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Cracking and Deformability of Reinforced Concreto Beams

La fissuration et la deformabilite des poutres en beton arme

Rißausbildung und Verformung von Stahlbeton-Trägern

JÜLIO FERRY BORGES
Research Engineer, Head, Buildings and Bridges Dept., Laboratörio Nacional

de Engenharia Civil, Lisbon

1. Introduction

The need for completely describing the behaviour of reinforced concreto
elements under increasing loads is generally recognised.

The hypotheses required for this description should be as simple as possible
but they must take the principal parameters into consideration in order to
represent reality sufficiently well. It is also important not to forget their
possible generalisation to analogous problems, particularly to prestressed
concrete.

Cracking, deformation and redistribution of moments being closely inter-
related, they must be studied using the same or at least compatible hypotheses.
This also applies to rupture, which may be considered as the last stage in the
evolution of the behaviour of the structure.

Particular emphasis is laid on non-linear behaviour, due both to Cracking
and to the anelastic deformations of concrete and steel.

Results concerning bi-linear behaviour are used to derive simple design
rules for Computing displacements and for limiting the redistribution of
bending moments in statically indeterminate beams.

The present paper applies a general method and results on the non-linear
analysis of structures that were previously published (1 to 3) as well as results
obtained in two theses recently prepared at the Laboratörio Nacional de
Engenharia Civil (4 and 5).
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2. Cracking

2.1. Position of the Problem

This paper deals only with transverse cracking at the level of reinforcement
in beams. Other problems such as flexural cracking at middle depth of the
web and cracking due to shear forces are not considered. The initial state of
cracking is also disregarded, it being assumed that sufficiently high stresses

are attained for the number of cracks not to increase for increasing loads.
The mean width of cracks is computed simply by assuming that it equals

the product of the mean distance between cracks by the difference between
the mean strains in steel and concrete at the reinforcement level. The way the
problem is dealt with is not basically different from that used by other authors
(6 and 7). The two main differences lie in the explicit consideration of the
influences of the cover on the mean distance between cracks and of the per-
centage of reinforcement on the mean steel strain.

2.2. Mean Distance between Cracks

The mean distance between cracks is considered to be expressed by a linear
function of the cover of the bars and of the ratio between the diameter of the
bars and the percentage of reinforcement.

The need to consider the influence of the thickness of the cover, c, is easy
to understand. In fact, even if perfect bonding between concrete and steel
existed, the mean distance between cracks would not be zero but proportional
to c. In fact, only at a distance from A proportional to c, does the tensile
strain at the face AB, fig. 1, reach the uniform strain considered for both
concrete and steel.

<—dE rHfrP»

Fig. 1.

It is also easy to justify the proportionality of the mean distance between
cracks to the ratio between the diameter of the bars and the percentage of
reinforcement which is equivalent to the ratio of the area of concrete under
tensile stress Bt to the perimeter of the bars p.

In fact, assuming that the bond stress between steel and concrete is only
a function of the length measured along the bars and disregarding the non-
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unifofmity of the state of stress, the distance between cracks results to be

proportional to BJp (6).
A complete analysis of the state of stress by superimposing the two effects

would show that they are additive. The mean distance between cracks, A 1,

is thus given by
A 1 k*c + k2^-. (1)

In the case of a uniform tensile stress the percentage a>0 refers to the total
cross section of the bar. In the case of bending it seems preferable to refer the
percentage d>0 to the total area of the web. If bending is combined with com-
pression, the percentage should be referred to the area of concrete under
tension. The way the percentage a>0 is considered obviously influences the
value of the coefficient k2.

Experimental studies on the similitude of reinforced concrete beams in
which the thickness of cover c was varied in a wide ränge (8), showed that kx

can be taken equal to 1.5.
The factor k2 would also depend on the ratio of the ultimate tensile strength

of the concrete, abt, to the ultimate bond stress, r. For different qualities of
concrete both values vary in the same way so that their influence can be
disregarded. Likewise the influence on k2 of the shape of the surface of the
bars, for the deformed bars currently used, is not as important as it could be
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supposed. In fact the experimental results available (Annex I) lie between the
lines corresponding to &2 0.02 and 0.04, fig. 2.

