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Die Grenzlagen des Schubmittelpunktes bei Kastenträgern

The Limiting Positions of the Shear Centre in Box Girders

Les positions limites du centre de cisaillement dans les poutres-caissons

F. STÜSSI

Professor Dr., Präsident der IVBH, ETH, Zürich

1. Problemstellung

Der Schubmittelpunkt, dessen Existanz vor etwa 45 Jahren von den
Ingenieuren H. Schwyzer1), R. Maillart2) und A. Eggenschwyler3) gleichzeitig
und unabhängig voneinander entdeckt worden ist, besitzt eine Doppelbedeutung:

er ist gleichzeitig «Querkraftsmittelpunkt» bei verdrehungsfreier
Biegung und Querschnittsdrehpunkt bei biegungsfreier Verdrehung. Er wird in
der technischen Literatur bis heute als Querschnittsfestpunkt betrachtet,
trotzdem schon vor längerer Zeit darauf hingewiesen wurde, daß dies, auch
im Rahmen einer technischen Biegungslehre für dünnwandige schlanke Stäbe,
nicht zutrifft4). Nachstehend soll zunächst dieser frühere Hinweis wiederholt
und ergänzt werden.

Ein Stab mit unsymmetrischem Querschnitt nach Fig. la verbiegt sich
dann unter einer lotrechten Belastung p in Richtung der y-Axe verdrehungsfrei,

wenn sich die beiden Flanschen in jedem Schnitt um den gleichen Betrag
Va rib durchbiegen; bei gleichen Randbedingungen beider Flanschen ist diese

Bedingung für
_Ma. ./JU'- ,_ Mb I Qb y

Va EJa + \GFj -71"- EJb + \GFb'j

x) H. Schwyzer: Statische Untersuchung der aus ebenen Tragflächen zusammengesetzten

räumlichen Fachwerke, Diss. ETH, 1920.
2) R. Maillart: Zur Frage der Biegung, Schweizerische Bauzeitung, Band 77, 1921.
3) A. Eggenschwyler: Über die Festigkeitsberechnung von Schiebetoren und

ähnlichen Bauwerken, Diss. ETH, 1921.
4) F. Stüssi : Zur Biegung und Verdrehung des dünnwandigen schlanken Stahlstabes,

Abhandlungen I.V.B.H., Band 6, Zürich 1940/41.
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erfüllt. Bei gleichbleibendem Querschnitt ist mit
Q> M" -p,

somit

Dabei ist

M.a Va Mb
+ vb

EJa GF^ EJb GFb'
(1)

Pa P b' Vb P b' Pa + Pb P'

Ma M^, Mb M^, Ma + Mb M;

Ja und Jh sind die Trägheitsmomente der beiden Flanschen bezüglich der
x-Axe,

__daha
Ja~~V2'

_dbh\
Jt>-~[2-

und F' bedeutet die in der technischen Biegungslehre eingeführte «reduzierte»
Querschnittsfläche für die SchubVerformung; für die hier vorliegenden
Rechteckquerschnitte ist

5 „,5K Ä^« ha > K -g^ft "b '-dhhh

F<j,Ja

1
1

1
1

1

lp° 1 ^
Fb'

b

1°

1

i

_ Oo | ab
^b

^
b

Pb=Pib+P2b

Pa=Pla+

1

P2a r

'

P2 Pi

•f.' 1O2

1

1

|o,
VFb

a2a ¦•]¦¦ °2b ^

^~ b
»»

Fig. la. Fig. Ib.

Setzen wir die Werte

pb=p-pa, Mb M-Ma, pa -Ml
in Gleichung (1) ein, so erhalten wir die Differentialgleichung für verdrehungsfreie

Biegung zu

M'a F^ + Fb' Ma Ja + Jb

G FäFb' E JaJb
p M

GFb' EJb' (la)
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oder auf die Normalform y"—cy — F (z)

geordnet

aE jajb F;+Fbr f;+fj\f E Jb) v ;

Die Lösung dieser Differentialgleichung zweiter Ordnung (mit den Rand-
bedingungenlfaA MaB 0 für frei drehbar gelagerte Flanschenden) liefert
die Momente Ma und daraus die Flanschbelastung pa und damit die Lage des

Schubmittelpunktes,

in welchem die Belastung p angreifen muß, damit verdrehungsfreie Biegung
vorliegt.

Der Abstand aa ist nun nicht konstant, sondern über die Stablänge
veränderlich; der Schubmittelpunkt, als Angriffspunkt der Belastung für
verdrehungsfreie Biegung definiert, ist kein Querschnittsfestpunkt, sondern diese

Schubmittelpunkte bilden über die Stablänge eine gekrümmte Kurve.
Betrachten wir dagegen den Schubmittelpunkt, entsprechend seiner

ursprünglichen Deutung, in jedem Schnitt als Angriffspunkt der resultierenden
Querkraft Q («Querkraftsmittelpunkt»), so ist seine Lage durch

an
b-Qb

"a Q

gegeben; auch diese Punkte liegen auf einer Kurve, die jedoch mit der Kurve
der «Belastungsmittelpunkte» nicht übereinstimmt.

Wenn wir nun unseren Stab mit einem gleichmäßig verteilten Drehmoment
md auf biegungsfreie Verdrehung belasten, so wird jeder der beiden Flanschen,
abgesehen vom de St.-Venantschen Torsionsanteil C cp', durch eine
Flanschbelastung p,

T' md + Ccp"

auf Biegung und Querkraft beansprucht und die Flanschdurchbiegung ist
gegeben durch

" ^a>b Pa>b

^¦*- EJaib GF^'
Die Lage des Schubmittelpunktes, nun in seiner dualen Bedeutung als

Verdrehungszentrum jedes Querschnittes definiert, ist bestimmt durch

a„ b Va

Va-Vb
Auch diese Punkte liegen wieder auf einer Kurve, die jedoch mit keiner der
beiden aus der verdrehungsfreien Biegung bestimmten Kurven
(Belastungsmittelpunkt, Querkraftsmittelpunkt) übereinstimmt.
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Dadurch, daß diese drei Kurven nicht mehr miteinander übereinstimmen,
gehen nicht nur die Doppelbedeutung des «Schubmittelpunktes» und die
Dualität zwischen verdrehungsfreier Biegung und biegungsfreier Verdrehung
verloren, sondern es entsteht die grundsätzliche Schwierigkeit, daß der Begriff
des Schubmittelpunktes überhaupt nicht mehr eindeutig definiert werden
kann. Wohl lassen sich einfache Aufgaben der Biegung und Verdrehung, wie
etwa unser Beispiel der Fig. 1 lösen, ohne daß der Schubmittelpunkt verwendet

wird, in allgemeineren Fällen, bei komplizierten Querschnittsformen, wird
eine solche Untersuchung jedoch schwierig und mühsam, wenn nicht überhaupt
unmöglich.

Diese Schwierigkeit in der Definition des Schubmittelpunktes verschwindet
jedoch, wenn wir unsere Untersuchung nicht auf einen in seiner Lage
veränderlichen Schubmittelpunkt, sondern auf seine beiden Grenzlagen beziehen.

Vernachlässigen wir in Gleichung (la) die Beiträge der SchubVerformung, so

ergibt sich

M a M
Ja + Jb

und damit die Lage des ersten Schubmittelpunktes 01? wegen M" Q' — p zu

- =b- J»

"la-"ja+jb-
Berücksichtigen wir dagegen nur die SchubVerformung allein, so erhalten wir
analog für den zweiten Schubmittelpunkt 02

a9„ b- b
*2a K + F7

Diese beiden Schubmittelpunkte sind Querschnittsfestpunkte und beide
besitzen für die zugehörigen Belastungsanteile px und p2 bzw. Tx und T2 wieder
die Doppelbedeutung als Querkrafts- bzw. Belastungsmittelpunkt bei
verdrehungsfreier Biegung und als Verdrehungszentrum bei biegungsfreier
Verdrehung. Für beide Belastungsanteile muß die Elastizitätsbedingung erfüllt
sein; im Rahmen einer technischen Biegungslehre bedeutet dies, daß die Form
des Querschnittes an jeder Stelle des Stabes erhalten bleiben muß. Für den
ersten Belastungsanteil p1 bei verdrehungsfreier Biegung führt diese Bedingung
auf eine ebene Verteilung der Normalspannungen a±; die Elastizitätsbedingung
nach der Hypothese Bernoulli-Navier vom Ebenbleiben der Querschnitte der
elementaren Biegungslehre ist somit als Sonderfall in der erweiterten
Elastizitätsbedingung von der Erhaltung der Querschnittsform enthalten4).

