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Beitrag zur Stabilitätsuntersuchung von Stabwerken mit Iniperfektionen

On the Stability of Structures Composed of Struts with Imperfections

Sur la stabilite des systemes dont les barres presentent des imperfections

H. BEER
Technische Hochschule Graz

A. Einleitung

Die Stabilitätsuntersuchung von planmäßig zentrisch gedrückten Stäben
mit baupraktisch unvermeidbaren Fehlerhebeln als Gleichgewichtsproblem
wurde erstmalig von Th. von Karmän [1] theoretisch behandelt. M. Ros und
Brunner [2] haben dann auf Grund eines Näherungsverfahrens Kurventafeln
aufgestellt, die mit der Exzentrizität als Parameter die Traglast des Gelenk -
Stabes in Funktion der Schlankheit ergeben. E. Chwalla [3] behandelt
eingehend die Theorie des elastisch nachgiebig eingespannten Stabes im
elastischplastischen Bereich, wobei er ein beliebiges Spannungs-Dehnungs-Gesetz für
das Material zugrunde legt. Er ermittelt für bestimmte Exzentrizitäten als
Parameter die Grenzschlankheiten in Funktion der StaM-usbiegungen, bei
denen ein Gleichgewicht gerade noch möglich ist, und erhält, wenn man als
weitere Parameter den Einspanngrad c und die Grundspannung um annimmt,
eine Familie von Kurvenscharen, die für den Rechteckquerschnitt das
Problem der Tragkraft des Stabes umschreibt. F. Stüssi [4] betrachtet den
Gelenkstab und wendet für die Ermittlung der Ausbiegungslinie y in jedem Punkt
aus der Stabkrümmung tf — die er für angenommene Dehnungsdiagramme
ermittelt — die Seilpolygongleichung an. Stüssi gelangt mit Hilfe schrittweiser

Annäherung zur Grenzschlankheit, wobei auch Eigenspannungen im
Stab berücksichtigt werden.

Ein allgemeines Verfahren zur Ermittlung der Traglast des gelenkig
gelagerten Stabes mit Imperfektionen geometrischer und struktureller Natur
(Eigenspannungen, Streckgrenzenstreuung) entwickelt M. Marincek [5].
Durch Einführung des Korrektionsfaktors K läßt sich die Differentialgleichung
der Stabkrümmung auf nichtlineare Verhältnisse anwenden und der Einfluß
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aus den Imperfektionen berücksichtigen. Marincek geht in seiner Ableitung
des Korrektionsfaktors vom idealisierten Spannungs-Dehnungs-Gesetz des

Baustahls aus und begründet diese Annahme damit, daß der eigenspannungsfreie

Stab diesem Gesetz mit guter Näherung folgt. G. Wästlund und S. G.

Bergström [6] bringen interessante Vergleiche der Traglast bei Annahme
verschiedener Spannungs-Dehnungs-Diagramme. Schließlich behandelt K.
Klöppel [7] in Theorie und Versuch die Traglast eines exzentrisch gedrückten

I-Profils.
Bisher fehlt aber eine systematische Behandlung der Traglastermittlung

von Stabwerken mit Imperfektionen als Gleichgewichtsproblem, wobei ein
beliebiges Spannungs-Dehnungs-Diagramm und sowohl geometrische als auch
strukturelle Imperfektionen zugrunde zu legen sind. Der Verfasser setzt sich
in dieser und in weiter folgenden Arbeiten, die er zur Zeit gemeinsam mit
G. Schulz durchführt, das Ziel, die Grundlagen für diese Traglastberechnung
zu entwickeln, wobei es sich zunächst nicht um die Aufstellung einer
Berechnungsmethode, sondern um die Gewinnung grundsätzlicher Erkenntnisse über
das Verhalten des gedrückten Einzelstabes im Verband mit anderen Stäben
und die Grenzbelastung des Gesamtsystems handelt. In der vorliegenden
Arbeit wird als Grundfall ein Mehrstabknoten (Fig. 1) behandelt, wobei die
Stäbe als nachgiebig eingespannt betrachtet werden. Hierbei ist es grundsätzlich

gleichgültig, ob diese Einspannung proportional den Reaktionen ist oder

Fig. 1. Mehrstabknoten. Fig. 2. System mit zwei Mehrstabknoten.

einem beliebigen anderen Gesetz folgt. In der ersten Phase der Berechnung
wird angenommen, daß der Knoten unverschieblich, aber frei verdrehbar ist.
Die Erweiterung soll sich dann auf den frei verschieblichen Knoten und auf
ein System mit zwei Mehrstabknoten erstrecken, bei dem diese beiden Knoten
durch einen Verbindungsstab zur gemeinsamen Wirkung gelangen (Fig. 2),
um so die Grundelemente für die Behandlung von Stabwerken zu schaffen.
Erst wenn diese Fragen prinzipiell geklärt sind, kann ein Bemessungsverfahren
entwickelt werden, für das geeignete Unterlagen in Form von Familien von
Kurvenscharen für die gebräuchlichen Querschnittsformen und unter Annahme
bestimmter Imperfektionen ausgearbeitet werden müssen. Da hierfür
elektronische Rechenanlagen zur Verfügung stehen, ist dieses Ziel in reale Nähe
gerückt.
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B. Ermittlung der Traglast des Mehrstabknotens

