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Beitrag zur Theorie und Berechnung von zellenférmig und dreh-
symmetrisch ausgesteiften Kreisplatten

Contribution to the Theory and Calculation of Cellular Circular Plates Provided
with a System of Stiffeners Exhibiting Symmetry of Revolution

Contribution & la théorie et au calcul des plagques circulaires cellulaires munies
d’un systéme raidisseur présentant une symétrie de révolution

P. GRAVINA
Brasilien

1. Einleitung

Einer der Wege zur Untersuchung ausgesteifter Platten besteht in der
Uberfiithrung dieser Platten in orthotrope Platten mit von den konstruktiven
Eigenheiten des Tragwerkes abhingigen Charakteristiken. Wenn einmal die
Grundgleichungen des Problems aufgestellt sind, so beschrinkt sich die Unter-
suchung auf die Integration dieser Gleichungen; diese Integration ist meist
nicht einfach durchfiithrbar.

Die auf diesem Gebiet angestellten Untersuchungen haben sich vorzugs-
weise auf den Fall rechteckiger Platten mit rechtwinklig angeordneten und
unter sich gleichen Abstand aufweisenden Aussteifungen beschrinkt. Das
System von Grundgleichungen wurde fiir diesen Fall von PrLUGER [8] aufge-
stellt und die Integration wurde fiir einige Belastungsfille von verschiedenen
Autoren durchgefiihrt [2], [3], [7], [8].

Wenig wurde bisher iiber die radial und kreisringférmig ausgesteiften Kreis-
platten, die Gegenstand dieses Beitrages sind, publiziert. Einige wertvolle
Beitrige wurden durch die russische Schule gegeben [1].

In unserem Beitrag wurde das System der Grundgleichungen des Trag-
werkes fiir den Fall aufgestellt, daB} die ausgesteifte Platte drehsymmetrische
Form besitzt. Die Gleichungen von PrLUGER werden dann als Grenzfall dieser
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Grundgleichungen erhalten. Zudem wird auch die Grundgleichung fiir radial
und kreisringférmig ausgebildete Roste abgeleitet.

AnschlieBend wird die Platte, die eine Symmetrieebene besitzt und durch
eine drehsymmetrische Belastung beansprucht wird, unter spezieller Behand-
lung der Platte mit zellenférmigem Querschnitt, besonders untersucht. Die
Grundgleichung wird hiefiir abgeleitet, wobei der homogene Anteil zu einer
hypergeometrischen Gleichung reduziert wird. Nach der Ableitung der allge-
meinen Losung der Grundgleichung fiir einige Belastungsfille werden die
Beziehungen fiir die Platte mit nur radialen oder nur kreisringformigen Aus-
steifungen und fiir die isotrope Platte hergeleitet.

Durch ein numerisches Beispiel wird der Rechnungsgang bei einer prak-
tischen Anwendung erldutert. Der Vergleich zwischen den Kréiften und den
Spannungen fiir durch verschiedene Aussteifungen verstirkte Platten mit der
isotropen Platte erlaubt, die durch die Anwendung ausgesteifter Platten
erzielten Vorteile abzuschitzen.

2. Alligemeine Theorie ausgesteifter, kreisformiger Platten

A. Verformungen und Spannungen

Betrachtet wird ein Tragwerk (Fig. 1), bestehend aus einer oder mehreren
isotropen, kreisringformigen Platten, mit ebenen, unter sich parallelen Mittel-

[T
N
/Z “h I\
___hi\k,____{/éi__ h
S ZJ
Nder eV —1

flichen, die den gleichen Mittelpunkt 0 und den Innenradius ¢ und den Aulen-
radius b besitzen (Fig. 2). Jede isotrope Platte weist konstante Stirke auf,
wobei h die Summe der Teilstdrken bedeutet. Dieses Plattensystem ist ver-
starkt durch ein System von Aussteifungen, deren Achsen parallel zu den
Mittelflichen der isotropen Platten sowie radial und kreisringformig mit dem
gleichen Zentrum angeordnet sind. Die radial und kreisférmig orientierten
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Aussteifungen sind oben und unten durch zu den Mittelflichen der isotropen
Platten parallelen Ebenen begrenzt und besitzen somit die konstanten Sum-
men der TeilhShen A, und 4. Die Breite der Aussteifungen ist ebenfalls kon-
stant und betrégt d, bzw. d,.

Die Gesamtheit der Aussteifungen ist drehsymmetrisch angeordnet. Die
‘radial angeordneten Aussteifungen bilden unter sich den konstanten Winkel
oo (Fig. 2) und die kreisringférmigen Aussteifungen sind mit unter sich gleichen
Abstéinden s angeordnet, wobei der Abstand der Randaussteifungen in bezug
auf den inneren und den duBeren Rand jeweils s/2 betrégt. v

Das Tragwerk, hergestellt aus einem Material mit konstantem Elastizitats-
modul £ und Poissonzahl y, bildet eine ausgesteifte Platte, die konstruktiv
orthotrop ausgebildet ist.

Eine Ebene im Inneren der Platte wird nun als Grundebene bezeichnet.
Auf diese Ebene wird nun das Tragwerk bezogen durch ein System zylindrischer
Koordinaten 7, ¢, z mit Ursprung in 0 in der oben bezeichneten Grundebene,
wobei die Achse z senkrecht zu dieser festgelegt wird. Fiir die Grundebene wird
somit z=0.

Nun wird angenommen, dafl die Senkrechte zur Grundebene auch nach
der Verformung eine Gerade bleibt und dafl sie auch nach der Verformung der
Grundebene senkrecht zur verformten Flidche bleibt. Betrachtet wird nun ein
beliebiger Punkt (r, ¢) auf der Grundebene. Unter dem Einflufl einer Belastung
erfihrt der Punkt P eine Verschiebung, wobei mit v die Komponente dieser
Verschiebung beziiglich des Radius », mit v der Komponente senkrecht zu
diesem Radius, mit w die Komponente beziiglich der Achse z bezeichnet wird.
Infolgedessen kann die Verformung der Grundebene in der Umgebung des
Punktes P durch die Einheitsverformungen e,, ¢, und durch die Verdrehung
¥»o dargestellt werden; somit wird nach [4]:

@

U v
€=U, e<p=—+7’ 7rq)=_+v — (1)

wobei mit ( )’ die partielle Ableitung in bezug auf » und mit ( )° die partielle
" Ableitung in bezug auf ¢ bezeichnet wird.