Nachstehend sei der Rechnungsgang für den Fall verdrehungsfreier
Biegung im Beispiel eines Stabes mit Querschnitt nach Figur 1 a skizziert. Für die

Normalspannungen v1 des ersten Belastungsanteils px — M'[, der im ersten
Schubmittelpunkt 0X angreift, bleibt der Querschnitt eben oder es ist
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Mx

mit Jx Ja + Jb. 7,xx den Spannungsänderungen

gehören Schubspannungen Tzy ryz in den beiden Flanschen:

Td -SaidF + C,

die sich zu den beiden « Scheibenquerkräften » £ia und £tö,

d.h. zu

&la=frdF, &lb=frdF,

Qla t j Gl> &1& t f öl

aufsummieren lassen; die resultierende Querkraft Öi öla + G1& greift somit
im ersten Schubmittelpunkt 0X an, der deshalb aus der ebenen Verteilung der
Normalspannungen a1 bestimmt werden kann.

Nun sind aber wegen Vq GFr

die beiden Flanschdurchbiegungen infolge dieser Scheibenquerkräfte £}la und
&lb verschieden groß und die Elastizitätsbedingung ist somit nicht erfüllt.
Diese Ungleichheit der Flanschdurchbiegungen wird nun durch die Normal-
Spannungen a2 bzw. die Flanschbiegungsmomente 9Jl2,

wi2a+m2b M2

des zweiten Belastungsanteiles p2 korrigiert:

9K»a /Oi„V
EX,

dagegen sind die Flanschdurchbiegungen infolge der Flanschquerkräfte
d2 9K2 gleich groß:

*^2« ^2 6

OF; GF7
F" F"

oder es ist Q2a - ™r4?r Q2> &2&' F,
*
^, £2

und damit ist analog

f: _ _ ä'^2« 777^7^2, W25 -TT^rM^*a +*b *a+ *b

Die resultierende Belastung p2 — M2 und die resultierende Querkraft
Q2 M2 greifen somit im zweiten Schubmittelpunkt 02 an. Setzen wir diese
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Werte von 2ft2 sowie die Werte von Ox unter Beachtung von Q1 M2 und
unter Beschränkung auf den Fall gleichbleibenden Querschnittes in Gleichung
(2) ein, so erhalten wir

Fa' M2 Ja M'[ _ Fb' M2 Jb M\
"l T T rH TTf/ TM T7lf T7T T '

Fa+Fb' EJa Ja + Jb GF; Fa + Fb' EJb Ja + Jb GFb"

woraus sich nach kurzer Zwischenrechnung

_ e jajb f;+f'M*~ GJa + Jb F^F' Ml

ergibt. Setzen wir diesen Wert in die Gleichgewichtsbedingung

M± + M2 M

ein, so erhalten wir nach Ordnen auf die Normalform mit

G Ja + Jb F^Fbl _
G Ja + Jb F;Fb'^-^^07^^^""^"^^^^^^ (2a)

die Differentialgleichung zur Bestimmung des Momentenanteils Mx, für die
die zugehörige Belastung im ersten Schubmittelpunkt angreift. Die
Normalspannungen cr2 infolge des zweiten Belastungsanteils P2 — P — P1 sind nicht
mehr nach einer Ebene über den Querschnitt verteilt, sondern es ist auch bei

verdrehungsfreier Biegung eine Querschnittsverwölbung festzustellen. Die beiden

Differentialgleichungen (lb) und (2a) führen mit

Ma=-j^M1 + 1jJ^M2 (3)
Ja + Jb la+lb

auf die gleichen Ergebnisse; sie unterscheiden sich dementsprechend durch
das Belastungsglied.

Die Verhältnisse sollen nun noch durch die Ergebnisse eines Zahlenbeispiels
veranschaulicht werden. Wir wählen für den Querschnitt nach Fig. 1

ha h, hb 2 h, da 2 d, db d;
damit ist

T
dh* _ 4Ä3 5dh

Ja -g-> Jb —q- 4Ja, !a !b -y-.
Ferner sei G\E 3/8 und die Stablänge l=l2h.

Mit diesen Werten ergibt sich Gleichung (lb) zu

und Gleichung (2 a) zu
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In der folgenden Tabelle sind die Werte M,

M ^z(l-z),

sowie die Lösungen der Differentialgleichungen5) (lb) und (2a) für die halbe
Stablänge bei frei drehbar gelagerten Flanschenden zusammengestellt.

Pkt. M
Gl. (lb) Gl. (2 a)

Ma Pa Mi Pi

A
1

2

3

4

5

m

0

5,50
10,00
13,50
16,00
17,50
18,00

0

1,20034
2,12202
2,82671
3,32772
3,62794
3,72797

0,50000
0,26483
0,21401
0,20303
0,20066
0,20015
0,20006

0

5,1655
9,5933

13,0776
15,5743
17,0735
17,5734

0

0,78390
0,95330
0,98990
0,99780
0,99951
0,99980

-ph2 •ph2 -ph2

Die beiden Wertegruppen sind miteinander durch Gleichung (3) verbunden:

Ma 0,50^-0,301^, pa 0,50^-0,30^.

Hätten wir, entsprechend der üblichen Theorie der Biegung und Verdrehung
von Stäben mit offenem Querschnitt, die Schubverformungen vernachlässigt
und den Schubmittelpunkt 0 als Querschnittsfestpunkt 0X eingeführt, so hätten
wir

Ma 0,20 M, pa 0,20 p,

Mx M, Vi=V

erhalten. Es ist festzustellen, daß der Einfluß der Schubverformung sich deutlich

bei der Belastungsverteilung an den Stabenden bemerkbar macht (dies
ist auch bei noch schlankeren Stäben der Fall), die Momente in Stabmitte
dagegen weniger stark beeinflußt (Mam 0,201\\Mm).

Da der Schubmittelpunkt dazu dient, eine beliebige Belastung aufzuteilen
in einen Anteil, der verdrehungsfreie Biegung und einen Anteil, der biegungsfreie

Verdrehung verursacht, wird der Einfluß der SchubVerformung in vielen
Fällen, mehr als dies in der heutigen Praxis der Fall ist, zu beachten sein. Hier
soll jedoch der Fall von Stäben mit offenem Querschnitt, der sich verhältnismäßig
einfach behandeln läßt, nicht weiter verfolgt werden. Dagegen haben wir hier das
einfache Beispiel der Fig. 1 deshalb so eingehend besprochen, weil sich einige

5) Auf diese Berechnung (numerische Lösung) sei hier nicht eingetreten; es sei hiefür
verwiesen auf F. Stüssi: Grundlagen des Stahlbaues, Berlin, Springer, 1958.
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grundsätzliche Zusammenhänge, die auch für den Kastenträger gültig sind,
einfach erkennen lassen.

Es soll nun nachstehend zunächst ein fachwerkförmiger Kastenträger untersucht

werden, worauf die Berechnung eines aus vollwandigen Scheiben
bestehenden Kastenträgers unter der Voraussetzung, daß die Querschnittsform
erhalten bleibt, dargestellt werden soll.

2. Fachwerkförmiger Kastenträger

Ein einfacher Balken mit zwei Hauptträgern, zwei Windverbänden und
zwei Endquerverbänden, der durch n—l Zwischenquerverbände in n Zellen
unterteilt wird, ist bei einfachster Lagerung n-fach statisch unbestimmt
(Fig. 2). Wir erhalten ein statisch bestimmtes Grundsystem dadurch, daß wir

<
h

i

¦\i___ ' ?\
i"b

z-frf i/_

'ytt
k

1

l/\ •^—
1

1

1/

V 2 Xe

[i 7
j /" i

Fig. 2.

beispielsweise im oberen Windverband in jeder Zelle einen Diagonalstab
durchschneiden oder den Strebenanschluß lösen. Würden wir nun die Schnittkraft

an jeder dieser Schnittstellen als überzählige Größe einführen, so würden
wir ein sehr unbequemes System von Elastizitätsgleichungen erhalten, weil in
jeder Elastizitätsgleichung alle überzähligen Größen vorkommen. Führen wir
dagegen die Kombination von zwei entgegengesetzt gleich großen Schnittkräften

zweier aufeinanderfolgenden Zellen ein, so wird das System
dreigliedrig,

ai,i-l -X-i-l + ai,i ~&i + ai,i+l ^i+1 + ai(l 0 (4)
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und ist deshalb sehr einfach aufzulösen. Die Verschiebungsgrößen aik ergeben
sich am einfachsten aus der Arbeitsgleichung zu

Es ist zweckmäßig, als überzählige Größen X die senkrecht zur Längsachse
wirkenden Komponenten der Strebenkräfte des Windverbandes einzuführen;
infolge Xi l entstehen dann die in Fig. 2 angegebenen Hauptträgerbelastungen.

Die Windverbandsquerkraft Qh beträgt dann:

im ersten Feld: Q± Xl9
im zweiten Feld: Q2 X2 — X1,
im dritten Feld: Q3 X3 — X2 usw.,

oder es ist
X2 Q\ + Q2 > ^3 Qi + Qz + Qz 5

m
xm 2 Qi

1

und damit bedeutet wegen
m

1

die mit der Zellenlänge e multiplizierte überzählige Größe X das Moment im
Windverband.

