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Analysis of Plane and Space Frameworks with Curved Members
Calcul des structures bi- et tridimensionnelles comportant des éléments courbes

Berechnung ebener und raumlicher Rahmentragwerke mat gekrivmmiten Elementen

SEMIH S. TEZCAN BULENT OVUNC
Ph. D., Professor, University of British Ph. D., Academic Research Fellow, Uni-
Columbia, Vancouver, Canada versity of British Columbia, Vancouver,
Canada

1. Introduction

- The stiffness method of analysis in conjunction with high speed digital
computers has proved to be the most efficient tool in structural engineering.
With the stiffness matrices of typical individual members established, the
method of analysis is the same for a great variety of structures such as plane
trusses, plane frames, plane grids, space trusses or space frames. Although
there is abundance of literature for the stiffness matrices of straight members
[1, 2, 3], there is not sufficient material available for the stiffness matrices of
curved members.

Usually, the curved members in a structure are replaced by a series of
straight members. The disadvantages of this replacement are the great increase
in the number of degrees of freedom of the structure and the approximations
involved in the analysis. For instance, as will be demonstrated later, an
analysis of a semi-circular arch, to an acceptable degree of accuracy, would
require at least more than twenty straight members. This would mean that
a spherical dome with one hundred circular parts would involve some two
thousand straight members. This increase in the number of members may
cause a serious problem in regards to the limited core memory capacities of
the computers.

In the following presentation, stiffness matrices are developed for the
circular members of space frames, plane frames and plane grids. At first, the
stiffness matrix of a space member is determined relative to the radial, tangen-
tial and transverse axes of the member. Then, through successive orthogonal
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transformations, the member stiffness matrix is transformed to the common
coord nate system. The use of common coordinates in the stiffness matrices
of individual members is imperative for generation of the main stiffness matrix
of the structure by direct combination of appropriate matrix elements of the
members. The stiffness matrices presented for the circular curved members
are very general and they may be used even for straight members by equating
the radius of curvature to infinity and the central angle to zero in the results.

2. Coordinate Axes and Sign Convention

Circular curved members with doubly symmetric cross sections will be considered.
The stress resultants and deformations in the following discussion of each
member will be referred to a right-hand orthogonal coordinate system xyz.
These “Member Axes’’ are different for different members. The tangential
axis directed from the ¢ end towards the j end is taken as the y-axis, while the
transversal and radial directions, which are also the principal inertia axes of
the cross section, are taken as the z- and z-axes respectively, as shown in
Fig. 1. For consistency, the principal inertia axis within the plane of curvature

XYZ common axes
xyz member axes

Fig. 1. Coordinate systems and numbering of deformations.
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is taken as the member’s z-axis. The positive sense of the z-axis is so determined
that it always makes an angle smaller than 90° with the common Z-axis.

The joint deformations and external loads on the structure are expressed
relative to a global coordinate system X Y Z, called the “Common Axes’’.
Positive directions of rotations and moments are determined in accordance
with the right hand screw rule.

3. Stiffness Matrix of a Space Member Relative to the Member Axes

Flexibility influence coefficients. The flexibility influence coefficients of a
curved member may be obtained from the unit load theorem in the following

manner:
+k/(Vka) +k'(V;ch) +(TkTm) ]ds,

GA GA aJ

where f;,, is the deformation in the “k’’th direction due to a unit load in the
“m’’th direction. Unit loads are applied non-concurrently first in the “k’’th
and then in the “m’’th direction at the free ¢ end of the member, following
which the algebraic expressions of the bending moment M, axial force N,
shear V and torque 7', are evaluated.