Der Punkt P’, der sich urspriinglich auf der Senkrechten zur Grundebene
iiber P mit dem Abstand z von dieser befand, erfahrt, infolge der Hypothese
konstanter Vertikalitét dieser Senkrechten, folgende Verschiebungen:

4 w.
U, =u—zw, v =v—2 -, w

;= W, (2)
wobei durch Einsetzen der Ausdriicke unter (1) die Verformungscharakteristi-
ken, bezogen auf das System zylindrischer Koordinaten in der Umgebung
des Punktes P’ in der Ebene im Abstand z von der Grundebene, sich ergeben zu:

w w w’

6,.2=€,.—2’w”, E(pz=€(p—z(7 7'), 7r<pz=7rq)_2z(7) . (3)
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Betrachtet wird nun ein Element des Tragwerkes (Fig. 3), das begrenzt
wird durch zwei zylindrische Flichen mit der Achse z und den Radien r bzw.
r+dr, durch zwei Ebenen senkrecht zu dieser Achse mit z = konstant bzw.
z+dz = konst. und durch zwei Ebenen, die durch diese Achse z gehen, mit
¢ = konstant bzw. ¢ +dp = konstant.

ds,

1dz

Fig. 3.

Falls der Querschnitt des so erhaltenen Elementes mit der Stirke dz lings
des Kreises r = konstant voll ist, erhilt man:

ds, =rdepdz. (4)
Falls jedoch dieser Querschnitt lings des Kreises » = konstant die ausgesteifte
Zone enthilt, erhilt man: .
s, =k.rdedz, (5)
wobei fiir den betrachteten Querschnitt des Elementes mit:
S
kr - "SZ (6)

das Verhiltnis zwischen der Fliche des reduzierten effektiven Querschnittes
Sy, mit der Einheitsbreite und lings des Kreises r = konstant gemessen, und
der Fliche des Querschnittes S;, ebenfalls mit der Einheitsbreite und lings
des Kreises r = konstant gemessen, die sich ergeben wiirde, falls der betrachtete
Querschnitt voll wire, bezeichnet wird.

Ebenso erhdlt man fiir die Querschnittsfliche des Elementes fiir ¢ = kon-
stant, falls eine volle Fliche vorhanden ist:

dS, = drdz (7)
und falls die betrachtete Flidche die ausgesteifte Zone enthilt:
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dS, = k,drdz, (8)

wobei die Definition des Koeffizienten %, offenkundig ist.

Die Koeffizienten k, und k,, die geometrische Eigenschaften beschreiben,
sind infolge der angenommenen Drehsymmetrie des Tragwerkes einzig von r
und von z abhingig und nicht mehr von ¢. Sie kénnen variieren zwischen:

0k <1l; 0<k,<1. (9)

In der ausgesteiften Zone, falls nur radiale Aussteifungen vorhanden sind,
ist k,+0, k,=0, und falls nur kreisringférmige Aussteifungen vorhanden sind,
ist k, =0 und k,+0. In der Zone des Vollquerschnittes ist natiirlich k,=k,=1.
Je kleiner die Breite der Einheitsquerschnitte ist, auf die sich die Koeffizienten
k, und k, beziehen, um so genauer werden die konstruktiven Charakteristiken
des ausgesteiften Tragwerkes interpretiert.

Im Falle daBl zahlreiche Aussteifungen vorhanden sind, erhélt man eine
ausreichende Niaherung durch folgende Annahme fiir die ausgesteifte Zone
fiir r = konstant bzw. ¢ = konstant:

t.d
A 1o

wobei #, und ¢, die Anzahl der radial bzw. kreisringférmig angeordneten Aus-
steifungen bedeutet:
_2m = b2 (11)

t, = ;
Po ¢ $

r

Die Breite d, wurde lings des Umfangs fiir » = konstant und die Breite d,
lings des Radius fiir ¢ = konstant gemessen. Die Verwendung der Ausdriicke
unter (10) bedeutet die Ersetzung des effektiven kurvenformigen Verlaufes
von k, und k, lings der Schnitte r = konstant bzw. ¢ = konstant durch eine
ausgleichende Gerade.

Fiir die betrachteten Verhéltnisse wird %, in der ausgesteiften Zone nur eine
Funktion von 7, wihrend %, fiir die gleiche Zone konstant bleibt. Tatséchlich
wird nach Fig. 4, indem man fiir:

r =pb, s =p.b (12)
einsetzt: d.=bop,, d, = pyb, (13)
wobei der Winkel ¢, der Bogenlidnge d, gemessen lings des dulleren Umfanges

mit Radius b entspricht. Driickt man zudem r,d, und s in Funktion des
auBeren Radius b aus, so erhélt man fiir die ausgesteifte Zone:

S

d
by = 2 = % T k¢=—i=£¥"=n, (14)
Po PP P § Ps
wobei: m =%, n =Pe (15)
Ps

Po



174 P. GRAVINA

Konstanten sind, die von den konstruktiven Eigenschaften des Tragwerkes
abhéngen. Fiir die isotrope Zone der Platte erhélt man:

k,=k,=1. (16)

Betrachtet man in der Umgebung eines Punktes (r,¢,z) ein Element mit der
Hohe dz (Fig. 5) und mit den Einheitsabmessungen in radialer Richtung fir

dr

¢=p°

@ = konstant und in tangentieller Richtung fiir r = konstant, so erhilt man
die Flichen der Querschnitte zu k,1dz bzw. k,1dz. Die Einheitsverformung
in radialer Richtung infolge einer radialen Spannung o, betrigt dann:

, _ ok ldz o, ’ ‘
"= Ekid: B (17)

€

Infolge der Spannung o, entsteht angesichts der Querkontraktion ebenfalls
eine radiale Einheitsverformung:

” ok, 1dz k,o
=R RIG T RE (18)

Diese beiden Einfliisse ergeben iiberlagert die totale Einheitsverformung e,,.
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Analog erhédlt man die tangentielle Einheitsverformung. Somit ergeben
sich die Einheitsverformungen in der Umgebung eines Punktes mit den
Koordinaten (r, ¢, 2) zu:

1 1
€, =—.f(0',.—kq,p,cw), e(pz:—E(G(p—krl‘LGr)' (19)

Fiir die tangentiellen Spannungen erhéilt man unter Beriicksichtigung der
konstruktiven Orthotropie:

kyrG'yr(pz = Tpp kr? ky(p G'y«prz = Tpr k (20)

or Vo>

wobei mit k,, und k,, dimensionslose Koeffizienten, die von den geometrischen
Eigenschaften des Tragwerkes abhidngen, und mit G der Schubmodul des
Werkstoffes bezeichnet werden. Fiir den Sonderfall eines Vollquerschnittes
wird k,=k,=1und k,=k,,=1.