Im weiteren Verlauf sollen ebene Stabwerke betrachtet werden, bei denen
die Ausweichform in der Systemebene liegt. Für die Ermittlung der
Formänderungen setzen wir das Ebenbleiben der Querschnitte, aber nur für die
äußere Belastung, voraus und treffen die Annahme, daß die Stabkrümmung p
genügend genau durch die zweite Ableitung der Biegelinienordinaten rj
ausgedrückt werden kann. Wir legen ein beliebiges Spannungs-Dehnungs-Gesetz
für das Material zugrunde, das sowohl über den Querschnitt als auch über die
Stablänge veränderlich sein kann. Damit sind wir auch in der Lage, beliebige
Verbundquerschnitte zu behandeln. Wir betrachten geometrische und
strukturelle Imperfektionen sowie Querlasten. Als geometrische Imperfektionen
werden eine Exzentrizität des Kraftangriffes im Knoten und eine Säbelkrümmung

der Stäbe sowie Abweichungen der Querschnitte von den Sollmaßen
angenommen, während die strukturelle Imperfektion sich aus den
Eigenspannungen aus dem Schweiß- und Walzprozeß ergibt. Die Querlasten bestehen

aus Einflüssen, welche im allgemeinen bei Stabilitätsuntersuchungen
rechnerisch nicht besonders erfaßt werden, wie z.B. Eigengewicht für nicht
lotrecht stehende Stäbe und Windbelastung auf die Stäbe selbst.

Zusammenfassend soll es sich bei allen Einflüssen um Imperfektionen
handeln, d.h. um Abweichungen des Ausführungsfalles, von dem der ideellen
Stabilitätsberechnung zugrunde gelegten System. Systeme mit planmäßigen
Querlasten, deren Versagen durch überwiegendes Biegefließen erfolgt, sollen
hier nicht betrachtet werden, vielmehr soll geradezu als Charakteristikum
gelten, daß die Steigerung der Normalkräfte zum Versagen führt.

Zunächst betrachten wir die einzelnen Stäbe aus dem Verband gelöst, aber
mit der Auflage, daß für die jeweilig betrachteten Laststufen die
Randbedingungen sowohl an der Einspannstelle als auch am Knoten während des

ganzen Berechnungsganges erfüllt sind.
Wir beachten, daß auch bei konstant gehaltener Normalkraft das

Superpositionsgesetz nicht gilt und daß daher immer bei der Betrachtung vom
Endzustand ausgegangen werden muß. Da dieser nicht von vorneherein bekannt
ist, muß der Weg einer schrittweisen Näherung gegangen werden. Der Einzelstab

mit geometrischen und strukturellen Imperfektionen steht demnach unter
dem Einfluß einer Normalkraft und einer Querlast sowie von Randmomenten
aus der nachgiebigen Einspannung an der Auflagerstelle und am Knoten (siehe
Fig. 10). Die Normalkräfte werden zunächst nach der Theorie 1. Ordnung
ermittelt, was aber keine Einschränkung bedeutet, da die Verbesserung nach
der Theorie 2. Ordnung unter Berücksichtigung aller Imperfektionen nach
jeder abgeschlossenen Iteration erfolgen kann.

Wir gehen von den zwei Grunddiagrammen von Stüssi P f(rj") und
P f(y) aus (Fig. 3), die wir für ein beliebiges Spannungs-Dehnungs-Diagramm
des Materials (Fig. 4) ermitteln. Da wir Eigenspannungen voraussetzen, be-
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steht die Dehnungsverteilung über den Querschnitt aus einem linearen Anteil,
der aus der Belastung herrührt und einem nichtlinearen Anteil infolge der
vorhandenen Eigenspannungen. Die Veränderung der Neigung zur Bestimmung

der Grunddiagramme erfolgt jedoch nur für den linearen Anteil.

ip
fp-^

£,- « 1,147

0,8

xr
0,6

\r-y
0,4

0/>

0 -
y

J
0 0,25 0,5

1 1

0,75 1,0 125 1,5"

y %

4,0 5,0 6,0 t\

Fig. 3. Grunddiagramm P /(i/') und P f (y) für die Dehnung €* 1,147 am inneren
Querschnittsrand.

F

Fig. 4. Spannungs-Dehnungs-Diagramm
eines beliebigen Materials.

