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Zum Tragverhalten von Verbundquerschnitten auf Biegung

The Behaviour When Tested to Destruction of Composite Sections Subjected to

Bending Stresses

Sur le comportement ä la ruine des sections mixtes sollicitees ä la flexion

KUBT MOSEB

Dipl.-Ing. Dr. techn., Graz

1. Einleitung

Bei der Bemessung von Stahlbetonbalken bedient man sich in den letzten
Jahren immer mehr der sogenannten Theorie der Biegung im plastischen
Bereich. Der Grund ist wohl darin zu suchen, daß in den verflossenen Dezennien

eine stetige Erhöhung der «zulässigen Spannungen» bei gleichzeitiger
Steigerung der Festigkeiten der Baustoffe erfolgte, so daß auch im Bereich
der Gebrauchslasten die Gültigkeit des Hookeschen Gesetzes angezweifelt
werden mußte [1]. Die bekannten, sogenannten ^-freien Verfahren konzentrieren

sich auf die wirklichkeitstreue Erfassung der gesetzmäßigen Abhängigkeit

von Spannung und Dehnung des Betons. Für den Stahl wird ein ideal
elastisch-plastisches Verhalten vorausgesetzt, das aber nur für weiche
Baustähle recht gut, für hochfesten, naturharten oder kaltgezogenen Stahl oder

gar für Spannstähle nicht einmal näherungsweise zutrifft.
H. Beer hat gemeinsam mit dem Verfasser in einer Studie über das

Tragverhalten von statisch unbestimmten Systemen aus hochfestem Baustahl
gezeigt [2], daß zweckmäßig die stetige Veränderlichkeit des ^-Moduls mit
Hilfe eines sogenannten «Vergrößerungsfaktors» einfach beschrieben werden
kann. Dieses Vorgehen bietet sich auch bei Tragwerken aus Stahlbeton an,
insbesondere wo Stahleinlagen aus hochfesten Baustählen Verwendung finden;
es kann aber auch grundsätzlich zur Herleitung eines allgemeinen Bemessungsverfahrens

für die Biegung des Stahlbetons im plastischen Bereich, sowie auch
für die Bestimmung des Bruchmomentes ohne Vorspannung, benutzt werden,
was der vorliegende Beitrag zeigen soll.
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Der Verfasser will mit der vorliegenden Abhandlung nur das Prinzip der

Anwendung von Vergrößerungsfaktoren zeigen. Die quantitative Ausarbeitung

der hier gezeigten Probleme, insbesondere aber die Anwendung des vom
Verfasser vorgeschlagenen Verfahrens zur Ermittlung des Bruchmomentes
mit Vorspannung soll in einer vorbereiteten Publikation gebracht werden.
Eine gesonderte Behandlung letzteren Problems ist schon mit Rücksicht auf
die Vielzahl wesentlicher Detailfragen, wie die Wahl der Vergrößerungsfaktoren

auf Grund bekannter Versuchsergebnisse und auf Grund einschlägiger
Vorschriften in den einzelnen Ländern, ferner auch die Größe der Risse in
der Zugzone im Zusammenhang mit der als «schädlich» zu bezeichnenden

Dehnung und so weiter, notwendig.

2. Arbeitslinien und Vergrößerungsfaktoren der Verbundbaustoffe und ihr
Zusammenhang im betrachteten Querschnitt

Als Arbeitslinien der jeweiligen Verbundbaustoffe Beton und Stahl sollen
deren Spannungs-Dehnungslinien bezeichnet werden.
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Fig. 1.

In Fig. 1 ist die Arbeitslinie des Verbundquerschnittes dargestellt. Der
Druckbereich ist im ersten und der Zugbereich im dritten Quadranten
aufgetragen. Die Arbeitslinie im Druckbereich des Verbundquerschnittes sei eine

monoton gekrümmte Linie, wie sie bei allen betonartigen Stoffen auftritt. Der
funktionelle Verlauf des Vergrößerungsfaktors bestimmt eindeutig die Form
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der Arbeitslinie im gesamten plastischen Bereich und umgekehrt. Auf diesen

Zusammenhang wird der Verfasser noch zu sprechen kommen (Fig. 2).
Im Zugbereich des Verbundquerschnittes entspräche die Arbeitslinie der

eines hochfesten Baustahles. Mit crs wird an sich die definierte, technische
Streckgrenze bezeichnet; es soll dabei für hochfeste Stähle der Einfachheit
halber ganz allgemein angenommen werden, daß die Proportionalitätsgrenze
mit dieser Streckgrenze zusammenfällt. Die in der vorliegenden Arbeit gefundenen

Beziehungen können aber auch bei Vorhandensein von weichen
Baustählen benutzt werden, wenn für cjs die der Propotionalitätsgrenze
entsprechende Spannung dafür eingesetzt wird. — Im übrigen wird, wie üblich,
in der Zugzone auf die Mitwirkung des Betons im gesamten Bereich verzichtet.