Aus den Beziehungen (19) und (20) erhidlt man durch Darstellung der
Spannungen o, und o, in Funktion der Einheitsverformungen ¢, und e,
sowie der Tangentialspannungen 7,, und ,, in Funktion der Verdrehungen
Yrpz DZW. ¥, und unter Beriicksichtigung der Beziehungen (3) und (1) fol-
gende Ausdriicke:

- =T:%%:E{(u'—zw")+k¢#[%+”7.—z(3‘;—2.—.+"%)]}, k, +0, (21)
0y =ﬁ]£07{[%+%—z(z:—;+w—;—,)]+k,p(u’-—zw” )}, k,=+0, (22)
T,ﬁ%a[(“?#v'—g)—zz(%i—%)], E,+0,  (23)
S L I v

Zu beachten ist, daB die Gl. (21) und (23) nur sinnvoll sind, falls £, 40 und
die Gl. (22) und (24) nur, falls k,+0. Falls nun k, gleich Null wird, fiir einen
durch die Koordinaten (r,q,z) festgelegten Punkt, so bedeutet dies, daf3 der
Einheitsquerschnitt senkrecht zu dem Radius dieses Punktes gleich Null wird,
somit ¢,=7,,=0. Analog ergibt sich, falls fiir einen Punkt k,=0 wird, fiir
diesen Punkt o,=7,=0.

B. Innere Krifte

Sind die Ausdriicke fiir die Spannungen in einem allgemeinen Punkt in
Funktion der geometrischen Eigenschaften k,,k, und der Komponenten der
Verschiebung dieses Punktes bekannt, so konnen die Einheitskréfte folgender-
mafen ausgedriickt werden:
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n, = [o.k.dz, n, =[o,k,dz,
r 2
Ny = [ 1,0k dz, Ny = f—rwkq,dz,
r 2 (25)
m, = [o.k,2dz, m, = [o,k,zdz,
T 2
My = [T,k 2d2, My, = [T,k 2dz2,
r 2

wobei 7, und 7, die Normalkrifte, »,, und n, die Tangentialkrifte, m, und
m, die Biegungsmomente, m,, und m,, die Torsionsmomente bedeuten [4].
Die Integrale [ und [ erstrecken sich iiber die ganze Hohe des Tragwerkes,

bzw. lings der Radien und der Umfinge.

Um die Ausdriicke fiir die Krifte zu vereinfachen, wird angenommen, dafl
lings den Aussteifungen p=0 sei sowie daf, im Einklang mit PrLUGER [8],
die Tangentialkrifte n,, und n, einzig durch die isotropen Platten aufgenom-
men werden, was gleichbedeutend ist mit der Integration der Gl. (25) nur iiber
die Stérke der isotropen Platten.

Durch Einsetzen der Gl. (21), (22), (23) und (24) in die Gl. (25) erhilt man:

l—p (w , v w" w
n,.q,——nq”.———-z D(T-{-’U —;)—(I—P)D*(r _—7'2)’
, u v . w'ow

u v , w'ow iy

I

1-—- u' , .
mpy = 5E D (o =) - K4 20,,] (% - ).

2 r r2
| o, v w' w
My = —2—'LLD*(7+U —;) —[(I-p)K+20C,,] (T _72")’
wobei folgende Abkiirzungen eingesetzt wurden:
Edz Ezdz E22dz
= * = | 27 = | 2=
D fl—pﬂ’ D [t K 1= (27)
) _ ) h
sowie: Dy, =[E (2)k,dz, Dyy = [ E (2) k,dz,
r ®
Dy = [ E(2)k,zdz, D} = [E () k,zdz, (28)
r ?

K, =[E )k, 2%dz, Ky = [E(2)k,2%dz.
r ¢
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Unter [ ist zu verstehen, dafl sich das Integral nur iiber die Stérke der Platten

mit T(?talhiihe h erstreckt und unter £ (z), dal der Wert des Elastizitdtsmoduls
gleich E in der ausgesteiften Zone und gleich E/(1 —pu?) in der Zone der iso-
tropen Platten ist.

In den Ausdriicken fiir m,, und m,,, die in der zweitletzten und in der
letzten der Gl. (26) angegeben sind, werden die Torsionscharakteristiken in
radialer und tangentieller Richtung niaherungsweise zu:

Hy =2k, G*dz = (1-p)K+2C,,,
4 (29)
Hy, =2fk,,G2*dz = (1-p)K+2C,,
P

bestimmt durch Hinzufiigen zu den Werten der Torsionscharakteristiken der
isotropen Platten allein, die Werte 2C,, bzw. 20,,, die gleich der Summe der
Torsionaleinheitssteifigkeiten der Teilelemente der zwischen den isotropen
Platten liegenden Aussteifungen sind. Diese Einheitssteifigkeiten werden
néherungsweise bestimmt, indem man die Torsionssteifigkeiten der Teil-
elemente der Aussteifungen durch die Zwischenabsténde dividiert, und zwar
sowohl in radialer als auch in tangentieller Richtung.

Die durch die Gl. (27), (28) und (29) definierten GroBen werden als elasto-
geometrische GroBen bezeichnet. In Ubereinstimmung mit den Gl. (15) sind
alle diese GroBen von ¢ unabhiingig und einzig D,;, D}y, K;,, C,, variieren
mit r=pb.

C. Allgemeine Grundgleichungen

Es wird angenommen, dafl die ausgesteifte Platte durch duBere Krifte
belastet ist, deren Komponenten in radialer, tangentieller und in Richtung
der z-Achse mit p,, p, und p, bezeichnet werden.