Um die einzelnen Punkte der Lastverformungskurve zu bekommen, kann
man für ein angenommenes Ml das zugehörige Mr schätzen und mit Hilfe der
«w »-Gewichte nach Müller-Breslau die Biegelinie rechnen und die Iteration
bei konstant gehaltenem Ml so lange fortsetzen, bis die Biegelinie mit der vorher

erhaltenen übereinstimmt und die Verträglichkeitsbedingungen an der
Einspannstelle erfüllt sind (Fig. 5). Läßt man nun Mx ansteigen, so nehmen
die Formänderungen progressiv zu bis der Scheitel der Kurve erreicht ist.

Mit Hilfe dieses Verfahrens erhält man jedoch nur über die variable
Stablänge bzw. Schlankheit den absteigenden Ast dieser Kurve, was im vorliegenden

Fall einen großen Umweg bedeuten würde. Außerdem zeigte die
Zahlenrechnung auch für den aufsteigenden Ast eine schlechte Konvergenz, da das
Erfüllen von Randbedingungen durch Iteration ungünstig ist und daher zu
langen Rechenzeiten auf der elektronischen Rechenanlage führt.
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Fig. 5. Darstellung des Verlaufes der Iteration zur Erfüllung der Verträglichkeitsbedin¬
gungen an den Einspannstellen.
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Fig. 6. Grunddiagramme P f (TJ) und P f (M) für die Dehnung e* 1,147 am inneren
Querschnittsrand.

Für unseren Fall ist es notwendig, das Tragverhalten des Systems auch
nach Überschreiten der maximalen Momentenaufnahmefähigkeit für den
Einzelstab zu verfolgen, da dieses Verhalten für die Beurteilung der Tragsicherheit
des Stabwerkes bekannt sein muß. Es wurde daher ein neuer Weg zur Ermittlung

der Last-Formänderungsverhältnisse beschritten. Zunächst mußten hierfür

die Grunddiagramme anders aufgebaut werden. Mit TJ als Biegesteifigkeit
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und M als Exzentrizitätsmoment werden die beiden Diagramme P f(TJ)
und P f(M) (Fig. 6) ermittelt und als Ausgangspunkt für die weitere Iteration

benützt. Wir nehmen hierzu wiederum nach Stüssi einen linearen
Dehnungsverlauf über den Querschnitt an, der einem noch nicht bekannten
Normalkraftsanteil entspricht und überlagern diesen Dehnungsanteil mit den

Dehnungen aus den Eigenspannungen. Sodann berechnen wir mit Hilfe des

Spannungs-Dehnungs-Diagrammes des Materials die zu diesen Gesamtdehnungen

zugehörigen Spannungswerte sowie den Verformungsmodul T (Fig. 7).

+ Druckspg
- Zugspg

*%Ji

Fig. 7. Verlauf der Spannung a und des Verformungsmoduls T über den Stabquerschnitt
infolge äußerer Belastung und Eigenspannungen.

Der weitere Rechnungsgang besteht nun in der Rückrechnung der angreifenden

Druckkräfte und der Exzentrizität aus den Gleichgewichtsbedingungen
und die Bildung von M Py sowie in der Bestimmung der Biegesteifigkeit T J
für T (y) aus dem a-T-Diagramm durch numerische Integration.

Für die Ermittlung des Last-Verformungsdiagrammes betrachten wir den
druckbelasteten Stab mit den vorhandenen statischen und geometrischen
Randbedingungen und den geometrischen Imperfektionen sowie der Querlast.
Die Iteration geht nun folgendermaßen vor sich: für eine angenommene
Normalkraft und vorgegebene Stabendverdrehung am Knoten werden die
endgültige Form der Biegelinie und die Stabendmomente gesucht. Hierbei
beginnt man die Iteration mit geschätzten Biegemomenten MT und Mr an den
Stabenden und einer geschätzten Biegelinie und rechnet mit Hilfe der «w»-
Gewichte eine neue Biegelinie. Der Zusammenhang zwischen den Querschnitts -

momenten und den Biegesteifigkeiten {TJ) wird durch das TJ-M-Diagramm
hergestellt, das durch Auswertung der Familie der Grunddiagramme mit der

angenommenen Normalkraft erhalten wird. Nach diesem ersten Schritt sind
sowohl die Randbedingungen noch nicht erfüllt als auch die erhaltene Biegelinie

mit den zugehörigen TJ-Werten noch nicht endgültig.
Um nun den Iterationsgang zu beschleunigen und gleichzeitig bei jedem

Sehritt die Randbedingungen zu erfüllen, wird die verzerrte Momentenbelastung

in vier Teile aufgespalten (Fig. 8), von denen drei Teile, nämlich
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der Momentenanteil aus der Normalkraft zufolge Exzentrizität und
Säbelkrümmung, aus der Querlast und aus den Ordinaten der im ersten Schritt
verbesserten Biegelinie konstant gehalten werden, während für den vierten
Anteil die Stabendmomente Mt bzw. Mr als Unbekannte X1 und (Xx — 10X2)
aufgefaßt werden. Als dritte Unbekannte X3 wird die Verdrehung <pr des
nachgiebig eingespannten Stabendes gewählt. Diese drei Unbekannten werden bei
konstant gehaltenen TJ-Werten aus zwei Gleichgewichtsbedingungen und der
Verträglichkeitsbedingung am rechten Stabende bestimmt.

