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Beams on Immovable Supports

Poutres sur appuis fixes

Träger auf unbeweglichen Auflagern

ARON ZASLAVSKY
Associate Professor of Civil Engineering, Technion, Israel Institute of Technology,

Haifa, Israel

Introduction

Beams are usually represented as borne by one immovable support, the
others being assumed as movable. This assumption is an idealisation, since
even a support on rollers is restrained by considerable friction.

In this paper, simple beams are elastically analysed under the opposite
extreme limiting assumption: that of perfectly immovable supports. (Actually
either the supports may yield and/or stresses become so high as to render their
transmission impossible.) A rigorous Solution (though neglecting shear forces
and, of course, stress concentrations near concentrated forces) has been given
by Waszczyszyn and Zyczkowski [1] for a beam loaded by a concentrated
force at midspan, the mathematics being rather involved and not very suitable
for engineering purposes. A simpler and sufficiently accurate analysis has been
given by Timoshenko for cylindrically-bent plates [2]. In both works, however,

the analysis is based on the assumption that the supports act at the
level of the neutral axis. In beams supported at their bottom surface this
assumption is misleading, and therefore the main part of the paper deals
with this latter case.

Longitudinal Changes

Fig. 1 shows the deflected shape of a simply-supported beam in bending.
The reduction A n of the span at the level of the axis equals:

i i

An j(ds-dx)^lj^Jdx. (1)
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Substituting -^ from the equation of the elastic deflection line for the

corresponding loading, Eq. (1) may be written in the form:
f2

An ßJJ, (2)

where the coefficient ß varies only little for the most important cases, as shown
in Table: ß 2A-2.78.
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Fig. 1.

The extension A l of the bottom fibre equals:
z i i i

Al= €ldx= ^dx -ßj^dx \ -gjdx. (3)

0 0 0 0

The last integral represents the reduced moment area and equals the sum of
the slopes </>^ + (f>B multiplied by hl9 which result may be directly written
down from examination of Fig. 1:

JZ A1(^ + ^). (4)

In the case of symmetrical loading <f>A=<f>B $max==(dyldx)max:

Al 2\<f>max. (5a)
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And if, in addition, the section also has two axes of symmetry:

Al hcl>max. (5)

Eq. (5) may be given the form:

Al yhj-, (6)

where the coefficient y (varying from 3.0 to 4.0) is shown in the Table. While
AI is proportional to the loading, A n is not.

The displacement S of the movable support of a simply (at the bottom)
supported beam equals

S =Al-An f(yh-ßf)ß. (6a)

Criterion for the Horizontal Reactions

If the beam is supported at the level of its axis by immovable supports,
horizontal reactions H will appear, always producing a tensile axial force since
the span tends to shorten. However, if the immovable supports act at the
bottom, the reactions H will produce compression whenever Al0> An0 or, by
Eqs. (2) and (6), whenever

/o < ~ßh (7)

or approximately when
f0<1.25h, (7,a)

which is the case in ordinary practice.
The subscript 0 has been added to indicate that An0, Al0 and /0 apply to

the ordinary simply-supported beam (with one movable support).
In the case /0 ^h, no horizontal reactions are involved, but will appear

in the course of the loading history (and change sign in the case f0>^h; see

Fig. 6).

By adjusting the level of the supports the reactions H may be regulated.
For instance, in order to obtain H 0 the supports should be raised to the
level e (Fig. 1):

e /^ €° <8>
?0,max ZY

e depending on the magnitude and type of loading.
For case 1 (Table) we have:

e °-4/° min- <8a>

If the supports act at the bottom then e \h and the load producing H 0

will be found by (8) from
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for case 1 this leads to

ARON ZASLAVSKY

y h
u

Ph=o —

ß'

60EIh

(8b)

(8c)

Loads smaller or greater than PH=0 produce horizontal reactions H.

Beams Supported at Axis Level (Fig. 2)

The analysis involves the two unknowns H and f fQ — fH^ where /0 is the
deflection produced by the loads in an ordinary simply-supported beam and

Fig. 2.

fH the deflection produced by the reactions H. Assuming approximately a
sinusoidal deflection curve we have

Hfl2

3

/* '-El
and f — fo fH — fo 9 JP T

> =1
/o /o /o

+/fl// 1 + HP
TT2 EI

1+a' (9)

where a
Hl*
9 ^ T and the denominator (1+a) denotes a reduction factor with

regard to /0.
TT J

The reactions H also produce, in addition to fH, the elongation ttj, so

that the condition for the immovability of the supports is:

A nM being due to the bendmg moments only.
Or, by Eqs. (2) and (9):

ßEAf* ßEA /§
l2 l2 /i4._^ü\2

\ + T,*El)

where |8 772/4 2.47 (see Table, case 2).
From Eq. (11) the reaction H will be found, and from Eq. (9) — also /. In

many practical cases <x<^ 1 and Eq. (11) reduces to
2AEA fl

ßEA fl
l2 (1 + a)2'

(11)

H^L-
V-

(12)
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Examples. Consider first the INP20 (7 2140 cm4; Z 214cm3) beam of
Fig. 3 (dead weight neglected). In this beam both crmax aadm ± 1400kg/cm2,
and /0 Z/400 1.125 cm are utilised when one support is movable. When both
supports are immovable, however, we obtain from Eqs. (11) and (9):

H 1050 kg (oH HjA 32 kg/cm2) and / /0/1.005. We see that here the
influence of H is very small. (A reduction in temperature by 1.5° would
produce the same H.)

