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Zur Berechnung der Schalentragwerke nach der Deformationsmethode
On the Application of the Deformation Method to Shell Analysis

Sur le calcul des coques par la méthode des déformations

AUREL A. BELES MIRCEA SOARE
Professor Dipl.-Ing., Bukarest, Mitglied Dr.-Ing., Bukarest, Mitglied der IVBH
der Akademie der Sozialistischen Repu- und TASS
blik Ruménien, Mitglied der IVBH und
TASS
1. Einleitung

Bekanntlich kann der Spannungs- und Verformungszustand einer beliebigen
Struktur nach drei Methoden bestimmt werden, und zwar nach der Krifte-
methode, der Deformationsmethode und der gemischten Methode.

Im Falle der Schalentragwerke scheint die Anwendung der Krdftemethode
weniger bequem zu sein und ist dem Wissen der Verfasser nach nur von
FINSTERWALDER [6] bei der Berechnung nach der Biegetheorie von Kreis-
zylinderschalendéichern angewendet worden.

Am meisten wird die gemischte Methode verwendet, in welcher alle interes-
sierenden GroBen mit Hilfe von zwei unbekannten Grundfunktionen ausge-
driickt werden, und zwar der Spannungsfunktion F, Airyscher Art und der
normalen Verschiebung (oder Durchbiegung) w.

In der Deformationsmethode sind die unbekannten Grundfunktionen die
Verschiebungen u, v, w in bezug zu verschiedenen Koordinatensystemen1).

Diese Methode wurde in der Fachliteratur weniger beniitzt. Wir mochten
folgende Arbeiten erwidhnen: FLtgar [7] und DiscHINGER [5] fiir die Behand-
lung der Kreiszylinderschalen nach der Biegetheorie; Wrassow [15] fiir die
Kreiszylinder- und Kugelschalen, auch nach der Biegetheorie; NIKIREEW [11]

1) Als eine Ausnahme kann man die Kugelschale erwédhnen, bei welcher Wrassow [15]
als unbekannte Funktionen die Normalverschiebung w, die Volumendehnung 8 und die
Normaldrehung y gewahlt hat.
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fiir das elliptische und Rotationsparaboloid nach der Membrantheorie und
Aass jr. [1] nach der Biegetheorie; HruBan [10] fiir die Translationsschalen
zweiten Grades; BoNGARD [3] und auch GERARD [9] sowie CHETTY und TOTTEN-
HAM [4] fiir das gleichseitige hyperbolische Paraboloid.

Im vorliegenden Beitrag nehmen wir uns vor zu beweisen, dafl im Falle
analytischer Losungen eine enge Verbindung zwischen der gemischten und
der Deformationsmethode besteht, wobei es die letzte in vielen Fillen erlaubt,
die Ergebnisse auf einem einfacheren Wege zu erhalten.

Ebenso werden mit Hilfe dieser Methode einige Besonderheiten der Span-
nungs- und Verformungszustéinde des hyperbolischen und des von geradlinigen
Erzeugenden begrenzten Sattelparaboloids besprochen, welches den Gegen-
stand zahlreicher Studien bildet und gegenwirtig eine breite Anwendung in
der Praxis findet.

In diesem Sinne werden wir von vornherein die Grundgleichungen dar-
stellen, die durch die gemischte Methode bestimmt werden, und nachher geben
wir unter Beniitzung der Deformationsmethode die Grundgleichungen aus-
fithrlicher wieder.

2. Grundgleichungen der gemischten Methode

Die Schalengleichungen kann man in bezug auf verschiedene Koordinaten-
systeme schreiben, von welchen die kartesischen Koordinaten, die Haupt-
kriimmungslinien und die asymptotischen Linien die bequemsten sind.

