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Die Grenzlagen des Schubmittelpunktes bei Kastentrigern
The Limiting Positions of the Shear Centre in Box Girders

Les positions limites du centre de cisaillement dans les poutres-caissons

F. STUSSI
Professor Dr., Prisident der IVBH, ETH, Ziirich

1. Problemstellung

Der Schubmittelpunkt, dessen Existanz vor etwa 45 Jahren von den Inge-
nieuren H. ScHwyzER!), R. MAILLART?) und A. EcGENSCHWYLER?) gleichzeitig
und unabhéngig voneinander entdeckt worden ist, besitzt eine Doppelbedeu-
tung: er ist gleichzeitig «Querkraftsmittelpunkt» bei verdrehungsfreier Bie-
gung und Querschnittsdrehpunkt bei biegungsfreier Verdrehung. Er wird in
der technischen Literatur bis heute als Querschnittsfestpunkt betrachtet,
trotzdem schon vor lingerer Zeit darauf hingewiesen wurde, da3 dies, auch
im Rahmen einer technischen Biegungslehre fiir dinnwandige schlanke Stabe,
nicht zutrifft ¢). Nachstehend soll zunichst dieser frithere Hinweis wiederholt
und ergdnzt werden.

Ein Stab mit unsymmetrischem Querschnitt nach Fig. 1a verbiegt sich
dann unter einer lotrechten Belastung p in Richtung der y-Axe verdrehungs-
frei, wenn sich die beiden Flanschen in jedem Schnitt um den gleichen Betrag
1, =7 durchbiegen; bei gleichen Randbedingungen beider Flanschen ist diese
Bedingung fiir
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1) H. ScawyzER: Statische Untersuchung der aus ebenen Tragflichen zusammen-
gesetzten raumlichen Fachwerke, Diss. ETH, 1920.

2) R. MAarLLArT: Zur Frage der Biegung, Schweizerische Bauzeitung, Band 77, 1921.

3) A. EaeeENscHWYLER: Uber die Festigkeitsberechnung von Schiebetoren und dhn-
lichen Bauwerken, Diss. ETH, 1921.

4) F. Stssi: Zur Biegung und Verdrehung des diinnwandigen schlanken Stahlstabes,
Abhandlungen I.V.B.H., Band 6, Ziirich 1940/41.
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erfiillt. Bei gleichbleibendem Querschnitt ist mit

Q=M =—p,

somit }Zﬂl{}; + Gp;g ;{i + Gp]%’ (1)
Dabei ist Pa =p%, Dy =p%, Pat Dy =P,
Ma=M%, M,,:Mf‘b—“, M, +M,=M;

J, und J, sind die Trigheitsmomente der beiden Flanschen beziiglich der
x-Axe,
_ Gl

d h3
- h="13

Ja 12 °

und F’ bedeutet die in der technischen Biegungslehre eingefiihrte «reduzierte»
Querschnittsfliche fiir die Schubverformung; fiir die hier vorliegenden Recht-
eckquerschnitte ist

5 5
Fa, ngaha, 'F'b’ =6dbhb'
lp
| | Pb=Pipt P2b
l ! [Py l
| | ' Pa®Pigt P2a '
N1 : 1
" I | |
1 [ do { JPz 191
h | ,
:‘ J o i Jou F 102 o1
a:a J | Folsdp a | ’ JpFy
y 7o | |
| L
0 | o Ty 94q | # b
ot 620 . 92b
b -1
b N
Fig. 1a. Fig. 1b.

Setzen wir die Werte
Po =P Pqg> Mb=M_Ma5 pa'——_Mc,z,

in Gleichung (1) ein, so erhalten wir die Differentialgleichung fiir verdrehungs-
freie Biegung zu

M, F+F M,J+J, p M

G EF B JJ, " CF B’ (ta)
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oder auf die Normalform y' —cy =—F (2)
geordnet
. G J+d, BE _E ¢
WMoy S g = T mem P B L) )

Die Losung dieser Differentialgleichung zweiter Ordnung (mit den Rand-
bedingungen M, , =M ;=0 fiir frei drehbar gelagerte Flanschenden) liefert
die Momente M, und daraus die Flanschbelastung p, und damit die Lage des
Schubmittelpunktes,
Py

a, =b 2
in welchem die Belastung p angreifen muf}, damit verdrehungsfreie Biegung
vorliegt.

Der Abstand a, ist nun nicht konstant, sondern iiber die Stablinge ver-
dnderlich; der Schubmittelpunkt, als Angriffspunkt der Belastung fiir ver-
drehungsfreie Biegung definiert, ist kein Querschnittsfestpunkt, sondern diese
Schubmittelpunkte bilden iiber die Stabldnge eine gekrimmte Kurve.

Betrachten wir dagegen den Schubmittelpunkt, entsprechend seiner ur-
spriinglichen Deutung, in jedem Schnitt als Angriffspunkt der resultierenden
Querkraft @ («Querkraftsmittelpunkt»), so ist seine Lage durch

@
Q

gegeben; auch diese Punkte liegen auf einer Kurve, die jedoch mit der Kurve
der «Belastungsmittelpunkte» nicht iibereinstimmt.

Wenn wir nun unseren Stab mit einem gleichméBig verteilten Drehmoment
mg auf biegungsfreie Verdrehung belasten, so wird jeder der beiden Flanschen,
abgesehen vom de St.-Venantschen Torsionsanteil C¢’, durch eine Flansch-
belastung p,

a,=0>b

_ T/ B md+O(P”
p=F5 =+t
auf Biegung und Querkraft beansprucht und die Flanschdurchbiegung ist
gegeben durch
"o M p _ Payp
T = T g, GF.,

Die Lage des Schubmittelpunktes, nun in seiner dualen Bedeutung als Ver-
drehungszentrum jedes Querschnittes definiert, ist bestimmt durch

b—Ta_,
, Na™ M
Auch diese Punkte liegen wieder auf einer Kurve, die jedoch mit keiner der

beiden aus der verdrehungsfreien Biegung bestimmten Kurven (Belastungs-
mittelpunkt, Querkraftsmittelpunkt) tibereinstimmt.

a, =
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Dadurch, daB3 diese drei Kurven nicht mehr miteinander iibereinstimmen,
gehen nicht nur die Doppelbedeutung des «Schubmittelpunktesy und die
Dualitdt zwischen verdrehungsfreier Biegung und biegungsfreier Verdrehung
verloren, sondern es entsteht die grundsitzliche Schwierigkeit, dafl der Begriff
des Schubmittelpunktes iiberhaupt nicht mehr eindeutig definiert werden
kann. Wohl lassen sich einfache Aufgaben der Biegung und Verdrehung, wie
etwa unser Beispiel der Fig. 1 16sen, ohne da3 der Schubmittelpunkt verwen-
det wird, in allgemeineren Fillen, bei komplizierten Querschnittsformen, wird
eine solche Untersuchung jedoch schwierig und miithsam, wenn nicht iiberhaupt
unmaoglich.

Diese Schwierigkeit in der Definition des Schubmittelpunktes verschwindet
jedoch, wenn wir unsere Untersuchung nicht auf einen in seiner Lage ver-
anderlichen Schubmittelpunkt, sondern auf seine beiden Grenzlagen beziehen.
Vernachlassigen wir in Gleichung (1a) die Beitrige der Schubverformung, so
ergibt sich

J,

A

M

und damit die Lage des ersten Schubmittelpunktes 0,, wegen M"=@Q'= —p zu

Jo
Ga=b =

Beriicksichtigen wir dagegen nur die Schubverformung allein, so erhalten wir
analog fiir den zweiten Schubmittelpunkt 0,

E!
F+F

g, =b

Diese beiden Schubmittelpunkte sind Querschnittsfestpunkte und beide be-
sitzen fiir die zugehorigen Belastungsanteile p, und p, bzw. T} und 7, wieder
die Doppelbedeutung als Querkrafts- bzw. Belastungsmittelpunkt bei ver-
drehungsfreier Biegung und als Verdrehungszentrum bei biegungsfreier Ver-
drehung. Fir beide Belastungsanteile mufl die Elastizitatsbedingung erfiillt
sein; im Rahmen einer technischen Biegungslehre bedeutet dies, dafl die Form
des Querschnittes an jeder Stelle des Stabes erhalten bleiben muf3. Fir den
ersten Belastungsanteil p; bei verdrehungsfreier Biegung fiihrt diese Bedingung
auf eine ebene Verteilung der Normalspannungen o, ; die Elastizitdtsbedingung
nach der Hypothese Bernoulli-Navier vom Ebenbleiben der Querschnitte der
elementaren Biegungslehre ist somit als Sonderfall in der erweiterten Elastizi-
titsbedingung von der Erhaltung der Querschnittsform enthalten*).
Nachstehend sei der Rechnungsgang fiir den Fall verdrehungsfreier Bie-
gung im Beispiel eines Stabes mit Querschnitt nach Figur 1a skizziert. Fir die
Normalspannungen o, des ersten Belastungsanteils p; = — M7, der im ersten
Schubmittelpunkt 0, angreift, bleibt der Querschnitt eben oder es ist
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0 = ——
1 Ja:
mit J,=J,+J,. Zu den Spannungsidnderungen
do , @ M,
Pmi= =

gehoren Schubspannungen 7,,=7,, in den beiden Flanschen:

Yz

7d =—=fo;dF +C,
die sich zu den beiden «Scheibenquerkriften» , und &,

a b
Qg =J7dF, LCap =[7dF,

d.h. zu

J J
L AN 4 @ L J,+J, @

aufsummieren lassen; die resultierende Querkraft @, =%, ,+ 9, greift somit
im ersten Schubmittelpunkt 0, an, der deshalb aus der ebenen Verteilung der
Normalspannungen o, bestimmt werden kann.