Der Zusammenhang zwischen Druck- und Zugbereich sei auf Grund der
Bernoullischen Hypothese (Ebenbleiben der auf Biegung beanspruchten
Querschnitte bis zum Bruch) gegeben. Entsprechend dem ^-Verfahren sind im
Zugbereich die Spannungswerte mit \\n verzerrt aufgetragen. Für die
Festlegung von n interessiert im Rahmen dieser Abhandlung nur das Verhältnis
der Anfangsmoduli von Stahl und Beton:

Die Dehnungen sind dem Abstand von der neutralen Achse (Nullinie) des

Verbundquerschnittes verhältnisgleich. Das zugeordnete, effektive Spannungsbild

er erhält man durch affine Verzerrung aus der Arbeitslinie.
Projiziert man beispielsweise einen beliebigen Punkt S der Arbeitslinie

gemäß Fig. 2 in Richtung der Ordinatenachse, so erhält man den Bildpunkt
S. «Vergrößert» man also auf die angegebene Art jede «plastische» Spannung a
auf 5, so erhält man ein zugeordnetes fiktives Spannungsbild ä, wo eine zu
einer bestimmten Dehnung gehörige Spannung ebenfalls mit dem Abstand
von der neutralen Achse des Verbundquerschnittes verhältnisgleich wird
(«linearisierte» Spannungen).

Setzt man das Verhältnis

-=l+v (2.2)
er

so stellt v den eingangs erwähnten «Vergrößerungsfaktor» dar.
Welche Bewandtnis es mit diesem Faktor in bezug auf die Form von u hat,

soll nun anhand von Arbeitslinien, wie sie ganz allgemein z.B. in Fig. 2

dargestellt sind, besprochen werden.
Mit Hilfe der Beziehung (2.2) kann jede «plastische» Spannung a in eine

zugehörige «linearisierte» 5 übergeführt werden. Die Spannungen 5 sind durch
den Elastizitätsmodul im Ursprung (Anfangsmodul) eindeutig als Tangente
festgelegt. Die Bedeutung des Vergrößerungsfaktors erkennt man besser, wenn
man umgekehrt vorgeht und sich die Frage stellt, welchen Verlauf nimmt a
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wenn vz.B. einen linearen Verlauf vom Ursprung an aufweist (vj. Mit Hilfe
von (2.2) erhält man dafür unter Beachtung von ö eine Arbeitslinie ax. —
Einem anderen linearen Verlauf v3 — mit dem Beginn in G und mit der Ordinate

in P von der Größe

vp=f-l
entspricht die Spannungskurve o-3. — Für einen parabolischen Verlauf v2 des

Vergrößerungsfaktors, im Ursprung mit der Abszisse und in P mit vs als

Tangente, ergibt sich die Kurve a2, die einen allmählichen Übergang zur
Geraden as aufweist.
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Fig. 3.

Fig. 2.

Für hochfeste Stahleinlagen ist im plastischen Bereich offensichtlich die
Arbeitslinie ax zuständig. Für den Beton im allgemeinen der Kurvenzug
a2 — o-3. Will man auch für den Beton einen einfachen geradlinigen v-Verlauf
— z.B. den Polygonzug v1 — v3 — so muß man sich mit der Näherung ox — as
begnügen. Diese Näherung wird aber z.B. im Gebrauchslastfall sicherlich
genauer sein, als ein linearer Verlauf der Betonarbeitslinie, wie er üblicherweise

im n-Verfahren bisher Verwendung findet.
Da in der vorliegenden Arbeit die Anwendung des «Vergrößerungsfaktors»

nur prinzipiell gezeigt werden soll, wählt der Verfasser in der folgenden
Abhandlung einen linearen Verlauf vx sowohl für den Beton als auch für den
Stahl.