In der auch im weiteren folgenden angenommenen Hypothese der flachen
Schale konnen die Halbmesser der Hauptkriimmung, bzw. die zweiten Ablei-
tungen der Mittelflachengleichung

2z =2(2,y) (1)

als konstant angenommen werden, was zu erheblichen Vereinfachungen in der
Schreibung der Gleichungen und sogar in der Erhaltung der Losungen fiihrt.
Wenn wir mit
0%z %z 0%z

P — [ J— 2
ox¥ s ox oy’ ! 0 y? (2a)

(2b)

die Hauptkriimmungshalbmesser der Mittelfliche bezeichnen, E, u der Elasti-
zitdtsmodul bzw. die Poissonsche Querzahl, § die Schalenstirke (als konstant
L 83
12 (1—p?)
lassen sich die zwei Grundgleichungen des Problems in bezug auf die Haupt-

angenommen) und K = die Biegefestigkeit der Schale darstellen, so
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kriimmungslinien wie folgt schreiben:

KAdAdw—-A4,F = Z, (3a)
AAF+Es4,w=0. (3b)

Die zwei in (3) vorkommenden Operationen sind entsprechend der Laplace-
sche Operator

o2 o2
4(...) =(556—2+5§é)(...)
und der gemischte Operator zweiter Ordnung
A 02 02
1(. . .) = (tg;z'{-’r'a—?ﬁ)( . .).

Die duBere Belastung kann im Falle der flachen Schalen auf die normale
Komponente reduziert werden.

Die Schnittkrifte N,, N,, N,, =N, , die Momente M,, M,, M, ,=M,,
und die Querkrifte @,, ¢, konnen mit Hilfe von F und w aufgestellt werden,
wobei man die in der Fachliteratur bekannten Beziehungen anwendet (siehe
z.B. [2], [4], [15]).

Bevor wir zur Deformationsmethode schreiten, ist es angebracht zu bemer-
ken, dafl das System (3) vereinfacht in eine einzige Gleichung mit partiellen
Ableitungen 8-ter Ordnung umgewandelt werden kann durch die Einfiihrung
einer neuen Funktion 2:

F=-E54,02, (4a)
w=4A4. (4Db)

Dadurch ist die Gleichung (3b) identisch erfiillt und (3a) wird zu
KAAA4AQ+E84,4,2 = Z. (5)

3. Gleichungen der Deformationsmethode

Wenn man in den Elastizitdtsbeziehungen die spezifischen Verformungen
und Kriimmungen in Abhéngigkeit von u,v,w einsetzt, dann erhilt man die
Ausdriicke der Schnittkrifte, der Momente und der Querkrifte in Abhéngig-
keit von den Verschiebungen.

Die Einfithrung der so erhaltenen Ausdriicke in die drei Gleichgewichts-
bedingungen

ON, 0N,
oN,, oN,
ow T oy T (6%)
0@, 00,

TNx—I—tNy-l‘ o +W Z, (6(3)
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fithrt zu den drei Grundgleichungen der Deformationsmethode:

Pu l—p Pu l4p 2o ow
o2 T2 oy? 2 Bxéy—(r_*_pt)_@—az_o’ (7a)
1+p Ru  Fv 1—wpd®v ow
5 dwoy 3T 2 am CHHTIG, =0 (7b)
ou ov K 5 o, L
—(7'+,ut)—a—;—(t+;ur)@+—b—dzlw+(r +2urt+t )w——ﬁ. (7¢)

Auch in diesem Falle konnen die drei Grundgleichungen auf eine einzige
Gleichung mit partiellen Ableitungen 8-ter Ordnung zurickgefithrt werden
durch die Einfithrung der Deformationsfunktion (2 entsprechend den Be-

ziehungen:
B0

030
u = (’"‘I‘Mt)m‘*‘[@‘*#)’”—t]m, (8a)
3 k02
v = (t+f‘«7”)a—y3+[(2+li)t—7”]m, (8b)
02 0482 0t Q2
w= 8x4+23x28y2+ oyt (8e)

Es ist interessant zu bemerken, daf3 die w-Ausdriicke in den zwei Methoden
— (4Db) und (7c¢) — iibereinstimmen.

Durch Einfithrung der Ausdriicke (8a), (8b) in das System (7) kann man
feststellen, daB3 die ersten zwei Gleichungen identisch erfiillt sind, wihrend
die dritte Gleichung mit (5) iibereinstimmt.