Die Gleichgewichtsbedingung fiir das Tragwerkelement beziiglich einer zur
Grundebene parallelen Ebene ergibt folgende Beziehungen [4]:

(rn,) +ny,—n,+rp, =0, Ny + (T My ) + Mg +7P, = 0. (30)

Die Gleichgewichtsbedingung beziiglich einer Senkrechten zur Grundebene
und diejenige beziiglich einer Verdrehung liefern die anderen Beziehungen:

(rg,) +qp+rp, =0,
(rmr),"i_m;ﬂ_mq:—TQT:O? (31)

my+(rm,,) +m,,—rq, =0,

worin g, und g, die Querkrifte in den Schnitten » = konstant bzw. ¢ = kon-
stant bezeichnen [4]. _

Durch Entwickeln der ersten zwei Gleichungen und durch die Substitution
der Querkrifte bei den drei letzten Gleichungen erhilt man:
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T4y, +n,—n,+rp, =0,

Ty o+ Ny + Mgty + 7P, =0, (32)
4 ! Al . 1o .
m"+ +2m %+m¢’+mgf+m"‘”+mg"’+pz = 0.
r r r r r

Ersetzt man nun in den Gl. (32) die Ausdriicke fir die Krifte durch die
Beziehungen der Gl. (26), so erhilt man nach einigen Umformungen die
Grundgleichungen der ausgesteiften Kreisplatte zu:

1. II I

w

—Dfw'' —D* 5 —D1*1 +(D*+ D3 —DF w'’' + Dy 2+Dnu -
1 D Du%"‘}‘Dﬁu’—Dzz% 1+“D—“ (D22+1 MD) +p,=0,
—1)227—3—1)*%—1)*'“—’: +1—JL"D (D22+1—;’—LD)%
+1_—Dv"+D22 2 12”1)_’_1 ”“D s +0,=0, ey
K" =2 (K + 0yt Oy ) L — an”"—ZKn%?
_2K{1w”’+2(1{+0m+0q,,) W s, '"+K227’;’—;'
_2(K+K22+0m+0w)w7—21{;1 "—K;; w420, (35)

’e I /

K22 3 +D III D

’ 17 . A

Iu 7 u v 'U v 'l)
+2 D -+ D u +D§“27—3+D* . +D;“2—T3——D;‘2ﬁ+Dg“zr—3+pz=0

Sind die elasto-geométrischen GroBen der ausgesteiften Platte bekannt und
die Losungen des Gleichungssystems (33), (34), (35), d.h. der Funktionen:

w=ulrg); v=0(g); w=w(rp) (36)

bestimmt, so erhilt man iiber die Gl. (26) die Kriifte und iiber die Gl. (21),
(22), (23), (24) die Spannungen.

Falls die Platte eine Symmetrieebene besitzt und diese Ebene als Grund-
ebene angenommen wird, so ist in den Grundgleichungen einzusetzen:

D* = D} = D¥ = 0. (37)
In diesem Falle werden die beiden ersten Gleichungen in (33) und (34) in

den Unbekannten % und v unabhingig von der letzten Gleichung in (35) in
der Unbekannten w.
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Reduziert man nun die ausgesteifte Platte — durch Aufhebung der iso-
tropen Platten — auf ein System rostférmiger Aussteifungen, angeordnet
nach den Linien polarer Koordinaten, so wird K =0. Fiir den Sonderfall, da3
das Tragwerk eine Symmetrieebene aufweist, die zugleich als Grundebene
angenommen wird, leitet man aus der Gl. (35) unter Beriicksichtigung der
Gl. (37) die Grundgleichungen fiir den Rost ab zu:

7z ceve 127

12244 w w w 4 rre
—~Kw _2(er)+0(pr)—_—7,2 _K22—74 —-2K,, 2 -2Kjw
'w/-. , w/-. ‘ w//
+2(Crp+Cor) 5 =205+ K 5 (38)

’’ o /7

w.’ ’ w ’ 1 14 w w
-2 (Or<p+0¢p1'+K22)—F'—2K117——K11w +20r<p_7.T—K22F+pz = 0.

Nun wird noch der Fall einer ausgesteiften Platte, bestehend aus einer
einzigen isotropen Platte, wobei die Mittelebene der letzteren als Grundebene
angenommen wird, betrachtet. Falls der Ursprung der Koordinaten 0 ins
Unendliche verlegt wird, wird das System polarer Koordinaten r,¢ in ein
System kartesischer Koordinaten z,y iiberfiithrt. Fir den Fall »r - co geht
or — dx bzw. rdp — 0y iiber. Zu beachten ist noch, dafl in diesem Fall K,
und C,, - C,, zu Konstanten werden, weil alle Aussteifungen unter sich
gleiche Abstidnde s, bzw. s, aufweisen. Nun kann man aus den GIl. (33), (34),
(35) noch die Gleichungen von PFLUGER fiir geradlinig, orthogonal ausgesteifte
Platten ableiten zu:

D . D .
—Diw” + Dy’ + o (=) w o (1) +p, = 0, (39)

Py . 'D I 'D 144
=D w4+ Doy v +§'(1+#)’“’ +?(1"IL)” +p, =0, (40)

— Ky + DEW" —2(K+Cpy+Cpp) " —Kopqw' "+ D v +p, = 0. (41)

In diesen Beziehungen werden die partiellen Ableitungen nach x mit ( )’ und
diejenigen nach y mit ( ) bezeichnet.

3. Theorie und Berechnung der symmetrischen Zellenplatte

A. Grundgleichung

Betrachtet wird nun der Sonderfall einer aufgesteiften Platte, die eine
Symmetrieebene besitzt, die als Grundebene angenommen wird und die durch
eine drehsymmetrische Belastung beansprucht wird. Fiir diesen Fall heben
sich in den Gl. (33), (34), (35) alle Ableitungen nach ¢ auf; somit erhilt man
unter Beriicksichtigung der Gl. (37):
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" wo, u
Dy u +1)1174‘1)11“ —D22;2‘+29r =0, (42)
l-p. , lep o lep_ B
r w’ll ’ reer w’, ’ w,’ (44 4 w'
~Kjw'"' -2K,, ” —-2Kjw +K22“‘—r2 —2Ky, - —Kjw —‘Kzz—r‘g‘*‘l’z:o:

(44)

d.h. man erhélt drei unter sich unabhingige Gleichungen fiir die Unbekannten
u, v, w, wobei die radiale Verschiebung eine Funktion der Komponente p,, die
tangentielle Verschiebung eine Funktion der Komponente p, und die axiale
Verschiebung eine Funktion der Komponente p, wird.