Mit Rücksicht auf die spätere Umformung der Elastizitätsgleichung (4)
führen wir für den Beitrag der Streben an die Verschiebungsgrößen aik eine
«SchubSteifigkeit» EK ein. Für ein Hauptträgerfeld mit einfachem Strebenzug

beträgt dieser Beitrag

DtDkd Qt Qk d =QiQke
ik EFD sina-sina EFD EK7

oder es ist Kv FD-^-. (4b)
a

Analog ergibt sich für ein Feld eine iT-Fachwerkes (Windverband)

Kh FD^. (4c)

In Fig. 3 sind die Kräfte infolge Xt 1 im oberen Windverband und im
vorderen Hauptträger eingetragen; im unteren Windverband und im hinteren
Hauptträger sind die Kräfte entgegengesetzt gleich groß. Beanspruchte Stäbe
sind kräftig, unbeanspruchte dünn ausgezogen. Damit kann die Verschiebungs-
größe E au direkt abgelesen werden zu

\K + Kl
„ „- i - "i 2e 2e 4&2e
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wobei EKh0, E Khu und EKV die Schubsteifigkeit des oberen und unteren
WindVerbandes sowie der Hauptträger bedeuten, während mit F0 und Fu die

Querschnitte von Obergurt und Untergurt bezeichnet sind. Für aufeinanderfolgende

Doppelfelder wechseln die Beiträge für Obergurt und Untergurt, d. h.

für F0 und Fu alternierend ab. Analog finden wir

EaiA_x 2
b* F, K

1
Jp n __ 9

hO

e

hO

x,

e 2h2e
b2Kv>

e 2h2e

Khu b2Kv'

d= + 1

2sincxh

I*-I -r

b stn orv

S 1 -?-

Fig. 3.

Ein äußeres Drehmoment md kann im Grundsystem nur durch Belastung
±p0 der beiden Hauptträger aufgenommen werden:

md
Po -f;

die zugehörigen Querkräfte und Momente in den Hauptträgern bezeichnen
wir mit Q0 und M0:

M'ö Qö -Po-
M0,i a JfM+1Mit O 8,0,i+l h

ergibt sich das Belastungsglied der Elastizitätsgleichung für Punkt i zu

Die Verformungen der Querverbände lassen sich ohne Schwierigkeiten
berücksichtigen, doch seien sie hier vernachlässigt, weil die Annahme starrer
Querverbände der Voraussetzung von der Erhaltung der Querschnittsform
entspricht.
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Auf gleiche Weise kann, statt eines Drehmomentes md, jede andere gegebene
äußere Belastung untersucht werden; es ändert sich jeweils nur das Belastungsglied

ai0. Dagegen ist es direkt nicht möglich, diejenige waagrechte Belastung
zu bestimmen, die das Tragwerk auf verdrehungsfreie Biegung beansprucht.

Um diese normale statische Berechnung des hochgradig statisch
unbestimmten Tragwerks mit der noch aufzustellenden Differentialgleichung des

Kastenträgers zu vergleichen, nehmen wir noch den Grenzübergang für immer
kürzer werdende Zellen, e -> dz, vor. Dafür dürfen wir setzen

X 1 — -X-i — K-i+l

und Xi_1 — 2Xi + Xt X"\

beachten wir noch, daß Xie das Moment Mhi bedeutet und daß die alternierenden

Beiträge der Gurtstäbe auszugleichen sind, so folgt aus der Elastizitätsgleichung

(4) durch Einsetzen der Verschiebungsgrößen aik und Division
durch e2 die Differentialgleichung

1 2h2
M>v(-k+-k)-[M'tä + K

¦ +
hu b2K,

4M,
\F0 +Fj b\KvJ

(5)

die sich für konstante Strebenquerschnitte auf

Mh»\T0 + Fu) Mh\Kh0+J^ + btK-J- bh \f0 + fJ+ Kv
(5a)

vereinfacht. Diese Gleichung wird am einfachsten nach Einsetzen der Zahlenwerte

auf die Normalform geordnet.
Diese Differentialgleichung kann auch direkt aus Fig. 4 abgeleitet werden.

Ein äußeres Drehmoment md wird durch die Wandbelastungen ph und pv
nach der Gleichgewichtsbedingung

Phh + Pvb md

\^7

V .°h s/
V/ °"t

V y

r--~J. H
-¦p

Fig. 4.
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aufgenommen. Dabei gelten auch die Beziehungen

MH=Q'h -ph,
Ml Q'v -pv,
0" T' =-md.

In den Gurtstäben treten die Gurtkräfte S auf:

0
_ Mv Mj. _ 1 „, 7.+ -7=±-T± + J^(<t>-Mhh),bh

*-*'t^
Die Elastizitätsbedingung von der Erhaltung der Querschnittsform lautet bei
der vorausgesetzten einfachen Symmetrie

^Vv Vo + Vu
b

b

9 =¦

bzw.

h

Vo + Vu
h

Für die einzelnen Scheibendurchbiegungen rj gilt

„ IIS S\ IQA'

F zs (Qhy

„ 28 IQh \\
setzen wir diese Werte in die Elastizitätsbedingung ein, so folgt

bh \F0 + Fj + b \kJ bh \F0 + Fj + h[\Kh0J + \Kj
und daraus durch Einsetzen von S, Elimination von Qv -r(T — Qhh) und

Ordnen

M*
b2 U + K

(i
mAtL +

1

K +
hu

2 h2

b2K,

40
Wh + F

2h
17 (£)'

(6)

Wegen <P M0b, T Q0b stimmt Gleichung (6) mit Gleichung (5) überein.
Auf gleiche Weise ergibt sich für eine waagrechte Belastung ph Pho + Phu

diejenige Verteilung der WindVerbandsbelastungen, die verdrehungsfreie
Biegung verursacht (Fig. 5). Aus den Stabkräften S,

Mho Mv _ Mhu Mv
b + h ' u~ b + h

Sn
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und den Elastizitätsbedingungen

folgt unter Beschränkung auf gleichbleibende Strebenquerschnitte die
Differentialgleichung

2/1 1 \

Mhn2\Y^x) 1 +

=M4^ +

Kvb
2h2

K
Kr,

\Kho Khu l\ h°\Kh0

M- + -V
+

1

Kh

Ph
(V)

gleichzeitig ist Mm
KvblMh0 Mhu
2h \Kh0 Khu \

y

y

Vy=0

a
Fig. 5.

Aus den beiden Differentialgleichungen (6) und (7) folgt, daß auch für den
untersuchten fachwerkförmigen Kastenträger selbst im einfachsten Fall von
gleichmäßig verteilter Belastung ph oder md und konstanten Querschnitten
weder die Querkraftsmittelpunkte noch die Verdrehungszentren auf einer
Geraden liegen, der Schubmittelpunkt also auch hier kein Querschnittsfestpunkt

ist. Ein Zahlenbeispiel soll im Anschluß an die im nächsten Abschnitt
darzustellende Berechnungsmethode des vollwandigen Kastenträgers die
Verhältnisse veranschaulichen.

3. Der vollwandige Kastenträger mit einfach geschlossenem Querschnitt

Voraussetzungen und Grundlagen

Wir untersuchen einen aus mehreren ebenen prismatischen Scheiben
zusammengesetzten Stab mit einfach geschlossenem Querschnitt und freien Flanschen

(Fig. 6) unter beliebiger Belastung, die sich in einen Anteil, der den
Stab verdrehungsfrei auf Biegung, und in einen Anteil, der den Stab biegungsfrei

auf Verdrehen beansprucht, zerlegen läßt. Für beide Anteile bleiben die
Stabquerschnitte normalerweise nicht mehr eben; an Stelle der Elastizitätsbedingung

vom Ebenbleiben der Querschnitte (Hypothese von Bernoulli-
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Navier) der elementaren Biegungslehre tritt hier, in unserer erweiterten
Biegungslehre, die Elastizitätsbedingung, daß die Form der Stabquerschnitte
auch unter den eintretenden Formänderungen erhalten bleibt.

Für die Einzelscheibe der Breite bi, die wir als dünnwandig voraussetzen,
soll dagegen die elementare Biegungslehre gültig bleiben; die Normalspannungen

er sind somit linear über die Scheibenbreite bi verteilt (Fig. 7). Damit

E._, dz Tm

n r,-i<^-i

da,

5, x,

Vi fy«> dz e, dz

Fig. 6.
Fig. 7.

ergibt sich für ein Scheibenelement der ursprünglichen Länge dz eine gegenseitige

Drehung der Schnittfläche z und z-hdz um den Winkel dat,

da.* — '^dz °*~1
Ebt

l-dz.

