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Beitrag zur Theorie und Berechnung von zellenförmig und dreh¬

symmetrisch ausgesteiften Kreisplatten

Contribution to the Theory and Calculation of Cellular Circular Plates Provided
with a System of Stiffeners Exhibiting Symmetry of Revolution

Contribution ä la theorie et au calcul des plagues circulaires cellulaires munies
d'un Systeme raidisseur presentant une symetrie de revolution

P. GRAVINA
Brasilien

1. Einleitung

Einer der Wege zur Untersuchung ausgesteifter Platten besteht in der
Überführung dieser Platten in orthotrope Platten mit von den konstruktiven
Eigenheiten des Tragwerkes abhängigen Charakteristiken. Wenn einmal die
Grundgleichungen des Problems aufgestellt sind, so beschränkt sich die
Untersuchung auf die Integration dieser Gleichungen; diese Integration ist meist
nicht einfach durchführbar.

Die auf diesem Gebiet angestellten Untersuchungen haben sich vorzugsweise

auf den Fall rechteckiger Platten mit rechtwinklig angeordneten und
unter sich gleichen Abstand aufweisenden Aussteifungen beschränkt. Das
System von Grundgleichungen wurde für diesen Fall von Pflüger [8] aufgestellt

und die Integration wurde für einige Belastungsfälle von verschiedenen
Autoren durchgeführt [2], [3], [7], [8].

Wenig wurde bisher über die radial und kreisringförmig ausgesteiften
Kreisplatten, die Gegenstand dieses Beitrages sind, publiziert. Einige wertvolle
Beiträge wurden durch die russische Schule gegeben [1].

In unserem Beitrag wurde das System der Grundgleichungen des
Tragwerkes für den Fall aufgestellt, daß die ausgesteifte Platte drehsymmetrische
Form besitzt. Die Gleichungen von Pflüger werden dann als Grenzfall dieser
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Grundgleichungen erhalten. Zudem wird auch die Grundgleichung für radial
und kreisringförmig ausgebildete Roste abgeleitet.

Anschließend wird die Platte, die eine Symmetrieebene besitzt und durch
eine drehsymmetrische Belastung beansprucht wird, unter spezieller Behandlung

der Platte mit zellenförmigem Querschnitt, besonders untersucht. Die
Grundgleichung wird hiefür abgeleitet, wobei der homogene Anteil zu einer
hypergeometrischen Gleichung reduziert wird. Nach der Ableitung der
allgemeinen Lösung der Grundgleichung für einige Belastungsfälle werden die
Beziehungen für die Platte mit nur radialen oder nur kreisringförmigen
Aussteifungen und für die isotrope Platte hergeleitet.

Durch ein numerisches Beispiel wird der Rechnungsgang bei einer
praktischen Anwendung erläutert. Der Vergleich zwischen den Kräften und den

Spannungen für durch verschiedene Aussteifungen verstärkte Platten mit der
isotropen Platte erlaubt, die durch die Anwendung ausgesteifter Platten
erzielten Vorteile abzuschätzen.

2. Allgemeine Theorie ausgesteifter, kreisförmiger Platten

A. Verformungen und Spannungen

Betrachtet wird ein Tragwerk (Fig. 1), bestehend aus einer oder mehreren
isotropen, kreisringförmigen Platten, mit ebenen, unter sich parallelen Mittel¬

st

<7
*dr -

Fig. 1.

Fig. 2.

<Po

flächen, die den gleichen Mittelpunkt 0 und den Innenradius a und den Außenradius

b besitzen (Fig. 2). Jede isotrope Platte weist konstante Stärke auf,
wobei h die Summe der Teilstärken bedeutet. Dieses Plattensystem ist
verstärkt durch ein System von Aussteifungen, deren Achsen parallel zu den
Mittelflächen der isotropen Platten sowie radial und kreisringförmig mit dem
gleichen Zentrum angeordnet sind. Die radial und kreisförmig orientierten
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Aussteifungen sind oben und unten durch zu den Mittelflächen der isotropen
Platten parallelen Ebenen begrenzt und besitzen somit die konstanten Summen

der Teilhöhen hr und h Die Breite der Aussteifungen ist ebenfalls
konstant und beträgt dr bzw. d^.

Die Gesamtheit der Aussteifungen ist drehsymmetrisch angeordnet. Die
radial angeordneten Aussteifungen bilden unter sich den konstanten Winkel
cp0 (Fig. 2) und die kreisringförmigen Aussteifungen sind mit unter sich gleichen
Abständen s angeordnet, wobei der Abstand der Randaussteifungen in bezug
auf den inneren und den äußeren Rand jeweils s/2 beträgt.

Das Tragwerk, hergestellt aus einem Material mit konstantem Elastizitätsmodul

E und Poissonzahl /x, bildet eine ausgesteifte Platte, die konstruktiv
orthotrop ausgebildet ist.

Eine Ebene im Inneren der Platte wird nun als Grundebene bezeichnet.
Auf diese Ebene wird nun das Tragwerk bezogen durch ein System zylindrischer
Koordinaten r, cp, z mit Ursprung in 0 in der oben bezeichneten Grundebene,
wobei die Achse z senkrecht zu dieser festgelegt wird. Für die Grundebene wird
somit 2 0.

Nun wird angenommen, daß die Senkrechte zur Grundebene auch nach
der Verformung eine Gerade bleibt und daß sie auch nach der Verformung der
Grundebene senkrecht zur verformten Fläche bleibt. Betrachtet wird nun ein
beliebiger Punkt (r, 99) auf der Grundebene. Unter dem Einfluß einer Belastung
erfährt der Punkt P eine Verschiebung, wobei mit u die Komponente dieser
Verschiebung bezüglich des Radius r, mit v der Komponente senkrecht zu
diesem Radius, mit w die Komponente bezüglich der Achse z bezeichnet wird.
Infolgedessen kann die Verformung der Grundebene in der Umgebung des
Punktes P durch die Einheitsverformungen er, e^ und durch die Verdrehung
yrq> dargestellt werden; somit wird nach [4]:

UV U V
er u, ^ -+_-, rrg?=_+^__? (1)

wobei mit )' die partielle Ableitung in bezug auf r und mit )* die partielle
Ableitung in bezug auf 99 bezeichnet wird.

