that is, unchanging with time. Such simplification
is often necessary in order to bring problems into a range which can be handled
by available methods.

If superposition of creep effects is accepted, then the time-dependent effect
of load may be treated as a delayed elastic response. This in turn suggests that
problems involving the type of creep here postulated may be treated by the
methods of elasticity, provided that the time dependence is suitably introduced.
Studies toward this type of solution for the “elastische Nachwirkung’’ of steel
wires under torsion were undertaken by BoLTzZMAN [7] nearly a century ago.
JEFFREYS [8] and others have noted that the stress-strain relationship for
delayed elasticity might be expressed by substituting a fictitious value of
Young’s modulus for the true value. However, for loadings which vary with
time and location this fictitious value may range from + oo to —o0; and it
may even vary from point to point within the body, a circumstance which
leads immediately to great difficulty in the solution of stress problems. Some
others, e. g. ZIENKIEWICZ [9], have approached the matter along lines similar
to those which will be considered here.

An incomplete treatment of these concepts has been presented in an earlier
paper [1], but it appears desirable at this time to develop a more complete
comparison of the three-dimensional equations of conventional elasticity with
the corresponding equations for delayed elasticity as applied to concrete. To
develop the analogy it will be necessary to include the conventional equations,
even though they are available elsewhere. The classical notation of elasticity
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will be used throughout, rather than the abbreviated tensor notation. A gener-
alized treatment will be presented, but in discussing practical applications use
will be made of simplifying assumptions.

General Considerations

Concrete is ordinarily put to work to perform its life function of carrying
loads when it is a few days to a few weeks old, long before it has developed
stable properties. It is important, therefore, that the general stress-strain
relationship should include two time variables: the age of the concrete and the
elapsed time after loading. For a constant uniaxial stress, o,, the creep defor-
mation in the direction of the load is taken to be.

Jo

Q(T):GO."(K?T—K)=E(T)—E—(ZT)’ (1)

where o, €, £ are stress, total strain, and modulus of elasticity, respectively,
K is the age when loaded, and 7' is the age at which ¢ is considered. The
function f(K,7T —K) is taken as a bounded monotonic function, which is
associated with the material and does not depend on the loading!). Various
forms of this function have been proposed in the literature, but the explicit
function is not essential to this generalized development, and its form may
therefore be left open.

For mathematical convenience the creep function f(K,7 — K) is taken as
the change in strain with respect to the value 1/ (7'), rather than as a change
from the initial value of 1/E. The elastic strain is thus always equal to o (7")/
E (T). In reference [1] this was referred to as the ‘““true creep’’, in contrast to
the “apparent creep’’ that is ordinarily reported in the literature.

According to the foregoing concepts the total strain for a unilateral con-
tinuously varying stress is given by
o(T) T do

+]1(K, T~ K) ~dK (2)

D)=z, a4t

where o (¢)=0. Any finite jumps are to be accounted for by additions to (2)
of terms of type (1). The point during the history of the material at which
K =0 is indefinite and must be determined from physical considerations.

In the general 3-dimensional case, Poisson’s ratio p must be introduced.
Only limited data are available regarding the value of u in creep; so it will be
assumed, partly to simplify the treatment and partly because presently a-
vailable data confirm it as reasonably accurate, that the ratio is the same for

1) It is possible that creep includes a viscous component which increases without
limit ; but evidence indicates that this component (if present at all) must be a minor one.
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creep as for the elastic deformation, and that it is independent of age. Follow-
ing this assumption we express the total strain under continuously varying
triaxial stress by three equations of the form
1 T d

€ = —E[Gx_l'"(oy'*’az)] +t”(K, T_K)Ef[ax_#(ay'l'oz)]dK (33,, b,C)
in which E, ¢, and ¢ are functions of 7. Corresponding expressions for ¢, and
€, may be written by cyclic interchange of the subscripts.

Solving these algebraically insofar as possible for o,, o,, and o, gives three
equations of the form

T
crx-f—Et_fj(K,T—K) gjgdK-— f‘ue +Ae (4a,b, c)
in which
_ B
(L+p) (1—2p)

€ =¢€,1e€,+¢,.