Da aber dec^dz die Neigungsänderung der elastischen Linie bedeutet,

doci dr)'
dz dz

folgt Via Eb,
(8)

Infolge der Spannungsänderungen o'z -^- treten entsprechend der

Gleichgewichtsbedingung ^ Z 0 an einem Scheibenelement dy dz,

dz dy

Schubspannungen ryz rzy ri auf:

d-T -$a'zdF + C; (9)

beginnen wir die Integration an einem schubfreien Rand i — 1, so verschwindet
die Integrationskonstante G. Die Schubspannungen lassen sich zu Scheiben-
querkräften £ht zusammenfassen:

&t=SrdF. (10)
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Besitzt die Scheibe bt konstante Stärke di, so lassen sich die Integrationen
der Gleichungen (9) und (10) wegen der linearen Verteilung der Spannungsänderungen

o'z und der parabolischen Verteilung der Schubspannungen t
formelmäßig durchführen. Bei einer Schubspannung ri_1 am oberen Rand
i — 1 der Scheibe bt beträgt die Schubspannung rim in Scheibenmitte

und am unteren Rand

T^r^-^K^+ ai) (9b)

und die Scheibenquerkraft £tt- ergibt sich zu

£1« ^i(ri-1 + ^im + ri) bt ^T._1di-^(2a71 + a^ (10a)

Wir stellen fest, daß das zweite Klammerglied eine Knotenlast darstellt.
Beginnen wir die Integration an einem schubfreien Rand, so ist deshalb

Ol -&i^(2"J + <tJ) -hK0(a').

An der Kante 1 ist

r1d1 t2_^2 -^h[(2*0 + oi) + (^ + 2o[)] -K0-K\

und damit wird

&2 ~b2 [jST0 + Zi + ^(2crI + ai)] =-6,(^0 +^),
i-l

oder allgemein &, - 6* 2 K K) • (10b)
o

Die Scheibenquerkraft £^ verursacht eine SchubVerformung rj'ir der Scheibe

6^, die nach der normalen Biegungslehre dem mittleren Schubwinkel ym
gleichgesetzt werden kann:

/ Tm ***n i*-*i

ViT-Vm--Q- QKFi ~ QFJ-

Fif KFi bedeutet eine reduzierte Querschnittsfläche, derart bestimmt, daß

die Unverträglichkeit der Elastizitätsbedingung vom Ebenbleiben der
Querschnitte mit der SchubVerformung in der Krümmung rj" ausgeglichen
erscheint6):

^ Eb, +\GFf)' K }

6) F. Stüssi: Baustatik I, Birkhäuser, Basel, 1946, 1953, 1962, Abschnitt VII, lc.
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Aus einer Arbeitsgleichung für die Verdrehung eines Kastenträgers zeigt sich,
daß für alle zu einem geschlossenen Querschnittsteil gehörenden Scheiben die
SchubVerformung mit dem vollen Querschnitt Fi/=Fi, k \, zu berechnen
ist. Bei freien Flanschen ist der Wert von k nicht nur von der Querschnittsform,

sondern auch von der Verteilung der Spannungen abhängig. Fig. 8

zeigt einige typische Fälle für einen freien Flansch mit Rechteckquerschnitt.
Es wäre nun im Rahmen einer technischen Biegungslehre unerwünscht, wenn
der Wert von k je nach dem Belastungsfall mit veränderlicher Größe eingeführt

werden müßte. Wir setzen deshalb zur Vereinfachung auch für freie
Flanschen Fi,=Fi, k=1. Diese Vereinfachung hat deshalb keinen unzulässigen

Fehler zur Folge, weil die SchubVerformungen nur die Lage des zweiten
Schubmittelpunktes 02 und damit die Größe der auf diesen orientierten sekundären

Belastungsanteile beeinflussen. Vergleichsrechnungen zeigen, daß auch
in ungünstigen Fällen die durch diese Vereinfachung (k 1 auch bei freien
Flanschen) verursachten Fehler vernachlässigbar sind.

X K=1.0

n*L I

+ 1 u

Fig. 9

Fie. 8.

Die erste Grenzlage 01 des Schubmittelpunktes

Da für die beiden Grenzlagen 0X und 02 des Schubmittelpunktes die
Doppelbedeutung als Querkraftsmittelpunkt bei verdrehungsfreier Biegung und als

Verdrehungszentrum bei biegungsfreier Verdrehung besteht, existieren auch
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zwei Wege zu ihrer Bestimmung; wir bestimmen hier Ox und 02 als Querkrafts-
mittelpunkte bei verdrehungsfreier Biegung.

Bei verdrehungsfreier Biegung erfahren nach unserer Voraussetzung von
der Erhaltung der Querschnittsform alle Punkte eines Querschnittes gleiche
Verschiebungen u. Nach Fig. 9 gilt für die Verschiebungskomponenten rj in
Scheibenebene und £ senkrecht dazu:

v. ucosifji, ^ usin^.
Da wir dünne Scheiben (dünnwandiger Stab) voraussetzen, leisten sie einer
Verschiebung £ nur einen vernachlässigbar kleinen Widerstand; es sind deshalb
im Kräftespiel nur die Scheibendurchbiegungen 77 zu berücksichtigen.

Für einen ersten Belastungsanteil, entsprechend dem ersten Schubmittelpunkt

01? gilt somit für die Normalspannungen ali nach Gleichung (8)

,/ (Jl,i-l~ &lti n I

vu —Yb.— u cos™

oder u" —f^f1 r^ konst. (11)
Ebi cos 0,

Dies bedeutet, daß alle auf die ^-Richtung projizierten Spannungsdiagramme
der Einzelscheiben gleiche Neigung besitzen und daraus folgt, daß für
verdrehungsfreie Biegung die Normalspannungen ox des ersten Belastungsanteils
nach einer Ebene über den Querschnitt verteilt sind und daß deshalb dafür
die Normalspannungsformel nach der klassischen Biegungslehre gilt; für
konjugierte Schweraxen ist somit

N Mlx Mly
°>=y-7y+zfr*-

Es ist nun zweckmäßig, die Berechnung der Normalspannungen u1 auf die

Hauptschweraxen x, y des Querschnittes zu beziehen, weil dann auch die
zugehörigen Verschiebungen u, v voneinander unabhängig werden, d.h. Kraft-
und Verschiebungsrichtung je miteinander übereinstimmen.

Infolge einer Querkraft Qx M'y entstehen (mit N' 0, Mx 0)
Spannungsänderungen

Qx
uzx T ^ '

Jy

die sich aber bei einem Kastenquerschnitt nicht ohne weiteres zu Schub-

Spannungen und daraus zu Scheibenquerkräften aufsummieren lassen, weil
am kastenförmigen Querschnittsteil keine Stelle mit r 0 bekannt ist. Wir
müssen deshalb durch Aufschneiden einer Scheibe erst ein statisch bestimmtes

Grundsystem schaffen und an der Schnittstelle einen überzähligen Schub-
fluß s rxd einführen (Fig. 10). Bezeichnen wir die Schubspannungen, die wir
im Grundsystem nach Gleichung (9) aus den Spannungsänderungen o'zx erhalten,

mit r0 und die entsprechende Winkeländerung mit y0,
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y»=~G'

so ergibt sich für ein Scheibenelement bi mit dz 1 der Anteil A a10 an die
Verschiebungsgröße a10 aus einer Arbeitsgleichung mit dem virtuellen
Belastungszustand s rxd=l zu

T=0 T=0

r„ o r„=o

X=s
Fig. 10.

Führen wir mit u die von der Schnittstelle aus gemessene Länge des Umfangs
des geschlossenen Querschnittsteiles ein, so ist

dF
d

du

K

und wir erhalten

und analog

ai0 _ Q
I T0

K

du

Diese Integrale J" erstrecken sich über den kastenförmigen Teil des Querschnittes.

Die Elastizitätsbedingung normaler Form

sau + a10 0,
K K

bzw. s | ^du+ | rndu 0 (12)9 -zdu+ \r0du= 0

liefert den überzähligen Schubfluß s, was mit
s

T T0 + d

mit der im Flugzeugbau bekannten Beziehung
K
jrdu 0

(13)

(14)
inhaltlich übereinstimmt.
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Besteht der Querschnitt aus Einzelscheiben konstanter Stärke di7 so ist es

bequem, die Schubspannungen zu Scheibenquerkräften zusammenzufassen
und die Elastizitätsbedingung in der Form

»EI+Zt-0 (12a)

anzuschreiben; auch diese Summen beziehen sich nur auf den geschlossenen
Querschnittsteil. Freie Flanschen beeinflussen wohl die Schubspannungen r0
des Grundsystems, kommen aber in der Elastizitätsbedingung nicht vor, da
sie ja durch den überzähligen Schubfluß nicht beansprucht werden.
Aus den resultierenden Scheibenquerkräften £1^

ö<=Oo< + *&<> (13a)

für die die Elastizitätsbedingung

erfüllt ist, ergibt sich die resultierende Querkraft Qx und damit ein erster
geometrischer Ort des Schubmittelpunktes 01. Analog ist auch die Lage der
Querkraft Qy aus den Spannungsänderungen oy

i Qv
n,

zu bestimmen. Bei einfach symmetrischen Querschnitten liegt der Schubmittelpunkt

auf der Symmetrieachse, bei doppelter Symmetrie fällt er mit dem
Schwerpunkt zusammen.