£

Nun sind aber wegen ng = ar

die beiden Flanschdurchbiegungen infolge dieser Scheibenquerkrifte £, , und
.1 verschieden grof8 und die Elastizitdtsbedingung ist somit nicht erfillt.
Diese Ungleichheit der Flanschdurchbiegungen wird nun durch die Normal-
spannungen o, bzw. die Flanschbiegungsmomente I,

My o+ My, = M,
des zweiten Belastungsanteiles p, korrigiert:

9),tZ(L__l_(D'la), _ wa_}_(g‘lb),;

~8, o) T " wL\ag 2

dagegen sind die Flanschdurchbiegungen infolge der Flanschquerkrifte

Qs =M, gleich grob:
9! (9!

~A2q - ~2b
GF, GF’
F, : k)
d ist A =% (O
oder es 18 Kaa FYF Qs Qap F+F) Qs
und damit ist analog
F’ FI
S - _ ~a =_ b M.
2a ﬁg_'_Fb/ M27 Sjt2b ﬁ(’l,,_l-ﬁ‘bl 2
Die resulticrende Belastung p, = —M; und die resultierende Querkraft

Q.= M; greifen somit im zweiten Schubmittelpunkt 0, an. Setzen wir diese
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Werte von I, sowie die Werte von £, unter Beachtung von ¢,=M, und
unter Beschriankung auf den Fall gleichbleibenden Querschnittes in Gleichung
(2) ein, so erhalten wir
oM, J, M K M, g M
B B, T4d, GF - T E 4+ B, T T+0, OF

woraus sich nach kurzer Zwischenrechnung

B _JJ, FBi+F .,
G J,+J, FF

M, =-—

ergibt. Setzen wir diesen Wert in die Gleichgewichtsbedingung
M +M,=M
ein, so erhalten wir nach Ordnen auf die Normalform mit

G durdy BFy G Jrd, BE

I, TR & g, iRt (2a)

n
M7 —

die Differentialgleichung zur Bestimmung des Momentenanteils M, fiir die
die zugehorige Belastung im ersten Schubmittelpunkt angreift. Die Normal-
spannungen o, infolge des zweiten Belastungsanteils p,=p—p, sind nicht
mehr nach einer Ebene iiber den Querschnitt verteilt, sondern es ist auch bei
verdrehungsfreier Biegung eine Querschnittsverwolbung festzustellen. Die bei-
den Differentialgleichungen (1b) und (2a) fithren mit

J, F]

M,==—2>-M +—=—"5+

J +J F/ F/ 4M (3)

auf die gleichen Ergebnisse; sie unterscheiden sich dementsprechend durch

das Belastungsglied.
Die Verhiltnisse sollen nun noch durch die Ergebnisse eines Zahlenbeispiels

veranschaulicht werden. Wir wéhlen fiir den Querschnitt nach Fig. 1
ho=h, hy=2h d,=2d, d,=4d;

damit ist

3 3
J:ﬁ, Jb=4(éh=4Ja’ Ez'=Fb’=5—;lﬁ'

Ferner sei G/E =3/8 und die Stablinge [=12h.
Mit diesen Werten ergibt sich Gleichung (1b) zu

.75 1 15
M“_32h2M“_—§(p+16h2M)
und Gleichung (2a) zu
Ty Ty

32p271 32 h?
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In der folgenden Tabelle sind die Werte M,

M:J‘Q—’_z(z—z),

sowie die Losungen der Differentialgleichungen?®) (1b) und (2a) fiir die halbe
Stablinge bei frei drehbar gelagerten Flanschenden zusammengestellt.

Gl (1b) Gl. (2a)
Pkt. M

M, Pa M, P1

A 0 0 0,50000 0 0
1 5,50 1,20034 0,26483 5,1655 0,78390
2 10,00 2,12202 0,21401 9,5933 0,95330
3 13,50 2,82671 0,20303 13,0776 0,98990
4 16,00 3,32772 0,20066 15,5743 0,99780
5 17,50 3,62794 0,20015 17,0735 0,99951
m 18,00 3,72797 0,20006 17,5734 0,99980

-ph? -p h? p -p h? ' -p

Die beiden Wertegruppen sind miteinander durch Gleichung (3) verbunden:
M,=050M—-030M,, p,=050p—0,30p,.

Hétten wir, entsprechend der ublichen Theorie der Biegung und Verdrehung
von Stiaben mit offenem Querschnitt, die Schubverformungen vernachlissigt
und den Schubmittelpunkt 0 als Querschnittsfestpunkt 0, eingefiihrt, so hatten
wir

M,=020M, p,=0,20p,

M, =M, P1=D

erhalten. Es ist festzustellen, daf3 der Einfluf der Schubverformung sich deut-
lich bei der Belastungsverteilung an den Stabenden bemerkbar macht (dies
ist auch bei noch schlankeren Stiben der Fall), die Momente in Stabmitte
dagegen weniger stark beeinflullt (M ,,=0,20711.M ).

Da der Schubmittelpunkt dazu dient, eine beliebige Belastung aufzuteilen
in einen Anteil, der verdrehungsfreie Biegung und einen Anteil, der biegungs-
freie Verdrehung verursacht, wird der Einflu der Schubverformung in vielen
Fillen, mehr als dies in der heutigen Praxis der Fall ist, zu beachten sein. Hier
soll jedoch der Fall von Stdben mit offenem Querschnitt, der sich verhéltnisméaflig
einfach behandeln1a8t, nicht weiter verfolgt werden. Dagegen haben wir hier das
einfache Beispiel der Fig. 1 deshalb so eingehend besprochen, weil sich einige

%) Auf diese Berechnung (numerische Losung) sei hier nicht eingetreten; es sei hiefir
verwiesen auf F. Sttissi: Grundlagen des Stahlbaues, Berlin, Springer, 1958.
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grundsétzliche Zusammenhinge, die auch fiir den Kastentriger giiltig sind,
einfach erkennen lassen.

Es soll nun nachstehend zunéchst ein fachwerkformiger Kastentriger unter-
sucht werden, worauf die Berechnung eines aus vollwandigen Scheiben be-
stehenden Kastentrigers unter der Voraussetzung, dal die Querschnittsform
erhalten bleibt, dargestellt werden soll.

2. Fachwerkformiger Kastentriger

Ein einfacher Balken mit zwei Haupttrigern, zwei Windverbanden und
zwei Endquerverbénden, der durch n—1 Zwischenquerverbénde in n Zellen
unterteilt wird, ist bei einfachster Lagerung mn-fach statisch unbestimmt
(Fig. 2). Wir erhalten ein statisch bestimmtes Grundsystem dadurch, dafl wir

n
o>
—_—
- o>
-—’

Fig. 2.

beispielsweise im oberen Windverband in jeder Zelle einen Diagonalstab
durchschneiden oder den StrebenanschluBl 16sen. Wiirden wir nun die Schnitt-
kraft an jeder dieser Schnittstellen als iiberzéhlige Gro3e einfiihren, so wiirden
wir ein sehr unbequemes System von Elastizitdtsgleichungen erhalten, weil in
jeder Elastizitatsgleichung alle iiberzihligen GroBen vorkommen. Fithren wir
dagegen die Kombination von zwei entgegengesetzt gleich groBlen Schnitt-
kriften zweier aufeinanderfolgenden Zellen ein, so wird das System drei-
gliedrig,

Wi Xga+a;  Xitay 3 X +ta,,=0 - (4)
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und ist deshalb sehr einfach aufzulosen. Die VerschiebungsgroBlen a,; ergeben
sich am einfachsten aus der Arbeitsgleichung zu

N
e ks, (4a)

Es ist zweckmiBig, als tiberzdhlige GroBlen X die senkrecht zur Léngsachse
wirkenden Komponenten der Strebenkrifte des Windverbandes einzufiihren;
infolge X, =1 entstehen dann die in Fig. 2 angegebenen Haupttrigerbelastun-
gen. Die Windverbandsquerkraft ¢, betrigt dann:

im ersten Feld: @; = X,

im zweiten Feld: @, = X,—X,,

im dritten Feld: ;= X;— X, usw.,
oder es ist

X2 = Q1+Q27
sz

= Q1+ Q2+ QS)

X,
Y Q
1

und damit bedeutet wegen

Mm = eXm = %Qze
1

die mit der Zellenldinge e multiplizierte iiberzéhlige Grole X das Moment im
Windverband.

Mit Riicksicht auf die spitere Umformung der Elastizititsgleichung (4)
fithren wir fiir den Beitrag der Streben an die Verschiebungsgréfen a,;, eine
«Schubsteifigkeit» £ K ein. Fiir ein Haupttrigerfeld mit einfachem Streben-
zug betriagt dieser Beitrag

D;D,d Q @ d _Qile

Aay = EF, sinasna BEF, EK,’
2
oder es ist K, = FD%;. (4b)
Analog ergibt sich fiir ein Feld eine K-Fachwerkes (Windverband)
b%e

In Fig. 3 sind die Krifte infolge X,=1 im oberen Windverband und im vor-
deren Haupttriger eingetragen; im unteren Windverband und im hinteren
Haupttriager sind die Kréfte entgegengesetzt gleich grol. Beanspruchte Stidbe
sind kriftig, unbeanspruchte diinn ausgezogen. Damit kann die Verschiebungs-
grofle E a;; direkt abgelesen werden zu

Ba “23_3}__'__5_ +26+26+4h26
“= e \R T F,) K, K, PK)
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wobei K K,,, EK,, und E K, die Schubsteifigkeit des oberen und unteren
Windverbandes sowie der Haupttriger bedeuten, wihrend mit ¥, und F, die
Querschnitte von Obergurt und Untergurt bezeichnet sind. Fiir aufeinander-
folgende Doppelfelder wechseln die Beitrige fiir Obergurt und Untergurt, d. h.
fiir ¥, und F, alternierend ab. Analog finden wir

Za _9 e 1 e e 2h%e
LT T2 F, Kiy Ky, 02K
e 1 e e 2h%e

e =2 —
Eaz,'L-}—l b2 _F(') Kho Kh

u

T B2K,

+

y / 1
o+
=l 2sin oy,
S+ e
\ s=t1 e
- +

Xi=1

D=-—L

= &, h b-sin oty

e ¥ M Fig. 3.