0 r
w
\__’_ i
r=pb

v
z

Fig. 6.

Die Gl. (44) kann zweckmiBig umgeformt werden durch Einfithrung der
Verdrehung ¢ des zum Radius normalen Querschnittes (Fig. 6):

§=—w. (45)

Das Vorzeichen ist negativ, da mit zunehmenden r die Verschiebung w
kleiner wird.

Durch Beniitzung der Beziehung (45) und geeigneter Umformung der
Gl. (44) und unter Beriicksichtigung, daf} fiir drehsymmetrische Belastungen
die erste Zeile der GI. (31) zu:

rp, = —(q,r) (46)
wird, erhilt man:
IZAN4 \? 4 1A ﬂ' ! ’
 Kuy®) + () + (KG9 = (Ko ) = (@) = 0 (47)
d.h.: y
o 9
K9 +K117+K11‘9' —K22'7,—2“Qr = 0. (48)

Diese Gleichung besitzt den gleichen Aufbau wie die Gl. (42) und (43)..
Unter den verschiedenen moglichen Belastungsfillen wird infolge seiner
Bedeutung der Sonderfall der symmetrisch ausgesteiften Platte mit dreh-
symmetrischer Belastung p, besonders behandelt.
Der Radialquerschnitt, in Fig. 7 dargestellt, ist zellenformig, wobei das
Tragwerk aus zwei isotropen Platten mit Plattenstirke um je A/2 besteht mit
einem dazwischenliegenden System von Aussteifungen mit der Hohe 4, .
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h/2
de
N oo o (N ___-__.'rz__h_n____~__
B=B' h/2
A
S
r
Fig. 7.

Unter Beniitzung der Ausdriicke fiir K,; und K,, in den letzten Zeilen der
Gl. (28) und der in den Gl. (15) angegebenen Ausdriicke fiir £, und &, erhilt
man:

3_p3 3 3_p3 3
_E[(h+h,) hn]+mEhn K _E[(h+h,) hn]+nEhn

An="30-9 12p 2= 12 (1—pw?) iz - 49
Setzt man:
K - E((h+h,)—h3] ER[(1+eP~-€]  ER* 50
STRO-E) T 12048 12(1-g) (50)
und bezeichnet mit € die Beziehung:
€= %, (51)
. p+r*
so erhdlt man: K, =K P ) Ky = K[1+s8%], (52)
bei:  r*=m(l—p?) S mm(lop?) 53)
wober: - # (1+€)P—e’ B . (1+e)P—€ (

r* und s* sind geometrische Konstanten der ausgesteiften Platte. Beachtet

man zudem, daf}:
, 1d Ky, 1 r*

n=y dp =_B_p—2K (54)

ist, so erhilt man durch Einsetzen der Gl. (52) in der Gl. (48) die Grundgleichung:

a4 do b2 p?
p(p+7’*)TP2+p%——(s*+l)3=q—’fB—. (55)

Die Losung dieser Differentialgleichung wird gegeben durch:
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wobei ¢, die Losung des homogenen Anteils und #* eine Partikulidrlosung der-
selben Gleichung (55) bedeutet.

B. Lésung der Grundgleichung

Zuerst wird die Losung &, des homogenen Anteils gesucht. Setzt man:

p+r* -
b= P 2 =1+s%, (57)
so erhilt man:
d2d, ddy .o
HE—1) =g+ (1= 1) L 2 = 0, (58)

wobei ¢ = Y1 +s* ein Plattenkennwert bedeutet. Die Gl. (58) ist eine hyper-
geometrische Gleichung. Beachtet man, daB die Normalform der hyper-
geometrischen Gleichung:
d? d
#(@—1) T +[(a+B+ Dz —y] 7 +aBy = 0. (59)

ist, worin «, B,y Parameter der Gleichung sind, so erhidlt man durch Vergleich
mit Gl. (58) die Parameterwerte zu:

o« =c, /9=—Vs*+l=—c, y =1. (60)

~ Untersucht man die erste der Gl. (57), so zeigt sich, dal fiir p>0, ¢>1
wird, Wert der nach Unendlich strebt, wenn r* gegen Null geht. Unter diesen
Umsténden ist eine Losung der Gl. (58) erforderlich in der Umgebung des
singuldren Punktes ¢=oc0, somit eine Losung, die im Intervall zwischen den
singuldren Punkten ¢t=1 und =0 konvergiert.
Um eine Losung in der Umgebung des Punktes {=oco0 zu erhalten, setzt
man in der GI. (58):

i=3  S=2Y() (61)
und erhilt:
'y W\ oy —
z(z——l)a-z—z+[(1+20)z-—(1+20)]jg+c y=0. (62)

Dies ist eine hypergeometrische Gleichung in den Variablen y (z) mit 2| <1.
Aus dem Vergleich mit der Gl. (59) ergeben sich folgende Parameterwerte:

o =C; B=c; y=14+2c. (63)
Die Gl. (62) liefert in der Umgebung des Punktes z=0 entsprechend ¢ =0
die beiden partikulédren Losungen:

Yy, = F(c,c,1+2¢,2); Yo =2"2F(—c, —c,1—2¢,2), (64)
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2f, 2@t DBE+L) ., (65)

wobei: F(asIB:V’z)=1+1y 1-2y(y+1)

eine hypergeometrische Reihe darstellt.
Aus der Gl. (64) und unter Vergegenwartigung der Gl. (61) erhilt man:

19‘01 = (%)CF (c,c,1+26,%), 1902 = (l)—cF ('—C, —651—267%)’ (66)

¢
worin, unter Beachtung der Gl. (56) und (57) und unter Einschlufl der Kon-
stanten (r*)¢ in den Integrationskonstanten, leitet man die allgemeine Losung
des homogenen Anteils der Gl. (55) in der Umgebung des Singuldrpunktes

7-*

KE:O ab zu:

) ——«CLl———-F c,c 1+2c—y—*—— +Cy(r*+p)F|—c, —c,1-2c¢ e (67)
0 — (,’.*+P)c » U ’7'*+P 2 p 5 3 ’7'*+P .