Besteht der Stab aus Scheiben verschiedenen Baustoffes (z.B. Verbundträger),

so hebt sich selbstverständlich der Schubmodul G in der Elastizitätsbedingung

(12) des Schubflusses nicht heraus, sondern es ist

K K

ssJ*öWJ*?^ 0

Kr K
bzw. 5y_^_ + y^ 0.' LGd< LGd<

Die zweite Grenzlage 02 des Schubmittelpunktes

Der Schubmittelpunkt 02, als Querkraftsmittelpunkt definiert, ist der
Angriffspunkt einer Querkraft Q, deren Schubspannungen eine verdrehungsfreie

Biegung erzeugen. Nehmen wir beispielsweise eine Verschiebungsänderung
u' (z.B. u' 1) in Richtung u an, so ist für jede Scheibe bi

Vir u>'cos^ lcos^,
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während auch hier die Verformungen ^ normal zur Mittelebene der als dünn
vorausgesetzten Scheiben vernachlässigt werden dürfen. Da für die
Schubverformung allein

' °*
^T GFt

gilt, wird
~GF'. lcos^

oder £^=öi^cos^. (15)

Aus diesen Scheibenquerkräften kann die Resultierende Qu nach Größe und
Lage bestimmt werden.

In bezug auf die Vorzeichen ist zu beachten, daß wir für die Scheiben-
querkräfte C^ und die Scheibendurchbiegungen rji einen gleichbleibenden
Drehsinn um den geschlossenen Querschnittsteil herum als positiv annehmen.
Der Winkel ifji ist zwischen der positiven Verschiebungsrichtung u und der

positiven Durchbiegungsrichtung rji zu messen; für ^ ^ ifji ^ -£- wird cos^
negativ (Fig. 9).

Analog ergibt sich für eine angenommene Verschiebungsrichtung v aus
v' 1 eine resultierende Querkraft Qv. Der gesuchte Schubmittelpunkt 02 ist
der Schnittpunkt von Qu und Qv. Ist die Verschiebungsrichtung v senkrecht
zur Verschiebungsrichtung u, so wird

&iv GFtsinifji.

Für die Scheibenquerkräfte £hiu und £liv ist die Elastizitätsbedingung des
Schubflusses im geschlossenen Querschnittsteil,

K K Gijrdu 0 bzw. V-? 0'

erfüllt.
Es ist nun zu beachten, daß die Richtung der resultierenden Querkräfte

Qu und Qv nicht mit den entsprechenden Verschiebungsrichtungen u und v
übereinstimmt. Bei senkrechtem Axenkreuz u, v besitzt Qu eine Komponente

Quu in Richtung u,
Quu Z» F.cos2^,

und eine Komponente Quv in Richtung v,

Quv 2ö^cos?A*sm^-
Analog ist für Qv

Qvv ZGFisin2i/ji,
Qvu Quv ZGFi sin fa cos 0,.

Drehen wir das rechtwinklige Axenkreuz u, v um den Winkel a in die Lage
x, y, so wird
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Qxx ZGFicoB*(* + 4,i),

Qxv Qyx='LGFi sin (« + <l>i)cos (« + h) >

Qvv ZG F sin2 (ac + h).
Setzen wir die Beziehungen

sin (a + fa) sin a cos i/ji + cos a sin ifii,

cos (oc-t-fa) cos a cos ifji — sin a sin ijji

ein, so erhalten wir nach kurzer Zwischenrechnung

Qxx Owii cos2 a + 0W sin2 ol-2Quv sin a cos a,
#iw ÖWu sin2 a + öw cos2 a + 2 Qwv sin a cos a, (16)

Qxy (Quu~ Qw)sin a cos a + Quv (cos2 a - sin2 a).

Zwischen diesen Querkraftskomponenten bestehen somit genau die gleichen
Beziehungen wie zwischen den Trägheits- und Zentrifugalmomenten bei der
Drehung eines rechtwinkligen Axenkreuzes und es gelten auch analoge
Folgerungen. So existiert ein einziges rechtwinkliges Axenkreuz, für das die
beiden Verschiebungsrichtungen mit den Richtungen der zugehörigen
resultierenden Querkräfte übereinstimmen. Wir nennen diese beiden Achsen Schub-

hauptaxen, in Analogie zu den Biegungshauptaxen; ihre Lage (mit Ursprung im
Schubmittelpunkt 02) ist gekennzeichnet durch die Beziehung

tZ2« -n2Q-n <16a>
Wuu Wvv

Die Richtungen der Schubhauptaxen und der Biegungshauptaxen stimmen
bei unsymmetrischen Querschnitten normalerweise nicht miteinander überein;
daraus ergibt sich bei verdrehungsfreier Biegung eine grundsätzliche, wenn
auch zahlenmäßig nicht stark ins Gewicht fallende Unverträglichkeit zwischen
den beiden Belastungsanteilen.

Verdrehungsfreie Biegung

Eine beliebige äußere Belastung p beansprucht den Stab auf Biegung und
Verdrehung. Um die Beanspruchung aufteilen zu können, benötigen wir zuerst
die Lage von p, die den Stab auf verdrehungsfreie Biegung beansprucht; dann
kann das Drehmoment md bestimmt werden, das den Stab auf Torsion belastet.

Der Querschnitt sei auf die Biegungshauptaxen x, y orientiert. Wir
zerlegen die Belastung p in zwei Komponenten px und py parallel zu den Hauptaxen.

Es genügt, wenn wir die Belastung px untersuchen; für py ist dann
die Untersuchung analog durchzuführen.

Der erste Anteil px von px mit

Pi -Q'ix -M'ly
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verursacht Normalspannungen o1 g1z, die linear über den Querschnitt
verteilt sind:

Jy
-x;

die zugehörigen Spannungsänderungen a[,

Jy

liefern die Scheibenquerkräfte £^ nach Gleichung (13a), deren Resultierende
Qx durch den Schubmittelpunkt 0X geht. Unter den SchubVerformungen
infolge der Scheibenquerkräfte £ii €lli ist die Elastizitätsbedingung von der
Erhaltung der Querschnittsform nicht erfüllt; diese Verformungen müssen
deshalb ergänzt werden durch die Verformungen infolge der Normalspannungen

o g2 des zweiten Belastungsanteils P2 p — Pi mit der Formänderungs-
bedingung

^£l(§)'= »'-*• <"'
inf. p2 inf. p1

E /£tA'oder a^!-ui Eu"bicos^--^\-£\ (17a)

F
Zusammen mit einer Gleichgewichtsbedingung J odF 0 oder einer Symmetriebedingung

bei einfach symmetrischen Querschnitten liefert das System dieser

Differenzengleichungen die Normalspannungswerte o a2 in der Form

at *tEu*-ßt(&x atEu'-ßtM^ (17b)

und analog
°i <*iEu'"-ßiQix'

Damit können für die beiden Anteile von a^ die entsprechenden
Scheibenquerkräfte £l(xi und Qtßi nach Gleichung (13a) ermittelt werden. Dabei
braucht die Zahlenrechnung für £l(xi nicht mehr neu durchgeführt zu werden,
weil wegen

die Scheibenquerkräfte £hoci proportional zu den Scheibenquerkräften jQ^ der

Gleichung (17) sind, die ja schon bei der Bestimmung des ersten Schubmittelpunktes

benötigt worden sind.
Da die resultierende Querkraft Q2x durch den zweiten Schubmittelpunkt 02

gehen muß, ist
TP TP

A*2OteiOa*-2;OJ8iO2i 0. (18)
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F

Mit [L =—-
2j &<(xia2i

ergibt sich somit £t21 jjl £ta i — £iß i. (18a)

a2i bedeutet den Abstand der Scheibe bi vom zweiten Schubmittelpunkt 02;
analog werden wir mit au den Abstand vom ersten Schubmittelpunkt 0X

bezeichnen. Aus den Scheibenquerkräften £i2i ergibt sich die resultierende
Querkraft Q2x in der Form

F
Q2x ZQ2icos^ -cQ'[x.

Damit folgt aus der Gleichgewichtsbedingung Qlx + Q2x Qx die Differentialgleichung

der gestellten Aufgabe,

Qix-c%QL Qx (19)
oder auch Mly-c%Mly My (19a)
bzw. Pix-cbP1x Px> (19b)

die die Aufteilung der äußeren Belastung

px -Q'x -m;
in die beiden Anteile

Pix ~M'iy und P*x Px-Plx
zu bestimmen erlaubt.

Zu den bisher bestimmten Durchbiegungen u des ersten Belastungsanteils
px sowie infolge der Normalspannungen cr2 des zweiten Belastungsanteils p2
nach Gleichung (17) tritt nun noch eine Schubverformung infolge der
Querkräfte £i2i nach Gleichung (18a) des zweiten Belastungsteils p2, für die
grundsätzlich die Beziehung

^|f ^2Tcos^ (17 c)

gilt. Nun zeigt sich aber, daß diese Beziehung bei größerer Scheibenzahl und
besonders wenn freie Flanschen vorhanden sind, nicht für alle Scheiben sich

genau erfüllt, weil die Verteilung der Scheibenquerkräfte &2i über den
Querschnitt nicht genau mit der durch Gleichung (15) gegebenen Verteilung
übereinstimmt. Die Durchbiegung u2r ist deshalb aus der Summe aller Gleichungen
(17c) zu bestimmen:

Z&2i G<rZFi™sh, (17d)

Die hier bestehende Unverträglichkeit kann durch Einführung von
«Ergänzungskräften» A &2i derart, daß für alle Scheiben die Durchbiegungsbedingung

erfüllt ist, veranschaulicht werden:

&2i + A&2i Gu2TFi cos ifj^ (17 e)
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Diese Ergänzungskräfte A &2i stehen miteinander im Gleichgewicht und
beeinflussen (bei den vorausgesetzten steifen Querverbänden) somit die Verformungen

des Stabes nicht; eine weitere Verfeinerung der Berechnung ist für
technische Zwecke nicht notwendig.