Similarly, for the shear relationship the usual method of analyzing the case
of pure shear (o, =—o0,,0, = 0) is adapted to yield
dr

Yoy =2 5 1T K) 2K (58,b,¢)

in which y and = are shearing strain and stress, respectively, and G is the

é—(l—li—ﬁ’ all taken as functions of age.

Equations for the stress-strain relation for instantaneous stress changes are,
of course, identical to (3), (4), and (5) except that the integrals are replaced by
their corresponding constant stress functions.

Having the superposition principle and the stress-strain relatlonshlp defined,
it is apparent that a solution must exist for the general problem of stress and
displacement in the 3-dimensional isotropic body. Some of the mathematical
difficulties may be circumvented by a treatment which reduces the problem
to one in conventional elasticity, following somewhat the methods developed
for studying temperature stresses [10].

Certain of the fundamental equations of the theory of elasticity are given
below, each equation representing a group of three in which the remaining
two may be obtained by cyclic interchange. The following additional notation
is used:

modulus of elasticity in shear, equal to

u,v,w = displacements in directions of z, y, z, respectively,
X, Y, Z = surface forces per unit of area,
X,Y,Z = body forces per unit of volume,

l,m,n = direction cosines of the outer normal.



TOWARD A GENERALIZED TREATMENT OF DELAYED ELASTICITY IN CONCRETE 273

Stress-strain relationship:

1
€z =E[0'x_#‘(cy+az)]: (Ga’:b>0)
o, =Ae+2Ge,, (7a,b,c)
Toy = O Vay- (8a,b,c)

Equilibrium in terms of stress:

00, 0Ty | 0Ty, _
P oy + Ty +X =0. (9a, b, c)

Boundary conditions in terms of stress:
X=axl+7xym+7mzn. (10a,b,c)
Conditions of compatibility:
%e, 0%, _ Yy
oy:  ox® Ox oy’

Pe, 4 OYye | OVex | OVay
S SR SuY . 12
26y8z Bx( oz T oy + 8z) (12a,b, c)

(11a,b,c)

Equilibrium in terms of displacements:

(/\+G)§—;+G72u+X=O. " (13a,b,0)

Boundary conditions in terms of displacements:

X =Ael+G(2—::l+%m+%gn)+G(%§l+§x£m+g~gn). (14a,b,c)

Egs. (9), (10), (11), and (12) or eqgs. (13) and (14) are independently sufficient
for the solution of most problems in conventional elasticity provided the
boundary conditions are suitably specified. These two systems of equations
are related through the stress-strain relationships (7) and (8).

Corresponding equations may be written out for the solution of problems
involving a material which exibits creep in the manner here postulated. The
derivation is straightforward, following the treatment in conventional elastici-
ty; so it need not be given in detail. The stress-strain relationship has been
given by eqs. (3), (4), and (5) which are analogous to (6), (7), and (8). The
equations of static equilibrium in terms of stress and boundary conditions in
terms of stress evidently remain unchanged, the inertia due to creep being
neglfgible. It is evident, also, that if the pure elastic strains at any time satisfy
the equations of compatibility, then so do the total strains. Insofar as the
principle of superposition is applicable, then, solutions reached by the use
of eqs. (9) through (12) are valid either for the so-called perfectly elastic
materials or for materials which exhibit combined elasticity and creep.
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The equations of equilibrium in terms of displacements, analogous to egs.
(13), are reached by substitution of (4) and (5) into (9), yielding
de 4 aX
A+G)—+GV*u+X+Eff(K,T—T)—-%dK = 0. (15a,b,c)
ox t dK
Similarly, by substitution of egs. (4) and (5) into (10), the boundary conditions
in displacements are given as

/\le+G(a“Z+3—“ me+ o)+ G (e +3l~”n)

oy™ ez " w
i (16a,b,c)
= X+ B (K,T-K) S5 dK.

Eqgs. (15) and (16) are the same as eqs. (13) and (14) of conventional elasti-
city except for the time-dependent terms. These terms enter into the equations
in the same way as do the terms X and X, indicating that the displacements
are the same as those produced in a perfectly elastic material by body forces
X’ and surface forces X', where

dX

X' = X+Ejf (K, T—K)=7=dK, (17a,b, c)
dX
X = X+Ej"f (K, T—K) - dK. (18a,b, ¢)

The above development has not included instantaneous stress changes; but
it is apparent from the generality of the method that the integrals may be
replaced throughout by the corresponding expressions for creep due to constant
load, and that such terms may be added to the terms involving the integrals.

