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Beitrag zur Stabilitdtsuntersuchung von Stabwerken mit Imperfektionen
On the Stability of Structures Composed of Struts with Imperfections

Sur la stabilité des systémes dont les barres présentent des tmperfections

H. BEER
Technische Hochschule Graz

A. Einleitung

Die Stabilitdtsuntersuchung von planméflig zentrisch gedriickten Stdben
mit baupraktisch unvermeidbaren Fehlerhebeln als Gleichgewichtsproblem
wurde erstmalig von TH. voN KARMAN [1] theoretisch behandelt. M. RoS und
BruNNER [2] haben dann auf Grund eines Naherungsverfahrens Kurventafeln
aufgestellt, die mit der Exzentrizitit als Parameter die Traglast des Gelenk-
stabes in Funktion der Schlankheit ergeben. E. CHWALLA [3] behandelt ein-
gehend die Theorie des elastisch nachgiebig eingespannten Stabes im elastisch-
plastischen Bereich, wobei er ein beliebiges Spannungs-Dehnungs-Gesetz fiir
das Material zugrunde legt. Er ermittelt fiir bestimmte Exzentrizititen als
Parameter die Grenzschlankheiten in Funktion der Sta@husbiegungen, bei
denen ein Gleichgewicht gerade noch moglich ist, und erhédlt, wenn man als
weitere Parameter den Einspanngrad ¢ und die Grundspannung o,, annimmt,
eine Familie von Kurvenscharen, die fiir den Rechteckquerschnitt das Pro-
blem der Tragkraft des Stabes umschreibt. F. Sttss1 [4] betrachtet den Ge-
lenkstab und wendet fiir die Ermittlung der Ausbiegungslinie y in jedem Punkt
aus der Stabkriimmung n” — die er fiir angenommene Dehnungsdiagramme
ermittelt — die Seilpolygongleichung an. Sttisst gelangt mit Hilfe schritt-
weiser Anndherung zur Grenzschlankheit, wobei auch Eigenspannungen im
Stab beriicksichtigt werden.

Ein allgemeines Verfahren zur Ermittlung der Traglast des gelenkig gela-
gerten Stabes mit Imperfektionen geometrischer und struktureller Natur
(Eigenspannungen, Streckgrenzenstreuung) entwickelt M. MARINCEK [5].
Durch Einfiihrung des Korrektionsfaktors K lafit sich die Differentialgleichung
der Stabkriimmung auf nichtlineare Verhiiltnisse anwenden und der Einfluf3
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aus den Imperfektionen beriicksichtigen. MARINCEK geht in seiner Ableitung
des Korrektionsfaktors vom idealisierten Spannungs-Dehnungs-Gesetz des
Baustahls aus und begriindet diese Annahme damit, dal der eigenspannungs-
freie Stab diesem Gesetz mit guter Naherung folgt. G. WASTLUND und S. G.
BERGSTROM [6] bringen interessante Vergleiche der Traglast bei Annahme
verschiedener Spannungs-Dehnungs-Diagramme. SchlieSlich behandelt K.
K1roppEL [7] in Theorie und Versuch die Traglast eines exzentrisch gedriick-
ten I-Profils.

Bisher fehlt aber eine systematische Behandlung der Traglastermittlung
von Stabwerken mit Imperfektionen als Gleichgewichtsproblem, wobei ein
beliebiges Spannungs-Dehnungs-Diagramm und sowohl geometrische als auch
strukturelle Imperfektionen zugrunde zu legen sind. Der Verfasser setzt sich
in dieser und in weiter folgenden Arbeiten, die er zur Zeit gemeinsam mit
G. Scuurz durchfiihrt, das Ziel, die Grundlagen fiir diese Traglastberechnung
zu entwickeln, wobei es sich zunidchst nicht um die Aufstellung einer Berech-
nungsmethode, sondern um die Gewinnung grundséitzlicher Erkenntnisse iiber
das Verhalten des gedriickten Einzelstabes im Verband mit anderen Stdben
und die Grenzbelastung des Gesamtsystems handelt. In der vorliegenden
Arbeit wird als Grundfall ein Mehrstabknoten (Fig. 1) behandelt, wobei die
Stabe als nachgiebig eingespannt betrachtet werden. Hierbei ist es grundsitz-
lich gleichgiiltig, ob diese Einspannung proportional den Reaktionen ist oder

zZI 7z

Fig. 1. Mehrstabknoten. Fig. 2. System mit zwei Mehrstabknoten.