Der Punkt P', der sich ursprünglich auf der Senkrechten zur Grundebene
über P mit dem Abstand z von dieser befand, erfährt, infolge der Hypothese
konstanter Vertikalität dieser Senkrechten, folgende Verschiebungen:

uz u — zw, vz v — z—, wz w, (2)

wobei durch Einsetzen der Ausdrücke unter (1) die Verformungscharakteristiken,
bezogen auf das System zylindrischer Koordinaten in der Umgebung

des Punktes P' in der Ebene im Abstand z von der Grundebene, sich ergeben zu:

Iw" w'\ Iw'V
(3)
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Betrachtet wird nun ein Element des Tragwerkes (Fig. 3), das begrenzt
wird durch zwei zylindrische Flächen mit der Achse z und den Radien r bzw.

r + dr, durch zwei Ebenen senkrecht zu dieser Achse mit z konstant bzw.
z + dz konst. und durch zwei Ebenen, die durch diese Achse z gehen, mit
<p konstant bzw. <p + d<p konstant.

^
dS

dz

Fig. 3.

Falls der Querschnitt des so erhaltenen Elementes mit der Stärke dz längs
des Kreises r konstant voll ist, erhält man:

dSr rd(pdz. (4)

Falls jedoch dieser Querschnitt längs des Kreises r konstant die ausgesteifte
Zone enthält, erhält man:

dSr==hrrdcpdz, (5)

wobei für den betrachteten Querschnitt des Elementes mit:

*r~ s: (6)

das Verhältnis zwischen der Fläche des reduzierten effektiven Querschnittes
Sf9 mit der Einheitsbreite und längs des Kreises r konstant gemessen, und
der Fläche des Querschnittes S'r, ebenfalls mit der Einheitsbreite und längs
des Kreises r konstant gemessen, die sich ergeben würde, falls der betrachtete
Querschnitt voll wäre, bezeichnet wird.

Ebenso erhält man für die Querschnittsfläche des Elementes für cp

konstant, falls eine volle Fläche vorhanden ist:

dS(p drdz (7)

und falls die betrachtete Fläche die ausgesteifte Zone enthält:
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dSy kydrdz, (8)

wobei die Definition des Koeffizienten k9 offenkundig ist.
Die Koeffizienten Jcr und & die geometrische Eigenschaften beschreiben,

sind infolge der angenommenen Drehsymmetrie des Tragwerkes einzig von r
und von z abhängig und nicht mehr von cp. Sie können variieren zwischen:

0 ^ kr ^ 1; O^i^l. (9)

In der ausgesteiften Zone, falls nur radiale Aussteifungen vorhanden sind,
ist kr 0, k(p 0, und falls nur kreisringförmige Aussteifungen vorhanden sind,
ist kr 0 und kv4= 0. In der Zone des Vollquerschnittes ist natürlich kr kg)—l.
Je kleiner die Breite der Einheitsquerschnitte ist, auf die sich die Koeffizienten
kr und ky beziehen, um so genauer werden die konstruktiven Charakteristiken
des ausgesteiften Tragwerkes interpretiert.

Im Falle daß zahlreiche Aussteifungen vorhanden sind, erhält man eine
ausreichende Näherung durch folgende Annahme für die ausgesteifte Zone
für r konstant bzw. cp konstant:

_ trdr _ tydy
*r~2irr' k*~b-a' (W)

wobei tr und ty die Anzahl der radial bzw. kreisringförmig angeordneten
Aussteifungen bedeutet:

>-=-¦ >*-^- <»>

Die Breite dr wurde längs des Umfangs für r konstant und die Breite d^
längs des Radius für cp konstant gemessen. Die Verwendung der Ausdrücke
unter (10) bedeutet die Ersetzung des effektiven kurvenförmigen Verlaufes
von kr und k^ längs der Schnitte r — konstant bzw. cp konstant durch eine
ausgleichende Gerade.

Für die betrachteten Verhältnisse wird kr in der ausgesteiften Zone nur eine
Funktion von r, während ky für die gleiche Zone konstant bleibt. Tatsächlich
wird nach Fig. 4, indem man für:

r =Pb, s =p8b (12)
einsetzt: dr bcpr, d^ p^b, (13)

wobei der Winkel cpr der Bogenlänge dr gemessen längs des äußeren Umfanges
mit Radius b entspricht. Drückt man zudem r^d^ und s in Funktion des
äußeren Radius b aus, so erhält man für die ausgesteifte Zone:

^ n, (14)
Ps

wobei: m ^, n ^. (15)

dr cpr m
r<Po P<Po p'

k -^
<Pr

m —, n £*.
<Po Ps
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Konstanten sind, die von den konstruktiven Eigenschaften des Tragwerkes
abhängen. Für die isotrope Zone der Platte erhält man:

(16)kr — ky — 1
•

Betrachtet man in der Umgebung eines Punktes (r, cp, z) ein Element mit der
Höhe dz (Fig. 5) und mit den Einheitsabmessungen in radialer Richtung für

*>
q>o

Fig. 4.

crr kr dz

°-<pk9dz

Fig. 5.

cp konstant und in tangentieller Richtung für r konstant, so erhält man
die Flächen der Querschniite zu k^ 1 dz bzw. kr 1 dz. Die Einheitsverformung
in radialer Richtung infolge einer radialen Spannung ar beträgt dann:

crr kr 1 dz <ir
€rz^ Ekrldz ~E' (17)