Die Partikularlosung der Gl. (55) ist im zweiten Glied abhingig von der
Belastungsfunktion. Im Falle einer ausgesteiften Platte, die durch eine axiale
Einzellast P beansprucht wird, erhalt man mit:

P P
R LT (68)
d29%  d9* Pbp
% T (e*® o T
pp+7¥) 2 +p a5 (s*+1)9 S K (69)

Es 1af3t sich auf einfache Weise zeigen, daBl diese Gleichung durch die
Funktion:
Pbp
* — [ d
@ = 2ms* K (70)
fir s* &0 befriedigt wird.
Falls die ausgesteifte Platte durch eine gleichmifig verteilte Belastung p
beansprucht wird, so erhilt man mit:

mr? b
o=- = -LF (71)
d29%*  do* p b3 p3
®y LY T (g% ® o . 2
plp+r¥) dp? +p > (s*+1)d 5K (72)
Gleichung, die fiir s* 40 durch die folgende Funktion befriedigt wird:
o — pbd p3 3pbir* p? 6pb3rizp (73)

TOK(8—s%) K (8—s*) (3—s%) T Ks*(8—s%) (3—s7)"

Sind die Losungen ¢, und 3* einmal bekannt, so erhilt man die allgemeine
Losung & der Gl. (55) iiber die Gl. (56).
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C. Biegemomente

Vergegenwirtigt man, da@3:

d o, B, v,z yBF (c+1,B+1,9+1,2) (74)

ist und daf3 mit der ersten Gleichung der Gl. (61) und der Gl. (57):

r¥

wird, so erhilt man:
dé¢ 1dd C, c r*
7 =50~ 0 [ o o)
P c2} 7 ¥
T IRl Th2e (c+l ekl atze +p)] (76)
02 * c—1 ( r* )
—= -1F|—¢c, —c,1-2¢,
+3 [c(r +p) ¢, —¢ c T ip
* &2 r¥ 1 dd*
— (r¥ c — Enlbatdill
(r*+p) (r*+p)21—2cF( —c+1, —c+1,2-2¢, *+p)]+b P

Aus den in den Gl. (26) angegebenen Beziehungen fir m, und m, leitet
man, unter Beachtung der Bedingungen fiir drehsymmetrische Belastung und
der Gl. (45), folgende Beziehungen ab:

v ~ )
m,.=K1119'+p,K7, ’mq,=,u,Kz9'+K22—r— (77)
und eingesetzt:
K C, i
=—1————\(p—c)F 1+2c¢,
" b{p(r*+p)° [(” ) (cc TR *+p)
ok c? r*
- F 1 1,24 2¢,—/——
PE B (c+ e+ 1,2+ C’T*+P)] (18)
C'z(?"*+p)°[ ( r* )
—_ F{l—c, —c,1-2
+ P (u+c) ¢, —¢, c, g
r* c? r¥ r*+p dd* o*
- —c+1,—c+1, - e
r*+p 1—20F( el —etl2-2e *+p)]+ p dp +MP}’
K{ O, c? ®e r*
m‘”_7{(7‘*+p)”[(7;_7*+p)p(C’C’Hzc’ *+p)
¥ o F(c+1 c+1 2+2c r* )]
(r*+p)? 14+2¢ *+p (79)

c? ®e r*
Cy(r*+p)° ||— Fl—-c, —c,1-2c,
h O ) [(P+’”*+P) ( ) *+p)

pr¥ ¢ F( r* ) do* 0%
~ 1, —c+1,2—2¢, & e
(r*+p)* 1-2¢ erhTer )| T T,
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Fiir den Sonderfall, daf nur radiale Aussteifungen vorhanden sind, erhilt
man mit:

n=20; s*=0; c=1 (80)
die Beziehungen:
o r¥ *
d = 7‘*+pF(1’1,3,m)+02P+& s (8].)

_K[ 6 [ LA W r
M=% {p(r*+p) [(P’ I)F(I’I’S’r*ﬂ) 3(1”*+p)F(2 %t *+P)] (82)

*+p|  r¥+4pdi* g*
il I p dp Fp
_K[ O [r*+p(l-p) ( r* )
o —_b_{(r*+p)2[ PR T
dd* 9%

___p_r:"__~F(224__r’~“_)]+0 (14 p)+p— + }
3(r*+p)” 77 Ur¥+p Frr g ™

(83)

Fiir den Sonderfall, daB nur kreisringférmige Aussteifungen vorhanden
sind, erhilt man mit:

m=0; r¥ =0 (84)
die Beziehungen:
) =%+02p"+19*, (85)
K(C C’ ag* O
me= KL e P e D7 2, (86)
K c— c+ do* o*
mtp=—b—{016—pﬁc&+02 #/+ 'E;—-I-Cz S } (87)

Und fiir den Sonderfall, daBl die ausgesteifte Platte in eine isotrope Platte
mit der Stidrke A iibergeht, erhdlt man mit:

m=mn=20,; r¥ =¥ =0; e=0; c=1 (88)
die folgenden Beziehungen:

9 i1+0 p+9*, (89)
K 1 ¥

m, = —— C—(—P‘———)—i—(}’z(p,—i—1)+gl£~+p19 (90)
b dp P
KO (1—p) dg* O*

my = b [ pz +0 (1+ )+I"'_dp—+ p] (91)

Fiir alle untersuchten Fille werden die Spannungen durch die Gl. (21) und
(22) bestimmt, wobei infolge der drehsymmetrischen Belastung und unter
Beachtung der Gl. (45) und des Umstandes, daB u=v=0 ist, die Spannungs-
gleichungen folgendermaflen ausgedriickt werden konnen:
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o, =2 E (2) [ﬁ’+k¢p—?], o, =28 (2) [i3—+k,p,ﬁ']. (92)

Fir den Sonderfall radialer Aussteifungen stellt man aus der ersten der
Gleichungen (15) fest, da@ der Wert k,=1 fiir p,=m erreicht wird. Fir p <p,
verschmelzen sich die Aussteifungen zu einer isotropen Mittelplatte mit gleicher
Stirke wie die totale Hohe der ausgesteiften Platte. Somit konnen die hier
abgeleiteten Beziehungen nur verwendet werden fiir p>p,, wobei bei der
Bestimmung der Konstanten die bestehenden Bedingungen lings des Randes
p=p, der ausgesteiften Platte ebenfalls erfiillt werden miissen.