einem beliebigen anderen Gesetz folgt. In der ersten Phase der Berechnung
wird angenommen, dal der Knoten unverschieblich, aber frei verdrehbar ist.
Die Erweiterung soll sich dann auf den frei verschieblichen Knoten und auf
ein System mit zwei Mehrstabknoten erstrecken, bei dem diese beiden Knoten
durch einen Verbindungsstab zur gemeinsamen Wirkung gelangen (Fig. 2),
um so die Grundelemente fiir die Behandlung von Stabwerken zu schaffen.
Erst wenn diese Fragen prinzipiell gekldrt sind, kann ein Bemessungsverfahren
entwickelt werden, fiir das geeignete Unterlagen in Form von Familien von
Kurvenscharen fiir die gebréduchlichen Querschnittsformen und unter Annahme
bestimmter Imperfektionen ausgearbeitet werden miissen. Da hierfiir elek-
tronische Rechenanlagen zur Verfiigung stehen, ist dieses Ziel in reale Néihe
geriickt.
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B. Ermittlung der Traglast des Mehrstabknotens

Im weiteren Verlauf sollen ebene Stabwerke betrachtet werden, bei denen
die Ausweichform in der Systemebene liegt. Fiir die Ermittlung der Form-
dnderungen setzen wir das Ebenbleiben der Querschnitte, aber nur fiir die
dullere Belastung, voraus und treffen die Annahme, dafl die Stabkrimmung p
geniigend genau durch die zweite Ableitung der Biegelinienordinaten » aus-
gedriickt werden kann. Wir legen ein beliebiges Spannungs-Dehnungs-Gesetz
fiir das Material zugrunde, das sowohl iiber den Querschnitt als auch iiber die
Stablange verdnderlich sein kann. Damit sind wir auch in der Lage, beliebige
Verbundquerschnitte zu behandeln. Wir betrachten geometrische und struk-
turelle ITmperfektionen sowie Querlasten. Als geometrische Imperfektionen
werden eine Exzentrizitdt des Kraftangriffes im Knoten und eine Sabelkriim-
mung der Stdbe sowie Abweichungen der Querschnitte von den Sollmafen
angenommen, wihrend die strukturelle Imperfektion sich aus den Eigen-
spannungen aus dem Schweil3- und Walzprozell ergibt. Die Querlasten beste-
hen aus Einflisssen, welche im allgemeinen bei Stabilitdtsuntersuchungen
rechnerisch nicht besonders erfafit werden, wie z. B. Eigengewicht fiir nicht
lotrecht stehende Stabe und Windbelastung auf die Stabe selbst.

Zusammenfassend soll es sich bei allen Einfliissen um Imperfektionen han-
deln, d.h. um Abweichungen des Ausfithrungsfalles, von dem der ideellen
Stabilitdtsberechnung zugrunde gelegten System. Systeme mit planméfigen
Querlasten, deren Versagen durch iiberwiegendes BiegeflieBen erfolgt, sollen
hier nicht betrachtet werden, vielmehr soll geradezu als Charakteristikum
gelten, dafl die Steigerung der Normalkrifte zum Versagen fiihrt.

Zunichst betrachten wir die einzelnen Stibe aus dem Verband gelost, aber
mit der Auflage, daBl fiir die jeweilig betrachteten Laststufen die Rand-
bedingungen sowohl an der Einspannstelle als auch am Knoten wihrend des
ganzen Berechnungsganges erfiillt sind.

Wir beachten, daB auch bei konstant gehaltener Normalkraft das Super-
positionsgesetz nicht gilt und daB daher immer bei der Betrachtung vom
Endzustand ausgegangen werden muf3. Da dieser nicht von vorneherein bekannt
ist, mull der Weg einer schrittweisen Niaherung gegangen werden. Der Einzel-
stab mit geometrischen und strukturellen Imperfektionen steht demnach unter
dem Einflul} einer Normalkraft und einer Querlast sowie von Randmomenten
aus der nachgiebigen Einspannung an der Auflagerstelle und am Knoten (siehe
Fig. 10). Die Normalkrifte werden zunichst nach der Theorie 1. Ordnung
ermittelt, was aber keine Einschrinkung bedeutet, da die Verbesserung nach
der Theorie 2. Ordnung unter Beriicksichtigung aller Imperfektionen nach
jeder abgeschlossenen Iteration erfolgen kann.

_ Wir gehen von den zwei Grunddiagrammen von STUSSI P=f(7") und
P =f(y) aus (Fig. 3), die wir fiir ein beliebiges Spannungs-Dehnungs-Diagramm
des Materials (Fig. 4) ermitteln. Da wir Eigenspannungen voraussetzen, be-
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steht die Dehnungsverteilung iiber den Querschnitt aus einem linearen Anteil,
der aus der Belastung herrithrt und einem nichtlinearen Anteil infolge der
vorhandenen Eigenspannungen. Die Verinderung der Neigung zur Bestim-
mung der Grunddiagramme erfolgt jedoch nur fiir den linearen Anteil.
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Fig. 3. Grunddiagramm P= f (%”) und P =f (y) fur die Dehnung ¢;=1,147 am inneren
Querschnittsrand.
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Fig. 4. Spannungs-Dehnungs-Diagramm
eines beliebigen Materials.