Infolge der Spannung a9 entsteht angesichts der Querkontraktion ebenfalls
eine radiale Einheitsverformung:

"/*
oyfl^ldg -^ ^%
El dz r E

Diese beiden Einfiüsse ergeben überlagert die totale Einheitsverformung e

(18)
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Analog erhält man die tangentielle EinheitsVerformung. Somit ergeben
sich die Einheitsverformungen in der Umgebung eines Punktes mit den
Koordinaten (r,cp,z) zu:

€rz =l(ffr"V(7?)' €<pz -ß((T<p-Kp<(jrr)- (19)

Für die tangentialen Spannungen erhält man unter Berücksichtigung der
konstruktiven Orthotropie:

*yr (* Yrcpz Trq> ^r •> ^ycp & Ycprz Twr ^cp j (^0)

wobei mit kyr und ky(p dimensionslose Koeffizienten, die von den geometrischen
Eigenschaften des Tragwerkes abhängen, und mit G der Schubmodul des
Werkstoffes bezeichnet werden. Für den Sonderfall eines Vollquerschnittes
wird fcr jkp=l und kyr ky(p=l.

Aus den Beziehungen (19) und (20) erhält man durch Darstellung der
Spannungen ar und a^ in Funktion der Einheitsverformungen erz und e^
sowie der Tangentialspannungen rrz und t^ in Funktion der Verdrehungen
yr(pz bzw. ywz und unter Berücksichtigung der Beziehungen (3) und (1)
folgende Ausdrücke:

E [, „, 7 [u v lw" w'\~\)
a* =i-M>/*ar "w)+fc>/tb+7-g(i5-+T)J)'

E [\u v lw" w'Y\ „X\
a*= i-krkvAu+^~zw~+^)rKiJ-{u ~zw nv

^ tG[\y+v -7)-2z(--^)j'
Ü22 r \iu ' —1-2 lw" — —W

i> [U v
n z\r r2l\'

}¦ K #o, (21)

')}¦ &„*o, (22)

kr *0, (23)

&„*0. (24)

Zu beachten ist, daß die Gl. (21) und (23) nur sinnvoll sind, falls &r#=0 und
die Gl. (22) und (24) nur, falls ^4=0. Falls nun kr gleich Null wird, für einen
durch die Koordinaten (r, cp, z) festgelegten Punkt, so bedeutet dies, daß der
Einheitsquerschnitt senkrecht zu dem Radius dieses Punktes gleich Null wird,
somit crr Tr(p 0. Analog ergibt sich, falls für einen Punkt £^ 0 wird, für
diesen Punkt cr(p T(pr 0.

B. Innere Kräfte

Sind die Ausdrücke für die Spannungen in einem allgemeinen Punkt in
Funktion der geometrischen Eigenschaften kr,k(p und der Komponenten der
Verschiebung dieses Punktes bekannt, so können die Einheitskräfte folgendermaßen

ausgedrückt werden:
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nr =\cjrkrdz, n^ $a(pk(pdz,
r <p

^rq> =$Tr<pKdZ> n<pr =SrcprkcpdZ'
r 9 (25)

mr =$<jrkrzdz, m^ ^fa^k^zdz,
r <p

mr<p Srr<pkrzdz, m9r [r^k^zdz,
r <p

wobei nr und n^ die Normalkräfte, nr(p und n^ die Tangentialkräfte, mr und

m^ die Biegungsmomente, mrqj und mw die Torsionsmomente bedeuten [4].
Die Integrale J und J* erstrecken sich über die ganze Höhe des Tragwerkes,

r 9?

bzw. längs der Radien und der Umfange.
Um die Ausdrücke für die Kräfte zu vereinfachen, wird angenommen, daß

längs den Aussteifungen /x 0 sei sowie daß, im Einklang mit Pflüger [8],
die Tangentialkräfte nr(p und n^ einzig durch die isotropen Platten aufgenommen

werden, was gleichbedeutend ist mit der Integration der Gl. (25) nur über
die Stärke der isotropen Platten.

Durch Einsetzen der Gl. (21), (22), (23) und (24) in die Gl. (25) erhält man:

nr 2>uu'+M2>£ + £)^^

mr =D*lU' + l,D*^ + V7yKllW'>-pK(^ + ^, (26)

m,r

2

m,v(pr 9

wobei folgende Abkürzungen eingesetzt wurden:

°-^. »>=m^ *=m'-dz

^ ,'2
h h h

(27)

sowie: Dn $ E (z)krdz, Z>22 J E (z)k(pdz,
<p

D^ lE{z)krzdz, D$2=^E(z)k<pzdz, (28)
•p

K11 fE(z)krz*dz, K22 \E{z)kvz*dz.
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Unter J ist zu verstehen, daß sich das Integral nur über die Stärke der Platten
h

mit Totalhöhe h erstreckt und unter E (z), daß der Wert des Elastizitätsmoduls
gleich E in der ausgesteiften Zone und gleich i?/(l—/x2) in der Zone der
isotropen Platten ist.

In den Ausdrücken für mr(p und m^, die in der zweitletzten und in der
letzten der Gl. (26) angegeben sind, werden die Torsionscharakteristiken in
radialer und tangentieller Richtung näherungsweise zu:

#11 2jiyr Gz2dz (l-pL)K + 2Cr<p,
(29)

#22 2\ky(pGz2dz (1-,*)* +2 C,r

bestimmt durch Hinzufügen zu den Werten der Torsionscharakteristiken der
isotropen Platten allein, die Werte 2 Crq> bzw. 2 Cw, die gleich der Summe der
TorsionaleinheitssteiAgkeiten der Teilelemente der zwischen den isotropen
Platten liegenden Aussteifungen sind. Diese EinheitssteiAgkeiten werden
näherungsweise bestimmt, indem man die TorsionssteiAgkeiten der
Teilelemente der Aussteifungen durch die Zwischenabstände dividiert, und zwar
sowohl in radialer als auch in tangentieller Richtung.