Ein duBeres Drehmoment m,; kann im Grundsystem nur durch Belastung
+ p, der beiden Haupttriager aufgenommen werden:

m,
=

die zugehorigen Querkrifte und Momente in den Haupttrigern bezeichnen
wir mit ¢, und M,:
Mg = Qo = —po-

Mit Sy = ho, ) So,i41=— (;L 2

ergibt sich das Belastungsglied der Elastizitdtsgleichung fiir Punkt ¢ zu
e? 3 e? 1 _6_}&(@0,1: Qo,i+1)

—Fa,,=28
v Kv,i+1

u,i—b—Tu-l-QS +2 Ve

0,i+1‘b_ FO— b

v,%

Die Verformungen der Querverbande lassen sich ohne Schwierigkeiten beriick-
sichtigen, doch seien sie hier vernachlissigt, weil die Annahme starrer Quer-
verbinde der Voraussetzung von der Erhaltung der Querschnittsform ent-
spricht. '
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Auf gleiche Weise kann, statt eines Drehmomentes m,, jede andere gegebene
dullere Belastung untersucht werden; es dndert sich jeweils nur das Belastungs-
glied a;,. Dagegen ist es direkt nicht moglich, diejenige waagrechte Belastung
zu bestimmen, die das Tragwerk auf verdrehungsfreie Biegung beansprucht.

Um diese normale statische Berechnung des hochgradig statisch unbe-
stimmten Tragwerks mit der noch aufzustellenden Differentialgleichung des
Kastentrigers zu vergleichen, nehmen wir noch den Grenziibergang fiir immer
kiirzer werdende Zellen, e — dz, vor. Dafiir diirfen wir setzen

Xi—l =X; = Xi—i—l
X1 —2X+ Xy
62

und —~ X7,
beachten wir noch, dal X,e das Moment M,; bedeutet und dal} die alternie-
renden Beitrige der Gurtstibe auszugleichen sind, so folgt aus der Elastizitats-
gleichung (4) durch Einsetzen der VerschiebungsgroBlen a; und Division
durch e? die Differentialgleichung

s(1 1 1 1 2m2\]
(g + ) - [0k, x + o)
_4_%(1 L)_@(Qo)'
T bR \F," F,)” b \K

v
die sich fiir konstante Strebenquerschnitte auf

s(1 1 A1 1 2h2\  4M,(1 | 1\  2hp,
MW(EJ““)‘M'L(“KM+“K,,/u+bzz<) = oh (FZ+E)+ x, 2

u

vereinfacht. Diese Gleichung wird am einfachsten nach Einsetzen der Zahlen-
werte auf die Normalform geordnet.

Diese Differentialgleichung kann auch direkt aus Fig. 4 abgeleitet werden.
Ein duBeres Drehmoment m,; wird durch die Wandbelastungen p, und p,
nach der Gleichgewichtsbedingung

prh+p,b =my

Z \.— /
7o
re— Y
== n
ll LY 7-—r v
h ho (
I
‘ q--- b
= —~—y
T

Fig. 4.
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aufgenommen. Dabei gelten auch die Beziehungen

My = @Qn = — P
MZ = Qllﬂ = = Pu>
@” = T’ = _md.

In den Gurtstiben treten die Gurtkriafte S auf:

S=25 75 =27 T @ Mh),
M,_ ®
S =125 % 0

Die Elastizitatsbedingung von der Erhaltung der Querschnittsform lautet bei
der vorausgesetzten einfachen Symmetrie

9
_EMe _ Mot Mu
=% 3
27)/f 77//+77[I
bzw. v A0 T
7w b 7

Fiir die einzelnen Scheibendurchbiegungen 7 gilt

» S 8 @\
Env‘ﬁﬁi*ﬁﬂ*(K)’

28 ’
En(/)l: +<Qh),

CbE,  \K,,
no__ 28 Qh. ,.
Em_ﬁﬁ*&ﬁ’

setzen wir diese Werte in die Elastizitdtsbedingung ein, so folgt
2 (8 8 2(Q,\" _ 2(8 8 1T{ @\ Qh)’
il )+ lie) - —wrlaw) il + (&)

und daraus durch Einsetzen von S, Elimination von szé(T —@,h) und

Ordnen

8§(1 1 1 1 2h2\]
Mﬁ%ﬁfﬂ‘P“@m+mywwﬂ

Aol 1y e Ty
T B2h\EF, " E,|] ¥ \K,|]~
Wegen @ =My b, T'=Q,b stimmt Gleichung (6) mit Gleichung (5) iiberein.
Auf gleiche Weise ergibt sich fiir eine waagrechte Belastung p;, =+ Pru
diejenige Verteilung der Windverbandsbelastungen, die verdrehungsfreie Bie-
gung verursacht (Fig. 5). Aus den Stabkréaften S,
Mh0+ ]”v Su — "Mhu

¥ ‘M’U
b R b b

Sy = -

+
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und den Elastizitdtsbedingungen

No = N> Ny =0

folgt unter Beschrankung auf gleichbleibende Strebenquerschnitte die Diffe-
rentialgleichung

21 1 K,b2( 1 1 1 1

g+ ) [+ 2 (g + )]~ il + ) i
T S A RN 1) “
=Y Er e TR, R\RTE) Tk, ,

hu
Kvb MhO _ JM}ﬂ
2h KhO Khu -

gleichzeitig ist M, =

pd \N— /

s

1
3

it o 50 s i szl

:
1
1

5}/ Qo So h

3
<

1}

o

Fig. 5.

Aus den beiden Differentialgleichungen (6) und (7) folgt, daBl auch fiir den
untersuchten fachwerkformigen Kastentriger selbst im einfachsten Fall von
gleichmiBig verteilter Belastung p, oder m; und konstanten Querschnitten
weder die Querkraftsmittelpunkte noch die Verdrehungszentren auf einer
Geraden liegen, der Schubmittelpunkt also auch hier kein Querschnittsfest-
punkt ist. Ein Zahlenbeispiel soll im Anschlul an die im niichsten Abschnitt -
darzustellende Berechnungsmethode des vollwandigen Kastentrigers die Ver-
héltnisse veranschaulichen.

3. Der vollwandige Kastentriger mit einfach geschlossenem Querschnitt

Voraussetzungen und Grundlagen

Wir untersuchen einen aus mehreren ebenen prismatischen Scheiben zusam-
mengesetzten Stab mit einfach geschlossenem Querschnitt und freien Flan-
schen (Fig. 6) unter beliebiger Belastung, die sich in einen Anteil, der den
Stab verdrehungsfrei auf Biegung, und in einen Anteil, der den Stab biegungs-
frei auf Verdrehen beansprucht, zerlegen lif3t. Fir beide Anteile bleiben die
Stabquerschnitte normalerweise nicht mehr eben; an Stelle der Elastizitéts-
bedingung vom Ebenbleiben der Querschnitte (Hypothese von Bernoulli-
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Navier) der elementaren Biegungslehre tritt hier, in unserer erweiterten
Biegungslehre, die Elastizititsbedingung, dal die Form der Stabquerschnitte
auch unter den eintretenden Forméanderungen erhalten bleibt.

Fiir die Einzelscheibe der Breite b,, die wir als diinnwandig voraussetzen,
soll dagegen die elementare Biegungslehre giiltig bleiben; die Normalspannun-
gen o sind somit linear iiber die Scheibenbreite b; verteilt (Fig. 7). Damit

- €;.q°dz
/ | o - -

=
4R

[
\tf-+ | : :
b; S]. i l Y T g lI
T | T |
| /’ l
' = [ f
yi (i) | dz  §dz dz T

Fig. 7.
Fig. 6. 8

ergibt sich fiir ein Scheibenelement der urspriinglichen Lénge dz eine gegen-
seitige Drehung der Schnittfliche z und z+dz um den Winkel d«;,

€ 1— € O, 1—0;
doy = =Ly = 21"y,

i<y, Eb,

Da aber du«,/dz die Neigungsédnderung der elastischen Linie bedeutet,

do; dn’
dz  dz 1>
folgt N e = 2’%;}'- (8)

Infolge der Spannungsinderungen o, = %%z treten entsprechend der Gleich-
gewichtsbedingung )’ Z =0 an einem Scheibenelement dy dz,

0o, 0Ty,

oz = 0y 0
Schubspannungen 7,,=7,, =7, auf:
Yi
d-7=—f0;dF+C; (9)
€i—1

beginnen wir die Integration an einem schubfreien Rand ¢ — 1, so verschwindet
die Integrationskonstante C. Die Schubspannungen lassen sich zu Scheiben-
querkriaften £; zusammenfassen:

b
Q, =[rdF. (10)
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Besitzt die Scheibe b, konstante Stiarke d,, so lassen sich die Integrationen
der Gleichungen (9) und (10) wegen der linearen Verteilung der Spannungs-
dnderungen o, und der parabolischen Verteilung der Schubspannungen =
formelmiBig durchfithren. Bei einer Schubspannung 7; ; am oberen Rand
it —1 der Scheibe b, betrigt die Schubspannung 7, in Scheibenmitte

b' ’ ’
Tim = Ti—1 8z (3oi_1+0;) (9a)

und am unteren Rand

b‘ ’ ’
Ty = Ti—l_?z(ai—l'*'oi)_ (9b)

und die Scheibenquerkraft ., ergibt sich zu

d;b;
6

b;d

Dy = (Tim1+ 475 +7) = b, [Ti—ldi__—gi(Q 02—1‘*‘02)] . (10a)

Wir stellen fest, da das zweite Klammerglied eine Knotenlast darstellt.
Beginnen wir die Integration an einem schubfreien Rand, so ist deshalb

b
Q, = —bllel(zo(,+o{) = —b, K, (o).