These are substituted into Eq. (1) for determination of the flexibility coeffi-
cients f;,,. After repetition of this procedure for each of the six degrees of
freedom at the end 4, the following flexibility matrix f; is obtained:

fll 0 0 0 f51 fﬁl T
0 f22 f32 f42 0 0

[f]zz 8 f32 f33 f43 g g , (2)

f42 f43 f44
f51 0 Y 0 f55 f65

fa 0 0 0 fe fes_

in which the individual flexibility coefficients f,,, are

f1o = R3a/EI+ R3(2b—a)/GJ+k RO/GA,

fsr = R2a/E1,— R2(sinf—c)/GJ,

for = B2e/B 1+ R2(d—0)[GJ, (2a)
far = R*(2b—a)/EI,+ Rc/EA+k Ra/GA,

foo = R3(d—e)/EI,~Re/EA+k e/GA,
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fao=—R2b/EI,; f3=—R2d/EI,; f,= RO/EI,,
fos = R*a/EI,+ Ra/EA+k Rc|GA,

2a)
fss = Ra|EIl,+ Rc/|GJ; fes=Re/EI,—Re|GJ, (
fee = Bc/E1,+ Ra|GJ.
The trigonometric terms a, b, ¢, d and e in these expressions are
a=(0—-4%sin26)/2; ¢ = (0+}sin 20)/2; (21)
b=0—-sinf; d=1-—cosf; e = 1sin20.

The stress resultants {p}; at the ¢ end may then be related to the deforma-
tions {8}, by means of the inverse of the flexibility matrix as

v} = [f17243};- (3)

Static Equiltbrium Matrix. Considering the static equilibrium of the member,
the six stress resultants {P}; at the j end may be expressed in terms of those
at the ¢ end as follows:

{P}; = [S{P}; (4)

in which § is the equilibrium matrix given by

-1 0 0 0 0 0
0 —cos 6 sin 6 0 0 0
0 —sin 8 —cos @ 0 0 0
(51 = 0 R—Rcosf Rsinf  —1 0 o | ©®
R—Rcos 0 0 0 0 —cosf sin 6
— Rsin 6 0 0 0 fsinﬁ —cos@_

It is possible to derive from energy considerations, that a relation similar
to Eq. (4) exists between the deformations of the 4+ and j ends of the member
as follows:

18}, = —[S17{8};. (6)

Stiffness Matrix relative to the Member Axes. By making use of Eqs. (3), (4)
and (6), the stiffness matrix k,,, of a curved space member relative to the
member axes may be obtained from the following relation:

[Py _ [ UG & A [S)T 7 (18 b
l{P},-} [[S] [ ST [S]T] { {a},.} (12 by 12) (7)

or {P} = [k, {3} (12 by 12), (7a)
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in which:
3 ky, . . . kyq
k22 k32 k42 .
k32 k33 k43
. k42 k43 k44
k51 . ’ s k55
k . k
k o = 61 . . 65
[ ] :U _kll - . . _k51
A ko ks ke
Frame ~kgs Koz Koy
M@mbe/r k84 _k94 k10,4
_k51 . . . k11,5 kll,ﬁ
| ke " . ~k116 Kioe —

and, the individual stiffness coefficients are

k11 = (f55f66—f<2;5)/W: 3

k61 = (f51f65_f55f61)/Wa

k32 = (f42f43_f32f44)/U9

kg = —kypc080+kgysinb,

kgy = —kyocos0+kygsind,

k43 = (f32f42_f22f43)/U7

kgy = —kypsinf—kygcosb,

kyga= kso R(1—cos ) +kyy Rsind—ky,,
kss = (fufse_f%ﬂ/W,

kes = (fu f55 “fgl)/Wa

Sl

. —k51 kﬁl
k82 _k83 k84 .
k83 k93 -—k94
k84 k94 k10,4 s
§11,5 _]]le,ﬁ
11,6 12,6
o by kg | )
k22 —k32 k42 -
—k32 k33 _k43 .
k42 ~k43 k44 *
kss ks
k65 kﬁﬁ

ksy = (forfes—Is1fe6)/ W

kzz = (f33f44—f23)/U>

k42 = (f32f43“f33f42)/U>

kgs = — kgpc08 0+ kygsin 6,

k33 = (f22f44’”f22)/Ua

kgg = — kgg8in 6 — kg5 cos 0,

k44 = (f22f33_f§2)/U’