Die durch die Gl. (27), (28) und (29) deAnierten Größen werden als elasto-
geometrische Größen bezeichnet. In Übereinstimmung mit den Gl. (15) sind
alle diese Größen von cp unabhängig und einzig Dn, D%±, KX1, Crq) variieren
mit r — pb.

C. Allgemeine Grundgleichungen

Es wird angenommen, daß die ausgesteifte Platte durch äußere Kräfte
belastet ist, deren Komponenten in radialer, tangentieller und in Richtung
der z-Achse mit pr, p^ und pz bezeichnet werden.

Die Gleichgewichtsbedingung für das Tragwerkelement bezüglich einer zur
Grundebene parallelen Ebene ergibt folgende Beziehungen [4]:

(rnry + n(pr-n(p + rpr 0, nv + {rnr9Y + n(pr + rp(p 0. (30)

Die Gleichgewichtsbedingung bezüglich einer Senkrechten zur Grundebene
und diejenige bezüglich einer Verdrehung liefern die anderen Beziehungen:

(rqr)' + <l'<p + rpz 0,

(rmr)''+m'(pr-m(p-rqr 0, (31)

™>'<p + (r™,r<p)'+mq>r-rq<p °>

worin qr und q^ die Querkräfte in den Schnitten r konstant bzw. cp

konstant bezeichnen [4].
Durch Entwickeln der ersten zwei Gleichungen und durch die Substitution

der Querkräfte bei den drei letzten Gleichungen erhält man:
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rn,r + n(pr^-nr-n(p-{'rpr 0,

rKqf + ntp^-n<pr + nr<p + rp<p 0, (32)

r2

Ersetzt man nun in den Gl. (32) die Ausdrücke für die Kräfte durch die

Beziehungen der Gl. (26), so erhält man nach einigen Umformungen die

Grundgleichungen der ausgesteiften Kreisplatte zu:

(33)
1 — il^u" ^ u' _.. -^ u l + ii^v" /^ 1—u_\v*

+ 2 p^+^"7+^iM ^2v+ 2 ^t-ra2+2 jD)^+^=0;

M

(34)
-D^-D*^-D^+^D^ + [d22^D)

_jsr11«,''''_2(^+crv+c,r)^-xffl^-2jru^

-2(Jfi: + X22 + Crv + G?)r)^-2^1^-Xi>" + 2C;^ (35)

+ 2i)*^ + I)^u'+i)*J + i)*^ + I)2*^-i)2*2^ + I)2*2$- + Ps 0.

Sind die elasto-geometrischen Größen der ausgesteiften Platte bekannt und
die Lösungen des Gleichungssystems (33), (34), (35), d.h. der Funktionen:

u u(r,cp); v v(r,cp); w w(r, cp) (36)

bestimmt, so erhält man über die Gl. (26) die Kräfte und über die Gl. (21),

(22), (23), (24) die Spannungen.
Falls die Platte eine Symmetrieebene besitzt und diese Ebene als Grundebene

angenommen wird, so ist in den Grundgleichungen einzusetzen:

D* D*1 D*=0. (37)

In diesem Falle werden die beiden ersten Gleichungen in (33) und (34) in
den Unbekannten u und v unabhängig von der letzten Gleichung in (35) in
der Unbekannten w.
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Reduziert man nun die ausgesteifte Platte — durch Aufhebung der
isotropen Platten — auf ein System rostförmiger Aussteifungen, angeordnet
nach den Linien polarer Koordinaten, so wird K 0. Für den Sonderfall, daß
das Tragwerk eine Symmetrieebene aufweist, die zugleich als Grundebene
angenommen wird, leitet man aus der Gl. (35) unter Berücksichtigung der
Gl. (37) die Grundgleichungen für den Rost ab zu:

-K11w''''-2(Crv + G9r)^-K22^-2K11V^-2K[1w'''

+ 2(Grq, + C<pr)-y3 2 Gr<P~^ + K™!^ (38)

-2(Crv + Cvr + K22)^-2K[1^-K^w'' + 2C>v^-K22^ + pe 0.

Nun wird noch der Fall einer ausgesteiften Platte, bestehend aus einer
einzigen isotropen Platte, wobei die Mittelebene der letzteren als Grundebene
angenommen wird, betrachtet. Falls der Ursprung der Koordinaten 0 ins
Unendliche verlegt wird, wird das System polarer Koordinaten r, cp in ein
System kartesischer Koordinaten x, y überführt. Für den Fall r -> oo geht
dr -> dx bzw. rdcp^dy über. Zu beachten ist noch, daß in diesem Fall K1±
und Cr(p -> Cxy zu Konstanten werden, weil alle Aussteifungen unter sich
gleiche Abstände sx bzw. sy aufweisen. Nun kann man aus den Gl. (33), (34),
(35) noch die Gleichungen von Pflüger für geradlinig, orthogonal ausgesteifte
Platten ableiten zu:

-D&w'" +D11uff +^(l-fJL)u-+^(l+pL)v"+pr 0, (39)

-D*2w-+D22v~ +^(l+il)u'-+^-(l-fi)v" + pqf 09 (40)

-K11w'"'+D*1u"'-2(K + C^ + Cyx)w"" 0. (41)

In diesen Beziehungen werden die partiellen Ableitungen nach x mit )' und
diejenigen nach y mit )' bezeichnet.