An der Kante 1 ist
b, dy

1'1d1=”'2—1d2 = - [(20(')‘*"’{)"'(‘7(’)'*’20{)] =_K0_Kl1

und damit wird

by dy
6

Qg = —by [K0+Kl1+ (201‘*‘0@] = —by (Ky+ K,),

i—1
oder allgemein Q,=-b2K(). (10b)
0

Die Scheibenquerkraft £; verursacht eine Schubverformung ;. der Scheibe
b;, die nach der normalen Biegungslehre dem mittleren Schubwinkel y,, gleich-
gesetzt werden kann: ‘
ro_ _Tm _ 3% _ 3%
nir_'}’m_—(_;'— GKE;— GEL,

F/ =« F, bedeutet eine reduzierte Querschnittsfliche, derart bestimmt, daB
die Unvertriglichkeit der Elastizitdtsbedingung vom Ebenbleiben der Quer-
schnitte mit der Schubverformung in der Krimmung »” ausgeglichen er-
scheint 6):

n_ Ji—17 04 Qi \'

1

6) F. Sttrss1: Baustatik I, Birkh#user, Basel, 1946, 1953, 1962, Abschnitt VIL, lec.
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Aus einer Arbeitsgleichung fiir die Verdrehung eines Kastentrigers zeigt sich,
daB fiir alle zu einem geschlossenen Querschnittsteil gehérenden Scheiben die
Schubverformung mit dem vollen Querschnitt F, =F,, «=1, zu berechnen
ist. Bei freien Flanschen ist der Wert von « nicht nur von der Querschnitts-
form, sondern auch von der Verteilung der Spannungen abhingig. Fig. 8
zeigt einige typische Fille fiir einen freien Flansch mit Rechteckquerschnitt.
Es wére nun im Rahmen einer technischen Biegungslehre unerwiinscht, wenn
der Wert von « je nach dem Belastungsfall mit verdnderlicher Grofle einge-
filhrt werden miite. Wir setzen deshalb zur Vereinfachung auch fiir freie
Flanschen F;/=F;, k=1. Diese Vereinfachung hat deshalb keinen unzulissi-
gen Fehler zur Folge, weil die Schubverformungen nur die Lage des zweiten
Schubmittelpunktes 0, und damit die GroB3e der auf diesen orientierten sekun-
didren Belastungsanteile beeinflussen. Vergleichsrechnungen zeigen, dafl auch
in ungiinstigen Féllen die durch diese Vereinfachung (k=1 auch bei freien
Flanschen) verursachten Fehler vernachliassigbar sind.

Fig. 9.

Dre erste Grenzlage 0, des Schubmittelpunktes

Da fiir die beiden Grenzlagen 0, und 0, des Schubmittelpunktes die Doppel-
bedeutung als Querkraftsmittelpunkt bei verdrehungsfreier Biegung und als
Verdrehungszentrum bei biegungsfreier Verdrehung besteht, existieren auch
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zwei Wege zu ihrer Bestimmung; wir bestimmen hier 0; und 0, als Querkrafts-
mittelpunkte bei verdrehungsfreier Biegung.

Bei verdrehungsfreier Biegung erfahren nach unserer Voraussetzung von
der Erhaltung der Querschnittsform alle Punkte eines Querschnittes gleiche
Verschiebungen u. Nach Fig. 9 gilt fiir die Verschiebungskomponenten 7 in
Scheibenebene und ¢ senkrecht dazu:

n; = U COoS,, § = usiny,.

Da wir diinne Scheiben (diinnwandiger Stab) voraussetzen, leisten sie einer
Verschiebung ¢ nur einen vernachlédssigbar kleinen Widerstand; es sind deshalb
im Kréftespiel nur die Scheibendurchbiegungen n zu beriicksichtigen.

Fiir einen ersten Belastungsanteil, entsprechend dem ersten Schubmittel-
punkt 0,, gilt somit fiir die Normalspannungen o, ; nach Gleichung (8)

1 01,i—1 — 01,¢

Ny, = ——m— = u"cosy,

17 Ebz )
der v L1 O0LE o 11
ode u Bb, 005, ns (11)

Dies bedeutet, dafl alle auf die u-Richtung projizierten Spannungsdiagramme

der Einzelscheiben gleiche Neigung besitzen und daraus folgt, dafl fiir ver-

drehungsfreie Biegung die Normalspannungen o; des ersten Belastungsanteils

nach einer Ebene iiber den Querschnitt verteilt sind und dal3 deshalb dafiir

die Normalspannungsformel nach der klassischen Biegungslehre gilt; fiir kon-
jugierte Schweraxen ist somit

N M,, M,
oy = — %
S A S

x

Es ist nun zweckméifBig, die Berechnung der Normalspannungen o¢; auf die
Hauptschweraxen x, y des Querschnittes zu beziehen, weil dann auch die
zugehorigen Verschiebungen u, v voneinander unabhéngig werden, d. h. Kraft-
und Verschiebungsrichtung je miteinander iibereinstimmen.

Infolge einer Querkraft @,=M, entstehen (mit N'=0, M,=0) Span-
nungsénderungen

’ Qx

o,,=—"x,

zx—'J

Yy

die sich aber bei einem Kastenquerschnitt nicht ohne weiteres zu Schub-
spannungen und daraus zu Scheibenquerkriiften aufsummieren lassen, weil
am kastenformigen Querschnittsteil keine Stelle mit 7=0 bekannt ist. Wir
miissen deshalb durch Aufschneiden einer Scheibe erst ein statisch bestimm-
tes Grundsystem schaffen und an der Schnittstelle einen iiberzahligen Schub-
flul s=7,d einfithren (Fig. 10). Bezeichnen wir die Schubspannungen, die wir
im Grundsystem nach Gleichung (9) aus den Spannungsinderungen o, erhal-
ten, mit 7, und die entsprechende Winkeléinderung mit y,,
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To

70=@‘:

so ergibt sich fiir ein Scheibenelement b, mit dz=1 der Anteil 4a,, an die
VerschiebungsgroBe a,, aus einer Arbeitsgleichung mit dem virtuellen Be-
lastungszustand s=7,d=1 zu

; bi
A“10=J‘%'rwdlf’= T s;lszéfTo_(z_ﬁ"

E ' T=0

~
[}
-

Fig. 10.

Fihren wir mit  die von der Schnittstelle aus gemessene Linge des Umfangs
des geschlossenen Querschnittsteiles ein, so ist

dF
E
K
- und wir erhalten Arp = é ( 7o du
K
1 (1
und analog wm=g f Edu.

K
Diese Integrale | erstrecken sich iiber den kastenférmigen Teil des Querschnit-
tes. Die Elastizitdatsbedingung normaler Form

K

K
bzw. sjc—lldu+ ['rodu =0 (12)

liefert den tiberzihligen Schubflufl s, was mit

mit der im Flugzeugbau bekannten Beziehung

K
[rdu — 0 (14)
inhaltlich iibereinstimmt.
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Besteht der Querschnitt aus Einzelscheiben konstanter Stiarke d;, so ist es
bequem, die Schubspannungen zu Scheibenquerkriften zusammenzufassen
und die Elastizitatsbedingung in der Form

K, K
Zi

SZ@+Z

anzuschreiben; auch diese Summen beziehen sich nur auf den geschlossenen

Querschnittsteil. Freie Flanschen beeinflussen wohl die Schubspannungen 7,

des Grundsystems, kommen aber in der Elastizitdtsbedingung nicht vor, da

sie ja durch den iiberzihligen Schubfluf nicht beansprucht werden.
Aus den resultierenden Scheibenquerkréften Q;

Qi=g’0i+8bi7 (133:)

Qi
d;

=0 (12a)

fiir die die Elastizitdtsbedingung
K
N R,
T 4
E a 0 (14a)

erfilllt ist, ergibt sich die resultierende Querkraft ¢, und damit ein erster
geometrischer Ort des Schubmittelpunktes 0,. Analog ist auch die Lage der
Querkraft ¢, aus den Spannungsinderungen o,
o, = —%y,

zu bestimmen. Bei einfach symmetrischen Querschnitten liegt der Schubmittel-
punkt auf der Symmetrieachse, bei doppelter Symmetrie fillt er mit dem
Schwerpunkt zusammen.

Besteht der Stab aus Scheiben verschiedenen Baustoffes (z. B. Verbund-
trager), so hebt sich selbstverstiandlich der Schubmodul ¢ in der Elastizitats-
bedingung (12) des Schubflusses nicht heraus, sondern es ist

K K
1 To _
sfmdu+deu =0
K K
b; Q()i__
bZW. SZG_d,L_l—ZGd%_O.