N(e + ->7S)

TJ \ xrMiXtei

TIC.*

X2

I-^> xi- ^x t-

I x3-cr*

IOX2= Mr

T fICr* ICL-CL* 9L-CL*

Gleichungen: SV =0 SM =0 X3
kr

Fig. 8. Zerlegung der verzerrten Momentenbelastung und Aufstellung des Gleichungs-
systems zur Erfüllung der Randbedingungen im Rahmen der Iteration.

Fig. 9. Last-Verformungskurve
für ein beliebiges System.

Mit den so erhaltenen Stabendmomenten und den unverändert belassenen
drei Anteilen der verzerrten Momentenbelastungen wird eine neue Biegelinie
mit den TJ-Werten des ersten Iterationsschrittes berechnet und der gesamte
Rechnungsgang so lange wiederholt, bis Ml und Mr sich im Rahmen der
festgesetzten Rechengenauigkeit nicht mehr ändern. Da die endgültige TJ-Verteilung

über die Stablänge nun bekannt ist, kann man auch verfolgen, bei
welcher Laststufe und an welchen Stellen sich plastische Gelenke ausbilden,
was für die Beurteilung der Mitwirkung des Stabes im Gesamtsystem von
ausschlaggebender Bedeutung ist.
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Betrachten wir nun das Stabsystem (s. Fig. 1). Die Traglast für dieses

System wird dann erschöpft sein, wenn den angreifenden Lasten nur eine

Knotendrehung zugeordnet ist, bei der ein Knotengleichgewicht möglich ist.
Diese Laststufe entspricht dem Scheitel der Lastverformungskurve (Fig. 9).
Zu ihrer Bestimmung ermitteln wir zuerst die Lastverformungskurven M / (cpa)

der Einzelstäbe und rechnen uns den Knotendrehwinkel für jede Laststufe
aus der Bildung des Verdrehungsgleichgewichtes. Die damit erhaltene
Lastverformungskurve für das System weist einen Scheitelpunkt auf, der die Traglast

praktisch begrenzt, wenn auch bei absinkender Last noch ein
Gleichgewicht zwischen äußerem und innerem Moment möglich ist.

Wir haben bisher stillschweigend vorausgesetzt, daß in keinem Querschnitt
eine Spannungsumkehr eintritt, so daß es zu Entlastungen — die bei beliebigem

Material der Entlastungskurve des o~-e-Diagrammes folgen — kommt.
Wenn auch eine solche Spannungsumkehr im allgemeinen nur eine geringe
Rolle spielt, so wäre es dennoch möglich, diese Tatsache zu berücksichtigen,
wobei der den Grunddiagrammen entnommene TJ-Wert entsprechend zu
korrigieren ist. Diese Korrektur könnte für die voraussichtlich maßgebenden
TJ-Werte entsprechend dem Grad der Plastizierung des Querschnittes durch
neuerliche Integration erfolgen. Die Zunahme des TJ-Wertes bei steigender
Last unter Zugrundelegung des Spannungs-Dehnungs-Diagrammes für die
Belastung ist jedoch allein noch kein Kriterium dafür, daß eine Entlastung
eingetreten ist, da diese namentlich bei entsprechender Eigenspannungsver-
teilung auch in einzelnen Teilen des Querschnittes auftreten kann, während
andere Teile eine weitere Laststeigerung erfahren.

C. Anwendung

Der Untersuchung liegt ein Dreistabknoten zugrunde (Fig. 10), wobei für
die Stäbe Rechteckquerschnitte angenommen wurden und — wie bereits
eingangs ausgeführt — ein Ausweichen aus der Systemebene verhindert wird. Die
Anwendung des Verfahrens auf andere einfach-symmetrische Querschnittsformen

ist jedoch ohne weiteres möglich. Die angenommenen Maße,
Imperfektionen und Querlasten sind in der Tabelle I angegeben. In Fig. 10 ist auch
die Belastung des Systems eingetragen, die als Ausgangswert der Laststufe

Tabelle I
Stab l (cm) h (cm) b (cm) e (cm) Vs (cm)

Stabmitte q (t/cm)

I
II

III

600
400
500

30
22
26

4,2
3,2
3,6

1,8
1,2
1,5

1,2
0,8
1,0

3,3-10-3
1,5-10-3
2,4-10-3
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Einzelstab:

P 250
y 4

M 286

o( 20 15

7e

^L "

Stabquerschnitt:

r j.
Kd=27l04

Kb=4l.l04tcm

F=bh

Fig. 10. Der untersuchte Dreistabknoten mit den der Laststufe v=l entsprechenden
Belastungen und der aus dem System gelöste Einzelstab.