Unter den Normalspannungen a2 bleiben die Querschnitte nicht mehr
eben, sondern es tritt eine Querschnittsverwölbung ein. Fallen dagegen die
beiden Schubmittelpunkte 0± und 02 zusammen, so ist, weil Qlx im ersten
Schubmittelpunkt 0X angreift, in Gleichung (18)

F F

damit muß auch
F F

sein oder die ganze äußere Belastung p wird durch den ersten Belastungsanteil
px allein aufgenommen; die Normalspannungen g g1 sind nach einer Ebene
über den Querschnitt verteilt, der somit verwölbungsfrei bleibt.

Torsion

Bei geschlossenem Querschnitt wird das äußere Torsionsmoment T primär
durch einen Schubfluß s aufgenommen; die Scheibenquerkräfte &si bis in
den zum geschlossenen Querschnittsteil gehörenden Scheiben halten dem
Torsionsmoment Gleichgewicht:

T s2atbt 2Fms. (20)

Dabei bedeutet Fm den Flächeninhalt des durch die Scheibenmittellinien
umgrenzten Kastenquerschnittes. Gleichung (20) ist die bekannte Bredtsche
Formel.

Die Bredtsche Formel ist jedoch nur dann genau gültig, wenn die
Elastizitätsbedingung von der Erhaltung der Querschnittsform erfüllt ist:

f ^ *' konst- <21>

Für Scheiben konstanter Stärke di, auf die wir uns der einfacheren Schreibweise

wegen im folgenden beschränken wollen, bedeutet dies

-pz j- cp' konst.
Gaidi

oder bei konstantem Schubmodul G

aidi konst. (21a)

Für diesen Fall der reinen Schubflußtorsion ist somit
<? T T

G<p' -^r —k— * • (21b)
Ui * atdtZatbt Salbet
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Die Verdrehungssteifigkeit der als dünnwandig vorausgesetzten Einzelscheiben,

krJd= Or - ^ ~3~'

kann gegenüber der Verdrehungssteifigkeit des Kastenquerschnittes,
K

GI>aibidi>
vernachlässigt werden.

Bei reiner Schubflußtorsion fallen die beiden Schubmittelpunkte 0X und 02

zusammen. Damit besteht eine Dualität zwischen reiner Schubflußtorsion und
wölbungsfreier Verbiegung.

Ist dagegen die Elastizitätsbedingung Gleichung (21) nicht erfüllt oder
weist der Querschnitt neben dem geschlossenen Querschnittsteil noch freie
Flanschen auf, in denen ja kein Schubfluß s wirkt, so müssen neben dem
Schubfluß s noch Normalspannungen oi auftreten, damit die Querschnittsform
erhalten bleibt, und die Elastizitätsbedingung lautet bei Drehung um die erste
Grenzlage 0X des Schubmittelpunktes

^ —^ + ^=^ cp{= konst. (22)

E b.
bzw. <T<_1_or< + _-LÄ' Ea^cpl. (22a)

Schreiben wir diese Gleichungen (22 a) für alle diejenigen Scheiben an, die
zusammen den geschlossenen Querschnittsteil bilden und addieren, so heben
sich alle Spannungswerte a heraus und es ist

k s' & 0.
9lZaiibi--Q2^'t==0;

mit den Abkürzungen
K W _ £ ^ 2i^

folgt somit

0
*n

^-2G\S' G0- ^
Setzen wir diesen Wert von <p{ in Gleichung (22a) ein, so ergibt sich für zum
geschlossenen Querschnittsteil gehörende Scheiben

E la^bi bt)ft-^y. (22b,

Für freie Flanschen, in denen ja kein Schubfluß s wirkt, gilt dagegen

-,-i-^f^V. (22c)
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Diese Differenzengleichungen, in Verbindung mit einer Symmetriebedingung
oder der Gleichgewichtsbedingung

jcrdF 0,

erlauben uns, die zu einem primären Schubfluß s s±,

*i öW (20a)

gehörenden Längsspannungen a zu bestimmen.
Zu diesen Längsspannungen er, bzw. zu den entsprechenden

Spannungsänderungen er' gehören nun aber auch Schubspannungen r0, bzw.
Scheibenquerkräfte £)j0i nach Gleichung (10) und zu diesen ein überzähliger Schubfluß

s2. Für diesen zweiten Belastungsanteil ist ebenfalls eine Elastizitätsbedingung

für die Erhaltung der Querschnittsform anzuschreiben:

a2ibidiG ~ \bidi dJa^G ~ ^2 ~

wobei sich der Querschnitt um die zweite Grenzlage 02 des Schubmittelpunktes
dreht. Aus diesen Gleichungen (24) sind die beiden Unbekannten s2 und cp2

in Funktion von s'[ zu bestimmen; unbekannt sind ferner auch die beiden
Koordinaten des zweiten Schubmittelpunktes 02, die wir jedoch mit Hilfe der
Scheibenquerkräfte nach Gleichung (15) auf anderem Wege (Querkraftsmittelpunkt)

bestimmt haben. Bei Querschnitten mit mehr als vier Scheiben und
besonders, wenn freie Flanschen vorhanden sind, sind im allgemeinen Fall die
Elastizitätsbedingungen Gleichung (24) nicht mehr für alle Einzelscheiben
erfüllt, sondern es können auch hier aus dieser Unverträglichkeit Ergänzungs-
kräfte A £^ auftreten:

Qi + A&t Gcp^a^b^.
Wir beheben die hier aufgetretene Schwierigkeit wie folgt: Zunächst wählen
wir die Integrationskonstante C in Gleichung (9) bei der Bestimmung der
Scheibenquerkräfte £ioi derart, daß das Moment verschwindet:

F

Multiplizieren wir nun Gleichung (24) mit a\ibidi und summieren über den

ganzen Querschnitt (wobei in den freien Flanschen kein Schubfluß s2 wirkt),
so folgt

F K F
ZQoi^i + ^IXA Gcp'2Y.alibidi- (25)

0

Eine zweite abgeleitete Gleichung erhalten wir, indem wir Gleichung (24) mit
a2ibidi multiplizieren und über den Querschnitt summieren:

Z&oi + StZbi Gcp^a^b.d,. (26)
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Dabei ist das Vorzeichen der Scheibenquerkräfte £ioi selbstverständlich
entsprechend dem Umlaufsinn zu berücksichtigen.

Die beiden Gleichungen (25) und (26) erlauben nun die Bestimmung der
beiden Unbekannten s2 und G cp2 in Funktion von s^. Damit ergibt sich der
zweite Anteil T2 des Torsionsmomentes zu

2i Zftof«2i+*22>2A 2^m*2 ~02Fm8l
0

und damit folgt aus der Gleichgewichtsbedingung T T1 + T2 die Differentialgleichung

des Torsionsproblems zu

T
Crp O-^ 2F

oder -c2TT{ T. (27)

Die Ergänzungskräfte A £^ bilden auch hier, bei der sekundären Torsion, ein
Gleichgewiehtssystem. Fig. 11 zeigt ein Beispiel mit einem aus fünf Scheiben
bestehenden Kastenträger mit unsymmetrischem Querschnitt. Da dieses

Gleichgewichtssystem die Verformungen des Stabes unter der getroffenen
Voraussetzung von der Erhaltung der Querschnittsform nicht beeinflußt, darf
die Aufgabe mit der Aufstellung der Differentialgleichung (27) als gelöst
betrachtet werden.

0,075416

'£&

o.5h;; j

a. a. + s,b.
I Ol 2 1

0.182852

a2ibj -dj -G<P2

Fig. 11.

0,001500

Ergänzungskräfte

6 " "1

Zahlenbeispiel: Fachwerkförmiger Kastenträger

Wir untersuchen als Anwendungsbeispiel einen fachwerkförmigen Kastenträger

nach Fig. 2. Die gewählten Zahlenwerte sind in Fig. 12 zusammengestellt.

Gegenüber dem vollwandigen Kastenträger tritt hier die Besonderheit auf,
daß die Normalspannungen a durch die Gurtungen allein aufgenommen werden;

an Stelle der Knotenlasten K(a) der Gleichungen (10) tritt hier einfach
der Wert

Ki(o') Fio'i s'i,

wobei Fi den Gurtquerschnitt bedeutet. Da wir die SchubSteifigkeiten EK der
Scheiben nach den Gleichungen (4b) und (4c) auf den Elastizitätsmodul E
orientiert haben, ist für die SchubVerformung mit
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Vi 7

&i
EK<

zu rechnen; an Stelle des Schubmoduls G ist somit hier der Elastizitätsmodul
E zu setzen. Für die Scheibenstärke cL ist der fiktive Wert

einzuführen.

d -^** ~ b\

Kh0= 0,040 Fc

HT

Khu 0,060 Fc

fb^C

Hl-
-4 *•¦??-

Fig. 12.