It must be emphasized that if the influence of the cover were ommitted, a

very weak correlation between A 1 and </>/c50 would be obtained.
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2.3. Mean Steel Strain

The usual reinforced concrete design hypotheses enable a sufficiently accu-
rate determination of the steel stress at a section where a crack exists. Due
to the bond between steel and concrete, stresses vary along the bars and this
Variation has to be considered to compute the mean steel strain.

Tensile tests of bars surrounded by concrete and of beams (9) showed that
the mean steel strain in the bars, la, can be well represented by the simple
expression

where Ea modulus of elasticity of steel,

aa stress in steel in a cracked section,
a>0 percentage of reinforcement referred to the web section.

This expression duly takes into consideration the reduction of the mean
steel strain due to the concrete around the bars. The coefficient k3 depends on
the bond between steel and concrete but, for the usual types of deformed bars,
it can be considered as constant.

Tests performed (4, 9) show that for the usual types of deformed bars the
value of k3 1.5 kg/cm2 can be adopted. For this value of k3 the family of
stress-strain diagrams indicated in fig. 3 is obtained.
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Fig. 3.

2.4. Mean and Maximum Crack Width

As indicated in 2.1, the mean crack width, w, can be computed by

(3)
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where A 1 mean distance between cracks,
ea mean strain in steel,
eh mean strain in concrete.

In general, for practical purposes, the concrete strain can be disregarded in
comparison with that of steel, except when shrinkage is important and the
resulting strains are avoided by a high percentage of reinforcement or external
connections.

Disregarding the concrete strain, the mean crack width can be computed
by combining expressions (1) and (2). The following expression is then obtained

w -i(*-+^ (-"-!)• <*>

The analysis of about 150 tests on beams reinforced with deformed steel
(Annex I) showed that agreement between theoretical and experimental results
is good and considering the percentage co0 referred to the section of the web
and taking:

Ea 2.lx 106 kg/cm2, kt 1.5, k2 0.04 and k3 7.5 kg/cm2

the following expression then results

w
1

2.1 X106 (—1)(--^ (5)

Fig. 4 makes possible to compare the mean crack widths as measured in the
tests and as computed according to expression (5). Since for each beam this
comparison is possible for different values of the steel stress, each beam test
corresponds to several points in fig. 4. As many points lie in area A, not all
of them could be represented.

Table I contains the mean values and the coefficients of Variation of the
ratio of computed to measured crack widths for different ranges of the steel
stress, aa.

Table I. Mean value and coefficient of Variation of the ratio of computed to measured mean
crack widths

Range of steel stress, aa

kg/cm2
Mean value Coefficient of

Variation

2100 <oa< 2700
2700 ^aa< 3250
3250 ^oa< 3750
3750 ^aa< 4000

0.96
1.06
1.10
0.99

0.32
0.31
0.25
0.23

2100 <aa< 4000 1.03 0.32
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The mean value of 1.03 was obtained for all the results considered and no
significant change of the mean values was noticed for increasing values of the
steel stress. The coefficient of Variation decreases from 0.32 to 0.23 as stresses
increase from 2100 to 4000 kg/cm2.

In practice it is usual to limit not the mean but the maximum width of



CRACKING AND DEFORMABILITY OF REINFORCED CONCRETE BEAMS 81

cracks. Consequently it is of interest to analyse the relashionship between
mean and maximum values. For this purpose the coefficient of Variation of
the crack widths measured in the region of constant bending moment was also
computed from the test results available. The values obtained, fig. 5, show
that the coefficient of Variation is pratically independent of the stresses in steel
in the interval 1500—4000 kg/cm2. The coefficients ofVariation are distributed
according to the frequency diagram also presented in fig. 5, their values
ranging from 0.3 to 0.5 in 80% of the cases. The value 0.4 can be taken as the
most representative.