<r *
H aF

0,8

0.6

0.4

0.2

7?. e

0.2 0.4 0.6 0.8 u0,2 0.4 0.6 0,8 IP T

Fig. 11. Angenommenes a-c-Diagramm und zugehöriger Verformungsmodul T.

v=l entspricht. Für die weitere Rechnung erweist es sich als zweckmäßig,
alle Systemmaße sowie die Kraft und Verformungsgrößen auf Festwerte zu
beziehen. Es bedeuten demnach:

—, N

M 100 M
FaFh' »-!• TJ

N
FoF'
TJ
EJ'

Wir legen das in Fig. 11 dargestellte Spannungs-Dehnungs-Diagramm zugrunde,
das wir in die folgenden Teilabschnitte zerlegen:
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ä<5p 0,8 1

_
e <€p 0,385 j

ap<a<aF 1,0 | 02348e2+l,41666ä+0,8276ä2-l,8862e-l,5928a+1 0.
€p<€ <€F 1,0 J

Aus diesem Spannungs-Dehnungs-Diagramm folgen durch Ausführung der
J — /TT

Differentiation -7— die Werte des Verformungsmoduls T=r=. Sie sind inde ö E
Fig. 11 eingetragen. Wir nehmen für die Rechnung die in Fig. 12 dargestellte
Eigenspannungsverteilung an, die im inneren Gleichgewicht ist. Die
Spannungsverteilungen über den Querschnitt sind für ein konstant gehaltenes et
für verschiedene ea, die der Variation der äußeren Belastung entsprechen, in
Fig. 13 eingetragen. Die aus diesem Diagramm gewonnenen N und M und die
durch die numerische Integration erhaltenen Werte TJ bilden die Komponenten,

aus denen sich die Grunddiagramme zusammensetzen. Dieser Vorgang
ist für verschiedene Annahmen von li solange zu wiederholen, bis die
vollständige Plastizierung des Querschnittes eintritt (TJ 0). In Fig. 14 sind für
charakteristische Annahmen von e{ die erhaltenen N f(M) und N f(TJ)
Diagramme eingetragen. Dem elastischen Grenzwert TJ=l, l~0,385
entspricht die Gerade N f(Mel), während dem plastischen Grenzwert TJ 0 die
Kurve N f(Mpl) zugeordnet ist. Die Kurven e^ 0,647 entsprechen einer

r^ 6 + Druck
- Zugo o

0,225 h'0,275hSSrt cvi -

•B + Druckspg

- Zugspg.

J J L
N =0,13

N 0.34
y 0,26

N 0,63
y=0,05

N=0,87
y 0

Fig. 12. Angenommener Verlauf der
Eigenspannungen über den Stabquerschnitt.

El - 0,647

N 0,1 2

N 0,83
y 0,08

N 0,94
0,03

N

y =0
£i=2,5

Fig. 13. Spannungsverteilung über den Querschnitt für e$ 0,647 konst. und ei 2,5 ¦

konst. bei variierter äußerer Belastung.
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T F^f

^0,8 X M{£, 2.5)

0,6
Mpl(TJ 0)

TJ(e,=2,5)
6, =0.385)MeL (TJ -1

M (£, =0,647) TJ(£, =0,647)

\X
^-. TJ

0,2 0,3 0,4 0.5 0.6 0.7 0,8

I7.52,5 12,5

Fig. 14. Grunddiagramme N f{TJ) und N f(M) für e* 0,647 bzw. e* 2,5.

Randspannung öi 0,967, also knapp unter der Fließgrenze, während die Kurven

6^ 2,5 mit äi l eine bereits weitgehend fortgeschrittene Plastizierung
anzeigen (s. Fig. 13).

Man erkennt aus der Kurve N f(TJ) für e^ 0,647, daß bei geringen
Exzentrizitäten, die im Diagramm den Werten N nahe an 1 entsprechen, eine
starke Plastizierung am inneren und äußeren Rand eintritt, die bis zum Wert
^V 0,65 anhält, wobei schon vorher die Werte an der äußeren Randfaser wieder

an die Proportionalitätsgrenze absinken. Mit abnehmendem N und
zunehmender Exzentrizität, die einem Anwachsen von M entspricht, wird der äußere
Querschnittsbereich zunehmend entlastet, was ein nur sehr schwaches Ansteigen

der TJ-Werte zur Folge hat. Für «^ 2,5 und N nahe an 1 hingegen
erfolgt die Plastizierung vom inneren Rand her, da der äußere Rand durch
relativ große zugehörige Momente M entlastet wird. Die Umkehr des Anstieges
der T J-Werte erfolgt etwa bei jV 0,63, weil die Zugspannungen am äußeren
Rand in diesem Stadium bereits die Proportionalitätsgrenze überschreiten.
Da diese Zugspannungen weiter ansteigen, findet nun eine rasche Plastizierung
von beiden Seiten statt.