%

Um die einzelnen Punkte der Lastverformungskurve zu bekommen, kann
man fiir ein angenommenes M, das zugehorige M, schitzen und mit Hilfe der
«wy»-Gewichte nach Miiller-Breslau die Biegelinie rechnen und die Iteration
bei konstant gehaltenem M, so lange fortsetzen, bis die Biegelinie mit der vor-
her erhaltenen iibereinstimmt und die Vertraglichkeitsbedingungen an der
Einspannstelle erfiillt sind (Fig. 5). Lat man nun M, ansteigen, so nehmen
die Forméinderungen progressiv zu bis der Scheitel der Kurve erreicht ist.

Mit Hilfe dieses Verfahrens erhdlt man jedoch nur iiber die variable Stab-
linge bzw. Schlankheit den absteigenden Ast dieser Kurve, was im vorliegen-
den Fall einen groBlen Umweg bedeuten wiirde. Aullerdem zeigte die Zahlen-
rechnung auch fiir den aufsteigenden Ast eine schlechte Konvergenz, da das
Erfiillen von Randbedingungen durch Iteration ungiinstig ist und daher zu
langen Rechenzeiten auf der elektronischen Rechenanlage fiihrt.
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Fig. 5. Darstellung des Verlaufes der Iteration zur Erfiilllung der Vertriglichkeitsbedin-
gungen an den Einspannstellen.
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Fig. 6. Grunddiagramme P= / (T—J ) und P= f (ﬂ ) fiir die Dehnung ;= 1,147 am inneren
Querschnittsrand.

Fiir unseren Fall ist es notwendig, das Tragverhalten des Systems auch
nach Uberschreiten der maximalen Momentenaufnahmefihigkeit fiir den Ein-
zelstab zu verfolgen, da dieses Verhalten fiir die Beurteilung der Tragsicherheit
des Stabwerkes bekannt sein mufl. Es wurde daher ein neuer Weg zur Ermitt-
lung der Last-Forménderungsverhéltnisse beschritten. Zunédchst muBten hier-
fiir die Grunddiagramme anders aufgebaut werden. Mit 7'J als Biegesteifigkeit



48 H. BEER

und M als Exzentrizititsmoment werden die beiden Diagramme P =f (T J)
und P=f (M) (Fig. 6) ermittelt und als Ausgangspunkt fiir die weitere Itera-
tion beniitzt. Wir nehmen hierzu wiederum nach ST#'ssI einen linearen Deh-
nungsverlauf iiber den Querschnitt an, der einem noch nicht bekannten
Normalkraftsanteil entspricht und iiberlagern diesen Dehnungsanteil mit den
Dehnungen aus den Eigenspannungen. Sodann berechnen wir mit Hilfe des
Spannungs-Dehnungs-Diagrammes des Materials die zu diesen Gesamtdeh-
nungen zugehorigen Spannungswerte sowie den Verformungsmodul 7" (Fig. 7).
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Fig. 7. Verlauf der Spannung ¢ und des Verformungsmoduls T iiber den Stabquerschnitt
infolge duBlerer Belastung und Eigenspannungen.

Der weitere Rechnungsgang besteht nun in der Riickrechnung der angreifen-
den Druckkrifte und der Exzentrizitit aus den Gleichgewichtsbedingungen
und die Bildung von M = P y sowie in der Bestimmung der Biegesteifigkeit 7' J
fir 7' (y) aus dem o-7-Diagramm durch numerische Integration.

Fiir die Ermittlung des Last-Verformungsdiagrammes betrachten wir den
druckbelasteten Stab mit den vorhandenen statischen und geometrischen
Randbedingungen und den geometrischen Imperfektionen sowie der Querlast.
Die Iteration geht nun folgendermaflen vor sich: fiir eine angenommene
Normalkraft und vorgegebene Stabendverdrehung am Knoten werden die
endgiiltige Form der Biegelinie und die Stabendmomente gesucht. Hierbei
beginnt man die Iteration mit geschitzten Biegemomenten M; und M, an den
Stabenden und einer geschitzten Biegelinie und rechnet mit Hilfe der «w»-
Gewichte eine neue Biegelinie. Der Zusammenhang zwischen den Querschnitts-
momenten und den Biegesteifigkeiten (7'J) wird durch das 7'J-M-Diagramm
hergestellt, das durch Auswertung der Familie der Grunddiagramme mit der
angenommenen Normalkraft erhalten wird. Nach diesem ersten Schritt sind
sowohl die Randbedingungen noch nicht erfiillt als auch die erhaltene Biege-
linie mit den zugehorigen 7'J-Werten noch nicht endgiiltig.