Assuming as maximum a width that is not surpassed in more then 5% of
the cases, and considering the distribution of the crack width to be normal
with the referred coefficient of Variation of 0.4, it results that

^ (1 + 1.65 X 0.4)1* 1.66IÄ. (6)

According to this expression, to maximum crack widths of 0.2 and 0.3 mm
correspond mean values of 0.12 and 0.18 mm, respectively.

A computation of the mean value of the ratio of maximum to mean crack
widths for the test results available yields a value of 1.72, which agrees well
with the precedingly obtained value of 1.66.

2.5. Design Rules

By means of expression (5), simple design rules can be derived which
enable a satisfactory design of beams from the point of view of cracking.

In fact if the values of the cover, c, of the mean crack width, w and the
steel stress, aa, are fixed, it is possible by expression (5) to establish a relation
between the diameter <f> and the percentage of reinforcement w0. For a given
percentage of reinforcement the use of bars-with diameters exceeding the values
supplied by expression (5) will correspond to a mean width of cracks above
the values considered. By taking c 3 cm, w 0.\2 mm and o-a 2400 and
3000 kg/cm2, the relation between cf> and a>0 is expressed by the lines indicated
in fig. 6 and 7.

The results available were also used to supply an experimental confirmation
of the relations thus derived. For the stresses of 2400 and 3000 kg/cm2 indicated
above, the diameters corresponding to a mean crack width of 0.12 mm were
plotted in function of the percentage of reinforcement. The number of results
in these conditions being small, advantage was taken of the similitude
conditions (8) for using the test results in which a mean crack width w different
from 0.12 mm had been obtained. In these cases it was not the diameter <f>

but the diameter </>o 7pn7</> ^na^ was represented.

The ratio ^-j^ nas ^ne meaning of a change of scale. The objection that
can be raised against this procedure is that the same ratio will also apply to
the cover. That is why only ratios between 0.6 and 2.0 were considered.
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The dotted lines representing the mean of the experimental values obtained

agree well with the theoretical lines. As the scatter of the individual results
is considerable, it is advisable for practical purposes to limit the diameters
to values below the thick line also indicated in fig. 6 and 7. It should be noted
that the experimental results which do not satisfy this limit correspond to
tests in which the cover considerably exceeds the usual values.

The relation presented between diameter and percentage of reinforcement
allows the quantification of the well-known rule: the higher the stresses and
the smaller the percentage of reinforcement, the smaller the diameter of the
bars required to avoid excessive cracking.

The design rules presented in the C.E.B. Recommendations (10) are of
this type.



CRACKING AND DEFORMABILITY OF REINFORCED CONCRETE BEAMS 83

3. Deformation

3.1. Position of the Problem

The deformability of reinforced concrete elements is particularly important
both to determine the displacements in Service conditions and to study the
redistribution of moments under ultimate loads.

By conveniently defining moment-curvature diagrams and by integrating
the curvature, it is possible entirely to follow the deformability of beams under
increasing loads. This way of dealing with the problem w^as presented in (1)
to (3). In (4) it was shown that a very good agreement between analytical and
experimental results is obtained.

Schematically three types of behaviour of reinforced concrete elements can
be considered: (I) uncracked stage, (II) cracked stage in the elastic ränge,
and (III) anelastic behaviour.

In order to derive rules to forecast displacements in Service conditions,
only the two first types of behaviour have to be considered. For studying the
redistribution of moments near rupture the last type of behaviour is of para-
mount importance.

3.2. Moment-curvature Diagrams for the Cracked Stage

Moment-curvature diagrams accurately representing the behaviour of the
element during phases (I) and (II) can be obtained from the following simple
hypotheses.

a) The stress-strain diagram for concrete is linear, corresponding to a
modulus of elasticity, Eb.

b) In stage (I) the complete section of concrete is considered and for the
usual percentages of reinforcement the steel section need not be taken in
account.

c) In stage (II) the tensile strength of concrete is disregarded, stresses are
computed assuming that deformed sections remain plane and that the mean
steel strain is obtained from expression (2).