Zur Durchführung der Iteration ist es notwendig, die den Normalkräften
der einzelnen Laststufen entsprechenden M f (T J)-Diagramme aus der
Familie der Grunddiagramme zu ermitteln. In Fig. 15 sind diese Diagramme
für alle untersuchten Laststufen für den Stab II eingetragen. Man erkennt
deutlich für niedrige Laststufen den vorstehend beschriebenen Vorgang der
Plastizierung von der Druckseite her mit anschließender Schwächung des T J-
Abfalles und schließlich die Plastizierung von beiden Seiten (Zug und Druck)
infolge des großen auftretenden Momentes. Hingegen ist bei höherer Laststufe
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Fig. 15. Diagramme M f (TJ) für den Stab II für charakteristische Laststufen.

und kleinerem Moment — infolge Druckplastizierung von beiden Seiten —
ein stärkeres Absinken der TJ-Werte zu beobachten. Der Anstieg bei wachsendem

Moment und das nahezu Konstantbleiben entspricht der Entlastung des

äußeren Randes, während der darauffolgende Abfall dadurch zustande kommt,
daß nun auch die Zugfasern plastizieren. Es sei hier besonders betont, daß die
beschriebenen Entlastungen nichts mit den Entlastungen im tatsächlichen
Belastungsfortschritt des Systems zu tun haben, sondern sich nur auf den
isoliert belastet gedachten Querschnitt beziehen.

Nunmehr kann die unter B. beschriebene Iteration durchgeführt werden.
Sie wurde im Grazer Rechenzentrum auf der elektronischen Rechenmaschine
UNIVAC 490 durchgeführt. Es ergab sich eine ausgezeichnete Konvergenz im
Bereich der TJ-Werte von 1,0 bis 0,4. Mit weiter absinkenden T J-Werten
(vgl. den Steilabfall der T J-M-Kurven in Fig. 15) und der Ausbildung von
Fließgelenken in den Einzelstäben mußten die Verbesserungen der
Stabendmomente Ml und Mr der einzelnen Iterationsschritte abgebremst werden. Da
in diesem Kurvenbereich einer kleinen Änderung von M eine große Änderung
von T J zugeordnet ist, wurden nur solche Verbesserungen der M zugelassen,
die eine vorgegebene Änderung der entsprechenden T J-Werte nicht überschreiten.

Mit dieser Maßnahme wurde die Konvergenz des Iterationsverfahrens
auch in diesem Bereich hergestellt.

Die damit erhaltenen Lastverformungskurven der drei Einzelstäbe sind
für i>=l,6 und v 2ß in Fig. 16 eingetragen. Das Drehungsgleichgewicht im
Knoten ist für v=l,ß durch die Ordinate cpa 0,0120 dargestellt, während
dieses Gleichgewicht für v 2,0 der Ordinate cpa 0,0204 entspricht. Man
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Fig. 16. Last-Verformungskurven der drei Einzelstäbe für die Laststufen v=l,6 bzw.
v 2,0.

erkennt, daß auch für die Laststufe v 2,0 keiner der drei Stäbe seine maximale

Momentenaufnahmefähigkeit bei konstant gehaltener Normalkraft
erreicht hat, wenn auch der Stab II sich diesem Grenzwert schon stark nähert.
Bei der Laststufe v 2,08 (Fig. 17) nimmt die Verformung schon relativ stärker zu
(cpa 0,236). Dies hat seine Ursache darin, daß im Stab II die
Momentenaufnahmefähigkeit bei Einstellung des Gleichgewichtes schon stark absinkt. Im
Verlauf der T J-Werte zeigt sich hier schon deutlich die Tendenz zur
Ausbildung eines Gelenkes. Die Untersuchung, ob bei dieser Laststufe ein weiteres
Gleichgewicht bei ansteigender KnotenVerdrehung möglich ist, ergab, daß
dies bei cpa 0,0306 der Fall ist. Fig. 18 zeigt die 2 ^"9vKurve, in der deutlich

die beiden Nullpunkte, die dem Verdrehungsgleichgewicht entsprechen,
zu erkennen sind. Die Unstetigkeitsstelle ergibt sich organisch bei Ausbildung
des plastischen Gelenkes im Stab IL Zu ihrer Erklärung wurde einerseits
angenommen, daß dieser Stab weiter wie bisher zur Momentenaufnahme
herangezogen wird und der linke Kurvenast entsprechend strichliert verlängert,
während der strichlierten Fortsetzung des rechten Kurvenastes die Annahme
zugrunde liegt, daß sich das Fließgelenk bereits früher ausbildet. Hier wurde
— etwas auf der sicheren Seite liegend — mit der voll ausgezogenen Kurve
gerechnet, d.h. der Stab II beteiligt sich nach Ausbildung des plastischen
Gelenkes nicht mehr an der weiteren Momentenaufnahme.
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Fig. 17. Last-Verformungskurven der drei Einzelstabe für den 1. und 2. Rechengang der
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Fig. 18. Momentensummenkurve zur Bildung der Verdrehungsgleichgewichte der Last-
stufe v 2,08.