Dre zweite Grenzlage 0, des Schubmittelpunktes

Der Schubmittelpunkt 0,, als Querkraftsmittelpunkt definiert, ist der
Angriffspunkt einer Querkraft ¢, deren Schubspannungen eine verdrehungs-
freie Biegung erzeugen. Nehmen wir beispielsweise eine Verschiebungsinde-
rung %’ (z.B. #'=1) in Richtung « an, so ist fiir jede Scheibe b;

i, = u cosy, = 1cosy,,



298 F. STUSSI

wahrend auch hier die'Verformungen ¢, normal zur Mittelebene der als diinn
vorausgesetzten Scheiben vernachlédssigt werden diirfen. Da fiir die Schub-
verformung allein

r Q‘z
Nir = GEL
. . Qg
gilt, wird GE - 1 cos ¢;
oder Qi = G F;cosyfs;. (15)

Aus diesen Scheibenquerkriften kann die Resultierende @, nach GréBe und
Lage bestimmt werden.

In bezug auf die Vorzeichen ist zu beachten, dall wir fiir die Scheiben-
querkrifte £; und die Scheibendurchbiegungen 7, einen gleichbleibenden
Drehsinn um den geschlossenen Querschnittsteil herum als positiv annehmen.

Der Winkel i, ist zwischen der positiven Verschiebungsrichtung % und der

3

positiven Durchbiegungsrichtung 7, zu messen; fir gé g < 7" wird cosy;,

negativ (Fig. 9).

Analog ergibt sich fiir eine angenommene Verschiebungsrichtung v aus
v'=1 eine resultierende Querkraft ¢),. Der gesuchte Schubmittelpunkt 0, ist
der Schnittpunkt von @, und @,. Ist die Verschiebungsrichtung v senkrecht
zur Verschiebungsrichtung », so wird

D, = 6 Fysin .

Fir die Scheibenquerkrifte £;, und £, ist die Elastizititsbedingung des
Schubflusses im geschlossenen Querschnittsteil,

K =
[rdu =0 bzw. Z% =0,

erfiillt.

Es ist nun zu beachten, dafl die Richtung der resultierenden Querkrifte
@, und @, nicht mit den entsprechenden Verschiebungsrichtungen % und v
iibereinstimmt. Bei senkrechtem Axenkreuz wu, v besitzt @, eine Kompo-
nente @, in Richtung u,

Quu = Z GEZCOS2¢'L’?
und eine Komponente @, in Richtung v,

Qu = 2. G F,cos i, sin ;.
Analog ist fiir @),
vi = Z GEJSin%zbi?
Q/cu = Qu’u = Z G E sin (l'z cos '1[11, .

Drehen wir das rechtwinklige' Axenkreuz %, v um den Winkel « in die Lage
x, Y, so wird
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Qrr = 2, G Fycos? (),
Quy = Qyo = 2. G Fsin (o +3f;) cos (x + ),
Qyy = 2 G Fsin® (a+;).

Setzen wir die Beziehungen

sin (o + ;) = sin « cosy,; + cos a sin ¢,

cos (a+ ;) = cos o cos ¢f; — sin a sin ¢,
ein, so erhalten wir nach kurzer Zwischenrechnung

@y = Quycos?a+ @, sin% «—2 @), sin o cos o, _
Q) = Quusin? o+ @, cos?a+2 ¢, sinaxcosa, (16)

Qry = (Quu— @y sin x cOs ot + @, (CO8% & — 8in? ).

Zwischen diesen Querkraftskomponenten bestehen somit genau die gleichen
Beziehungen wie zwischen den Trigheits- und Zentrifugalmomenten bei der
Drehung eines rechtwinkligen Axenkreuzes und es gelten auch analoge Fol-
gerungen. So existiert ein einziges rechtwinkliges Axenkreuz, fiir das die
beiden Verschiebungsrichtungen mit den Richtungen der zugehorigen resul-
tierenden Querkrifte iibereinstimmen. Wir nennen diese beiden Achsen Schub-
hawptazen, in Analogie zu den Biegungshauptaxen; ihre Lage (mit Ursprung im
Schubmittelpunkt 0,) ist gekennzeichnet durch die Beziehung

2 Q’MU
tg 2a 7. — Q. (16a)
Die Richtungen der Schubhauptaxen und der Biegungshauptaxen stimmen
bei unsymmetrischen Querschnitten normalerweise nicht miteinander iiberein;
daraus ergibt sich bei verdrehungsfreier Biegung eine grundsédtzliche, wenn
auch zahlenméBig nicht stark ins Gewicht fallende Unvertriglichkeit zwischen
den beiden Belastungsanteilen.

Verdrehungsfrere Biegung

Eine beliebige dulere Belastung p beansprucht den Stab auf Biegung und
Verdrehung. Um die Beanspruchung aufteilen zu kénnen, benétigen wir zuerst
die Lage von p, die den Stab auf verdrehungsfreie Biegung beansprucht; dann
kann das Drehmoment m,; bestimmt werden, das den Stab auf Torsion belastet.

Der Querschnitt sei auf die Biegungshauptaxen z, y orientiert. Wir zer-
legen die Belastung p in zwei Komponenten p, und p, parallel zu den Haupt-
axen. Es geniigt, wenn wir die Belastung p, untersuchen; fiir p, ist dann
die Untersuchung analog durchzufiihren.

Der erste Anteil p; von p, mit

P = —Q{x = _Mi"y
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verursacht Normalspannungen o, =0,,, die linear iiber den Querschnitt ver-
teilt sind:

Mly
= J X 5

y

51

die zugehorigen Spannungsidnderungen oy,

liefern die Scheibenquerkrifte £,; nach Gleichung (13a), deren Resultierende
@, durch den Schubmittelpunkt 0, geht. Unter den Schubverformungen
infolge der Scheibenquerkrifte £, =&, ist die Elastizititsbedingung von der
Erhaltung der Querschnittsform nicht erfiillt; diese Verformungen miissen
deshalb erginzt werden durch die Verformungen infolge der Normalspannun-
gen o=o, des zweiten Belastungsanteils p,=p —p; mit der Forminderungs-
bedingung

Oi—1— 05 g’z ' o
Eb, +(GE) = u" cos iy (17)
inf. p, inf.p,
oder o;_1—0; = Eu"b;cos g[ll—g(%) . (17a)
F

Zusammen mit einer Gleichgewichtsbedingung [ o d F' =0 oder einer Symmetrie-
bedingung bei einfach symmetrischen Querschnitten liefert das System dieser
Differenzengleichungen die Normalspannungswerte oc=o, in der Form

o; =a; Bu' —B;Ql, = a; BEu’ —B; M, (17Db)

und analog
’ "r ”
op = oy Bu" —f; Q1.

Damit kénnen fir die beiden Anteile von o; die entsprechenden Scheiben-
querkrifte £, und Qg; nach Gleichung (13a) ermittelt werden. Dabei
braucht die Zahlenrechnung fiir £, ; nicht mehr neu durchgefiihrt zu werden,
weil wegen

Q’ai = Eu” Q@ Jy

die Scheibenquerkrifte £,,; proportional zu den Scheibenquerkriften £, der
Gleichung (17) sind, die ja schon bei der Bestimmung des ersten Schubmittel-
punktes bendtigt worden sind.

Da die resultierende Querkraft ,, durch den zweiten Schubmittelpunkt 0,
gehen mul, ist

F F
MZﬁaiazz—ZQﬁiau:O- (18)
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F
Mit w= %ﬁ@i
Z Qaia’zi
ergibt sich somit Qs = p Qg — gy (18a)

a,; bedeutet den Abstand der Scheibe b; vom zweiten Schubmittelpunkt 0,;
analog werden wir mit a,; den Abstand vom ersten Schubmittelpunkt 0,
bezeichnen. Aus den Scheibenquerkriften £,, ergibt sich die resultierende
Querkraft ¢),, in der Form

F
Qay = 2000088, = —cQy,.

Damit folgt aus der Gleichgewichtsbedingung @, + ¢,,= @, die Differential-
gleichung der gestellten Aufgabe,

le_c% Qll.z‘ = Q:c (19)
oder auch M,,—cEM{, =M, (19a)
bzw. plx"‘c%pgx = Pa> (19b)

die die Aufteilung der dulleren Belastung

Pr = — Q;c =—-M ;;
in die beiden Anteile
Pia = _Mi’y und Pox = pxhplm_
zu bestimmen erlaubt.

Zu den bisher bestimmten Durchbiegungen u des ersten Belastungsanteils
p, sowie infolge der Normalspannungen o, des zweiten Belastungsanteils p,
nach Gleichung (17) tritt nun noch eine Schubverformung infolge der Quer-
krafte Q,; nach Gleichung (18a) des zweiten Belastungsteils p,, fiir die grund-
satzlich die Beziehung

D

aQr = Uy, COSY; (17¢)

gilt. Nun zeigt sich aber, dal diese Beziehung bei groBerer Scheibenzahl und
besonders wenn freie Flanschen vorhanden sind, nicht fiir alle Scheiben sich
genau erfiillt, weil die Verteilung der Scheibenquerkréfte £.,; iiber den Quer-
schnitt nicht genau mit der durch Gleichung (15) gegebenen Verteilung iiber-
einstimmt. Die Durchbiegung u, ist deshalb aus der Summe aller Gleichungen
(17¢) zu bestimmen:

F F ’
28, = Guy, ) Fcosiy, (17d)

Die hier bestehende Unvertriaglichkeit kann durch Einfithrung von «Ergin-
zungskrafteny 4 Q,, derart, dal fiir alle Scheiben die Durchbiegungsbedin-
gung erfiillt ist, veranschaulicht werden:

Qio; +A4L0; = Guy, F,cosi,. (17e)
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Diese Erganzungskrifte 4 Q,; stehen miteinander im Gleichgewicht und beein-
flussen (bei den vorausgesetzten steifen Querverbdnden) somit die Verformun-
gen des Stabes nicht; eine weitere Verfeinerung der Berechnung ist fiir tech-
nische Zwecke nicht notwendig. .