For rectangular sections, these hypotheses enable bi-linear moment-
curvature diagrams to be very easily defined. For representing these diagrams,

Mvalues of m bh2ß are ^a^on as ordinates and values of 9 ea + eö as abscissae.

These values of 9, of sum the mean steel and concrete strains, correspond to a
reduced curvature. In fact, r being the radius of curvature and h the effective
depth of the section, lfr 6Jh.

For phase (I) the relation M (9) is thus expressed by ^-j ^ and, disre-

garding the steel area when Computing the moment of inertia I and assuming
that the total depth is ht= 1.06h, the expression m 9/10 is obtained.
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In phase (II) the relation between m and 9 according to the indicated
hypotheses can be well represented by straight lines depending on EJEb and
on the percentage of reinforcement, d>0.

The bi-linear diagrams thus obtained are presented in fig. 8 to 11. These

diagrams consider the effect of cracking but cannot be used for studying the
anelastic behaviour. In this latter case the yielding of steel and curved
diagrams for concrete have to be considered, (1) to (4).
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3.3. Force-displacement Diagrams

It is well known that displacements can be computed by double integration
of the curvature along the bars. From the moment-curvature diagrams the
corresponding force-displacement diagrams can be easily obtained.

The study of force-displacement diagrams corresponding to the behaviour
of typical cases of cantilever and simply supported beams with concentrated
and distributed loads for different types of bi-linear moment-curvature
diagrams is of particular interest.
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The possible types of bi-linear diagrams can be defined by the position of
their vertices referred to reduced coordinates obtained by dividing the bending
moments and curvatures by their ultimate values. The 10 typical diagrams
indicated in fig. 12 to 15 cover sufficiently well the different possible bi-linear
diagrams.

The force-displacement diagrams corresponding to these 10 typical bi-linear
diagrams are also indicated in fig. 12 to 15. The results obtained show that,
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for bi-linear diagrams with the same area, force-displacement diagrams end
at almost the same point.

It thus seems advisable to introduce the concept of ductility of a non-linear
diagram, measured by § A1/A0 (fig. 16), ratio of the area of the non-linear
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part of the moment curvature diagram to the area of the linear diagram with
the same ultimate bending moment and curvature.

From fig. 12 to 15 it can be seen that the displacements corresponding to
a bi-linear behaviour can be directly obtained from those corresponding to
linear behaviour by multiplication by a correction factor, k, which way be
considered as a function of the ductility factor, 8, only.

S=-=i-

A0

Fig. 16.

Table II
J1UU11U1U1| 1 * L* ^ ii i

d"K1 -4h- -*** d"K3-48 IT A-V 1le l2 e i2
d=K5l2 T

s Ki K2 K3 K4 *<5

0.2 0.80 0.83 0.90 0.96 0.86
0.4 0.61 0.65 0.80 0.92 0.65
0.6 0.43 0.45 0.65 0.88 0.45
0.8 0.27 0.23 0.49 0 84 0.23

Table II indicates the expressions of the displacements in function of the
maximum values of 9 for linear behaviour and the correction factors, k, by
which these displacements have to be multiplied in order to obtain the
displacements corresponding to bi-linear behaviour.

3.4. Design Rules

The foregoing can be directly used to compute displacements in reinforced
concrete beams.

In fact from the diagrams of fig. 8 to 11 it is possible to determine the
reduced curvature, 9, corresponding to a given bending moment. Additionally
the values of the ductility factor, 8, as defined in 3.3, are marked on the lines
that represent the behaviour of the beam in the cracked stage.

The values of 9 and 8 being known, the displacements corresponding to the
bi-linear behaviour considered can be computed from table II, merely by
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multiplying the displacements corresponding to a linear behaviour by the
correction factor, function of the ductility factor.