Es wäre natürlich möglich, die im allgemeinen geringfügige weitere
Momentenaufnahme zu erfassen, wenn man die durch die Ausbildung des Gelenkes
erfolgte Änderung des statischen Systems berücksichtigt und in den Iterationsgang

entsprechend einbaut.
In Fig. 19 ist die Lastverformungskurve für das Gesamtsystem dargestellt.

Man erkennt, daß der Scheitelpunkt bei v 2,ll liegt, was einem
Knotendrehwinkel <pa 0,027 entspricht. Damit ist die maximale Tragkraft des
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Fig. 19. Last-Verformungskurve des Gesamtsystems.

Systems erreicht. Bei der Untersuchung eines zusammengesetzten Stabsystems
(s. Fig. 2) muß aber auch der abfallende Ast dieser Kurve ermittelt werden,
da die Gleichgewichtszustände auch in diesem Bereich für die Ermittlung der
Traglast des zusammengesetzten Systems von Bedeutung sind. Die Punkte
des abfallenden Astes entsprechen der zweiten Gleichgewichtslage für die
einzelnen Laststufen.

Der in Fig. 19 dargestellten Kurve liegt die nach der Theorie 1. Ordnung
ermittelte Normalkraftverteilung zugrunde. Um den Einfluß der
Normalkraftsveränderung nach der Theorie 2. Ordnung und unter Berücksichtigung
aller Imperfektionen festzustellen, wurde für eine Laststufe in der Nähe des
Scheitels (v 2,08) ein zweiter Rechnungsgang durchgeführt, dessen Ergebnis
strichliert eingetragen ist (s. Fig. 17 und 19). Die Normalkräfte und ihre Änderung

sind in Tabelle II eingetragen. Zum Verständnis der Kräfteumlagerung
sind die T J-Kurven für die drei Stäbe in Fig. 20 für den ersten Rechnungsgang

und in Fig. 21 für den zweiten Rechnungsgang dargestellt. Man erkennt,
daß die stärker plastizierten Stäbe II und I an den weniger plastizierten
Stab III Kräfte abgeben, was auch deutlich aus der Tabelle zu erkennen ist.
Aus einem dritten Rechnungsgang ersehen wir, daß der am stärksten plasti-
zierte Stab sich noch geringfügig auf Kosten der beiden anderen Stäbe
entlastet. Das Ergebnis des zweiten Rechnungsganges ist in Fig. 17 strichliert
eingetragen. Die Kräfteumlagerung bewirkt eine Erhöhung der Systemsteifig-
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Tabelle II

Stab
N (t), v 2,08

1. Rechengang 2. Rechengang 3. Rechengang

I
II

III

231,3
142,9
163,1

223,8
138,4
176,1

224,7
136,7
176,9

i

1,0

0,8

0,6

0,4

0,2

TT« TJ
>

TJ TT

v «2,08
1 Rechengang Nt 0,680

Nn 0,752
Nm * 0,645

Stobffl

/^Stab I

/stob!

M

0 J5 l(D 1 5

[w.-B-
1,0

i/ - 2,08
2 Rechengang Nj *0,658

NE » 0,728
Nn» 0,697

0,8

StabI
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M
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Fig. 20. TJ-M-Kurven des 1. Rechen¬

ganges der Laststufe r 2,08.
Fig. 21. TJ-M-Kurven des 2. Rechen¬

ganges der Laststufe i> 2,08.

keit, was durch die Verringerung des Knotendrehwinkels <pa um ca. 5% zum
Ausdruck kommt. Die Erhöhung der Tragfähigkeit durch diese Kräfteumlagerung

ist hier jedoch nur geringfügig. Es zeigt sich demnach, daß das Instabilwerden

des Systems vor der Ausbildung eines Gelenkmechanismusses eintritt, was
auf den hier nicht vernachlässigbaren steifigkeitsvermindernden Einfluß der
Druckkräfte zurückzuführen ist. Auch U. Vogel (8) hat in einer allgemeinen
Betrachtung auf diese Tatsache hingewiesen.