Unter den Normalspannungen o, bleiben die Querschnitte nicht mehr
eben, sondern es tritt eine Querschnittsverwolbung ein. Fallen dagegen die
beiden Schubmittelpunkte 0; und 0, zusammen, so ist, weil @,, im ersten
Schubmittelpunkt 0, angreift, in Gleichung (18)

F B
’ Zgzxiazi = Zgaiali = O;

damit mufl auch
F F
Zgﬂiazi = Z’D“Biali =0

sein oder die ganze duBere Belastung p wird durch den ersten Belastungsanteil
p, allein aufgenommen; die Normalspannungen o=o; sind nach einer Ebene
iiber den Querschnitt verteilt, der somit verwolbungsfrei bleibt.

Torsion

Bei geschlossenem Querschnitt wird das duflere Torsionsmoment 7' priméar
durch einen Schubflul s aufgenommen; die Scheibenquerkrifte Q,;=0;s in
den zum geschlossenen Querschnittsteil gehérenden Scheiben halten dem
Torsionsmoment Gleichgewicht:

F

Dabei bedeutet F,, den Flicheninhalt des durch die Scheibenmittellinien
umgrenzten Kastenquerschnittes. Gleichung (20) ist die bekannte Bredtsche
Formel.

Die Bredtsche Formel ist jedoch nur dann genau giiltig, wenn die Elastizi-
tatsbedingung von der Erhaltung der Querschnittsform erfiillt ist:

7’.:'@' _ bis N A
e, ~ @ GF = ¢’ = konst. (21)

Fiir Scheiben konstanter Stdrke d;, auf die wir uns der einfacheren Schreib-
‘weise wegen im folgenden beschréinken wollen, bedeutet dies

S

m =@ = kOIlSt.
oder bei konstantem Schubmodul ¢
a;d; = konst. (21a)
Fir diesen Fall der reinen SchubfluBBtorsion ist somit
;8 T _ T
Go' = ad = = . (21b)

. K K
T ed aby Yaibgd,
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Die Verdrehungssteifigkeit der als diinnwandig vorausgesetzten Einzelschei-
ben,

GJ, =G 3 5

kann gegeniiber der Verdrehungssteifigkeit des Kastenquerschnittes,

K
G2 aib;d;,
vernachléissigt werden.

Bei reiner Schubfluitorsion fallen die beiden Schubmittelpunkte 0, und 0,
zusammen. Damit besteht eine Dualitdt zwischen reiner SchubfluBtorsion und
wolbungsfreier Verbiegung.

Ist dagegen die Elastizitdtsbedingung Gleichung (21) nicht erfiillt oder
weist der Querschnitt neben dem geschlossenen Querschnittsteil noch freie
Flanschen auf, in denen ja kein Schubflul s wirkt, so miissen neben dem
Schubflufl s noch Normalspannungen o, auftreten, damit die Querschnittsform
erhalten bleibt, und die Elastizitdtsbedingung lautet bei Drehung um die erste
Grenzlage 0, des Schubmittelpunktes

N14 s 0;1—0; " :
= + = = konst. 22
Q14 a;;4; @ a;;b, B L (22)
E bz ’ ”
bZW. O'i_l—ai+'G'* —(—i—.S = Ealibi¢1' (22&)

(1

Schreiben wir diese Gleichungen (22a) fiir alle diejenigen Scheiben an, die
zusammen den geschlossenen Querschnittsteil bilden und addieren, so heben
sich alle Spannungswerte ¢ heraus und es ist

, K 8, K bq,
%Z“ubi_azl‘g—oa

mit den Abkiirzungen

K
b; K 2F
anzzd—ia 2F, =2 a;b,, ¢=—>

folgt somit
” __ a’11 r S
" =36F,° 6o (23)

Setzen wir diesen Wert von ¢; in Gleichung (22a) ein, so ergibt sich fiir zum
geschlossenen Querschnittsteil gehérende Scheiben

E (al :b; b-)
i 1—0; =~ |—— — ) s 22b
-1 T G 07)) di ( )
Fiir freie Flanschen, in denen ja kein Schubflul s wirkt, gilt dagegen
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Diese Differenzengleichungen, in Verbindung mit einer Symmetriebedingung
oder der Gleichgewichtsbedingung

F
fadF =0,

erlauben uns, die zu einem priméren Schubflufl s=s,,

T

= _-1 :
=37 (20a)

81
gehorenden Liangsspannungen o zu bestimmen.

Zu diesen Lingsspannungen o, bzw. zu den entsprechenden Spannungs-
dnderungen o’ gehdren nun aber auch Schubspannungen 7,, bzw. Scheiben-
querkriafte £,; nach Gleichung (10) und zu diesen ein iiberzihliger Schub-
flul s,. Fiir diesen zweiten Belastungsanteil ist ebenfalls eine Elastizitéits-
bedingung fiir die Erhaltung der Querschnittsform anzuschreiben:

R Doi | 82| 1 / ¢

aurh i = ot g i ot =
wobei sich der Querschnitt um die zweite Grenzlage 0, des Schubmittelpunktes
dreht. Aus diesen Gleichungen (24) sind die beiden Unbekannten s, und ¢,
in Funktion von s] zu bestimmen; unbekannt sind ferner auch die beiden
Koordinaten des zweiten Schubmittelpunktes 0,, die wir jedoch mit Hilfe der
Scheibenquerkrifte nach Gleichung (15) auf anderem Wege (Querkraftsmittel-
punkt) bestimmt haben. Bei Querschnitten mit mehr als vier Scheiben und
besonders, wenn freie Flanschen vorhanden sind, sind im allgemeinen Fall die
Elastizitatsbedingungen Gleichung (24) nicht mehr fiir alle Einzelscheiben
erfiillt, sondern es kénnen auch hier aus dieser Unvertriaglichkeit Ergianzungs-
krafte 4 £.; auftreten:

L +A4Q; = Goyay,b;d;.

Wir beheben die hier aufgetretene Schwierigkeit wie folgt: Zunichst wihlen
wir die Integrationskonstante C in Gleichung (9) bei der Bestimmung der
Scheibenquerkrifte £,,; derart, dal das Moment verschwindet:

F
20000, = 0.

Multiplizieren wir nun Gleichung (24) mit a3,;d; und summieren iiber den
ganzen Querschnitt (wobei in den freien Flanschen kein Schubflul s, wirkt),

so folgt

F K F '
2 Q0O+ 832 05,0, = Gy > al b,d;. (25)
=0

Eine zweite abgeleitete Gleichung erhalten wir, indem wir Gleichung (24) mit
a,; b; d; multiplizieren und iiber den Querschnitt summieren:

I K ba
20 +82 220, = Ggy X ay;b,d,. (26)
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Dabei ist das Vorzeichen der Scheibenquerkrifte £, selbstverstéandlich ent-
sprechend dem Umlaufsinn zu beriicksichtigen.

Die beiden Gleichungen (25) und (26) erlauben nun die Bestimmung der
beiden Unbekannten s, und G ¢, in Funktion von s;. Damit ergibt sich der
zweite Anteil 7, des Torsionsmomentes zu

F K
Ty =2 000 +83009;b;, =2 F, 8, =—c2F,s]
N ——

=0
und damit folgt aus der Gleichgewichtsbedingung 7'=71) + 7, die Differential-
gleichung des Torsionsproblems zu
n T n” ¢

8—chsy = 2F oder T,—c%T/=T. (27)
Die Ergidnzungskriafte 4 Q,; bilden auch hier, bei der sekundéren Torsion, ein
Gleichgewichtssystem. Fig. 11 zeigt ein Beispiel mit einem aus fiinf Scheiben
bestehenden Kastentriger mit unsymmetrischem Querschnitt. Da dieses
Gleichgewichtssystem die Verformungen des Stabes unter der getroffenen
Voraussetzung von der Erhaltung der Querschnittsform nicht beeinflufit, darf

die Aufgabe mit der Aufstellung der Differentialgleichung (27) als geldst
betrachtet werden.

h h , d = konst

’;075“6 0,089612 0,014196

T g 94 9
/05‘9 35 Vg & 15 0/4 7 95
05h | {
=_ B — e

0.181352 0.182852 0,001500

0,155696
0,102728

0,151772
0,105152

0,003924
0,002424

2,=9 +sb, 0y 'b;+d, Gy Ergdnzungskrifte

Fig. 11.

Zahlenbeispiel: Fachwerkformiger Kastentrdger

Wir untersuchen als Anwendungsbeispiel einen fachwerkférmigen Kasten-
trager nach Fig. 2. Die gewidhlten Zahlenwerte sind in Fig. 12 zusammen-
gestellt.