D. Anwendung

Eine ausgesteifte Stahlbetonplatte mit zellenformigem Querschnitt und
mit radialen und kreisringférmigen Aussteifungen ist sowohl am dufleren Rand,
entsprechend dem Radius p=1, als auch am inneren Rand, entsprechend dem
Radius p=0,1, eingespannt, wobei am inneren Rand die ausgesteifte Platte
an eine steife zentrale Platte mit gleicher Stiarke wie die totale Hohe der aus-
gesteiften Platte angeschlossen ist. Das Tragwerk wird durch eine axiale

Last P beansprucht (Fig. 8).
JP
1 |

G,Tib | Fig. 8.
b o

| N ||

[

[7,3
~
Ny

i;/2 S s

Fiir die Bestimmung der Biegemomente werden die Gl. (78) und (79) noch
umgeformt zu:

K *ppdd* 9
m, = ?{olcbl (p) + Oy @, (p) + —L —d——+#—},
K dH* pa* ’ (93)
— _ 2
my =7 {01@3(;))+02d54(p)+y P +c - }

Die konstruktiven Kennwerte der ausgesteiften Platte werden angenom-
men zu:

m = 0,10; n = 0,20; € =5,
wobei mit u =1/, folgt:

91 E b3

* — (,1336 * = 0,267 =—
r 0,1336, S , 2673, K 12 (1= %)

und somit ¢c=1,126.

Unter Beachtung der Gleichung (65) erhdlt man, fiir die durch die Gl. (67),
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(68) und (69) gegebenen hypergeometrischen Funktionen, die folgenden Be-
ziehungen:

F(p) = F(c,c,1+2¢c,2) =1+0,38992+0,20722%2+0,128523

+0,0875 2% +0,0634 25+ 0,0481 28 + 0,0376 27

40,0303 28+ 0,02502° + 0,0208 210 + - - -
=F(c+1l,c+1,2+2¢,2) = 1+1,06302+0,9889 22

+0,897623 +0,81302% 40,7394 25 + 0,6764 28 |

+0,6224 27+ 0,5758 28 + 0,5355 2% + 0,56002 210 + - - -
F(—c, ~c,1-2¢,2) =1—-1,01262+0,031902%240,010823

+0,00545 24+ 0,00327 254+ 0,00218 26 + 0,00156 27
+0,00117 28 + 0,00091 2° + 0,000728 210 - . - -

=F(—c+1,—c+1,2—2¢,2) =1-0,063002—0,03217 22

—0,0215423—0,0161824—0,01296 25— 0,01081 28

—0,00927 27— 0,00811 28 — 0,00721 2° — 0,00649 210 — . . -

Fiir die verschiedenen Werte von p werden nun unter Beachtung der Gl. (61)
und (57) die z-Werte berechnet. Daraus konnen die Werte fiir F) (p), F,(p),
F;(p), F,(p) und anschlieBend fiir @, (p), Py (p), P3(p), P, (p) bestimmt werden.
Die Ergebnisse dieser Berechnung sind in den Tabellen A und B zusammen-

gefalit.
Tabelle A
o z F1 (p) F (p) F5 (p) Fy4 (p)
0,1 0,571917 1,331058 2,279646 0,434209 0,946164
0,2 0,400479 1,200818 1,674889 0,600443 0,967609
0,4 0,250374 1,113042 1,346362 0,748646 0,981792
0,6 0,182115 1,078761 1,232875 0,816706 0,987308
0,8 0,143101 1,060452 1,175386 0,855771 0,990255
0,9 0,129256 1,054160 1,156114 0,869663 0,991267
1,0 0,117854 1,049054 1,140655 0,881113 0,992089
Tabelle B
p ;1 (p) P: (p) Ps3 (p) D4 (p)
0,1 —91,774293 2,157049 79,366221 1,214131
0,2 —24,326729 1,697114 23,417917 1,260311
0,4 — 6,080877 1,499412 6,275713 1,337457
0,6 — 2,651530 1,455355 2,810335 1,393560
0,8 — 1,462560 1,445696 1,672157 1,437548
0,9 — 1,144972 1,445990 1,236722 1,456574
1,0 — 0,919323 1,448065 0,996875 1,474053
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Die partikulire Losung ¢* wird durch die Gl. (70) angegeben.
Um die Integrationskonstanten zu bestimmen, mufl beachtet werden, dafl
fiir p=0,1 und p=1, #=0 wird. Unter Beriicksichtigung der Gl. (67) und (70)
kann man folgende Beziehungen anschreiben:

1,331058 Pb 0,1
C, ————-————0’1945 +C,0,1945-0,434209 = “ 5 K __0,2673’
1,049054 Pb 1
01W+02 1,1517'0,881113 - —é—"n'__K_ m.
und daraus bestimmt man:
Pb Pb
O, = —0,009273m, C, = —3,67832m.

Beachtet man noch, daf infolge der Gl. (70) gilt:

L?_*_dﬁ* .
- dp T 2xps*K’

P

Pb

so konnen nun auch noch die Biegemomente m, und m, unter Beniitzung der
Gl. (93) berechnet werden. Die Ergebnisse sind in der Tabelle C zusammen-

gefallt, wo auch die Werte der Momente m,, und m,,, sowie m,, und m,, d. h.
Tabelle C

P r/-4—-1; P 4n rl/47r q,1/41r er/E m‘po/4ﬂ
0,1 4,558 0,325 3,325 0,549 3,652 0,608
0,2 1,693 1,023 1,263 1,385 1,389 1,253
0,4 0,310 0,773 0,223 0,937 0,217 0,808
0,6 ~0,262 0,425 -0,282 0,491 -0,322 0,402
0,8 ~0,629 0,124 ~0,635 0,135 -0,682 0,090
0,9 -0,776 ~0,009 ~0,780 ~0,017 ~0,825 ~0,040
1,0 ~0,907 -0,133 ~0,910 -0,156 ~0,953 ~0,158

Tabelle D
6P 6P 6P 6P 6P 6P
P | (o gE | Codaf e | (s as | Coln e | 0 [ e |02 4o
0,1 0,128 0,021 0,107 0,018 0,104 0

0,2 0,070 0,055 0,058 0,046 0,050 0,036
0,4 0,020 0,041 0,014 0,034 0,0085 0,032
0,6 -0,013 0,021 -0,011 0,018 —-0,014 0,020
0,8 —0,035 0,005 -0,029 0,004 -0,030 0,009

[0,9 —0,044 —0,002 —-0,037 —0,0017 ~0,036 0,0044

1,0 —0,053 -0,008 —-0,044 -0,0073 —0,043 0
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fir die beiden Sonderfille der nur kreisringférmig ausgesteiften Platte bzw.
der isotropen Platte konstanter Plattenstirke h aufgefiihrt sind.