Wie eine Kontrollrechnung bei Vergleich der aufeinanderfolgenden
Gleichgewichtszustände ergab, finden im allgemeinen keine Entlastungen in den

Querschnitten statt. Eine solche tritt nur dann ein, wenn ein am Gleichgewicht
mitwirkender Stab bereits seine maximale Momentenaufnahmefähigkeit
überschritten hat, was nur für einen engen Bereich in der Nähe des Scheitels der
Lastverformungskurve bei stärkerer Unterdimensionierung eines Stabes der
Fall sein könnte.
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D. Schlußfolgerungen

Der vorliegende erste Teil der Stabilitätsuntersuchung von Stabwerken mit
Imperfektionen befaßt sich mit der Traglastberechnung des frei verdrehbaren,
aber an der Verschiebung behinderten Mehrstabknotens, wobei ein beliebiges,
auch ortsveränderliches Spannungs-Dehnungs-Gesetz, strukturelle und
geometrische Imperfektionen und Querlasten angenommen werden. Eine weitere
zur Zeit in Durchführung begriffene Untersuchung bezieht sich auf den frei
verdrehbaren und nicht an der Verschiebung behinderten Mehrstabknoten.
Diese Arbeit hat vor allem das Ziel, grundsätzliche Erkenntnisse über das
Verhalten des Einzelstabes im Knotenverband und des Mehrstabknotens selbst
zu gewinnen. Im weiteren soll nach Behandlung des nicht mehr an der
Verschiebung behinderten Mehrstabknotens die Untersuchung zusammengesetzter
Systeme mit den so erarbeiteten Grundlagen in Angriff genommen werden.
Hierbei wird man zweckmäßig in erster Linie auf den I-Querschnitt, dessen
schwache Achse senkrecht zur Systemebene liegt, zurückkommen. Mit der
ersten Stufe hierfür, nämlich den zum Rechteckquerschnitt zusammengelegten
Flanschen, befaßte sich diese Arbeit. Das Endziel ist die richtige Abschätzung
der Auswirkung von verschiedenen Imperfektionseinflüssen auf die Tragkraft
zur Beurteilung geeigneter Näherungsverfahren. Als Ergänzung ist natürlich
nach wie vor die versuchsmäßige Traglastbestimmung unentbehrlich.

Bei der Ausarbeitung des Iterationsverfahrens und der umfangreichen
Zahlenrechnung hat mich mein Assistent Dipl.-Ing. G. Schulz auf das
wertvollste unterstützt. Die Programmierung besorgte mit großem Einsatz Herr
H. Pircher. Dem Rechenzentrum Graz und seinem Leiter, Prof. Dr. H. Florian,
danke ich für die Bereitstellung der erforderlichen Rechenzeiten.
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Zusammenfassung

Zur Stabilitätsuntersuchung von Stabwerken mit Imperfektionen benötigt
man die Lösung für den Grundfall des Mehrstabknotens. Die Arbeit befaßt
sich mit diesem Grundfall, wobei die in einem Knoten anlaufenden Stäbe —
deren Material einem beliebigen Spannungs-Dehnungs-Gesetz folgt — am
anderen Ende nachgiebig eingespannt sind und geometrische und strukturelle
Imperfektionen sowie Querlasten aufweisen. Es wird das Verhalten des Einzelstabes

im Verband mit anderen Stäben und die Stabilität des Gesamtsystems
an einem konkreten Beispiel untersucht und die Ergebnisse der elektronischen
Berechnung in Kurvenform dargestellt. Es zeigt sich der steifigkeitsvermin-
dernde Einfluß der Druckkräfte, so daß ein Versagen vor Ausbildung eines
Gelenkmechanismusses eintritt.

Summary

This paper deals with the basic case of the stability problem of a frame-
work composed of struts with imperfections by considering a node formed by
several struts. These struts can be restrained on the opposite ends either
rigidly or flexibly and may, furthermore, have geometrical and structural
imperfections (residual stresses) as well as transverse loading. The material may
comply with any strain-stress diagram. The structural behaviour of a Single
strut alone and in combination with the other struts, and the stability of the
whole system are investigated by means of a typical example calculated with
the aid of a Computer. The results obtained are discussed and the characteristic
diagrams are plotted. It is clearly demonstrated that the compression forces
reduce the stiffness of the system in such a way that collaps takes place before
the formation of a linkage mechanism.

Resume

Pour etudier la stabilite des systemes dont les barres presentent des

imperfections, il faut connaitre la Solution du cas fondamental, celui du nceud oü
aboutissent plusieurs barres. L'auteur traite ce cas, en considerant des barres
encastrees flexibles dont le materiau obeit a un diagramme contrainte-defor-
mation quelconque. Ces barres presentent des imperfections geometriques et
structurelles et elles sont sollicitees par des charges laterales. Pour un exemple
typique, on examine le comportement d'une des barres de l'ensemble et on
verifie la stabilite du Systeme. Les resultats, obtenus ä l'aide d'une calculatrice
electronique, sont presentes sous forme de diagrammes qui montrent claire-
ment la diminution de rigidite due ä l'effet des compressions; on atteint ainsi
la charge de ruine avant que se forme un mecanisme de rotules plastiques.
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