Gegeniiber dem vollwandigen Kastentréger tritt hier die Besonderheit auf,
daf3 die Normalspannungen o durch die Gurtungen allein aufgenommen wer-
den; an Stelle der Knotenlasten K (o’) der Gleichungen (10) tritt hier einfach
der Wert

K,(c') = F,o; = s;,

wobei F; den Gurtquerschnitt bedeutet. Da wir die Schubsteifigkeiten £ K der
Scheiben nach den Gleichungen (4b) und (4c) auf den Elastizitditsmodul K
orientiert haben, ist fiir die Schubverformung mit
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r Q"b
nir_EKi

zu rechnen; an Stelle des Schubmoduls G ist somit hier der Elastizitdtsmodul
E zu setzen. Fiir die Scheibenstirke d; ist der fiktive Wert,

K,
4=
i
einzufiihren.
[y
Kpg 0,040°F,
0 [ !
rE i —=1kR
] 1 s
s . o
h As 1™ X
| | i
x
J————l——————‘l-————é F e ch
I_K"“=O'O-60'F° l Fig. 12
ig. 12.
! b=2h i

Da der Querschnitt beziiglich der y-Axe symmetrisch ist, ist die Lage des
ersten Schubmittelpunktes 0, lediglich aus den Scheibenquerkriften infolge
der Spannungsénderung o,

mit J,

Y

b2 10
=—2—(F0+E‘) =—3—th’;

zu bestimmen. Die Zahlenrechnung ist in der folgenden Tabelle zusammen-
gestellt.

0'; K Z K Qo4 d; %:? 3—: 8- b,; Qz
0 |-0,30 |-0,30
-0,30 | 0,60 | 0,020 30,000 | 100,0 -0,178571 0,421429
1 0,30 | 0,30
‘}lk 0 0 0,100 0 10,0 -0,089286 | —-0,089286
2 0,30 | 0,20

0,20 |-0,40 | 0,030 | -13,333 66,667 | —0,178571 | —0,578571
3 |-0,30 |-0,20

0 0 0,100 0 10,0 -0,089286 | —0,089286
4=0 |-0,30
Qx Qx .Fc
’hFc " Qx 5 16,667 186,667 - Qx - Qz
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Der iiberzihlige Schubflufl s betrégt

16,667 @, Q
=00 Ma 9857 32,
S 186,667 & 00892857

Aus den Scheibenquerkriften £, =8,;+sb; ergibt sich der Abstand a,, des
Schubmittelpunktes 0, von der unteren Scheibe zu

ay, = (0,421429 —2.0,089286) h = 0,242857 h.

Fir den zweiten Schubmittelpunkt 0, kann

Ko 0,040

= = =] 4
% =R 1K, " 008040060 " = 04P

direkt angeschrieben werden.
Bei der Untersuchung der Torsion sind zunéchst die Spannungséinderungen

aus Gleichung (22b)

’ ( @4 bi ﬁ ) ”

’
0, 1—0; = - 81

1] d;

1
2F 4h2F, F

s ¢ — m —_ - C — [4

mit a,, 186,667k 46,667

zu bestimmen, aus denen sich die Scheibenquerkrifte £,; mit der Bedingung
Z DAy =0
ergeben. Die nachstehende Tabelle enthilt die Zahlenrechnung.

oi-1— 0% o K DK bi) K Qio: azibid; | a3ibid;

0 —14,667 | —14,667
-29,333 -14,667 | —29,333 14,667 | 0,0240 0,0144

1 14,667 14,667
36,667 0 0 - 7,333 | 0,1000 0,1000

2 -22,000 | -14,667 :

—44,00 —-14,667 | —29,333 14,667 0,0240 0,0096

3 22,000 14,667
36,667 - 7,333 | 0,1000 0,1000
4=0 —14,667 0,2480 | 0,2240

h?z , " ”

3, h2s B3 WF.  -h2F,

Die Gleichungen (25) und (26) lauten mit diesen Zahlenwerten
854,0h% = (¢, 0,2240 K2 F,
14,6667 h3s" +5,6,0h = G ¢,0,2480h F,;
ihre Auflosung liefert

h2
sy =—9,333h%s],  Go;=—166,6675s;.
c
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Damit ist die Differentialgleichung zu
T, —9,333p21) =T
oder auch mit m = — 7" zu
my—9,333h%2m;] =m
beziehungsweise
!

h2

m

pr =Y

my —0,107143 —-—0,107143
gefunden. Die direkt aufgestellte Gleichung (6) lautet dagegen mit unseren

Zahlenwerten

M- 0,107143% 40,107143

m

7 +O,107143—¢L = 0.

2 h?
Die Ergebnisse der beiden Gleichungen sind identisch.

Auf die Wiedergabe der Zahlenrechnung fiir verdrehungsfreie Biegung darf
wohl verzichtet werden; wir begniigen uns mit der Angabe der Differential-
gleichung

" oen P1 ¢ P _
1 —O,ZSOh—z—i—O,ZSOh—2 =0

beziehungsweise

” M *M
M —0,280h—21+0,280h—2 = 0.
In der folgenden Tabelle sind noch fiir einen Stab der Lange /=8% und frei
drehbar gelagerten Scheiben die Scheibenbelastungen fiir Torsion unter kon-
stantem Drehmoment m und fiir verdrehungsfreie Biegung unter konstanter
waagrechter Belastung p zusammengestellt.

Torsion Biegung
Pn Po Pro Phru Pv

A 0,10714 0,44643 0,40000 0,60000 0
1 0,19902 0,40049 0,40847 0,59153 0,03529
2 0,25837 0,37082 0,41322 0,568678 0,05508
3 0,29158 0,35421 0,41562 0,58438 0,06508
m 0,30227 0,34886 0,41635 0,58365 0,06812

m

7 p

Diese Zahlenwerte zeigen deutlich, dal die Scheibenbelastungen bei Tor-
sion stark von der Bredtschen Schubflultorsion mit
m

h 2

m

= 0,50
Pn » h

p, = 0,25
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abweichen kénnen. Aber auch bei der Biegung ist eine starke Abweichung von
den nach der normalen Biegungslehre zu erwartenden Werten

Pro = 0,60p, Pru = 0,40p, Py =0
festzustellen.

Mit dem besprochenen Beispiel ist nachgewiesen, daBl mit der fir den voll-
wandigen Kastentriger aufgestellten Theorie der Biegung und Verdrehung
sinngemdll auch fachwerkformige Kastentrager untersucht werden konnen.
Daraus folgt, daBl diese Theorie auch auf Kastentriger gemischter Bauart, mit
vollwandigen und fachwerkformigen Scheiben und mit konzentrierten Gurt-
querschnitten anwendbar ist.

4. Mehrzellige Kastentriger

Bei mehrzelligen Kastentrigern oder bei mehrfach geschlossenem Quer-
schnitt nach Fig. 13 tritt die Besonderheit auf, dal3 jede Zelle aufgeschnitten

A A

Lo Lo e Fig. 13.

2 M s, 1l s, S

werden mull, um das Grundsystem fiir die Berechnung des iiberzahligen
Schubflusses zu erhalten; das System ist somit in bezug auf den Schubflufl
mehrfach statisch unbestimmt. In Scheiben, die zu zwei Zellen ¢ und b geho-
ren, wirkt eine SchubfluBdifferenz s,—s,. Die Auswirkung dieser Besonder-
heit auf die Berechnung soll nachstehend besprochen werden, wobei die wich-
tigsten Schritte am Zahlenbeispiel der Fig. 13 veranschaulicht werden sollen.
Die Lage des ersten Schubmittelpunktes 0, ergibt sich als Querkraftsmittel-
punkt aus den Scheibenquerkriften £, die aus den Spannungsinderungen

entstehen. Es ist zweckmifBig, die Knotenlasten K (¢’) wie folgt anzuschreiben
und auszurechnen

Punkt 1: oy =‘—0,5¥Q§h, K1=@(70{—|—0é+20’i) = —I,OOO&th
J, 6 J,
, dh oy »
2: 0'2:—1,5 KZ=?(01+402+O—3) =—1,33333
: dh g
3: o3=-1,5 K3=?(02-|—603+20'4) = —1,91667

d
4: oj=-05 K4=?h(20'{—|—20':;+1004;)=—1,5OOO
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Die Knotenlasten K, (x) und K, (y) erlauben iibrigens eine einfache Bestim-
mung der Triagheits- und Zentrifugalmomente:

Jy =2, K; (%), Jo =29 K: (), Zyy =2y K; (@) = 2o, K; (y)
Aus den Knotenlasten K; (¢) ergeben sich mit
Qoi = —b; 2 K (o)

nach Gleichung (9) die Scheibenquerkrifte £, des Grundsystems, die in
Fig. (14a) eingetragen sind.

3,250 5,750 2,095238  3,138095

M
i P =t =t .(j_’y‘_.dh:‘s

a.) 0 0 0 b.) 1154762 2,011905
aoi 2,

1,3333
1,000
0,142857

0,178571

Fig. 14.

Die Elastizitatsbedingungen fiir den iiberzidhligen Schubflul lassen sich
sinngemaf} zu Gleichung (12a) fiir jede Zelle zu

o I [ I S
—anfg), v Y g lg), + Y 5o

anschreiben. Fiir das Zahlenbeispiel der Fig. 13 lauten, weil aus Symmetrie-
- griinden s,=s,, ist, die beiden Elastizitdtsbedingungen

(28)

h h Q

0-=s8,—0,5- 2,458333 —%h3 = 0

3, 75 O,5dsb+ , 458333 A ;

~1,0 +25 +3,8750 =0

mit den Lésungen
_ Yz g0 _ Qe 10
s, = —1,154762 22 g2, 8y = —2,011905 22 dh2.
Iy Iz

In Fig. 14b sind die resultierenden Scheibenquerkrifte
Q= Qs +b;s
beziehungsweise ' ;= Qs +b;4s

eingetragen. Daraus ergibt sich der Abstand des Schubmittelpunktes a,, von
den unteren Scheiben zu

8,607141

A1y = “m—k = 0,702624h.