-I Pr 2660 kg1/2

IIP 20

V

l=4.50m

Hf

PI

max®
Fig. 3.

P 20000kg1/2

H X
7cm^J

-4^l 2.0m Fig. 4.

Even when the beam is twice as long (l 9.0 m) and loaded by P \ X 2660

1330kg (i.e. amax aadm\ f0 Z/200 4.5cm) the horizontal reaction is not
considerable:

H^ 4x1050 4200 kg; /^/0/1.20 4.4 cm.

The maximum tensile normal stress at midspan equals:

1400\Pl\Z
-HfjZ -4200x4.4/214
+ H/A 4200/33.5 + 125

1439 kg/cm2

As an opposite example, showing a very large H, consider the reetangular
steel beam of Fig. 4 (A 28 cm2; 7 114 cm4; Z 32.7 cm3; E 2.1 x 106 kg/cm2)
for which /0 13.88 cm. This example was given by Waszczyszyn and Zycz-
kowski [1], who obtained H 97,508 kg and / 5.34 cm.
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Our calculation by Eqs. (11) and (9), using ß 2Al, yields: H g^ 98,500 kg
and / _^ /0/2.65 5.24 cm, which is in good agreement with the rigorous results.
It may be noted that this example does not represent usual practical cases of
steel beams since the deflection is of the order Z/40 and the maximum normal
stress equals:

\Pl\Z =12000x200/32.7 g* +30,600
-HfjZ 98,500x5.24/32.7^ -15,800
+ H/A =98,500/28 _^ + 3,520

18,320 kg/cm2

Beams Supported at the Bottom Surface

Fig. 5 shows a beam on immovable supports. The section is assumed to
have two axes of symmetry and a concentrated load P acts at midspan (but
the following analysis is equally applicable for different loading conditions
and sections).

Hh/2 Hh/2

-)-HH-f-
h/2

CH) (H
h/2

Hh
T

MmeuK

Fig. 5.

Assuming compressive horizontal reactions H, they may be equivalently
represented by bending moments Hh/2 (producing fH and AlHM) and axial
forces H causing both bending moments with maximum H f (producing f'^

TT 1

and A l"HiM) and a contraction -=-j.
We have therefore the condition:

AI'M~
El
EA

A nM 0, (13)

where A lM and A nM are due to the combined action of all the bending moments.
A nM may be represented by Eq. (2) using again ß 2AI; A lM may be represented
by Eq. (5):

A lM A Z0-(J l'HtM-A l"HM) h \i%max-[ä^± - i^l)] (14)
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Eq. (13) then reads:

,1". Hllh AI Hl ßf2 ^k [^max-Yl \4 ~ ^jj " ~EÄ ~ T~ 0 (15a)

J _ß£H 90,max h i
El jj. **,_*/' (15b)

hA+ 4

PI2In our case <f>o)max \aw t an(^ ^or H 0 Eq. (15b) reduces to (8c) since then

/ /o-
On the other hand the deflection equals:

/ _ f i -i a> t*\-4 Hl2h HPf
f - fo !h-!o \1h-1h) ~ to~~\6Ej + tt2EV

Hl*h
fo -116^7 /0- 0.62 och

1
Hl2 1-c

TT2 EI
(16)

In our case f0 PZ3/(48 #/).
When H approaches Euler's buckling load (a -> 1), / becomes very large,

as it is always the case in compressed beam-columns. (It is assumed that
buckling is precluded perpendicularly to the plane of the Figure, and also
that local buckling does not occur.) From Eqs. (15) and (16) H and / may be
calculated. Eq. (15b) reduces to simple proportionality for small values of /
when A n and A l"H)M (i.e. Hf) may be neglected. In the case of concentrated
force P at midspan, this yields (Z-section modulus):

PfH~ — (17)
4,h + SZIA

{ }

and in the case of a uniformly distributed load Q ql:

H=6h+12Z/A- (18)

Eqs. (17) and (18) may be also derived by Castigliano's theorem ([7-elastic
energy): dU/dH 0.

If in addition the beam is subjected to a uniform temperature + t (<xt — thermal

coefficient) Eq. (13) becomes:

TT 7

AlM-^J~AnM + *tlt ° (13a)

JI T0,max h l h
and Eq. (15b): m „. ^^ (15c)

hA+ 4 Tr
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andEq. (17):
Pl+16EIatt/hH= Ih + ZZjA ' (i8a)

(Likewise a small movement of the supports may be accounted for.)