Falls man in den Beziehungen (8a) und (8b) die Operatoren 4 und 4,
explizitiert, so erhdlt man die von HrRuBAN [10] gegebene Formulierung:

?
w = [(14+0) 4,2+ (-1 4],

v =a_8§[(1 +up)d,2+4 (t—r)42],
w=44L.

Fiir die Kreiszylinderschale von Halbmesser R nehmen wir r=0, {=1/R
an; die Gleichungen (7) und die Beziehungen (8) stimmen mit den von
Wrassow [15] in der technischen Theorie aufgestellten Beziehungen iiberein.

Analog finden wir fir r=¢=1/R die von Wrassow [15] erhaltenen Aus-
driicke im Falle einer flachen Kugelschale (die Koordinaten  und y sind in
bezug auf die Mittelfliche angenommen).

Die Ergebnisse der Membrantheorie werden genau so einfach abgeleitet,
indem man die Biegesteifigkeit verschwinden lif3t (K — 0). Hiemit bleiben
die Gleichungen (7a), (7b) unveréindert, wihrend die Gleichung (7c¢) folgende
Form annimmt:
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ou ov. Z
— 2z 2 2 2y = 2
(r+p,t)ax (t+;w)ay+(r +2urt+t3)w D
Die Verschiebungsausdriicke (8) bleiben unverdndert, wiahrend (5) zu einer

Gleichung vierter Ordnung wird
4,4,0 = _E% 9)

Dies ist eine neue Formulierung der Deformationsmethode in der Membran-
annahme, welche von denen, die NIKIREEW [11] und BELES und SOARE [2]
angefiithrt haben, abweicht.

Des weiteren wollen wir annehmen, da der allgemeine Spannungs- und
Verformungszustand angenihert durch die Uberlagerung einiger Randstérun-
gen iiber die Membranergebnisse ausgedriickt werden kann, wobei erstere den
einfachen Randeffekt charakterisieren.

Es sei =z, der Rand, fiir welchen wir die Randstérungen bestimmen
wollen. Der Spannungs- und Verformungszustand wird eine rasche Abklingung
senkrecht zu dieser Randrichtung aufweisen, wihrend von wu,v,w-Verschie-
bungen nur die Normalverschiebung w eine vorherrschende Wichtigkeit haben.
Die tangentialen Verschiebungen konnen gleich Null angenommen werden,
wihrend nur ihre Ableitungen in den Gleichungen (7) beibehalten werden
miissen.

Die Beachtung der oben erwihnten Betrachtungen vereinfacht nach der
Entfernung der rechten Seite die drei Gleichungen (7) wie folgt:

% u ow
par TN Gy =0
l—p v _
2 ox2
ou K dtw

Die obige zweite Gleichung kann entfernt werden, da sie die senkrechte
Verschiebung zur Richtung der Randstérungen bestimmt; aus der ersten
Gleichung erhélt man durch Integration und der Vernachldssigung der Kon-
stanten:
ou
T (r+pt)w.

Indem wir diesen Wert in die vereinfachte dritte Gleichung einfiihren, und
nach der Durchfithrung sdmtlicher Vereinfachungen gleicher Ausdriicke,
erhidlt man zum Schlufl

?*w  ESt?

P GE A

Wir haben auf dem schlichtesten Weg die Gleichung, welche den einfachen
Randeffekt kennzeichnet, wiedergefunden.
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In dem nun folgenden wollen wir die erworbenen Ergebnisse zur Bestim-
mung einiger Eigenheiten des Verhaltens des hyperbolischen Sattelparaboloids
anwenden.

4. Analytischer Integrationsfall der Gleichungen (6)

Der Umstand, daB die Gleichungen mit partiellen Ableitungen (5) kon-
stante Koeffizienten hat und nur Ableitungen gerader Ordnung aufweist, fiihrt
dazu eine Losung mit Hilfe doppelter trigonometrischer Reihen zu erhalten,
die im Falle eines rechteckigen Grundrisses giiltig ist.