Um nun den Iterationsgang zu beschleunigen und gleichzeitig bei jedem
Schritt die Randbedingungen zu erfiillen, wird die verzerrte Momenten-
belastung in vier Teile aufgespalten (Fig. 8), von denen drei Teile, nimlich
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der Momentenanteil aus der Normalkraft zufolge Exzentrizitit und Sabel-
krimmung, aus der Querlast und aus den Ordinaten der im ersten Schritt
verbesserten Biegelinie konstant gehalten werden, wihrend fiir den vierten
Anteil die Stabendmomente M, bzw. M, als Unbekannte X,; und (X, — 10 X,)
aufgefallt werden. Als dritte Unbekannte X; wird die Verdrehung ¢, des nach-
giebig eingespannten Stabendes gewihlt. Diese drei Unbekannten werden bei
konstant gehaltenen 7T'J-Werten aus zwei Gleichgewichtsbedingungen und der
Vertréaglichkeitsbedingung am rechten Stabende bestimmt.
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Fig. 8. Zerlegung der verzerrten Momentenbelastung und Aufstellung des Gleichungs-
systems zur Erfillung der Randbedingungen im Rahmen der Iteration.

AV

Fig. 9. Last-Verformungskurve
? fur ein beliebiges System.

Mit den so erhaltenen Stabendmomenten und den unverédndert belassenen
drei Anteilen der verzerrten Momentenbelastungen wird eine neue Biegelinie
mit den 7'J-Werten des ersten Iterationsschrittes berechnet und der gesamte
Rechnungsgang so lange wiederholt, bis M; und M, sich im Rahmen der fest-
gesetzten Rechengenauigkeit nicht mehr dndern. Da die endgiiltige 7'J-Ver-
teilung iiber die Stablinge nun bekannt ist, kann man auch verfolgen, bei
welcher Laststufe und an welchen Stellen sich plastische Gelenke ausbilden,
was fiir die Beurteilung der Mitwirkung des Stabes im Gesamtsystem von
ausschlaggebender Bedeutung ist.
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Betrachten wir nun das Stabsystem (s. Fig. 1). Die Traglast fiir dieses
System wird dann erschopft sein, wenn den angreifenden Lasten nur eine
Knotendrehung zugeordnet ist, bei der ein Knotengleichgewicht moglich ist.
Diese Laststufe entspricht dem Scheitel der Lastverformungskurve (Fig. 9).
Zu ihrer Bestimmung ermitteln wir zuerst die Lastverformungskurven M = f (¢,)
der Einzelstdibe und rechnen uns den Knotendrehwinkel fiir jede Laststufe
aus der Bildung des Verdrehungsgleichgewichtes. Die damit erhaltene Last-
verformungskurve fiir das System weist einen Scheitelpunkt auf, der die Trag-
last praktisch begrenzt, wenn auch bei absinkender Last noch ein Gleich-
gewicht zwischen &ulerem und innerem Moment moglich ist.

Wir haben bisher stillschweigend vorausgesetzt, dafl in keinem Querschnitt
eine Spannungsumkehr eintritt, so dafl es zu Entlastungen — die bei beliebi-
gem Material der Entlastungskurve des o-e-Diagrammes folgen — kommt.
Wenn auch eine solche Spannungsumkehr im allgemeinen nur eine geringe
Rolle spielt, so wire es dennoch moglich, diese Tatsache zu beriicksichtigen,
wobei der den Grunddiagrammen entnommene 7'J-Wert entsprechend zu
korrigieren ist. Diese Korrektur kénnte fiir die voraussichtlich mafgebenden
TJ-Werte entsprechend dem Grad der Plastizierung des Querschnittes durch
neuerliche Integration erfolgen. Die Zunahme des T'J-Wertes bei steigender
Last unter Zugrundelegung des Spannungs-Dehnungs-Diagrammes fiir die
Belastung ist jedoch allein noch kein Kriterium dafiir, daf} eine Entlastung
eingetreten ist, da diese namentlich bei entsprechender Eigenspannungsver-
teilung auch in einzelnen Teilen des Querschnittes auftreten kann, wihrend
andere Teile eine weitere Laststeigerung erfahren.

C. Anwendung

Der Untersuchung liegt ein Dreistabknoten zugrunde (Fig. 10), wobei fiir
die Stibe Rechteckquerschnitte angenommen wurden und — wie bereits ein-
gangs ausgefiihrt — ein Ausweichen aus der Systemebene verhindert wird. Die
Anwendung des Verfahrens auf andere einfach-symmetrische Querschnitts-
formen ist jedoch ohne weiteres moglich. Die angenommenen Mafe, Imper-
fektionen und Querlasten sind in der Tabelle I angegeben. In Fig. 10 ist auch
die Belastung des Systems eingetragen, die als Ausgangswert der Laststufe