3. Theorie und Berechnung der symmetrischen Zellenplatte

A. Grundgleichung

Betrachtet wird nun der Sonderfall einer aufgesteiften Platte, die eine
Symmetrieebene besitzt, die als Grundebene angenommen wird und die durch
eine drehsymmetrische Belastung beansprucht wird. Für diesen Fall heben
sich in den Gl. (33), (34), (35) alle Ableitungen nach cp auf; somit erhält man
unter Berücksichtigung der Gl. (37):
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u uDuu" + Dil-+D'u.u'-Dn-pi+pr 0, (42)

(43)

-Knw""-2K11 w 2K',,w'" + K, w
22^2" ¦2K'„- K',',w"-K,,Z+ps 0,

(44)

Lll" L11C ^22-

d. h. man erhält drei unter sich unabhängige Gleichungen für die Unbekannten
u,v,w, wobei die radiale Verschiebung eine Funktion der Komponente pr, die
tangentielle Verschiebung eine Funktion der Komponente pv und die axiale
Verschiebung eine Funktion der Komponente pz wird.

r=ob

Fig. 6.

Die Gl. (44) kann zweckmäßig umgeformt werden durch Einführung der
Verdrehung # des zum Radius normalen Querschnittes (Fig. 6):

& -w'. (45)

Das Vorzeichen ist negativ, da mit zunehmenden r die Verschiebung w
kleiner wird.

Durch Benützung der Beziehung (45) und geeigneter Umformung der
Gl. (44) und unter Berücksichtigung, daß für drehsymmetrische Belastungen
die erste Zeile der Gl. (31) zu:

rp8 -(qrr)' (46)

wird, erhält man:

(rKll&"Y + (Zn»'Y + (rZu»'Y-(x*j)'-tirry 0 (47)

d.h.

*u*" + #iiT +*u*'-*1,!-ff, 0. (48)

Diese Gleichung besitzt den gleichen Aufbau wie die Gl. (42) und (43).
Unter den verschiedenen möglichen Belastungsfällen wird infolge seiner

Bedeutung der Sonderfall der symmetrisch ausgesteiften Platte mit
drehsymmetrischer Belastung pz besonders behandelt.

Der Radialquerschnitt, in Fig. 7 dargestellt, ist zellenförmig, wobei das

Tragwerk aus zwei isotropen Platten mit Plattenstärke um je h/2 besteht mit
einem dazwischenliegenden System von Aussteifungen mit der Höhe hn.
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9

'i
B5B'

h/2

hn

h/2

Fig. 7.

Unter Benützung der Ausdrücke für Kn und K22 in den letzten Zeilen der
Gl. (28) und der in den Gl. (15) angegebenen Ausdrücke für kr und kv erhält
man:

_E[(h +hn)*-hj] mEhl _E[(h +hnr-hl\ nEhj
11 ~ 12(1-^)

"*"
12p ' 22 12(1-^2) + 12 '

Setzt man:

K El(h + KF-h3n\ _ Eh*[(l + e)*-e3] Eh**
12 (l-/*5)12 (1-/*«) 12 (1-^)

und bezeichnet mit e die Beziehung:

A'

so erhält man: Klt K \l±I^\
; K22 K[l+s*],

e3 e3
wobei: r*=m(l-/x2)(1 + e)3_€3,

s* »(1 -M2)^^

(49)

(50)

(51)

(52)

(53)

r* und ä* sind geometrische Konstanten der ausgesteiften Platte. Beachtet
man zudem, daß:

ist, so erhält man durch Einsetzen der Gl. (52) in der Gl. (48) die Grundgleichung:

(55)p(P + r*)w +P^-(S* + l)& ^^.
Die Lösung dieser Differentialgleichung wird gegeben durch:

#„ + #*, (56)
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wobei &0 die Lösung des homogenen Anteils und #* eine Partikulärlösung
derselben Gleichung (55) bedeutet.

B. Lösung der Grundgleichung

Zuerst wird die Lösung #0 des homogenen Anteils gesucht. Setzt man:

so erhält man:

O -4-7**
* -^r-, c2=l+s*, (57)

t(t-l)^ + {t-l)^-c>^=0, (58)

wobei c — /l+s* ein Plattenkennwert bedeutet. Die Gl. (58) ist eine

hypergeometrische Gleichung. Beachtet man, daß die Normalform der
hypergeometrischen Gleichung:

x{x-l)^+ [(cc +ß+l)x-y]^ + ocßy 0. (59)

ist, worin oc, ß, y Parameter der Gleichung sind, so erhält man durch Vergleich
mit Gl. (58) die Parameterwerte zu:

oc c, j8 -/** + l =-c, y=l. (60)

Untersucht man die erste der Gl. (57), so zeigt sich, daß für p>0, t> 1

wird, Wert der nach Unendlich strebt, wenn r* gegen Null geht. Unter diesen
Umständen ist eine Lösung der Gl. (58) erforderlich in der Umgebung des

singulären Punktes t co, somit eine Lösung, die im Intervall zwischen den

singulären Punkten £=1 und t oo konvergiert.
Um eine Lösung in der Umgebung des Punktes t=oo zu erhalten, setzt

man in der Gl. (58):
1

und erhält:

z -t, d0 z°y(z) (61)

z(z-l)^ + [(l + 2c)z-(l + 2c)]€^ + c2y 0. (62)

Dies ist eine hypergeometrische Gleichung in den Variablen y(z) mit \z\ < 1.