Wir nehmen an, daf der Ausdruck der &duBleren Belastung nach einer
doppelten trigonometrischen Reihe entwickelt werden kann

=ZZZmns1nmvrxsmnw5, (10)
m n
worin die Faktoren Z,, ,, fiir jede gegebene Belastung bekannt sind. Ein ana-
loger Ausdruck sei fiir die Verformungsfunktion gegeben
Q(x,y) = 2 2182, ,sinma— smnwg, (11)
i a b
in welcher die Koeffizienten 2, » noch zu bestimmen sind.
Die Randbedingungen, welche von der obigen Losungsart befriedigt wer-

den, erhilt man, indem man alle statischen und elastischen Grofen mit Hilfe
von (11) ausdriickt. Auf diesem Wege erhilt man:

— die Verschiebungen

3 2
U = —W3ZZQm’n{(T+pt)%+[(2+p)7’—t]7;b:2}008 mwgsmnwg
X m n

b’
n3 min| . x Y
v=—7T3§;Qm,n{(t‘*’ﬂvr)ﬁ‘i‘[@+H)t—7‘];2—b“}smm775008"”Bw (12a)
2 2\ 2
w = 77422an(2@2_+%) smmwxsmnwg,
m n T\ b b

— die Scknitﬂcrdﬂe

m?2 A, x . Y
N, =——E8 A Q——W4E322anbz( = +r§2—)smmwasmnng,
m?  n? . x .
N, =—E8——2AIQ=—7T4E’SZZ.Q (—a—2+1~7)—2-)s1nm7rasmnwg—/,

02 mn(,m?  n? (12b)
- = 4 Z o).
N, =N, +E8 yAQ wE’SE EQ b(ta2+rb2)

X
sCcosmmr— COS?’LW——
a

b b
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— die Biege- und Drillmomente

8 (0 829 m2 n22 m2 n2
x Yy
.sinmw—sinnnZ,
a b
020 20 6 m2  n?\2? [n2 m2
M, == KA () = KT 20 (G4 ) ()
. (12¢)
.sinmw— Sln’n'rr—,
a b
M, =M, =+K(1-p) 3?/414.0__1{(1 DEDIECS
m? AR s y
= T cos mCOS N
Fiir x=0 und x =« haben wir
v=w=20, N,=N,=0, M,=M,=0

und analog fiir y=0 und y=>0
u=w=0, N,=N,=0, M,=M,=

Die Randbedingungen zeigen also eine gelenkige Lagerung der Schale an2).

Die Konstanten £,, , lassen sich dadurch bestimmen, dafl man die Aus-
driicke (10) und (11) in (5) einfiihrt. Auf diesem Wege erhiilt man nach der
Durchfithrung samtlicher Vereinfachungen

.Qm,n = IZ{";;Z 774(m2 N Z:) N 121(;2 12) (t—+ l2)2

(13)
7'b2

Wir schreiten nun zur Partikularisierung der Mittelflichenform.

Wenn wir annehmen, da3 die Linge eines Bogens auf der flachen Mittel-
fliche gleich mit seiner Projektion in der x0y-Ebene ist, dann kénnen die
Koordinaten x,y als kartesische angenommen werden, und die Mittelfliche,
fiir welche r,t = konst. ist, wird zu einer mittelpunktslosen Fliche zweiter
Ordnung, und zwar zu einem elliptischen Paraboloid fiir 7¢>0 und einem
hyperbolischen Sattelparaboloid fiir r¢ < 0.

Befassen wir uns mit dem zweiten Fall. Mit den Bezeichnungen von Fig. 1
schreibt sich die Gleichung der Mittelfliche und deren Ableitungen zweiter
Ordnung wie folgt:

2) Allgemeinere Auflagerungsbedingungen kénnen erhalten werden, indem man die
Loésungen in der Form einfacher trigonometrischer Reihen sucht.
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4fy

& =72—x(x—a)——byy(y—b),
0%z  8f %z 8f
Damit wird der Ausdruck (13) zu:
o - Lo 1
m,n ~ K 8 m2 n2\4 768(1— 2) *
T (G ) + asarne (am? = fin?)?

Fig. 1. Geometrische Elemente des hyperbolischen Sattelparaboloids

Zwecks Vereinfachung bezeichnen wir mit

o= g das Seitenverhiltnis,
A= ;1 das Verhiltnis der Pfeile,
2
_ 768 (1— u?)