In the case of a body with no previous stress-history, subjected to known
surface forces and body forces which are functions of the age of the material,
the problem of stress and displacement is then solved as follows: at time 7'
the material is replaced by a perfectly elastic material of Young’s modulus
E (T) and Poisson’s Ratio u, and the stress distribution and displacements are
determined by the methods of conventional elasticity, using for the stress
computations the true values of the known forces and for the displacement
computations the fictitious values of the forces as given by eqs. (17) and (18).

When the boundary conditions are given in terms of displacements, or when
strains are specified, the use of a creep function leads to integral equations of
some difficulty. It is expedient for this case to introduce a ‘‘relaxation function’’,
so-called because it defines the way in which a uniaxial stress relaxes under a
constant strain. This function, like the creep function, may be determined
experimentally. Denoting by ¢ (K,7 — K) the reduction in stress from the
initial value; when strain is constant at ¢,, we have

co$ (K, T —K) = E(T) eg—a (T). (19)
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It will be noted that the dimensions of ¢ are the same as those of modulus of
elasticity.
For a continuously varying strain, with e(f)=0, the principle of super-
position leads to
o(T)=E(T)e fqﬁKT K)ddeK (20)
The treatment which was applied to the creep function now yields the

equations of equilibrium in displacements as

()\+G’)——+G172 ——f¢ K,T—K)= [A+G)—~+Gl72u] dK+X =0

(21a,b,c)
and the boundary conditions as

8u ou ou ow 17
X = )\el+G( 8ym+3z )+G(—l+—m+5—) ftM(K’T_K)'

(22a, b, c)
[/\el+G( z+3~'“ +a—“n)+a(—“l+—”m+@n)]dzf.
oy ox Ox ;

"dK 0z ox

If we let o qu K,T—-K) o(liK dK (23a,b,c)

Il

and similarly for v’, w’, and ¢’, then (21) and (22) become, respectively,

(}\+G)gi w+X =0, (24a, b, c)

— ou' ., ou' ou' ou' , ov ow \
X =A¢ Z+G( I+ 3ym+3zn) G(Bxl+8xm+8xn)’ (25a,b,c)

which are equivalent to eqs. (13) and (14).

Therefore, the quantities X, ¥, Z and X, Y , Z, which at age 7" produce the
displacements u, v, w in the actual material, are the same as those which would
produce displacements u’, v’, w’ in a perfectly elastic material whose properties
at age T are specified by £ and u. If € (0) +0, the solution may be reached, as
before, by superposing the solution for variable strain on that for constant
strain. In determining stresses from displacements, then, the problem is
reduced to one in conventional elasticity by substituting for the true dis-
placements their fictitious values as given by equations (23).

Considerations given above lead to the conclusion that any problem which
can be solved by the methods of conventional elasticity can also be solved for
delayed elasticity. It is obvious, however, that solutions may become rather
involved when age-dependent properties of the material are introduced; and
still further difficulties arise when the boundary conditions are mixed in terms
of forces and displacements. The extent of these mathematical difficulties may
be judged from a review of the papers of Theme Va of the Seventh Congress
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of this International Association. Refuge must be taken in simplifying as-
sumptions, and the question may sometimes arise as to whether a frankly
inaccurate solution is better than no solution at all. The answer will usually
be in the affirmative, but frequently a qualitative or intuitive evaluation must
be made of the effect of deviation from reality.

Simplified Applications

In introducing the simplifications which follow, there is no intent to detract
from the potential usefulness of the general treatment given above. However,
the complete analysis of a 3-dimensional problem including age effects will
ordinarily require an extensive laboratory investigation of the concrete, plus
a computerized solution of the equations, and that is beyond the scope of
this paper.

In the material which follows, and in the examples, we shall omit the age
factors K and 7', and work only with a simple exponential creep function,
@ =0o(l—e) where « and r are constants of the material, ¢ is time, and e is
the base of natural logarithms. The total strain for constant unit stress is then

e(t)=%+Q=—;—+a(l—e-"). (26)

The strain due to a varying stress, o(r), with the boundary condition
o (0)=0, is then given by
t
e(t) = Gg) + oc_f (1 —e7¢-m) d——(;(’r) dr. (27)

0 T

For a constant sustained strain e=o,/E, the corresponding function which

gives the stress at any time ¢ is?)
—__ %
o(t) = Eax+1

where « and r have the same values as in (26). The right-hand member with
o, =unity, may be called the relaxation function, R.