(8a)

kas = (f51f61_f11f65)/W9

keyy 5= ks R (1 —cos0) —ks;c0o8 0 + ks sin 6,
kyy 6= kg B (1 —cos ) —kgs cos 0+ kggsin 0,

kyp6= —kg Bsin b —kgssin 0 — kg cos 6,

W = [(f11f55—f§1) (fllfGG_fgl)w(f11f65_f51f61)2]/f117
U = [(f22f33—f§2) (f22f44—f22)_(f22f43“f32f42)2]/f22-

4. Transformation from the Member Axes to the Common Axes

Ultimately, all the member stiffness matrices must be reduced to the
common axes so that the main stiffness of the system can be generated by
direct superposition of the stiffness matrices of individual members. Normally,
the member axes xyz may be directed in any manner. The orthogonal trans-
formation of the member axes xyz, from such a general state of inclination
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to the common coordinate system can be conveniently achieved by the
following three successive transformation operations.

Step 1. The member axes xzyz are first rotated through an angle B about
the straight line connecting the points ¢ and j, until the member’s z-axis
becomes horizontal, or the yz-plane becomes vertical. After this transforma-
tion, the axes are referred to as &, y,, 24, as shown in Fig. 2. The transforma-

(b) Front view from i toj

/ vertical plane
X

(a) Isometric view

(c) Top view

Fig. 2. Transformation from a general plane to the vertical plane.

tion equation corresponding to such rotation is

{P}xyz = [t]l {P}xoyozo _ (9)
in which, '
B . .0 . 6
cos f —sinf sin 5 —smﬁcosE
. .0 ., 0 . . B . '
[t], = | sinB sing 1-2 31n2§s1n2—2— —3(1—cosB)sinf |. (9a)
sin,Bcosg —3(1—cospB)siné (1—2cos2§0sin2[—;
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The angle B is positive if it is measured clockwise from the positive direc-
tion of the horizontal xz,-axis to the positive direction of the actual member’s
x-axis, when viewed looking straight in the direction from 4 to j.

Step 2. Imagine a rectangular coordinate system z,y.z, in which the axis
Yy, co-incides with the straight line between the points ¢ and j and the axis «,
is horizontal, which makes the plane y,z, vertical or, in other words, perpen-
dicular to the xy-plane. The axis x, of this system is co-incidental with the
axis x,. Now rotate the previously rotated coordinate system z,y,2, of the
curved member about x, through an angle /2, until the axes y, and z, coincide
with the auxiliary axes y, and z, respectively. This rotation may be expressed
in its effect on the stress resultants {P} by the equation:

{P}xgygz() = [t]Z{P}xSyszs’ (10)
1 0 0
0 cos— sin —0

where [t]e = 2 2. (10a)
_O —8In 5 cos §J

Step 3. The auxiliary axes x,¥,z, are transformed to the common axes X Y Z
by means of the following orthogonal transformation [3]:

my/Q - ly/Q 0
{P}msyszs = [t]3 {P}XYZ and [t]3 = ly my ny ’ (11)
—lyny/Q _myny/Q Q

in which 7,, m,, n,, are the direction cosines of the straight line connecting
the points ¢ and j. These direction cosines can be readily obtained from the
member end coordinates as |, =(X;—X;)/L, m,=(Y;-Y,))|L, n,=(Z;— Z;)| L,
and @2=1—n2.