Aus dem Vergleich mit der Gl. (59) ergeben sich folgende Parameterwerte:

a c; ß c; y l + 2c. (63)

Die Gl. (62) liefert in der Umgebung des Punktes 2 0 entsprechend t co

die beiden partikulären Lösungen:

y1 F(c,c,l + 2c,z)', y2 z-2*F{-c, -c,l-2c,z), (64)
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wobei: F{«,ß,y,z) lA + «{«Xl)ff+l)z>+... (65)
\y l-2y(y+l)

eine hypergeometrische Reihe darstellt.
Aus der Gl. (64) und unter Vergegenwärtigung der Gl. (61) erhält man:

#01 i^F(c,c,l + 2c,^, #02 Q V(-c, -c,l-2c,|), (66)

worin, unter Beachtung der Gl. (56) und (57) und unter Einschluß der
Konstanten (r*)c in den Integrationskonstanten, leitet man die allgemeine Lösung
des homogenen Anteils der Gl. (55) in der Umgebung des Singulärpunktes

0 ab zu:r*+P

»o ¥^F{c,c,l+2c,v^+C2(r*+PyF(-c,-c,l-2c, r* + p/
(67)

Die Partikulärlösung der Gl. (55) ist im zweiten Glied abhängig von der
Belastungsfunktion. Im Falle einer ausgesteiften Platte, die durch eine axiale
Einzellast P beansprucht wird, erhält man mit:

P P
(68)*r 2irr 2irbp

Es läßt sich auf einfache Weise zeigen, daß diese Gleichung durch die
Funktion:

&* ^% (70)2tts*K

für 5* #= 0 befriedigt wird.
Falls die ausgesteifte Platte durch eine gleichmäßig verteilte Belastung p

beansprucht wird, so erhält man mit:

_pnr^ _Pbp (71)9r 2nr 2 ' K'1}

Gleichung, die für s*=|=0 durch die folgende Funktion befriedigt wird:

n* pbzp* 3pb*r*p2 ßpb3r*2P
2i^8-s*) A(8-«s*)(3-s*) i^*(8-s*)(3-s*)* l }

Sind die Lösungen #0 und #* einmal bekannt, so erhält man die allgemeine
Lösung & der Gl. (55) über die Gl. (56).
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C. Biegemomente

Vergegenwärtigt man, daß:

^F{a,ß,Y,z) =°ilF(oc+l,ß+l,Y+l,z) (74)

ist und daß mit der ersten Gleichung der Gl. (61) und der Gl. (57):

r *
dz" - (^+7js* (75)

wird, so erhält man:
d& ld» CA c j,/ccl|2c r* \
dr ~ b dp ~ b l(r*+p)e+1 \ ' ' + 'r*+PJ

r* c2! / /•* \1

+ ^[c(r*+pr^(-c,-c,l-2c,^)
~(r*+P)c, /, ,2t—5-J -c+1, -c + l,2-2c,-1— +r

(76)

ld#*
dp

Aus den in den Gl. (26) angegebenen Beziehungen für mr und m^ leitet
man, unter Beachtung der Bedingungen für drehsymmetrische Belastung und
der Gl. (45), folgende Beziehungen ab:

mr=Knd' +nKj, m9 piK&'+K22j (77)

und eingesetzt:

^-Tb^[^-c),,(c*c*1+2c'^)

r*+pl+2c
Ct(r* + p}

m*~ b

r*+p
K\ G1

(c + l,c+l,2 + 2c,^)]
^

[(/* + c)j(-c,-c,l-2c>^)

-TOT^4+I'c+I'2+2c'^)]
(79)
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Für den Sonderfall, daß nur radiale Aussteifungen vorhanden sind, erhält
man mit:

^ 0; s* 0; c l (80)
die Beziehungen:

r*+p \ r*+p)

w„* b \(r*+p)2 (83)

Für den Sonderfall, daß nur kreisringförmige Aussteifungen vorhanden
sind, erhält man mit:

m 0; r*=0 (84)
die Beziehungen:

» =(^t + C2pc + $*, (85)

(~ C — LL „ c + u d&* <,#*) /orTXfi^+^^+^-^T+^T-}- <87>

m,

K

Und für den Sonderfall, daß die ausgesteifte Platte in eine isotrope Platte
mit der Stärke h übergeht, erhält man mit:

m n 0; r* s* 0; € 0; c=l (88)

die folgenden Beziehungen:

& ^+ C2p + #*, (89)

Für alle untersuchten Fälle werden die Spannungen durch die Gl. (21) und
(22) bestimmt, wobei infolge der drehsymmetrischen Belastung und unter
Beachtung der Gl. (45) und des Umstandes, daß u v 0 ist, die Spannungsgleichungen

folgendermaßen ausgedrückt werden können:
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ar zE(z) \&' + kv^, av zE(z) J^ + Ä^'J. (92)

Für den Sonderfall radialer Aussteifungen stellt man aus der ersten der
Gleichungen (15) fest, daß der Wert kr= 1 für pa m erreicht wird. Für p <pa
verschmelzen sich die Aussteifungen zu einer isotropen Mittelplatte mit gleicher
Stärke wie die totale Höhe der ausgesteiften Platte. Somit können die hier
abgeleiteten Beziehungen nur verwendet werden für p^pa, wobei bei der
Bestimmung der Konstanten die bestehenden Bedingungen längs des Randes

p=pa der ausgesteiften Platte ebenfalls erfüllt werden müssen.

D. Anwendung

Eine ausgesteifte Stahlbetonplatte mit zellenförmigem Querschnitt und
mit radialen und kreisringförmigen Aussteifungen ist sowohl am äußeren Rand,
entsprechend dem Radius p 1, als auch am inneren Rand, entsprechend dem
Radius /> 0,1, eingespannt, wobei am inneren Rand die ausgesteifte Platte
an eine steife zentrale Platte mit gleicher Stärke wie die totale Höhe der
ausgesteiften Platte angeschlossen ist. Das Tragwerk wird durch eine axiale
Last P beansprucht (Fig. 8).

\

P

r

1 I 1 1 1 1 1 1

.*—J
s/2 s s s/2

b H Fig. 8.

Für die Bestimmung der Biegemomente werden die Gl. (78) und (79) noch
umgeformt zu:

r* + pd&* &*)
mr

mn

y{oi01(p) + (7202(p)+—^--^- + /x
*!1

K
(93)

Die konstruktiven Kennwerte der ausgesteiften Platte werden angenommen

zu:
m 0,10; ^ 0,20; e 5,

wobei mit ^ 1/6 folgt:

r* 0,1336, s* 0,2673, K
91 Ehs

12 (l-/*2)
und somit c 1,126.