Tabelle I
Stab ! (cm h (cm b (em e (cm 7s (cm) t/em)
(cm) (cm) (cm) (cm) Stabmitte g (t/cm)
I 600 30 4,2 1,8 1,2 3,3-10-3
IT 400 22 3,2 1,2 0,8 1,5-10-3
111 500 26 3,6 1,5 1,0 2,4.10-8
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Fig. 10. Der untersuchte Dreistabknoten mit den der Laststufe »=1 entsprechenden
Belastungen und der aus dem System geldste Einzelstab.
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Fig. 11. Angenommenes o—e-Diagramm und zugehériger Verformungsmodul T.

v=1 entspricht. Fiir die weitere Rechnung erweist es sich als zweckmiBig,
alle SystemmaBe sowie die Kraft und VerformungsgréBen auf Festwerte zu
beziehen. Es bedeuten demnach:

g - € == N
= e U T
— M Y — TJ
M =5 ]. 5 ~..—_~— [

NFor Y70 TT =55

Wir legen das in Fig. 11 dargestellte Spannungs-Dehnungs-Diagramm zugrunde,
das wir in die folgenden Teilabschnitte zerlegen:
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6<d, =08 - 90779¢
¢<e, = 0,385 % = 0TI,

op<d<op =10
€, <€E<ép =10

}0,2348 €2+ 1,4166€e6+ 0,82765%—1,8862¢—1,59286+1 = 0.

Aus diesem Spannungs-Dehnungs-Diagramm folgen durch Ausfithrung der

Differentiation gf die Werte des Verformungsmoduls 7' —%. Sie sind in
Fig. 11 eingetragen. Wir nehmen fiir die Rechnung die in Fig. 12 dargestellte
Eigenspannungsverteilung an, die im inneren Gleichgewicht ist. Die Span-
nungsverteilungen iiber den Querschnitt sind fiir ein konstant gehaltenes ¢;
fiir verschiedene €,, die der Variation der duBleren Belastung entsprechen, in
Fig. 13 eingetragen. Die aus diesem Diagramm gewonnenen N und M und die
durch die numerische Integration erhaltenen Werte T'J bilden die Kompo-
nenten, aus denen sich die Grunddiagramme zusammensetzen. Dieser Vorgang
ist fiir verschiedene Annahmen von €; solange zu wiederholen, bis die voll-
stindige Plastizierung des Querschnittes eintritt (TJ 0). In Fig. 14 sind fiir
charakteristische Annahmen von ¢, die erhaltenen N = =1 (. (M) und N =f(TJ)
Diagramme eingetragen. Dem elastischen Grenzwert TJ=1, §=0,385 ent-
spricht die Gerade N =f (M), wihrend dem plastischen Grenzwert T_f =0 die
Kurve N=f( pz) zugeordnet ist. Die Kurven ¢,=0,647 entsprechen einer
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Fig. 13. Spannungsverteilung iiber den Querschnitt fiir e;= 0,647 = konst. und ¢;=2,5 =
konst. bei variierter d&uBerer Belastung.
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Fig. 14. Grunddiagramme N = f (T'J) und N = f (M) fiir ;= 0,647 bzw. &= 2,5.

Randspannung 6, =10,967, also knapp unter der FlieBgrenze, wihrend die Kur-
ven ¢;=2,5 mit 6;,=1 eine bereits weitgehend fortgeschrittene Plastizierung
anzeigen (s. Fig. 13).

Man erkennt aus der Kurve N=f(TJ) fir ¢,=0,647, daB bei geringen
Exzentrizitaten, die im Diagramm den Werten N nahe an 1 entsprechen, eine
starke Plastizierung am inneren und duBleren Rand eintritt, die bis zum Wert
N =0,65 anhilt, wobei schon vorher die Werte an der duBeren Randfaser wie-
der an die Proportionalititsgrenze absinken. Mit abnehmendem N und zuneh-
mender Exzentrizitit, die einem Anwachsen von M entspricht, wird der #uBere
Querschnittsbereich zunehmend entlastet, was ein nur sehr schwaches Anstei-
gen der T J-Werte zur Folge hat. Fiir é,=2,5 und N nahe an 1 hingegen
erfolgt die Plastizierung vom inneren Rand her, da der dullere Rand durch
relativ groBe zugehorige Momente M entlastet wird. Die Umkehr des Anstieges
der T J-Werte erfolgt etwa bei N =0,63, weil die Zugspannungen am #uBeren
Rand in diesem Stadium bereits die Proportionalitdtsgrenze iiberschreiten.
Da diese Zugspannungen weiter ansteigen, findet nun eine rasche Plastizierung
von beiden Seiten statt.