The total transformation achieved through Steps 1, 2 and 3 may be com-
bined in a single expression as follows:

{Ploye = [1: {P}xv2z (12)
or [¢]; = [t], [#]2 [ts. (12a)
in which

t ts b
{8} = |t tas tas | (3 by 3) (13)

t31 t32 t33
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and tu=—Q— S/3+ly5ysinﬁ,
0 0 n/y . 0 -
tyy = — 0 sm—s1nﬁ+ly(eos§—aSIngeosB),
% o Vi g1 fin S g 1 oo
fyy = 0 coszslnf} ly(sm§+—geos.zcosﬁ),
e = — chosB—I— Qn sin 3,
oy 0 0 Ny 0
loo = -—_asmgsmﬁ—l—my (cos 5~ 6 ny 005,8) (13a)
oy 0 . .0 my 0
tas = —Ecosgsmﬁ—my (sm§ + 60085 cosB),
0 . 0
t23=nycos—2~+Qs1n—-2—oos,8,

0 .0
tas = @ cosgcosﬁ—nysmg.

At each end of a space frame member there are three forces and three
moments, i.e., altogether six vectors. Therefore, the transformation matrix
for a space member, including all twelve stress resultants at both ends, is

7= [T |

where [T]; = [[t]i [t]i] and [T, = [[t]" o ] . (14a)

(14)

XgYs Zg Straight member axes
Xo Yo Zo Curved member axes

xg and x, are colinear and horizontal
YoZo and yszg are in a vertical plane

L =V X2 (v -Y P (2 2,

Fig. 3. Transformation from straight member axes to curved member axes.
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The transformation matrix ¢; for the j end is identical with ¢, of the ¢ end,
except that —(6/2) should be used in ¢; instead of (6/2).

Note that, in all the above derivations it is assumed that the positive sense
of the member z-axis is directed away from the center of curvature. If, however,
the curvature of the member were opposite to that which is shown in Fig. 3,
the member z-axis would be directed towards the center of curvature so as to
satisfy the previous assumption that the z-axis should always make an angle
smaller than 90° with the Z-axis. In such a case the numerical values of 6
and R in Eqgs. (5) and (14) should be used as —6 and — R, in order to account
for this direction change in the curvature.

5. Common Axes Stiffness Matrix of a Space Member

Once the transformation matrices 7, and T} are evaluated from Eq. (14a),
the stiffness matrix relative to the member axes [k],,, should be reduced to
the common axes by means of the following standard transformation
formula [4]:

[klxyz = [T1" [kl [T]. (15)

6. Stiffness Matrix of a Plane Frame Member

The positive directions of the end deformations and stress resultants of a
plane frame member are shown in Fig. 4. The member is assumed to lie in
the Y Z-plane and the member z-axis is always taken to be directed parallel
to the common X-axis. By selecting the appropriate rows and columns from
Eq. (8), in accordance with the numbering system given in Fig. 4, the stiffness

1= (X-X)/L = O
Q% |1-n?|= |m2|

4

>Y

Fig. 4. Curved plane frame member.
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matrix of a plane frame member, relative to the member axes, is obtained as

kas kss kyo kgy kg3 ks,
kss kss kys kgs kog  —kgy
[k]zyz = k42 k43 k44 ks4 k94 k10,4 (16)
Plane kgs kgs kg, kay ks ko
Frame ~kgs kos koo ks kss ~kyg
Member kgy — —koq k10,4 kyp kg kys N

The direction cosine I/, of the member’s centerline is zero because the X-
coordinates are zero. Therefore, ¢ =m. For plane frame members the angle 3
is always zero because the principal z-axis lies always in the vertical Y Z-
plane. Substituting [, =8=0 and ¢ =m in Eq. (14), and considering that there
are only two forces and one moment at the ¢ end of the member, the trans-
formation matrix 7, of Eq. (14) for a plane frame member becomes

m, cos-z— —n, sin§ n, cos—2—+my sin 5 0

[T]; = } . 0 (17)
¢ —my31n§—nycos§ —ny81n§+mycos§ 0
3 0 0 1|

The common axes stiffness matrix kv, of a curved plane frame member
is then obtained from Eq. (15) by substituting the values of k,,, and T; from
Eq. (16) and (17), respectively.