Da der Querschnitt bezüglich der y-Axe symmetrisch ist, ist die Lage des

ersten Schubmittelpunktes 0X lediglich aus den Scheibenquerkräften infolge
der Spannungsänderung ax

Q*

Jy

mit
b2 10

Jv ~(F0 + Fu)=~h2Fc

zu bestimmen. Die Zahlenrechnung ist in der folgenden Tabelle zusammengestellt.

°'x K 2* Oo* di
di di

S'bi £W

0 -0,30 -0,30
-0,30 0,60 0,020 30,000 100,0 -0,178571 0,421429

1 0,30 0,30

^1 0 0 0,100 0 10,0 -0,089286 -0,089286
2 0,30 0,20

0,20 -0,40 0,030 -13,333 66,667 -0,178571 -0,578571
3 -0,30 -0,20

0 0 0,100 0 10,0 -0,089286 -0,089286
4 0 -0,30

Qx
'hFc

Qx
h

-Qx -4^ 16,667 186,667 -Qx -Qx



DIE GRENZLAGEN DES SCHUBMITTELPUNKTES BEI KASTENTRÄGERN 307

Der überzählige Schubfluß s beträgt

s=_J^l^ -0,0892857^.
186,667 h h

Aus den Scheibenquerkräften £ii £ilQi + sbi ergibt sich der Abstand alu des

Schubmittelpunktes 0± von der unteren Scheibe zu

alu (0,421429 -2- 0,089286) h 0,242851h.

Für den zweiten Schubmittelpunkt 02 kann

KhO -h
0,040

h 0,04A^ Kh0 + Khu'~ 0,040 + 0,060

direkt angeschrieben werden.
Bei der Untersuchung der Torsion sind zunächst die Spannungsänderungen

aus Gleichung (22b)
/«iA bA „

2Frn 4h2F„ F„
mit <2> „, _ 4:h2Fc _ „_

alt
~ 186,667 h2 ~ 46,667

zu bestimmen, aus denen sich die Scheibenquerkräfte Dj0i mit der Bedingung

£ßo<a2< 0

ergeben. Die nachstehende Tabelle enthält die Zahlenrechnung.

Oi K 2* bi%K >Q(H a^ibidi aiib%di

0 -14,667 -14,667
-29,333 -14,667 -29,333 14,667 0,0240 0,0144

1 14,667 14,667
36,667 0 0 - 7,333 0,1000 0,1000

2 -22,000 -14,667
-44,00 -14,667 -29,333 14,667 0,0240 0,0096

3

36,667
22,000 14,667

- 7,333 0,1000 0,1000
4 0 -14,667 0,2480 0,2240

•57* .h2s'[ -h3s'i •hFc • h2Fc

Die Gleichungen (25) und (26) lauten mit diesen Zahlenwerten

*24,0Aa G cp'2 0,2240 h2Fc,

14,6667 h*s'l +s26,0h G cp'2 0,2480 hFc;

ihre Auflösung liefert
h2

s2 - 9,333 Ä,2 s'l, Gcp'2 -166,667-=-*£.
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Damit ist die Differentialgleichung zu

T± -9,333 h2 T{ T

oder auch mit m — T' zu

mx- 9,333 h2m![ m

beziehungsweise
m 7Tb

m" -0,107143^-0,107143^ 0
hl h*

gefunden. Die direkt aufgestellte Gleichung (6) lautet dagegen mit unseren
Zahlenwerten

M m (&
^-0,107143-^+0,107143^ + 0,107143-^ 0.

lb lb Zi rt

Die Ergebnisse der beiden Gleichungen sind identisch.
Auf die Wiedergabe der Zahlenrechnung für verdrehungsfreie Biegung darf

wohl verzichtet werden; wir begnügen uns mit der Angabe der Differentialgleichung

p;-0,280g + 0,280£ 0
h2 h2

beziehungsweise
M M

M'[ -0,280^ + 0,280^ 0.
h2 hl

In der folgenden Tabelle sind noch für einen Stab der Länge l 8h und frei
drehbar gelagerten Scheiben die Scheibenbelastungen für Torsion unter
konstantem Drehmoment m und für verdrehungsfreie Biegung unter konstanter
waagrechter Belastung p zusammengestellt.

Torsion Biegung

Ph Pv pno Phu Pv

A
1

2

3

m

0,10714
0,19902
0,25837
0,29158
0,30227

0,44643
0,40049
0,37082
0,35421
0,34886

0,40000
0,40847
0,41322
0,41562
0,41635

0,60000
0,59153
0,58678
0,58438
0,58365

0

0,03529
0,05508
0,06508
0,06812

h

Diese Zahlenwerte zeigen deutlich, daß die Scheibenbelastungen bei Torsion

stark von der Bredtschen Schubflußtorsion mit

m
ph 0,50T, pv 0,25

m
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abweichen können. Aber auch bei der Biegung ist eine starke Abweichung von
den nach der normalen Biegungslehre zu erwartenden Werten

Pho 0,60 p, phu 0,4,0 p, pv 0

festzustellen.
Mit dem besprochenen Beispiel ist nachgewiesen, daß mit der für den voll-

wandigen Kastenträger aufgestellten Theorie der Biegung und Verdrehung
sinngemäß auch fachwerkförmige Kastenträger untersucht werden können.
Daraus folgt, daß diese Theorie auch auf Kastenträger gemischter Bauart, mit
vollwandigen und fachwerkförmigen Scheiben und mit konzentrierten
Gurtquerschnitten anwendbar ist.

4. Mehrzellige Kastenträger

Bei mehrzelligen Kastenträgern oder bei mehrfach geschlossenem
Querschnitt nach Fig. 13 tritt die Besonderheit auf, daß jede Zelle aufgeschnitten

o

Fig. 13.

werden muß, um das Grundsystem für die Berechnung des überzähligen
Schubflusses zu erhalten; das System ist somit in bezug auf den Schubfluß
mehrfach statisch unbestimmt. In Scheiben, die zu zwei Zellen a und b gehören,

wirkt eine Schubflußdifferenz sa — sb. Die Auswirkung dieser Besonderheit

auf die Berechnung soll nachstehend besprochen werden, wobei die
wichtigsten Schritte am Zahlenbeispiel der Fig. 13 veranschaulicht werden sollen.

Die Lage des ersten Schubmittelpunktes 0X ergibt sich als Querkraftsmittelpunkt

aus den Scheibenquerkräften £^, die aus den Spannungsänderungen

/ Qx

entstehen. Es ist zweckmäßig, die Knotenlasten K(of) wie folgt anzuschreiben
und auszurechnen

Punkt 1: a[ -0,5^h, K± ^(7 o[ + a'2 + 2 o^) =-1,000^dh2

a£ -l,5
3: er,; -1,5

4: ^ -0,5

#2 ^K + 4e^ + ^) =-1,33333

K3 ~(o^ + &^ + 2a'i) =-1,91667

Kt d^-(2o[ + 2o'z+ 10^) -1,5000
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Die Knotenlasten Ki(x) und Ki(y) erlauben übrigens eine einfache Bestimmung

der Trägheits- und Zentrifugalmomente:

Jy l>xiKi(x), Jx ZyiKt(y), zxu ZyiKi(x) z^Ki(y)-
Aus den Knotenlasten Ki (ct') ergeben sich mit

nach Gleichung (9) die Scheibenquerkräfte &oi des Grundsystems, die in
Fig. (14 a) eingetragen sind.

3,250 5,750

§f It
I

ii
1

1

a.) 0

2,095238 3.738095

If J f \

b) 1,154762 2,011905 Jy

Fig. 14.

Die Elastizitätsbedingungen für den überzähligen Schubfluß lassen sich
sinngemäß zu Gleichung (12 a) für jede Zelle zu

(28)

anschreiben. Für das Zahlenbeispiel der Fig. 13 lauten, weil aus Symmetriegründen

sc sa ist, die beiden Elastizitätsbedingungen

h ~ -h _ —33 Qx

-1,0 +2,5 +3,8750

3,0-sa-0,5^ + 2,458333-f^3 0,
a a 0rp.