DIE GRENZLAGEN DES SCHUBMITTELPUNKTES BEI KASTENTRAGERN 311

Die Lage des zweiten Schubmittelpunktes folgt aus den Scheibénquerkrétften
9., nach Gleichung (15) zu

2’8}» — 0,66667 .

Aoy =
Die Scheibenquerkrifte £.,; des zweiten Belastungsanteils der verdrehungs-
freien Biegung ergeben sich, wie bei einfach geschlossenen Querschnitten, aus
der Superposition nach Gleichung (18a) mit

F F
MZ%MM—Z@&@M =0,

wobei die Werte £, ; direkt aus Fig. 14b entnommen werden kénnen, wihrend
die Werte £y, sich aus den Spannungsénderungen
OV N

g. _—g, =
i—1 T
G 4,

unter Beriicksichtigung der iiberzéhligen Schubfliisse nach Gleichung (28)
ergeben. Die resultierenden Scheibenquerkrifte Q,; stimmen in ihrer Vertei-
lung im allgemeinen Fall nicht genau mit der Verteilung nach Gleichung (15)
iiberein, sondern die Unvertriaglichkeiten sind auch hier durch Erginzungs-
kriafte 4 £, auszugleichen. Diese Erginzungskrifte sind fiir die Bemessung
des Tréigers von untergeordneter Bedeutung und damit vernachlissigbar.

Bei der Torsion erhalten wir die Gleichungen zur Bestimmung der iiber-
zéhligen primidren Schubfliisse s; dadurch, da wir die Gleichungen (22a) je
fiir alle Scheiben einer Zelle summieren, um die zugehorigen Normalspannungen
o zu eliminieren, wobei zu beachten ist, dall in zu zwei Zellen gehtrenden
Scheiben eine SchubfluBdifferenz wirkt. Fiir das Zahlenbeispiel der Fig. 13
lauten diese Bestimmungsgleichungen

h h
3,()&8{“—0,56—18{,, =2h?2G o,
h h
‘ —130g8£a+235381,b = 2h%G ¢
mit den Losungen
4 4 ’ 14 7 8’
Ulbzgsla’ G ¢ =6h1§.

Damit konnen aus Gleichung (22a) die Spannungen o bzw. die Spannungs-
dnderungen ¢’ und daraus die Knotenlasten K (¢’) berechnet werden. Diese
Zahlenwerte lauten fiir unser Beispiel

of = 0.256803 5 7si,, Ky (o) = 0319161 h?s],.
ob=0,437075 K,(c') = 0,282030
of = —0,312925 K4(o') = —0,293367

o) = —0,159864 K,(¢') = —0,285147
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In Fig. 15a sind die sich aus diesen Knotenlasten ergebenden Scheibenquer-
krifte £ ; des Grundsystems eingetragen, aus denen die iiberzdhligen Schub-
fliisse s, und die Anderung des zweiten Drehwinkels G ¢, mit der zweiten
Elastizitdtsbedingung Gleichung (24) berechnet werden miissen.

0.01338 -0.022676

0,206026  0,253868 0,214394 0,237070
= - = =

2 2 3 2 S =
8oz f g = ' SOB !
?’ e ? b c- — g e = g = °- — —i
0 0 0 0,217364 0,231132 0,225732  0,214394
Q. -%-h3- Sia n; ,Ldsung a.) D; ,Losung b.)
Fig. 15.

Es zeigt sich nun auch hier wieder die Schwierigkeit, dafl mehr Bestimmungs-
gleichungen vorhanden sind als Unbekannte. Wesentlich ist, dall der Dreh-
winkel (G ¢,) und das resultierende Torsionsmoment 7},

F
Ty, =2 05,0y,

korrekt bestimmt werden. Dies ist dann der Fall, wenn wir die Gleichung (24)
mit a3, b, d; G multiplizieren,

(Do +0;82) a9, = Goya3; b,d;, (29)

und passende Gruppen zur Bestimmung der Unbekannten bilden, wobei wich-
tig ist, dal} in diesem neuen Gleichungssystem der Momente £; a,, alle Scheiben
berticksichtigt sind. Fiir unser Zahlenbeispiel lassen sich unter Beriicksichti-
gung der Symmetrie folgende 6 Gleichungen (29) anschreiben:

1. —3. 0,282030%7143;’& + 3,05,k = 4,50h3d G o),
2. —0,319161 —1,08,,h% 4+ 1,085, h% = 1,0,

3. +§- 0,011338 +§ 8o B2 = %,

4 0 +% 854 12 = g,

5. —% . 0,022676 +% Sy h? = g,

6 0 +—§ 8yph? = %

Bilden wir das System der Bestimmungsgleichungen aus 1., 2. und 3. + 4. +
5. + 6., so erhalten wir
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E
—0,846090- h*s], +3,0 8, 12 = 4,50 h3dG @},

—0,319161-+hts], —~1,08,,h2+1,05,,h* = 1,0 h3dGg;,
0 +2,08,,h% +1,08,,h% = 2,0 h3dG o,

mit den Losungen

E .
89, = —0,217364 G k231a, Sop = —0,231132 ghz ;a’
E
G, = —0,332929— G Z S1a-

Bilden wir dagegen die Gleichungen aus (1.+2.), (3. +4.) und (5. +6.), so wird

E
—1,165251 -~ k), + 2,055, 52+ 1,0 8,,h% = 5,50 i3d G o}

G
4
0,007559 +2,0 =3
2
—0,007559 +1,0 =g
mit den Losungen
9 E 2 2 o
82(1 = —-0,22573..4 G k la’ st = —'0,214394 G h 1a>
Eh,
Gy = —0,332020 = s,

In den Fig. 15a und 15b sind die resultierenden Scheibenquerkrifte fiir diese
beiden Losungen eingetragen.

Die beiden Losungen unterscheiden sich nur durch die Ergénzungskrifte
4 Q,; gegeniiber den Werten '

Q= ay;0,d; G,

nicht aber im Drehwinkel, noch im resultierenden sekundiren Torsionsmoment
T,
E

Damit kann aus der Gleichgewichtsbedingung 7} + 7,=7 die Differential-

gleichung
T,-c%1V =T

aufgestellt werden und damit ist die Aufgabe gelost.
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Zusammenfassung

Es wird zunéchst an einem einfachen Beispiel, einem vollwandigen Stab
mit offenem Querschnitt gezeigt, dafl der Schubmittelpunkt kein Querschnitts-
festpunkt mehr ist, sobald neben den Forminderungen aus den Normal-
spannungen o auch die Forménderungen aus den Schubspannungen = beriick-
sichtigt werden. Auch geht die Doppelbedeutung des Schubmittelpunktes als
Querkraftsmittelpunkt und als Verdrehungszentrum verloren. Zum gleichen
Ergebnis fiihrt die Untersuchung eines fachwerkférmigen Kastentrigers. Es
wird deshalb, in Erginzung friitherer Ansitze, ein Berechnungsverfahren fiir
Biegung und Verdrehung einfach und mehrfach geschlossener Kastentrager,
unter der Voraussetzung, dafl die Querschnittsform unter den Forménderungen
des Stabes erhalten bleibt, angegeben, das darauf beruht, daBl die dullere
Belastung in zwei Anteile aufgeteilt wird, von denen der erste sich auf die
erste Grenzlage 0,, der zweite sich auf die zweite Grenzlage 0, des Schub-
mittelpunktes bezieht. Fiir die beiden Grenzlagen gilt wieder die Doppel-
bedeutung des Schubmittelpunktes. Das Verfahren ist nicht nur fiir voll-
wandige, sondern auch fiir fachwerkformige Kastentriager und auch fiir solche
gemischter Bauart anwendbar.

Summary

It is first of all demonstrated on a simple example, namely that of a plate
girder of open section, that the shear centre is no longer a fixed point of the
section when, in addition to the deformations due to the normal stresses o,
the deformations due to shear r are taken into consideration. The shear centre
then also loses its dual significance as centre of the shearing force and centre
of torsion. A study of a lattice-type box girder leads to the same results. To
supplement previous expressions and assuming that the shape of the sections
is not altered by the deformations of the girder, a method for calculating the
deflection and torsion of simple and multiple closed box girders is presented.
The method suggested is based on the sub-division of the external load into
two components, one of which relates to the first limiting position 0; of the
shear centre, while the other is related to the second limiting position 0,. For
these two limiting positions, the shear centre regains its dual significance. The
application of this method is not confined to the case of plate girders. It can
also be employed with lattice-type box girders or similar structures comprising
both plate and lattice members.

Résumé

Sur un exemple simple d’abord, celui d’une barre & 4me pleine de section
ouverte, on montre que le centre de cisaillement cesse d’étre un point fixe de
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la section des qu’on considére, en plus des déformations dues aux contraintes
normales o, celles dues aux cisaillements 7. Le centre de cisaillement perd alors
aussi sa double signification de centre de l’effort tranchant et de centre de
torsion. L’étude d’une poutre-caisson en treillis conduit aux mémes résultats.
En complément & de précédents travaux et en admettant que la forme des
sections n’est pas altérée par les déformations de la barre, on présente un
procédé de calcul de la flexion et de la torsion des poutres-caissons simplement
et multiplement connexes; la méthode proposée procéde de la subdivision de
la charge extérieure en deux composantes dont I’'une se rapporte & la premiére
position limite 0, du centre de cisaillement tandis que 1’autre est rapportée a
la seconde position limite 0,. Pour ces deux positions limites, le centre de
cisaillement retrouve sa double signification. L’application de ce procédé ne
se limite pas au cas des 4mes pleines, on peut aussi 1’utiliser avec des poutres-
caissons en treillis ou des constructions semblables comprenant & la fois des
éléments a ame pleine et en treillis.
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