The modulus of elasticity of the concrete to be used must duly take into
consideration the effect of creep.

If permanent and accidental loads are combined, the equivalent modulus
of elasticity E to be used must suitably account for long term and short term
deformations. It is easy to derive the following expression of the equivalent
modulus of elasticity:

*--±^-, (7)

Ej Ejc

where a ratio of the accidental load applied at age k
to the permanent load applied at age j,

Ej modulus of elasticity at age j,
Ek modulus of elasticity at age k,
cp creep factor for the permanent loading

conditions assumed.

4. Redistribution of Bending Moments

4.1. Position of the Problem

In reinforced concrete the dilemma between elastic and limit designs cannot
be solved without studying the non-linear behaviour of structures.
Deformability under increasing forces has to be accurately followed and the conse-
quent redistribution of bending moments analysed.

4.2. Moment-curvature Diagrams tili Rupture

In a previous paper, moment-curvature diagrams tili rupture for reinforced
concrete beams were computed considering only very general hypotheses (1),
and in (4) it was shown that the agreement between theoretical diagrams thus
obtained and experimental ones is very good.

If the behaviour under the ultimate load is to be studied, the distinction
between the elastic behaviour before and after cracking can be disregarded
and bi-linear diagrams can be used with a first stretch corresponding to elastic
behaviour and a second one corresponding to anelastic behaviour. The error
due to representing by a straight line the two initial phases corresponding to
the uncracked stages is not important because curvature are considerably
more marked in the third than in the two initial phases. That this is in fact
so is exemplified by the moment-curvature diagrams presented in fig. 17 and
18 which correspond to reinforced concrete rectangular sections with steel 40
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(a02 4000 kg/cm2) and concrete B 300 (abu S00 kg/cm2). The moment-curvature

diagrams presented in fig. 17 if reduced to the same ultimate values
become the diagrams presented in fig. 18 a. These correspond to bi-linear
diagrams having the vertices at the positions indicated in fig. 18 b.

The position of the vertices corresponding to different qualities of steel and
percentages of reinforcement (3) are indicated in fig. 19.

In the following two types, A and B, of bi-linear diagrams are considered,
fig. 20 a. Diagram A represents sufficiently well the behaviour of mild steel in

ULTIMATE LOAD

_
12 M2

1.0

09

08

07

12 PLASTIC

/~ DESIGN

BI-LINE
ANALYS

AR
S

\®
®

ELASTIC
DESIGN

@
CD08

0 02 04
b)

HUUHU
P

10 09 08 07 06
REDISTRIBUTION FACTOR, /=>

(c)

PJPM2

Mi + (1-A>)M2

a
Fig. 20.

the usual percentages (d>0<3%) and of steel 40 in percentages co0<l%.
Diagram B is on the safe side for percentages co0<2.5% of steel 40 and can
be considered to correspond to the usual percentages of steel of higher quality.

4.3. Redistribution of Bending Moments

The redistribution of bending moments in built-in and in continuous beams
for different types of bi-linear diagrams was studied in (3). In that paper the
same moment-curvature diagrams were considered for both positive and
negative bending moments and the results of bi-linear analysis were compared
with linear and perfectly plastic design.

For discussing the amount of redistribution of bending moments to be
allowed in the design of beams, it is necessary to compute the ultimate load
that can be reached when the ultimate bending moments vary and are not
distributed according to elastic design assumption.

Let us consider a built-in beam of uniform section with a uniformly
distributed load (fig. 20 a) and let us take for ultimate moments at the middle
and at the built-in sections, Mr and M2, respectively. According to elastic
design M2 2M1.
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A redistribution factor p is defined in such a way that for it, the ultimate
negative moment is equal to p M2 and the ultimate positive moment is equal
to Mx + (1—p) M2. This redistribution is such that, according to the hipotheses
of plastic design, it will not affect the ultimate load. In elastic design conditions
the ultimate load would decrease in proportion to the value of p.