For the generalized treatment given previously it was found more convenient
to define the reduction in stress from the initial value, that is o (0)— o (¢).
Expressed in terms of an equivalent modulus of elasticity, this becomes

, Eo
R =B(1-R) = B4

This is the function which corresponds to ¢ (K, T'— K) in eqs. (19) through (23).

(14 B o e-rtEatv) (28)

(1 — e rtEatD) (29)

2) The conversion from (27) to (28) may de made by direct solution as in integral
equation, by the method of Laplace transforms, or by the use of an appropriate rheolo-
gical model.
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The general nature of the progress of creep and relaxation is illustrated by
Fig. 1. It will be noted that relaxation tends toward its terminal value more
rapidly than does creep because, of course, the stress which is producing the
relaxation is continuously diminishing.

w
1
=
<<
' 4
2 e(t)=a(l-e-™)
TIME - t
o (0)
b
1
» o (0) =
ﬂ o-“).Eafl (“E“‘ "(EGH))
o
-
w
TIME -

Fig. 1. Progress of creep strain and stress relaxation for the exponential function.

Another concept exists which is certainly of only limited accuracy, but
which is sometimes extremely effective in reducing intractable problems to
relatively simple terms. This approach derives from the circumstance that the
structural designer is frequently not concerned with a complete stress-strain-
time history, but only with the final state of the structure. This so-called
“final state’’ will ordinarily be approached within a few years after con-
struction, but in analysis it is reached by letting ¢ — co. For a certain class of
problems this end result, so far as concerns creep, is independent of the path
by which it is reached, provided we can accept the assumption that time-
dependent changes in the properties of the material may be neglected. The
class of problems referred to includes (and is restricted to) those in which the
imposed loading, regardless of its source, eventually reaches a stable value.
The concept may be illustrated by an example from a previous paper [11].
Adopting as the creep function the exponential expression @ =e () =« (1 —e"),
let us apply the time-dependent uniaxial stress o (7)=p(1—e™7) which has
the limiting value o (c0) = . Substituting the expressions for ¢ () and o () into
(27) and integrating yields a fairly complex equation of the form e (f)=F
(a, B, 7, m,t). Substitution of t=co into that equation reduces it to simply
€ (00) =af in which the rate factors » and m disappear. If the ultimate stress,
B, is applied instantaneously at {=0 and maintained constant thereafter, the
ultimate creep is likewise given by e(c0)=ap. Fig. 2 illustrates the progress
of creep for the two cases, and shows how the two approach equality.

It appears that the same treatment may be applied to any stress history
which eventually reaches a stable value. Within the limitations imposed by
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the assumptions, a stress which reaches and then maintains a constant value

will produce the same ultimate creep as if the ultimate value of the stress were
applied at {=0 and maintained constant thereafter.

— 02

v

9

STRESS ~ O

TIME - ¢t

€)

STRAIN-€

TIME - t

Fig. 2. Creep strain corresponding to two stress histories.

This may also be illustrated by using the relaxation function, eq. (28)
derived from @ =o(l—-e™). From (28) if the strain is constant at e=o,/E,

then at t=o00
—__Y%
o (o) = Eo+1"
According to the concept developed above, the ultimate stress o (c0) if applied
at ¢=0 should yield the ultimate strain e(c0)=0y/E. This is readily shown,

for at t =00 the creep component of the strain is

€ (00) = ao(0) = 7
and the elastic component is
1 1 o,
09 = o) = gy

The total strain is then

(oo)-———q—o Fa " 1 _ 0y
¢ T E|Ea+l1  Ex+1| E°

This simplifying concept for the ultimate condition has been noted previ-
ously for restricted applications by others, particularly F. DISCHINGER and
J. N. DisTEFANO.

This concept, which is consistent with (but also dependent on) the ac-
ceptance of superposition and delayed elasticity, will be used in the examples
which follow.

As a fairly simple illustration, we may consider a composite section con-
sisting of a prestressed concrete girder with a cast-in-place deck slab as shown
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in Fig. 3. This example has been selected because it has been investigated in
depth both experimentally and analytically by A. H. MaTTrock [12], and thus
some confirmation of the solution is available.