Zur Durchfiihrung der Iteration ist es notwendig, die den Normalkraften
der einzelnen Laststufen entsprechenden M =f (7T J)-Diagramme aus der
Familie der Grunddiagramme zu ermitteln. In Fig. 15 sind diese Diagramme
fir alle untersuchten Laststufen fiir den Stab II eingetragen. Man erkennt
deutlich fiir niedrige Laststufen den vorstehend beschriebenen Vorgang der
Plastizierung von der Druckseite her mit anschlieBender Schwichung des 7' J-
Abfalles und schlieBlich die Plastizierung von beiden Seiten (Zug und Druck)
infolge des groBen auftretenden Momentes. Hingegen ist bei hherer Laststufe
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Fig. 15. Diagramme M= f (T_J) fiir den Stab II fur charakteristische Laststufen.

und kleinerem Moment — infolge Druckplastizierung von beiden Seiten —
ein stirkeres Absinken der T J-Werte zu beobachten. Der Anstieg bei wachsen-
dem Moment und das nahezu Konstantbleiben entspricht der Entlastung des
dulleren Randes, wihrend der darauffolgende Abfall dadurch zustande kommt,
daB nun auch die Zugfasern plastizieren. Es sei hier besonders betont, dafl die
beschriebenen Entlastungen nichts mit den Entlastungen im tatséchlichen
Belastungsfortschritt des Systems zu tun haben, sondern sich nur auf den
isoliert belastet gedachten Querschnitt beziehen.

Nunmehr kann die unter B. beschriebene Iteration durchgefithrt werden.
Sie wurde im Grazer Rechenzentrum auf der elektronischen Rechenmaschine
UNIVAC 490 durchgefiihrt. Es ergab sich eine ausgezeichnete Konvergenz im
Bereich der T'J-Werte von 1,0 bis 0,4. Mit weiter absinkenden 7 J-Werten
(vgl. den Steilabfall der 7'J-M-Kurven in Fig. 15) und der Ausbildung von
FlieBgelenken in den Einzelstiben muBten die Verbesserungen der Stabend-
momente M, und M, der einzelnen Iterationsschritte abgebremst werden. Da,
in diesem Kurvenbereich einer kleinen Anderung von M eine groBe Anderung
von T'J zugeordnet ist, wurden nur solche Verbesserungen der M zugelassen,
die eine vorgegebene Anderung der entsprechenden 7' J-Werte nicht iiberschrei-
ten. Mit dieser Mafnahme wurde die Konvergenz des Iterationsverfahrens
auch in diesem Bereich hergestellt.

Die damit erhaltenen Lastverformungskurven der drei Einzelstibe sind
fir v=1,6 und v=2,0 in Fig. 16 eingetragen. Das Drehungsgleichgewicht im
Knoten ist fiir »=1,6 durch die Ordinate ¢,=0,0120 dargestellt, wihrend
dieses Gleichgewicht fiir »=2,0 der Ordinate ¢,=0,0204 entspricht. Man
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Fig. 16. Last-Verformungskurven der drei Einzelstdbe fiir die Laststufen v=1,6 bzw.
v=2,0.

erkennt, daf3 auch fiir die Laststufe »=2,0 keiner der drei Stibe seine maxi-
male Momentenaufnahmefihigkeit bei konstant gehaltener Normalkraft
erreicht hat, wenn auch der Stab II sich diesem Grenzwert schon stark nahert.
Bei der Laststufe v = 2,08 (Fig. 17) nimmt die Verformung schon relativ stirker zu
(pg=0,236). Dies hat seine Ursache darin, da im Stab II die Momentenauf-
nahmefahigkeit bei Einstellung des Gleichgewichtes schon stark absinkt. ITm
Verlauf der 7.J-Werte zeigt sich hier schon deutlich die Tendenz zur Aus-
bildung eines Gelenkes. Die Untersuchung, ob bei dieser Laststufe ein weiteres
Gleichgewicht bei ansteigender Knotenverdrehung mdoglich ist, ergab, daB
dies bei ¢,=0,0306 der Fall ist. Fig. 18 zeigt die > M-¢,-Kurve, in der deut-
lich die beiden Nullpunkte, die dem Verdrehungsgleichgewicht entsprechen,
zu erkennen sind. Die Unstetigkeitsstelle ergibt sich organisch bei Ausbildung
des plastischen Gelenkes im Stab II. Zu ihrer Erklirung wurde einerseits
angenommen, daf} dieser Stab weiter- wie bisher zur Momentenaufnahme
herangezogen wird und der linke Kurvenast entsprechend strichliert verldngert,
wihrend der strichlierten Fortsetzung des rechten Kurvenastes die Annahme
zugrunde liegt, dal sich das FlieBgelenk bereits frither ausbildet. Hier wurde
— etwas auf der sicheren Seite liegend — mit der voll ausgezogenen Kurve
gerechnet, d.h. der Stab II beteiligt sich nach Ausbildung des plastischen
Gelenkes nicht mehr an der weiteren Momentenaufnahme.
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Fig. 17. Last-Verformungskurven der drei Einzelstébe fiir den 1. und 2. Rechengang der
Laststufe v=2,08.