2
B ({3—2) den Schalenparameter.

77.4

Der Ausdruck (15) erhilt folgende SchluBform:

0o - Zipm,nad 1
mn T o8 (m2+oc2n2)4+,3a4 (mz_)\nZ)z‘

Von den in den Beziehungen (12) angefiihrten Groen werden wir
N, und M, explizite schreiben:

(14a)

(14b)

(15)

(16a)

(16b)

(16¢)

(17)

nur w,
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_ a4 ZZ Zim,n (M2 + a® n?)? : x Y 18
(2T ) 4 B (mi? — 2)2snm7'ras nm, (18a)

_a? L, (M2 + o?n?)2 (m2+pon?) . x y
Mw_;z'zz (m® + a2 0Py § Bat (M2 —AnP) smmwasmnfrb (18Db)

a Zip,n B ot (M2 —An?)n? . x . y
= —f_Z Z (E+ o2 n?)i 4 B ot (m?— A B sinm—sinn - (18¢)
m

Die vorherigen Ergebnisse werden wir fiir die Membrantheorie sowie fiir
den Grenzfall einer Platte mit den Seitenlingen a b partikularisieren.

Damit wir zur Membrantheorie gelangen, geniigt es, die Biegesteifigkeit der
Schale verschwinden zu lassen, also K — 0, und die Schalenstirke als sehr

klein anzunehmen, also B — o0, wobei aber K ,8=§§E’ 3 f3; aus (18) folgt 3)

- m2+oc n?)? x . Y
w 64E8f222 )2 Slnm‘ﬂ;Slnn'ﬂ—b—.

a? o (MB+a2n?)2 (m2+pan?) x .
=__Z Zim,m Boc4(m2—)\n2)2ﬂ smmwasmnwg, (19)

n? . T .
N, Z Z e s1nm7r—s1nnng.
8f2 a b

Der Plattenfall ergibt sich ohne weiteres beim Verschwinden der Kriim-
mungen (r=t=0) oder der Pfeilhdhen (f;=f,=0). In den Beziehungen (18)
nehmen wir =0 an:

x . Y
sinmm—sinnw,
0 = R L L s gsin
a? m,n (M2+po?n?) . x . Y
Mx='772—v Z T o sinmz—sinn, (20)
N,=0

Wir kénnen nun eine wichtige Betrachtung anstellen, die an das Vorhanden-
sein von zwei Systemen geradliniger Erzeugenden in der Mittelfliche gebunden
ist. Die Erzeugenden zweier Systeme bilden untereinander einen Winkel,
dessen Projektion in der x0y-Ebene den Winkel w darstellt, welcher durch
folgende Beziehung gegeben ist:

tg2—+b f

3 fz (21)

3) Der Ausdruck des Biegemomentes folgt aus der Elastizitétsbeziehung M, =
= — K (?w/ox?+ po2w/oy?), obwohl die Momente in den Gleichgewichtsbedingungen
vernachléassigt wurden. Wenn die erhaltenen Ergebnisse klein sind, dann erscheint die
Anwendung der Membranhypothese als gerechtfertigt.
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Es sei nun ein Punkt P, auf der Projektion des Schalenumrisses in der
x0y-Ebene gelegen. Durch diesen Punkt gehen zwei Erzeugende. Wir wollen
nun eine von den Erzeugenden betrachten welche im Punkte P, das zweite
Mal den Umri trifft. Bei der Verfolgung der Erzeugenden dieses zweiten
Systems gelangen wir im Punkte P, wieder auf den UmriB usf.

Beim Nachgehen dieser Bahn konnen zwei Lagen eintreten, und zwar:

a) man kommt niemals zum Ausgangspunkt P, zuriick;
b) nach einer endlichen Anzahl von Zickzack-Wegen gelangt man von neuem
nach B,.

Wir werden im folgenden die Bedingung suchen, damit der oben erwihnte
Fall b) zustande kommt.

Wenn A4, B,C,D die. Ecken des Rechteckes mit den Seiten ab darstellen,
so sieht man sehr leicht aus Fig. 2, dal die Bedingung, von Ausgangspunkt P,
wieder nach P, zuriickzukommen, gleichbedeutend ist mit der Bedingung, von
der Ecke A ausgehend nach der Ecke B oder C zu gelangen.