Taking for reference the bi-linear diagrams of the types A and B (fig. 20b),
maintaining the same ultimate value of 9 and varying the ultimate bending
moments as indicated, the ultimate load corresponding to bi-linear analysis
are indicated in fig. 20 c. It is seen that, as p decreases, the ultimate load also
decreases. As could be expected, this reduction is more rapid for diagrams
of type B than for diagrams of type A.

It is to be noticed that, even if ultimate moments were distributed according
to elastic design assumptions, the ultimate load corresponding to bi-linear
design is 97% of that corresponding to both elastic and plastic design. If for
a bi-linear behaviour the ultimate load is not to decrease by more then about
5%, the redistribution factor cannot exceed 0.8 for diagram A and 0.9 for
diagram B.

4.4. Design Rules

Programs now available for the electronic Computer (1) enable a complete
non-linear analysis of plane structures. The use of these programs is not
practical in the usual cases and so it seems convenient to define simple design
rules that indicate for the different conditions the amount of redistribution
of bending moments than can be adopted.

It must be emphasized that it is not illogical to design the sections according
to their ultimate capacity (computed by considering non-linear stress-strain
diagrams for steel and concrete) and to assume that bending moments are
distributed according to the hypothesis of perfect elasticity. In most cases

this corresponds to the best use of the ultimate strength of the sections,
although, as fig. 20 shows, if not too small values of the coefficient of redistribution

are adopted, the ultimate capacity of the structure is not considerably
affected.

Performing a bi-linear analysis for different types of continuous beams in
the same lines as described for the perfect built-in beam with uniform load,
the decrease of ultimate load indicated in fig. 21 is obtained. Limiting the
decrease of the ultimate load to about 5%, as before, the limit values of the
redistribution factors indicated in table III are obtained. The values corresponding
to the diagrams of type A can be used in general in beams reinforced with
mild steel or with a percentage of steel 40 of less than 1%. The values
corresponding to the diagrams of type B must be adopted in beams reinforced with
steel 40 in percentages higher than 1% or, in general, with steel of higher
quality.
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The results presented enable a quantification of the rules on the redistribution

of moments included in C.E.B. Recommendations (8) and in several
other national codes.

5. Conclusions

By only considering the principal variables that influence the phenomena
of cracking, deformation and redistribution of moments and interrelating
them by means of simple and compatible hypotheses, theoretical results were
obtained which agree well with the experimental results available and which
allow to establish simple design rules.
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Summary

The problems of cracking, deformation and redistribution of bending
moments in reinforced concrete beams are treated by means of general and
mutually compatible hypotheses. Theoretical results thus obtained are com-
pared with experimental results available.

Simple design rules are derived for avoiding excessive cracking, for
Computing the displacements in Service and for considering the redistribution of
bending moments due to non-linear behaviour.

Resume

Au moyen d'hypotheses generales et compatibles entre elles on traite les
problemes de la fissuration, de la deformation et de la redistribution des
moments flechissants dans les poutres en beton arme. Les resultats theoriques
ainsi obtenus sont compares avec les resultats experimentaux dont on dispose.

On etablit des regles de calcul simples en vue d'eviter les fissurations
excessives, de calculer les deplacements sous les charges de Service et de
tenir en compte la redistribution des moments flechissants due au comporte-
ment non-lineaire.

Zusammenfassung

Die Probleme der Rißausbildung, Verformung und des Biegemomenten-
ausgleichs von Stahlbetonträgern werden aufgrund allgemeiner und miteinander
verträglicher Bedingungen behandelt. Die so erhaltenen theoretischen Ergebnisse

werden mit den zur Verfügung stehenden Versuchsergebnissen verglichen.
Einfache Konstruktionsregeln werden aufgestellt für die Vermeidung

unzulässiger Rißausbildung, für die Berechnung der Verschiebungen unter
Gebrauchslast und für die Berücksichtigung des Biegemomentenausgleichs infolge
des nichtlinearen Verhaltens.
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