0

mit den Lösungen

sa -1,154762^^2, sb -2,011905-^^Ä2.
**x ^x

In Fig. 14b sind die resultierenden Scheibenquerkräfte

&* &oi + biS

beziehungsweise £^ &oi + bi A s

eingetragen. Daraus ergibt sich der Abstand des Schubmittelpunktes alu von
den unteren Scheiben zu

a,..= 8I6°?!41a 0,702624fr.*ltt 12,250
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Die Lage des zweiten Schubmittelpunktes folgt aus den Scheibenquerkräften
£liu nach Gleichung (15) zu

a2M J^* 0,66667Ä.2u 3,0

Die Scheibenquerkräfte £i2i des zweiten Belastungsanteils der verdrehungsfreien

Biegung ergeben sich, wie bei einfach geschlossenen Querschnitten, aus
der Superposition nach Gleichung (18 a) mit

F F
pZ^oci^2i-Z^ßia2i 0^

wobei die Werte £i0Li direkt aus Fig. 14 b entnommen werden können, während
die Werte £iai sich aus den Spannungsänderungen

unter Berücksichtigung der überzähligen Schubflüsse nach Gleichung (28)
ergeben. Die resultierenden Scheibenquerkräfte £t2i stimmen in ihrer Verteilung

im allgemeinen Fall nicht genau mit der Verteilung nach Gleichung (15)
überein, sondern die Unverträglichkeiten sind auch hier durch Ergänzungs-
kräfte A £^ auszugleichen. Diese Ergänzungskräfte sind für die Bemessung
des Trägers von untergeordneter Bedeutung und damit vernachlässigbar.

Bei der Torsion erhalten wir die Gleichungen zur Bestimmung der
überzähligen primären Schubflüsse s1 dadurch, daß wir die Gleichungen (22 a) je
für alle Scheiben einer Zelle summieren, um die zugehörigen Normalspannungen
er zu eliminieren, wobei zu beachten ist, daß in zu zwei Zellen gehörenden
Scheiben eine Schubflußdifferenz wirkt. Für das Zahlenbeispiel der Fig. 13

lauten diese Bestimmungsgleichungen

3,0^-0,5^ 2/^0^',

mit den Lösungen

-l,0^;a + 2,5^J6 2Ä»G9,1'

4- 7 <?'

Ji»-3*la' 9l ~§hd'
Damit können aus Gleichung (22a) die Spannungen ct bzw. die Spannungsänderungen

ct' und daraus die Knotenlasten K(a) berechnet werden. Diese
Zahlenwerte lauten für unser Beispiel

aj= 0,256803-|^a, Kx (ct') 0,319161-- h2s'{a.

ct2 0,437075 K2(o) 0,282030

CT3 - 0,312925 K3 (ct') - 0,293367

o^ _ 0,159864 K± (ct') - 0,285147
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In Fig. 15 a sind die sich aus diesen Knotenlasten ergebenden Scheibenquerkräfte

£kQi des Grundsystems eingetragen, aus denen die überzähligen Schub-
flüsse s2 und die Änderung des zweiten Drehwinkels Gcp2 mit der zweiten
Elastizitätsbedingung Gleichung (24) berechnet werden müssen.

0,011338 -0,022676

?s r

0 0

'$¦*-•

0,206026 0,253868

13 CE\ t

0,217364 0,231132

&j Lösung a

Fig. 15.

0,214394 0,237070

§LJL
0,225732 0,214394

2ij Losung b.)

Es zeigt sich nun auch hier wieder die Schwierigkeit, daß mehr Bestimmungsgleichungen

vorhanden sind als Unbekannte. Wesentlich ist, daß der
Drehwinkel (Gcp2) und das resultierende Torsionsmoment T2,

*2 ~ 2j &2ia2i>

korrekt bestimmt werden. Dies ist dann der Fall, wenn wir die Gleichung (24)
mit a\ibidi G multiplizieren,

(&oi + biS2)a2i Gtp^alibtdi, (29)

und passende Gruppen zur Bestimmung der Unbekannten bilden, wobei wichtig

ist, daß in diesem neuen Gleichungssystem der Momente Cl^a2^ alle Scheiben

berücksichtigt sind. Für unser Zahlenbeispiel lassen sich unter Berücksichtigung

der Symmetrie folgende 6 Gleichungen (29) anschreiben:

1.

2.

3.

F
3 • 0,282030-^h*sla + 3,0s2ah2 ±,50h*dGcp'2,

-0,319161

+ - • 0,011338
ö

0,022676

-l,0s2ah2+1,0 s2bh2 1,0,

6.

2
+ 3 S2a'h

4
~ 9'

4
+ 3

$2 ah*
8

~ 9'
1

+ 3 «26 Ä2
g>

2
+ 3 «26 W

q-

Bilden wir das System der Bestimmungsgleichungen aus 1., 2. und 3. + 4. +
5. + 6., so erhalten wir
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E
-0,846090-^Ä4<a + 3,0s2a/&2 ±,50h*dGcp'2,

-0,319161-^Wsla-1,0s2ah2+1,0s2bh2 1,0 h*dGcp'2,

0 + 2,0 s2ah2 +1,0 s2bh2 2,0 h*dGcp'2

mit den Lösungen

s2a - 0,217364 |^Xa> *2ö -0,231132^h2s'ia,

Gcp'2 -0,332929^ ^s'la.

Bilden wir dagegen die Gleichungen aus (1. + 2.), (3.+ 4.) und (5.+ 6.), so wird

F
-l,165251-ö-h*sf;a +2,0 s2ah2+1,0 s2bh2 5,50h*dGcp'2

0,007559 +2,0

-0,007559 +1,0

mit den Lösungen

4

3

2

3

s2a -0,225732-^ s{a, s2b -0,214394-^^
Gcp'2 -0,332929^ ^'a.

In den Fig. 15 a und 15 b sind die resultierenden Scheibenquerkräfte für diese
beiden Lösungen eingetragen.

Die beiden Lösungen unterscheiden sich nur durch die Ergänzungskräfte
A £^ gegenüber den Werten

&i a2ibidiGcp2,

nicht aber im Drehwinkel, noch im resultierenden sekundären Torsionsmoment

Tt ZC^a« 2,49697-^Ä*«*a.

Damit kann aus der Gleichgewichtsbedingung TX + T2 T die Differentialgleichung

21-42!* T

aufgestellt werden und damit ist die Aufgabe gelöst.
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Zusammenfassung

Es wird zunächst an einem einfachen Beispiel, einem vollwandigen Stab
mit offenem Querschnitt gezeigt, daß der Schubmittelpunkt kein Querschnitts-
festpunkt mehr ist, sobald neben den Formänderungen aus den

Normalspannungen ct auch die Formänderungen aus den Schubspannungen r
berücksichtigt werden. Auch geht die Doppelbedeutung des Schubmittelpunktes als

Querkraftsmittelpunkt und als Verdrehungszentrum verloren. Zum gleichen
Ergebnis führt die Untersuchung eines fachwerkförmigen Kastenträgers. Es
wird deshalb, in Ergänzung früherer Ansätze, ein Berechnungsverfahren für
Biegung und Verdrehung einfach und mehrfach geschlossener Kastenträger,
unter der Voraussetzung, daß die Querschnittsform unter den Formänderungen
des Stabes erhalten bleibt, angegeben, das darauf beruht, daß die äußere

Belastung in zwei Anteile aufgeteilt wird, von denen der erste sich auf die
erste Grenzlage 01? der zweite sich auf die zweite Grenzlage 02 des Schub-

mittelpunktes bezieht. Für die beiden Grenzlagen gilt wieder die
Doppelbedeutung des Schubmittelpunktes. Das Verfahren ist nicht nur für voll-
wandige, sondern auch für fachwerkförmige Kastenträger und auch für solche

gemischter Bauart anwendbar.

Summary

It is first of all demonstrated on a simple example, namely that of a plate
girder of open section, that the shear centre is no longer a fixed point of the
section when, in addition to the deformations due to the normal stresses ct,

the deformations due to shear r are taken into consideration. The shear centre
then also loses its dual significance as centre of the shearing force and centre
of torsion. A study of a lattice-type box girder leads to the same results. To
Supplement previous expressions and assuming that the shape of the sections
is not altered by the deformations of the girder, a method for calculating the
deflection and torsion of simple and multiple closed box girders is presented.
The method suggested is based on the sub-division of the external load into
two components, one of which relates to the first limiting position 0X of the
shear centre, while the other is related to the second limiting position 02. For
these two limiting positions, the shear centre regains its dual significance. The
application of this method is not confined to the case of plate girders. It can
also be employed with lattice-type box girders or similar structures comprising
both plate and lattice members.

Resume

Sur un exemple simple d'abord, celui d'une barre ä ame pleine de section
ouverte, on montre que le centre de cisaillement cesse d'etre un point fixe de
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la section des qu'on considere, en plus des deformations dues aux contraintes
normales a, Celles dues aux cisaillements r. Le centre de cisaillement perd alors
aussi sa double signification de centre de l'effort tranchant et de centre de
torsion. L'etude d'une poutre-caisson en treillis conduit aux memes resultats.
En complement ä de precedents travaux et en admettant que la forme des
sections n'est pas alteree par les deformations de la barre, on presente un
procede de calcul de la flexion et de la torsion des poutres-caissons simplement
et multiplement connexes; la methode proposee procede de la subdivision de
la charge exterieure en deux composantes dont l'une se rapporte ä la premiere
position limite 01 du centre de cisaillement tandis que l'autre est rapportee ä
la seconde position limite 02. Pour ces deux positions limites, le centre de
cisaillement retrouve sa double signification. L'application de ce procede ne
se limite pas au cas des ames pleines, on peut aussi l'utiliser avec des poutres-
caissons en treillis ou des constructions semblables comprenant ä la fois des
elements ä äme pleine et en treillis.
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