7. Stiffness Matrix of a Plane Grid Member

The positive directions of the end deformations and stress resultants of a
plane grid member are shown in Fig. 5. The grid member is assumed to lie in
the X Y-plane and the member x-axis is always vertical, i.e., parallel to the
common Z-axis. If appropriate rows and columns are selected from Eq. (8),
in accordance with the numbering system shown in Fig. 5, the stiffness matrix
of a plane grid member relative to the member axes is obtained as

kyy ksy key —kq1 ~ks, kg1
ks, ks kes  —ks ku,s —ku,s
[k]xyz = ke kes kse —kgy ku,s k12,6 (18)
Plane ‘ku ‘km “ksl ku ksl —kﬁl
Grid —ks, ku,s ku,s ks ks —kgs
Member ke —kn,e k12,6 —kgy ~kgs keg

The direction cosine n, of the member’s centerline is zero, since the member’s
y-axis lies always in the X Y-plane. Therefore, ¢ =1. Because the curvature
of the member is in the X Y-plane, the z-axis is always horizontal making
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Fig. 5. Curved plane grid member.

B=90°. Substituting n,=0, f=90° and ¢=1 in Eq. (14), and taking into
account that there is only one force and two moments at the ¢ end of the
member, the combined stiffness matrix 7} of Eq. (14) becomes

- —Sinf 0 0 7

.0 . 0 . 0. 6
0 (my sin 7 sin /8—|-lycos»2—) (—lysm—2—s1nﬁ+mycos§)

[T]i =

0 . .0 0 . .0
0 (my cos 5 sin B—1,sin —2—) ( —1,cos 5 sin B —m,sin 5)*
If the common axes stiffness matrix £y, , is required, Egs. (18) and (19) are
substituted in the standard transformation formula of Eq. (15).

8. Numerical Examples

Example 1. The semi-circular fixed-ended arch shown in Fig. 6 was analyzed
both as a plane frame and as a grid, taking into account all the axial and
shear deformations. The arch was first considered as composed of two circular
members and then was replaced by a number of straight members. For a

varying number of divisions, the comparative results are summarized in
Table 1.

Example 2. The sperical dome structure supported on four columns as
shown in Fig. 7, was analyzed by considering the individual members first as
curved then as straight. Some of the comparative results are summarized in
Table 2.
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[ Tiee
p= 10K =
l E=3x|06psi

c pm=.20
MEMBER No.1 =AC

(a) Arch as a frame (b) Arch as a grid

Fig. 6. Semi-circular arch as a frame and a grid.

Table 1. Comparative Results for the Semi-Circular Arch

Analyses with straight members Analysis
k=15 .
L. with curved
Number of divisions
members
Member No. 1 2 4 6 10 20 (Exact)
As a plane | 104 8¢ (ft.) 3.3 33.3 35.3 36.2 36.7 37.3
frame M 4 (k—t.) 0.25 -7.56 -9.33 | -10.26 | —-10.61 -10.71
M 0.25 12.19 13.95 14.83 15.21 15.35
As a plane | 104 8¢ 910 732 727 728 729 731
grid Torque T4| 14.56 -.02 -5.69 | -10.68 | —14.29 —18.17
Mc 14.56 | —27.04 | -29.66 | —31.05 | —31.63 -31.83
Table 2. Comparative Results for the Spherical Dome
K =1.5 Bending moments in the yz-plane Vertical
| (kip-ft.) deflection

Location Mck Mgc Mcr } Mce ’ Megc Meaa Mac Joint A

Case A 295.6 187.1 74.5 —71.8 —67.6 10.6 15.3 0.06 ft.
Case B 145.2 145.6 38.4 |-110.7 20.5 | -31.0 317.8 0.45 ft.