D Py P, P c

Ps

w, IZ

Fig. 2. Geschlossener Weg der geradlinigen Erzeugenden bei rechteckigem Umrif3

Aus einfachen geometrischen Uberlegungen folgt

w mb .
th = (m,n ganzzahlig). (22)

Durch Vergleichen der Beziehungen (21) und (22) folgt die Bedingung

a=f_m

== (23)
welche nur von dem Verhilinis der Pfeile abhingt.
Die Beziehung (23) ist jedoch mit
m2—An? = 0 (24)

gleichwertig.
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Kehren wir nun zu den Ausdriicken (19) zuriick, welche die Membran-
theorie kennzeichnen, so stellen wir fest, daB fiir diejenigen m,n-Glieder der
dufleren Belastung, welche die Beziehung (24) befriedigen, die w-Durchbie-
gungen und die Schnittkréifte unendlich grol werden.

Dies bedeutet vom physikalischen Standpunkt aus, dal fiir die Annahme
der gelenkigen Lagerung und fiir die entsprechenden m,n-Glieder die Schale
nicht als eine Membran wirkt und da8 die Ubernahme der #uBeren Belastung
durch einen Biegungszustand iibernommen werden muf.

Tatsichlich, wenn wir in den Ausdriicken (18) die Beziehung (24) beriick-
sichtigen, kommen wir wieder zu den Ausdriicken (20) zuriick. Mit anderen
Worten verschwindet der giinstige Kriimmungseffekt und fiir die m, n-Glieder,
welche die Beziehung (24) befriedigen, verhilt sich das hyperbolische Sattel-
paraboloid wie eine Platte mit den Seitenldngen ab.

Mit derselben Methode der doppelten trigonometrischen Reihen haben
FrteoE und CoNRAD [8], in einer kurzen Anmerkung, das durch eine mittige
Einzellast angegriffene hyperbolische Paraboloid studiert.

Die geometrischen Elemente sind so gewidhlt worden, damit die Kriim-
mungen gleich, aber entgegengesetzt sind. Bei der Beniitzung von nur drei
Reihengliedern gelangen sie zu dem SchluBl, dafl die Steifigkeit des hyper-
bolischen Paraboloids angenshert gleich einer Platte ist.

Dieses Ergebnis kann dadurch erklirt werden, dafl der von ihnen unter-
suchte Fall gerade dem oben erwidhnten Sonderfall entspricht; dies Ergebnis
ist nicht allgemeiner Art.

Als allgemeine Bemerkung kénnen wir erwéhnen, daBl beim Nichtvorhan-
densein einer elektronischen Rechenmaschine die Methode der doppelten
trigonometrischen Reihen fiir zahlenméaBige Berechnungen nicht bequem ist.
Die Beriicksichtigung einer kleinen Gliederanzahl ist absolut ungentigend
wegen der schwachen Reihenkonvergenz, auch im Falle verteilter Lasten

(2], [13].

5. Durch geradlinige Erzeugende begrenztes hyperbolisches Paraboloid

Ahnlich des von Wrassow [15] in bezug auf die Hauptkriimmungslinien
aufgestellten Systems (7) kann folgendes Gleichungssystem abgeleitet werden
mit Bezug auf die asymptotischen Linien [4]:

Pu 1—p Pu l4+p v ow
—(1— _— = 25
G2 T2 st 2 may LTS, =0 (25a)
1+p Pu  Rv 1—pd®v ow
—(l=p)s—= = 2
2 oxody E)y2+ 2 ox? (1 ‘U“)sax 0. (25b)

0
—(1—M)ség—(l—p)s—a——v+£AAw+2(l—p,)szw =

2T D (25¢)

SR
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Fir flache Schalen kénnen die «, y-Koordinaten desgleichen als kartesisch
angesehen werden, wihrend die Verwindung s konstant ist.
Die Mittelfliche ist das gleichseitige hyperbolische Paraboloid

z=sxY,

worin § dimensional einen Lingenkehrwert darstellt.