COMPOSITE MEMBER
CROSS-SECTION

FORCES AND COUPLES
ACTING ON CUT MEMBER

Fig. 3. Prestressed girder with cast-in-place slab.

The prescribed condition for Fig. 3 is that the girder 4 has been prestressed
before casting the slab B, and it is desired to investigate the effect of creep due
to the prestressing force P on the restraint moments and shears, M and X.
Following MaTTOCK’s treatment, P will be taken as a constant force. We may
start by considering the section as having been cast monolithically, then
subjected to the force P, and finding the solution for true elasticity. The
moments and shears corresponding to this solution are designated M’ and X".
The elastic problem may be solved by introducing an imaginary cut along the
junction between the slab and the girder. M’ and X’ are then determined by
considering the conditions which are necessary to restore compatibility of
deformations. The solutions will take the form

M = P(J),
X' = P(K).

Where (J) and (K) involve only the dimensional properties of the sections, the
location of P, and the modulus of elasticity (which enters the solution only if
E  + Eg). The elastic solution is thus available, so a solution for delayed
elasticity can be developed.

Let @ be the creep function for the concrete (assumed the same for girder
and slab), i. e., @) =creep strain for unit stress. Let R be the corresponding
relaxation function, i. e., R =stress due to that constant strain which corre-
sponds to an initial stress of unity.

Following the concepts developed previously, we find that the deformations
produced in the composite section as a result of creep due to P will be the same
as those produced in a fully elastic member by a force P'=P @ E. For this
simple case of uniaxial loading, this relationship is apparent from elementary
considerations; but it also conforms to eq. (17) for the creep effect only due
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to a constant load. These deformations will in turn develop the shear X and
the moment M. Since the restraints develop as a result of displacements,
~ rather than stresses, their magnitude will depend on the relaxation function R.
We may then write for the terminal condition, at ¢ — co,
M=PQER(J),
X = PQFER(K).
Comparing these with M’ and X’ from the elastic solution yields
M=MOGQER,
X =X"QER.
As stated previously, we shall adopt for illustrative purposes the simple

exponential creep function given by eq. (26) and the corresponding relaxation
function of eq. (28). For { — oo these become, respectively, @ =«, R=1/Fa+1

Eo
Eoa+1"

QER=

In MaTTOCK’S notation ¢ is the ratio of creep strain to elastic strain for unit
stress; thus Ea=4¢, so

P _x_®
M=M +d X=X 14

These relations for the terminal conditions are the same as those arrived at
by MaTTOoCK using an ‘‘effective modulus’’ method of analysis. The effective
modulus method, using £’ = K/ (1 + ¢) is consistent with the concepts presented
here provided the load is constant, and it is also consistent for the ultimate
condition provided the loads reach an ultimate stable value. MATTOCK arrived
at a different answer when he used the “rate of creep’’ method.

The effect of differential shrinkage between the slab and the girder of
Fig. 3 may be similarly investigated. Let €, represent the difference in the free
(unrestrained) shrinkage between B and A. Designate the restraint moments
and shears due to ¢, by M, and X,; and let these be M  and X_ if creep were
not acting. It is apparent that the elastic solution may be derived in the form

M= (V),
X, = (W),

where (V) and (W) involve only the dimensional properties and moduli of
elasticity of the members.

The corresponding answer in terms of delayed elasticity may be written
readily by direct use of the relaxation function, but for illustration we shall
apply the fictitious conditions defined by eq. (23). That equation is in terms of
displacements, but for the present uniaxial case we may substitute strains
(e. g. by considering an element of unit length). The stress reduction function
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¢ of eq. (23) is equal to E (1 — R), as given by eq. (29). The fictitious strain
for t — oo is then
me e Bx _ y Ba) 1
CTSTSFur1 " Ea+l) “Ea+l
The terminal solution for delayed elasticity is therefore

, 1 , 1
MS:MsEoc+1’ XS:XSE@H-I'

Introducing, as before, ¢ =FE «, the moments and shears including creep
effects are obtained by multiplying the corresponding values from the elastic
solution by 1/(1 + ). This coincides with MATTOCK ’s solution using the effective
modulus method, but as before he reached a different answer by the rate of
creep method.