1 M tem

100 F———~ T ? e ‘
-; | /
50 " - | §
\ i 4 ‘
i | | }
200 220 240 260 280 300 1320
i

T

- | /306 |¢pg.10%
\ r |

-50 _ﬂu——%——_.ﬁg . ;‘//W%
v=2,08 i /
-100 ' |

150 S R R

Y
Fig. 18. Momentensummenkurve zur Bildung der Verdrehungsgleichgewichte der Last-
stufe v=2,08.

Es wire natiirlich moglich, die im allgemeinen geringfiigige weitere Momen-
tenaufnahme zu erfassen, wenn man die durch die Ausbildung des Gelenkes
erfolgte Anderung des statischen Systems beriicksichtigt und in den Tterations-
gang entsprechend einbaut.

In Fig. 19 ist die Lastverformungskurve fiir das Gesamtsystem dargestellt.
Man erkennt, daBl der Scheitelpunkt bei »=2,11 liegt, was einem Knoten-
drehwinkel ¢,=0,027 entspricht. Damit ist die maximale Tragkraft des
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Fig. 19. Last-Verformungskurve des Gesamtsystems.

Systems erreicht. Bei der Untersuchung eines zusammengesetzten Stabsystems
(s. Fig. 2) mufl aber auch der abfallende Ast dieser Kurve ermittelt werden,
da die Gleichgewichtszustdnde auch in diesem Bereich fiir die Ermittlung der
Traglast des zusammengesetzten Systems von Bedeutung sind. Die Punkte
des abfallenden Astes entsprechen der zweiten Gleichgewichtslage fiir die ein-
zelnen Laststufen.

Der in Fig. 19 dargestellten Kurve liegt die nach der Theorie 1. Ordnung
ermittelte Normalkraftverteilung zugrunde. Um den Einflul der Normal-
kraftsverdinderung nach der Theorie 2. Ordnung und unter Beriicksichtigung
aller Imperfektionen festzustellen, wurde fiir eine Laststufe in der Nédhe des
Scheitels (v=2,08) ein zweiter Rechnungsgang durchgefiihrt, dessen Ergebnis
strichliert eingetragen ist (s. Fig. 17 und 19). Die Normalkrifte und ihre Ande-
rung sind in Tabelle II eingetragen. Zum Verstindnis der Krifteumlagerung
sind die 7 J-Kurven fiir die drei Stibe in Fig. 20 fiir den ersten Rechnungs-
gang und in Fig. 21 fiir den zweiten Rechnungsgang dargestellt. Man erkennt,
daB die stérker plastizierten Stiabe II und I an den weniger plastizierten
Stab III Krifte abgeben, was auch deutlich aus der Tabelle zu erkennen ist.
Aus einem dritten Rechnungsgang ersehen wir, dafl der am stéirksten plasti-
zierte Stab sich noch geringfiigig auf Kosten der beiden anderen Stibe ent-
lastet. Das Ergebnis des zweiten Rechnungsganges ist in Fig. 17 strichliert
eingetragen. Die Kréfteumlagerung bewirkt eine Erhohung der Systemsteifig-
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Tabelle 11
N (), v = 2,08
Stab
1. Rechengang | 2. Rechengang | 3. Rechengang
I 231,3 223,8 224,7
II 142,9 138,4 136,7
II1 163,1 176,1 176,9
| V-gr | T -3
10 1,0
v=2,08 .v=2,08
1. Rechengang: N; = 0,680 2. Rechengang: gl = 0,658
Ng = 0,752 T, fen
Ng = 0,645 Nu = 0,697
0,8 0,8
Stob I Stab I
0,6 N 06 PN
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Fig. 20. T'J — M-Kurven des 1. Rechen- Fig. 21. T'J — M-Kurven des 2. Rechen-
ganges der Laststufe »=2,08. ganges der Laststufe »=2,08.

keit, was durch die Verringerung des Knotendrehwinkels ¢, um ca. 5%, zum
Ausdruck kommt. Die Erhohung der Tragfahigkeit durch diese Kréafteumla-
gerung ist hier jedoch nur geringfiigig. Es zeigt sich demnach, da8 das Instabil-
werden des Systems vor der Ausbildung eines Gelenkmechanismusses eintritt, was
auf den hier nicht vernachlissigbaren steifigkeitsvermindernden Einfluf} der
Druckkrifte zuriickzufithren ist. Auch U. VogEL (8) hat in einer allgemeinen
Betrachtung auf diese Tatsache hingewiesen.