RE1ssNER [12] hat folgenden merkwiirdigen Fall erwahnt, bei welchem die
Ergebnisse der Membrantheorie streng mit denjenigen der Biegetheorie iiber-
einstimmen, und zwar das am UmriBl gelenkige hyperbolische Paraboloid,
welches mit einer gleichformig verteilten Last in der x0y-Ebene belastet ist;
dies Paraboloid weist keine Durchbiegungen auf, wiahrend in der Schale nur
Schubkrifte in parallelen Richtungen zu den Koordinatenachsen auftreten.

Fir die obige Belastung hat SoArE [14] bewiesen, dal dieses Ergebnis
auch in dem Falle der Schalenrandeinspannung giiltig ist.

Wir nehmen uns des weiteren vor, die allgemeine Belastung zu finden, fiir
welche die Membran- und Biegetheorie zu gleichen Ergebnissen fiihren.

Wir nehmen nach REissNEr [12] an, daB w=0 die Losung des Problems
darstellt. Daraus folgt, dafl die Momente und die Querkréfte iiber die ganze
Schale verschwinden. Eine zweite Auflagerungsbedingung betreffs des Platten-
effektes bleibt beliebig.

Damit vereinfacht sich das System (25) wie folgt:

Pu 1—p Pu 14p R

ox? 2 oy? 2 6x8y=0’ (26a)

1+p Pu 0% v 1-—,1,52’0_

5 dzdy ot 2 s (26b)
ou 0v Z
= = 26
bx "oy - T3D(1=p)s (26¢)

Durch sukzessive Ausscheidung der tangentialen u- und v-Verschiebungen
zwischen den Gleichungen (26) folgt die Bedingung

447 =0, (27)

die besagt, daB der Ausdruck der normalen Belastung eine biharmonische
Funktion ist. Der Fall einer gleichmiBig verteilten Last ist augenscheinlich
ein Sonderfall der Beziehung (27).

Aus den Rechnungen folgt, dal auch die w,wv-Verschiebungen dieselbe
biharmonische Gleichung befriedigen.

Beachtet man, daf die Schubspannung in Abhéingigkeit der Verschiebungs-
funktion mit Hilfe der Beziehung

N, =N, = D—l—‘—‘i(——+—x—zsw)
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ausgedriickt wird und fiithrt man in der rechten Seite das erste Glied der
Gleichung (26¢) ein, so folgt
Z

ny:Nyx:_—éTS'_.

Wir haben so das Ergebnis der Membrantheorie wiedergefunden. Andere
Belastungsfalle sind in der Monographie von BELES und SOARE [2] angegeben.

Die Ableitung der normalen Krifte geschieht am einfachsten mit Hilfe
der Gleichgewichtsbedingungen (6a), (6b), wihrend die Bestimmung der Inte-
gralfunktionen aus den Randbedingungen folgt.
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Zusammenfassung

Es wird bewiesen, daf8 im Falle analytischer Losungen eine enge Verbin-
dung zwischen der gemischten und der Deformationsmethode besteht, wobei
die letztere in vielen Fillen erlaubt, die Ergebnisse auf einfacherem Wege zu
erhalten.

Desgleichen werden einige Besonderheiten der Spannungs- und Verfor-
mungszustéinde des hyperbolischen und des von geradlinigen Erzeugenden
begrenzten Sattelparaboloids besprochen.

Summary

A close relationship is shown to subsist, in the case of analytical solutions,
between the mixed method and the deformation method, but the latter makes
it possible in many cases, to obtain the results in a simpler manner.

Some peculiarities of the state of stress and strain of the saddle hypar and
of the hypar bounded by asymptotic lines are then examined.

Résumé

Les auteurs montrent que, dans le cas des solutions analytiques, il y a des
relations étroites entre la méthode mixte et la méthode des déformations;
cette derniére permet toutefois en maints cas d’obtenir les résultats d’une
maniére plus simple.

On explique certaines particularités de 1’état de contraintes et de défor-
mations du paraboloide hyperbolique en forme de selle et du paraboloide
hyperbolique délimité par des lignes asymptotiques.
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