MaTTOKC’s laboratory studies of a two-span continuous girder and slab
verified his effective modulus calculation for load durations exceeding 250
days, but showed rather large discrepancies for earlier periods.
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Summary

It appears that for design purposes the creep of concrete may be considered,
with reasonable accuracy, as a delayed elastic response to stress. The mathe-
matical theory of delayed elasticity may be developed by methods paralleling
those of conventional elasticity. In the general treatment the stress-strain
relationship involves two time variables: age of the concrete and elapsed time
after loading. Time-dependent loading is introduced through integration based
on the principle of superposition. Environmental factors which influence
creep may also be introduced. In the resulting equations the time-dependent
terms enter in the same way as do the boundary and body forces. In delayed
elasticity, therefore, the determination of displacements from prescribed forces,
or of stress from given strains or displacements, may be reached by the methods
of conventional elasticity. The procedure involves simply replacing the pre-
scribed quantities by fictitious ones which are determined from the given
quantities, the nature of their time variations, and the properties of the
material. Simplifying assumptions will ordinarily be introduced, and the use
of such assumptions is illustrated by examples.

Résumé

Il apparait que pour le calcul on peut considérer le fluage du béton comme
une réponse élastique différée aux efforts, tout en conservant une précision
raisonnable. La théorie mathématique de 1’élasticité différée peut étre établie
par des méthodes paralléles & celles de 1’élasticité conventionnelle. Dans le
procédé général la relation contraintes-déformation implique deux variables
temporelles: 1’age du béton et le temps qui s’est écoulé depuis le chargement.
C’est par une intégration basée sur le principe de superposition qu’on introduit
la fonction de charge liée au temps. On peut aussi prendre en compte les fac-
teurs de ’environnement qui influent sur le fluage. Les termes dépendant du
temps entrent dans les équations résultantes de la méme facon que les efforts
aux limites et les forces massiques. Dans 1’élasticité différée, c’est par consé-
quent en mettant en ceuvre les méthodes de 1’élasticité conventionnelle qu’on
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peut déterminer les déplacements & partir des efforts prévus ou les contraintes
a partir des déplacements ou des déformations données. Le procédé consiste
simplement & remplacer les quantités prévues par des grandeurs fictives que
P’on détermine en fonction des grandeurs données, de la nature de leur varia-
tion dans le temps et des propriétés des matériaux. On admettra généralement
des hypothéses simplificatrices, dont 1’emploi est ici illustré sur des exemples.

Zusammenfassung

Fiir die Berechnung kann das Betonkriechen mit geniigender Genauigkeit
als eine verzdgerte elastische Antwort auf die aufgebrachte Spannung be-
trachtet werden. Die mathematische Formulierung der verzogerten Elastizi-
tdatstheorie kann durch dhnliche Methoden wie bei der klassischen Elastizitats-
theorie erfolgen. In der allgemeinen Behandlung miissen bei Formulierung
der Spannungs-Dehnungsfunktion zwei zeitabhingige GroBen eingefithrt wer-
den: das Alter des Betons und die Zeit seit dem Aufbringen der Belastung.
Die zeitabhiingige Belastung wird durch eine nach dem Prinzip des Super-
positionsgesetzes durchgefiihrte Integration eingefithrt. Umweltsfaktoren,
welche das Kriechen beeinflussen, werden ebenfalls beriicksichtigt. In den
resultierenden Gleichungen koénnen die zeitabhingigen Ausdriicke auf die
gleiche Weise eingefiihrt werden wie die Randkrifte und die Massenkrafte.
Somit kann bei der verzogerten Elastizitdtstheorie die Bestimmung der Ver-
schiebungen infolge gegebener Kriifte, oder der Spannungen infolge gegebener
Dehnungen oder Verschiebungen, mit den Methoden der klassischen Elastizi-
tatstheorie erfolgen. Das Vorgehen verlangt einzig den Ersatz der vorge-
schriebenen durch fiktive Groflen, welche aus den gegebenen Gréflen bestimmt
werden, unter Beriicksichtigung ihrer Zeitabhéngigkeit und der Eigenschaften
des Materials. Im allgemeinen werden vereinfachende Annahmen eingefiihrt,
wobei die Beniitzung solcher Annahmen durch Beispiele erliutert wird.
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