Members between joints were considered as straight in the Case A, and as
curved in the Case B
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TZ

p=1okiP
A
IBW 114 S
v P P P 50ft
y ; i NN
__ﬁl__
Pi P P P\ 50ft
B8 ¢ E 0 4y
7 ; , ¥
(a) Side view 100t ! 100 ft .
E = 30x10 psi
p=.3
° Q—~>Y
E
(b) Plan Cl
X , ,
le- 86.6 | L13.4

Fig. 7. Spherical dome supported on four columns.

References

1. GErE, J. M., and WEAVER, W., “Analysis of Framed Structures”. D. Van Nostrand
Co., Inc., New York, 1965.

2. ASPLUND, O., “Matrix Method of Structures’’. Prentice-Hall Inc., New Jersey, U.S.A.,
1965.

3. TEzcaN, 8. S., “Computer Analysis of Plane and Space Structures’. Journ. of Structu-
ral division Am. Soc. of Civil Eng., ST 2, No. 4780, April, 1966, pp. 143—173.

4. ArGYRIs, J. H., and KeELSEY, S., “Energy Theorems and Structural Analysis’’. Butter-
worths, London, 1960.

Summary

The general stiffness matrices of circular members are presented for plane
frames, plane grids, and space frames. First, the flexibility matrix of the
unsupported end of the member is determined from the unit load theorem.
Then, utilizing the conditions of static equilibrium and making use of the
inverse of the flexibility matrix, the stiffness matrix is obtained with relation
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to the member axes. After three successive orthogonal transformations, the
stiffness matrix is transformed from the member axes to the common axes
of the system.

When curved members are idealized as a series of straight members two
disadvantages are in evidence. First, the results become approximate, and
second, the problem requires ten to twenty times more work in order to
achieve reasonable accuracy. On the other hand, with the availability of
stiffness matrices for curved members, these two disadvantages disappear.

Résumé

Les auteurs présentent les matrices de rigidité générales des éléments
circulaires, pour des portiques plans, des réseaux de poutres plans ou des
ossatures tridimensionnelles. On détermine d’abord, en utilisant le théoréme
des forces unitaires, la matrice de souplesse de I’extrémité libre de 1’élément.
En utilisant les conditions d’équilibre et en inversant la matrice de souplesse,
on obtient la matrice de rigidité rapportée aux axes de 1’élément. Par trois
transformations orthogonales successives, on rapporte la matrice de rigidité
aux axes principaux du systéme.

Lorsque 1’on assimile les éléments courbes & une série d’éléments droits, on
rencontre les deux désavantages suivants. Premiérement, il s’agit d’une solu-
tion approximative. Deuxiémement, pour obtenir une précision raisonnable,
la durée des calculs est 4 multiplier par dix ou vingt. Lorsque 1’on dispose des
matrices pour les éléments courbes, ces inconvénients disparaissent.

Zusammenfassung

Die allgemeinen Steifigkeitsmatrizen fiir kreisformig gekriimmte Elemente
werden angeschrieben fiir ebene Rahmen, ebene Trigerroste und fiir raumliche
Rahmen. Zuerst wird die Verformungsmatrix des freien Endes des Elementes
aus dem Einheitslasttheorem bestimmt. AnschlieBend, unter Beniitzung der
statischen Gleichgewichtsbedingungen und der Umkehrmatrix der Verfor-
mungsmatrix, wird die Steifigkeitsmatrix bezogen auf die Achsen des Elemen-
tes hergeleitet. Nach drei sukzessiven orthogonalen Transformationen wird
die Steifigkeitsmatrix von den Achsen der Elemente auf die Hauptachsen des
Systems umgeformt.

Wenn gekriimmte Elemente als eine Folge gerader Elemente idealisiert
werden, sind zwei Nachteile augenscheinlich. Erstens sind die Ergebnisse
Néherungslésungen und zweitens verlangt das Problem das Zehn- bis Zwanzig-
fache an Zeit, um eine verniinftige Genauigkeit zu erreichen. Mit der Ein-
fiilhrung der Steifigkeitsmatrix fiir gekriimmte Elemente treten diese beiden
Nachteile nicht mehr auf.
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