Unter Beachtung der Gleichung (65) erhält man, für die durch die Gl. (67),
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(68) und (69) gegebenen hypergeometrischen Funktionen, die folgenden
Beziehungen:

F1(p) F(c,c,l + 2c,z) 1 + 0,3899 z +0,2072 z2 + 0,1285 z3

+ 0,0875 z4 + 0,0634 z5 + 0,0481 z6 + 0,0376 z7

+ 0,0303 z8 + 0,0250 z9 + 0,0208 z10 + • • •

F2(p) F{c + l,c+l,2 + 2c,z) 1 +1,0630 z +0,9889 z2

+ 0,8976 z3 + 0,8130 z4 + 0,7394 z5 + 0,6764 z6

+ 0,6224 z7 + 0,5758 z8 + 0,5355 z9 + 0,5002 z10 + • - •

F3(p) F(-c, -c,l-2c,z) l-l,0126z + 0,03190z2 + 0,0108z3

+ 0,00545 z4 + 0,00327 z5 + 0,00218 z6 + 0,00156 z7

+ 0,00117 z8 + 0,00091 z9 + 0,000728 z10 + • • •

^(p) F(-c+l, -c+l,2-2c,z) 1-0,06300z-0,03217z2
-0,02154 z3-0,01618 z4-0,01296 z5-0,01081z6

- 0,00927 z7 - 0,00811 z8 - 0,00721 z9 - 0,00649 z10

Für die verschiedenen Werte von p werden nun unter Beachtung'der Gl. (61)
und (57) die z-Werte berechnet. Daraus können die Werte für F1(p), F2(p),
Fs (p), F± (p) und anschließend für <PX (p), <P2 (p), @3 (p), 04 (p) bestimmt werden.
Die Ergebnisse dieser Berechnung sind in den Tabellen A und B zusammengefaßt.

Tabelle A

CT z Fi(r) F2(P) Fs(P) F*(P)

0,1 0,571917 1,331058 2,279646 0,434209 0,946164
0,2 0,400479 1,200818 1,674889 0,600443 0,967609
0,4 0,250374 1,113042 1,346362 0,748646 0,981792
0,6 0,182115 1,078761 1,232875 0,816706 0,987308
0,8 0,143101 1,060452 1,175386 0,855771 0,990255
0,9 0,129256 1,054160 1,156114 0,869663 0,991267
1,0 0,117854 1,049054 1,140655 0,881113 0,992089

Tabelle B

p <Mp) 02 (p) 03 (p) <Mp)

0,1 -91,774293 2,157049 79,366221 1,214131
0,2 -24,326729 1,697114 23,417917 1,260311
0,4 - 6,080877 1,499412 6,275713 1,337457
0,6 - 2,651530 1,455355 2,810335 1,393560
0,8 - 1,462560 1,445696 1,572157 1,437548
0,9 - 1,144972 1,445990 1,236722 1,456574
1,0 - 0,919323 1,448065 0,996875 1,474053
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Die partikuläre Lösung #* wird durch die Gl. (70) angegeben.
Um die Integrationskonstanten zu bestimmen, muß beachtet werden, daß

für p 0,l und p l, # 0 wird. Unter Berücksichtigung der Gl. (67) und (70)
kann man folgende Beziehungen anschreiben:

gi?fo?f + O20,1945-0,434209

C1

0,1945

1,049054
1,1517

und daraus bestimmt man:

Cx -0,009273

+ C2 1,1517-0,881113 -

Pb 0,1

2ttK 0,2673'

Pb 1

2 TriT 0,2673'

Pb
2ttK' C2 -3,67832

Pb
2ttK'

Beachtet man noch, daß infolge der Gl. (70) gilt:

&1 ä&l _
Pb

p
~ dp ~ 2tts*K'

so können nun auch noch die Biegemomente mr und m^ unter Benützung der
Gl. (93) berechnet werden. Die Ergebnisse sind in der Tabelle C zusammengefaßt,

wo auch die Werte der Momente mrl und m<pl sowie mrQ und m^Q, d.h.

Tabelle C

p lP m*/£ mrll£r lP m'°/Ä m*0/^

0,1 4,558 0,325 3,325 0,549 3,652 0,608
0,2 1,693 1,023 1,263 1,385 1,389 1,253
0,4 0,310 0,773 0,223 0,937 0,217 0,808
0,6 -0,262 0,425 -0,282 0,491 -0,322 0,402
0,8 -0,629 0,124 -0,635 0,135 -0,682 0,090
0,9 -0,776 -0,009 -0,780 -0,017 -0,825 -0,040
1,0 -0,907 -0,133 -0,910 -0,156 -0,953 -0,158

Tabelle D

p t \ 1 6P i ^ / 6P
\ 1 6P \ 1 6P M*U«V i ^ 1 6P

0,1 0,128 0,021 0,107 0,018 0,104 0

0,2 0,070 0,055 0,058 0,046 0,050 0,036
0,4 0,020 0,041 0,014 0,034 0,0085 0,032
0,6 -0,013 0,021 -0,011 0,018 -0,014 0,020
0,8 -0,035 0,005 -0,029 0,004 -0,030 0,009

[0,9 -0,044 -0,002 -0,037 -0,0017 -0,036 0,0044
1,0 -0,053 -0,008 -0,044 -0,0073 -0,043 0
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für die beiden Sonderfälle der nur kreisringförmig ausgesteiften Platte bzw.
der isotropen Platte konstanter Plattenstärke h aufgeführt sind.

Sind einmal die Momente bekannt, können über die Gl. (77) die Werte für
#' und &jr und über die Gl. (92) die Spannungen orr und o*^ bestimmt werden,
wobei zu beachten ist, daß für die Aussteifungen p, 0 anzunehmen ist.