Wie eine Kontrollrechnung bei Vergleich der aufeinanderfolgenden Gleich-
gewichtszustinde ergab, finden im allgemeinen keine Entlastungen in den
Querschnitten statt. Eine solche tritt nur dann ein, wenn ein am Gleichgewicht
mitwirkender Stab bereits seine maximale Momentenaufnahmefahigkeit iiber-
schritten hat, was nur fiir einen engen Bereich in der Ndhe des Scheitels der
Lastverformungskurve bei stidrkerer Unterdimensionierung eines Stabes der
Fall sein konnte.
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D. Schlufifolgerungen

Der vorliegende erste Teil der Stabilitdtsuntersuchung von Stabwerken mit
Imperfektionen befalB3t sich mit der Traglastberechnung des frei verdrehbaren,
aber an der Verschiebung behinderten Mehrstabknotens, wobei ein beliebiges,
auch ortsverdnderliches Spannungs-Dehnungs-Gesetz, strukturelle und geo-
metrische Imperfektionen und Querlasten angenommen werden. Eine weitere
zur Zeit in Durchfithrung begriffene Untersuchung bezieht sich auf den frei
verdrehbaren und nicht an der Verschiebung behinderten Mehrstabknoten.
Diese Arbeit hat vor allem das Ziel, grundsitzliche Erkenntnisse iiber das
Verhalten des Einzelstabes im Knotenverband und des Mehrstabknotens selbst
zu gewinnen. Im weiteren soll nach Behandlung des nicht mehr an der Ver-
schiebung behinderten Mehrstabknotens die Untersuchung zusammengesetzter
Systeme mit den so erarbeiteten Grundlagen in Angriff genommen werden.
Hierbei wird man zweckméBig in erster Linie auf den I-Querschnitt, dessen
schwache Achse senkrecht zur Systemebene liegt, zuriickkommen. Mit der
ersten Stufe hierfiir, nimlich den zum Rechteckquerschnitt zusammengelegten
Flanschen, befaBte sich diese Arbeit. Das Endziel ist die richtige Abschéitzung
der Auswirkung von verschiedenen Imperfektionseinfliissen auf die Tragkraft
zur Beurteilung geeigneter Naherungsverfahren. Als Ergénzung ist natiirlich
nach wie vor die versuchsméaflige Traglastbestimmung unentbehrlich.

Bei der Ausarbeitung des Iterationsverfahrens und der umfangreichen
Zahlenrechnung hat mich mein Assistent Dipl.-Ing. G. Schulz auf das wert-
vollste unterstiitzt. Die Programmierung besorgte mit groBem KEinsatz Herr
H. Pircher. Dem Rechenzentrum Graz und seinem Leiter, Prof. Dr. H. Florian,
danke ich fir die Bereitstellung der erforderlichen Rechenzeiten.
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Zusammenfassung

Zur Stabilitdtsuntersuchung von Stabwerken mit Imperfektionen benotigt
man die Losung fiir den Grundfall des Mehrstabknotens. Die Arbeit befat
sich mit diesem Grundfall, wobei die in einem Knoten anlaufenden Stibe —
deren Material einem beliebigen Spannungs-Dehnungs-Gesetz folgt — am
anderen Ende nachgiebig eingespannt sind und geometrische und strukturelle
Imperfektionen sowie Querlasten aufweisen. Es wird das Verhalten des Einzel-
stabes im Verband mit anderen Stiben und die Stabilitit des Gesamtsystems
an einem konkreten Beispiel untersucht und die Ergebnisse der elektronischen
Berechnung in Kurvenform dargestellt. Es zeigt sich der steifigkeitsvermin-
dernde Einflufl der Druckkréfte, so dafl ein Versagen vor Ausbildung eines
Gelenkmechanismusses eintritt.

Summary

This paper deals with the basic case of the stability problem of a frame-
work composed of struts with imperfections by considering a node formed by
several struts. These struts can be restrained on the opposite ends either
rigidly or flexibly and may, furthermore, have geometrical and structural imper-
fections (residual stresses) as well as transverse loading. The material may
comply with any strain-stress diagram. The structural behaviour of a single
strut alone and in combination with the other struts, and the stability of the
whole system are investigated by means of a typical example calculated with
the aid of a computer. The results obtained are discussed and the characteristic
diagrams are plotted. It is clearly demonstrated that the compression forces
reduce the stiffness of the system in such a way that collaps takes place before
the formation of a linkage mechanism.

Résumé

Pour étudier la stabilité des systémes dont les barres présentent des imper-
fections, il faut connaitre la solution du cas fondamental, celui du nceud ou
aboutissent plusieurs barres. Li’auteur traite ce cas, en considérant des barres
encastrées flexibles dont le matériau obéit & un diagramme contrainte-défor-
mation quelconque. Ces barres présentent des imperfections géométriques et
structurelles et elles sont sollicitées par des charges latérales. Pour un exemple
typique, on examine le comportement d’une des barres de 1’ensemble et on
vérifie la stabilité du systéme. Les résultats, obtenus & I’aide d’une calculatrice
électronique, sont présentés sous forme de diagrammes qui montrent claire-
ment la diminution de rigidité due a l’effet des compressions; on atteint ainsi
la charge de ruine avant que se forme un mécanisme de rotules plastiques.
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