Examples. Referring to the beam of Fig. 3, supported at the bottom, we
find from Eq. (15) and (16):

#^9300 kg and /^ 0.65 cm < 1.125 cm =/0.
The linear Eq. (17) yields H ^ 9150 kg (only 1.6% less). The maximum normal
(compressive) stress at midspan equals:

\Pl\Z 1400

-\Hh\Z 9300x10/214 - 435

Hf\Z 9300x0.65/214 28

HjA 9300/33.5 276

1271 kg/cm2 < 1400

Taking Z 9.0m and P= 1330kg we obtain from Eq. (17) the same # 9150kg
but more accurately from (15) and (16): # 9500kg; / 2.85cm < 4.4cm. The
maximum stress remains below the admissible value (1367 kg/cm2) and the
loading history for this beam would show that up to P 3000 kg there is no
considerable deviation from proportionality.

Now consider the beam of Fig. 4, with supports at the bottom. Although,
for the given load P 20,000 kg, this is a hypothetical case, it may be of
interest to analyse its loading history.

Using Eq. (7) as a criterion for H, we expect it to be tension:

1.25h 8.75 cm < /0 13.88 cm.

From Eq. (15) and (16) we obtain #g^-38,500 kg and /^ 10.2 cm, the minus
sign denoting tension. The maximum normal (tensile) stress at midspan equals:

\Pl\Z +30,600
+ \Hh\Z= 38,500x3.5/32.7 + 4,120

-HfjZ =-38,500x10.2/32.7= -12,000
+ H\A =+38,500/28 + 1,375

+ 24,100 kg/cm2

The load PH=0, for which H 0, may be readily found by Eq. (8c):

PH=0 60 EI h/P 60 x 2.1 xl06X 114.3 x20/2003^ 12,600 kg.

The loading history is shown in Fig. 6. It is seen that H changes from
compression (+) to tension (—) passing through a maximum and through
zero at PH=0, after which it continues to increase quickly while the deflection
/ and the stresses are flattening off. Both tensile (omax) and compressive (omin)
normal stresses at midspan are shown, their mutual ratio changing in the
course of history; also 10S is indicated (Eq. (6,a)).
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Flg. 6.

Using a simply supported reetangular rubber beam, the movement S of its
roller-support under increasing load P followed Eq. (6,a): first the movement
was outward and later inward.

From Fig. 6 we also see that H/P ^ 5, i. e. in the case of a movable support
its movement would start from the very beginning and would be resisted by
H \yiP, ii being the friction coefficient.

It should be noted that the analysis of the loading history in cases like this
(non-linear, non-monotonic relationship) is indispensable for a complete
picture. Also, the question of the safety factor k arises. Although we are dealing
with elastic analysis, the admissible load Padm should be defined here as Padm

Py/k, where PY is the load producing the first yield in the material.
It has, of course, been assumed that the supports and connections are

capable of transmitting the large forces, that the material is still in the pro-
portionality ränge, and that transverse buckling is precluded, the Euler load
being Hcr= 18,000 kg, while in the plane of loading it equals Hcr 59,000 kg.
(Should buckling oeeur, the beam would be relieved of part of the reaction H.)
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Conclusions

An approximate "second-order" elastic analysis leading to simple algebraic
equations is presented for simple beams supported at their bottom surface
under the limiting assumption of perfectly immovable supports. In beams of
high-strength material the axial force produced by the horizontal reactions

may change from compression to tension under increased loading and deflections.

By changing the level of the supports the horizontal reactions may be

r^gulated.
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Summary

Simple steel beams supported at their bottom surface are analysed for the
limiting case of perfectly immovable supports. It is shown that in most practical

cases the horizontal reactions cause compression, but tension is also

possible. The case of supports acting at the level of the neutral axis is also
reviewed. The analysis uses approximations permitting very simple calculations.

Numerical examples are given.

Resume

L'auteur etudie des poutres simples metalliques dont les appuis, situes ä la
hauteur de la membrure inferieure, sont consideres comme parfaitement fixes.
Pour ce cas limite, les reactions horizontales mettent presque toujours la
poutre en compression, mais une traction est aussi possible. On examine
egalement le cas d'appuis agissant ä la hauteur de Taxe neutre. L'auteur
utilise une methode approximative, permettant des calculs simples. II donne
des applications numeriques.

Zusammenfassung

Auf dem unteren Flansch aufgelagerte einfache Stahlträger werden für den
Grenzfall unbeweglicher Auflagerung untersucht. Dabei zeigt sich, daß in den
meisten praktischen Fällen die horizontalen Auflagerkräfte Druckspannungen
im Träger erzeugen, wobei aber auch Zugspannungen möglich sind. Der
Sonderfall von Auflagerung auf der Höhe der Neutralachse wird ebenfalls untersucht.

Die theoretischen Näherungen erlauben eine einfache Berechnung, wie
anhand numerischer Beispiele gezeigt wird.
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