In der Tabelle D werden die Werte für die Spannungen in den Punkten A
und B auf dem unteren bzw. oberen Rand der unteren isotropen Platte des
Querschnittes (Fig. 7) und in den Punkten B'==B auf dem unteren Rand
der Aussteifungen aufgeführt.

Tabelle E

p {or)Al(crrl)A ((rr)Al((rro)A (<tyW(<>i)^ (<*<p)A/(<r<po)A

0,1 0,586 0,0352 0,586 0,0352
0,2 0,839 0,0503 0,742 0,0442
0,4 1,150 0,0780 0,829 0,0502
0,6 0,721 0,0415 0,868 0,0534
0,8 0,842 0,0517 0,937 0,0571
0,9 0,864 0,0538 0,755 0,0512
1,0 0,878 0,0553 0,879 0,0553

In der Tabelle E werden die Spannungen (ar)A und (cr(p)A in den Punkten A
auf dem unteren Rand für den Fall einer radial und kreisringförmig
ausgesteiften Platte, in Funktion der Spannungen {vrl)A und (cr(pl)A für die gleichen
Punkte einer nur kreisringförmig ausgesteiften Platte und in Funktion der
Spannungen {crr0)A und (cr(p0)A für die gleichen Punkte einer isotropen Platte
mit der konstanten Stärke h, die sich durch Weglassung der Aussteifungen
ergibt, angegeben.

Aus der Tabelle E ist die große Spannungsreduktion ersichtlich, die in
bezug auf die Spannungen in einer isotropen Platte durch die Anwendung
von Aussteifungen erzielt werden kann. Bei Anordnung radialer und kreisringförmiger

Aussteifungen beträgt die Reduktion der Spannungen im Minimum
etwa 92% und bei kreisringförmigen Aussteifungen allein im Minimum etwa
90%.
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Zusammenfassung

Im ersten Teil dieser Arbeit wird die Theorie der kreisförmigen orthotropen
Platten mit radialen und kreisringförmigen Aussteifungen dargestellt. Zuerst
werden die Grundgleichungen für drehsymmetrische Anordnung der
Aussteifungen und anschließend für den Sonderfall des Rostes die Grundgleichung
aufgestellt. Aus diesen Grundgleichungen werden auch die Gleichungen von
Pflüger für den Fall einer orthogonal ausgesteiften Platte mit exzentrisch
angeordneten geraden Aussteifungen abgeleitet.

Im zweiten Teil wird die Theorie der orthotropen Platten mit einer
Symmetrieebene, die durch drehsymmetrische Belastungen beansprucht werden,
dargestellt. Insbesondere wird die zellenförmig orthotrop ausgesteifte Platte
untersucht. Zuerst wird die Grundgleichung aufgestellt und für einige
Belastungsfälle die Lösung angegeben. Anschließend werden die Beziehungen
für die Kräfte entwickelt, wobei als Sonderfälle diejenigen für die orthotrope
Platte mit nur radialen oder nur kreisringförmigen Aussteifungen und für die
isotrope Platte abgeleitet werden.

Ein numerisches Beispiel erläutert den Berechnungsgang, wobei noch ein
Vergleich angestellt wird zwischen den resultierenden Momenten und
Spannungen für Platten mit Aussteifungen und für isotrope Platten.

Sumniary

The first part of this paper is devoted to a statement of the theory of ortho-
tropic circular plates provided with stiffeners arranged radially and according
to concentric circles. The fundamental equations relating to the arrangement
of the stiffening members exhibiting a symmetry of revolution are first estab-
lished and finally the special case is reached of a network consisting of crossed
members. From these fundamental equations, the Pflüger equations relating
to plates stiffened orthogonally with offset rectilinear stiffeners are derived.

The second part deals with the theory of orthotropic plates comprising a

plane of symmetry and subjected to stresses by loads exhibiting a symmetry
of revolution. In particular, plates stiffened by means of an orthotropic cellular
arrangement are considered. Once the fundamental equation has been estab-
lished, the Solutions corresponding to different loading Systems are indicated.
The relationships expressing the stresses are finally established, more parti-
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cularly those relating to orthotropic plates, with stiffening members arranged
exclusively either radially or annularly, together with those of isotropic plates.
The calculation procedure is illustrated by a numerical example in connection
with which a comparison is also made of the resultant tensions and moments
in the case ofplates provided with stiffeners and also in that of isotropic plates.

Resume

La premiere partie de cette communication est consacree ä l'expose de la
theorie des plaques circulaires orthotropes munies de raidisseurs disposes
radialement et selon des cercles concentriques. On etablit d'abord les equations
fundamentales relatives ä la disposition des elements raidisseurs presentant
une symetrie de revolution pour en arriver, finalement, au cas particulier du
reseau constitue par des elements croises. De ces equations fondamentales, on
deduit les equations de Pflüger concernant les plaques raidies orthogonale-
ment avec des raidisseurs rectilignes excentres.

La seconde partie traite de la theorie des plaques orthotropes comportant
un plan de symetrie et sollicitees par des charges presentant une symetrie de
revolution. On etudie notamment les plaques raidies selon un dispositif cellu-
laire orthotrope. Une fois etablie l'equation fondamentale, on indique les
Solutions correspondant ä differents systemes de charges. Les relations expri-
mant les efforts sont finalement etablies, et plus particulierement Celles relatives

aux plaques orthotropes, avec des elements raidisseurs disposes exclusive-
ment soit dans la direction radiale soit annulairement, ainsi que Celles des

plaques isotropes. La marche du calcul est illustree sur un exemple numerique
a propos duquel, en outre, on procede ä une comparaison des tensions et des
moments resultants dans le cas des plaques munies de raidisseurs et dans celui

des plaques isotropes.
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