Sind einmal die Momente bekannt, kénnen iiber die Gl. (77) die Werte fiir
3’ und J/r und iiber die Gl. (92) die Spannungen ¢, und o, bestimmt werden,
wobei zu beachten ist, daf} fiir die Aussteifungen p =0 anzunehmen ist.

In der Tabelle D werden die Werte fiir die Spannungen in den Punkten A
und B auf dem unteren bzw. oberen Rand der unteren isotropen Platte des
Querschnittes (Fig. 7) und in den Punkten B’= DB auf dem unteren Rand
der Aussteifungen aufgefiihrt.

Tabelle K
p (or)af(or1)a (or)a/(or0)a (09)a/(0p1)a (0p)4/(ag0)a
0,1 0,686 0,0352 0,586 0,0352
0,2 0,839 0,0503 0,742 0,0442
0,4 1,150 0,0780 0,829 0,0502
0,6 0,721 0,0415 0,868 0,0534
0,8 0,842 0,0517 0,937 0,0571
0,9 0,864 0,0538 0,755 0,0512
1,0 0,878 0,0553 0,879 0,0553

In der Tabelle E werden die Spannungen (o,), und (o), in den Punkten A
auf dem unteren Rand fiir den Fall einer radial und kreisringformig ausge-
steiften Platte, in Funktion der Spannungen (o,,)4 und (o,,), fiir die gleichen
Punkte einer nur kreisringformig ausgesteiften Platte und in Funktion der
Spannungen (o,,)4 und (o,,), fiir die gleichen Punkte einer isotropen Platte
mit der konstanten Stdrke A, die sich durch Weglassung der Aussteifungen
ergibt, angegeben.

Aus der Tabelle E ist die groBle Spannungsreduktion ersichtlich, die in
bezug auf die Spannungen in einer isotropen Platte durch die Anwendung
von Aussteifungen erzielt werden kann. Bei Anordnung radialer und kreisring-
formiger Aussteifungen betrigt die Reduktion der Spannungen im Minimum

etwa 929, und bei kreisringformigen Aussteifungen allein im Minimum etwa
909%,.
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Zusammenfassung

Im ersten Teil dieser Arbeit wird die Theorie der kreisformigen orthotropen
Platten mit radialen und kreisringférmigen Aussteifungen dargestellt. Zuerst
werden die Grundgleichungen fiir drehsymmetrische Anordnung der Aus-
steifungen und anschliefend fiir den Sonderfall des Rostes die Grundgleichung
aufgestellt. Aus diesen Grundgleichungen werden auch die Gleichungen von
PrLtGER fiir den Fall einer orthogonal ausgesteiften Platte mit exzentrisch
angeordneten geraden Aussteifungen abgeleitet.

Im zweiten Teil wird die Theorie der orthotropen Platten mit einer Sym-
metrieebene, die durch drehsymmetrische Belastungen beansprucht werden,
dargestellt. Insbesondere wird die zellenférmig orthotrop ausgesteifte Platte
untersucht. Zuerst wird die Grundgleichung aufgestellt und fiir einige Be-
lastungsfille die Losung angegeben. AnschlieBend werden die Beziehungen
fiir die Krafte entwickelt, wobei als Sonderfille diejenigen fiir die orthotrope
Platte mit nur radialen oder nur kreisringférmigen Aussteifungen und fiir die
isotrope Platte abgeleitet werden.

Ein numerisches Beispiel erldutert den Berechnungsgang, wobei noch ein
Vergleich angestellt wird zwischen den resultierenden Momenten und Span-
nungen fiir Platten mit Aussteifungen und fiir isotrope Platten.

Summary

The first part of this paper is devoted to a statement of the theory of ortho-
tropic circular plates provided with stiffeners arranged radially and according
to concentric circles. The fundamental equations relating to the arrangement
of the stiffening members exhibiting a symmetry of revolution are first estab-
lished and finally the special case is reached of a network consisting of crossed
members. From these fundamental equations, the PFLUGER equations relating
to plates stiffened orthogonally with offset rectilinear stiffeners are derived.

The second part deals with the theory of orthotropic plates comprising a
plane of symmetry and subjected to stresses by loads exhibiting a symmetry
of revolution. In particular, plates stiffened by means of an orthotropic cellular
arrangement are considered. Once the fundamental equation has been estab- -
lished, the solutions corresponding to different loading systems are indicated.
The relationships expressing the stresses are finally established, more parti-
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cularly those relating to orthotropic plates, with stiffening members arranged
exclusively either radially or annularly, together with those of isotropic plates.
The calculation procedure is illustrated by a numerical example in connection
with which a comparison is also made of the resultant tensions and moments
in the case of plates provided with stiffeners and also in that of isotropic plates.

Résumé

La premiére partie de cette communication est consacrée a 1’exposé de la
théorie des plaques circulaires orthotropes munies de raidisseurs disposés
radialement et selon des cercles concentriques. On établit d’abord les équations
fondamentales relatives a la disposition des éléments raidisseurs présentant
une symétrie de révolution pour en arriver, finalement, au cas particulier du
réseau constitué par des éléments croisés. De ces équations fondamentales, on
déduit les équations de PFLUGER concernant les plaques raidies orthogonale-
ment avec des raidisseurs rectilignes excentrés.

La seconde partie traite de la théorie des plaques orthotropes comportant
un plan de symétrie et sollicitées par des charges présentant une symétrie de
révolution. On étudie notamment les plaques raidies selon un dispositif cellu-
laire orthotrope. Une fois établie 1’équation fondamentale, on indique les
solutions correspondant & différents systémes de charges. Les relations expri-
mant les efforts sont finalement établies, et plus particuliérement celles rela-
tives aux plaques orthotropes, avec des éléments raidisseurs disposés exclusive-
ment soit dans la direction radiale soit annulairement, ainsi que celles des
plaques isotropes. La marche du calcul est illustrée sur un exemple numérique
& propos duquel, en outre, on procéde & une comparaison des tensions et des
moments résultants dans le cas des plaques munies de raidisseurs et dans ce-
lui des plaques isotropes.
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