Die Betonarbeitslinie wird für die Spannungen von Null bis zur
Prismenfestigkeit orp gemäß Fig. 3 linearisiert, und zwar nach dem Gesetz
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Up

In der folgenden Abhandlung wird der hochgestellte Index 6 der Einfachheit
halber weggelassen, da durch entsprechende Wahl der laufenden, tiefgestellten
Indizes keine Verwechslung möglich ist.

Die Linearisierung der Stahlarbeitslinie ist nur für Spannungen a> crs

notwendig1), weshalb die «Vergrößerung» laut Fig. 3 für die Zerreißfestigkeit mit

^^=l+t£ (2.3)

angeschrieben werden kann. Für den hochgestellten Index e gilt in der Folge
das gleiche wie zuvor für b.

Mit der Annahme eines linearen Verlaufs von v für die plastischen Bereiche
der Beton- und Stahlarbeitslinien lassen sich beliebige Spannungen sowohl in
Abhängigkeit der Prismen- bzw. Zerreißfestigkeit, als auch in Abhängigkeit
der jeweiligen «linearisierten» Spannungen beschreiben. Betonspannungen:

Aus ^ ^
ap vp

und der Beziehung (2.2) folgt
\vb l+vp~\

A. Pucher [1] nennt den in eckiger Klammer stehenden Wert «Ausnutzungsgrad»

und bezeichnet ihn mit cp.

Setzt man vb vp^- in (2.4) ein, so erhält man die Beziehung
Op

°b= =7—ö>- (2-5)

Op P

Stahlspannungen: Ähnlich, aber unter Verwendung der Gleichung (2.3) erhält
man

^[^y°'-a')+o'- (2-6)

Nach Pucher könnte man analog wieder den in eckiger Klammer stehenden
Ausdruck als «Ausnutzungsgrad» im plastischen Bereich benennen. Da nur
Differenzspannungen in Bezug gesetzt werden, soll diese Größe deshalb mit
A i/r bezeichnet werden.

x) Entsprechend den Ausführungen zu Beginn dieses Kapitels wird angenommen, daß
die Proportionalitätsgrenze mit der Streckgrenze zusammenfällt und mit os bezeichnet
wird.
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Setzt man in (2.6)

so erhält man

v„ V»

°e °s + -
oe — os1+= V,

- fo-<*«)• (2.7)

Letztere Beziehung gilt für öe — as > 0; im elastischen Bereich äe — o*s ^ 0 ist
die Stahlspannung von vornherein linear; also ist

o-.eecv (2.7a)

3. Die inneren Kräfte

Da auf Grund der in Ziffer 2 gemachten Voraussetzung auf die Mitwirkung
des Betons im gesamten Zugbereich des Verbundquerschnittes verzichtet
wird, ist die Zugkraft Z stets gegeben mit

Z Feoe bhnoe, (3.1)

wobei man zweckmäßiger die zweite Form benützen wird, wo

P
F
bh (3.2)

den Bewehrungsgehalt bezeichnet.
Zur Festlegung der resultierenden Druckkraft und ihrer Lage werden für

die beiden, häufig vorkommenden Querschnittsformen — Rechteck- und
Plattenbalken — Angaben gemacht, wobei jeweils die auftretende
Betonspannung am Druckrand ah S &p sei.

3.1. Rechteckquerschnitt

\
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Fig. 5.

Der «Druckkeil» werde nach Figur 5 in die beiden Teile Z>1 und D2 zerlegt.
vb ist der zu ob gehörende Vergrößerungsfaktor. Der Verlauf der Faktoren ist
in Fig. 4 eingetragen. Damit kann z.B. a2 in Fig. 5 mit

2 + V (3.3)



ZUM TRAGVERHALTEN VON VERBUNDQUERSCHNITTEN AUF BIEGUNG 223

bezeichnet werden. Man erhält schließlich die Druckkraft aus D D1-\-D2
wenn

bxDi-^**
und

bx
\ 2 + ^ö /

D ^r-°&p&- (3.4)

cf)h hängt von der Form des Querschnittes und der Arbeitslinie ab und lautet
für den Rechteckquerschnitt

Vb 2 + vb
(3.5)

Die Lage der Druckkraft erhält man z.B. aus der Summe der Momente um
den Druckrand, wo gelten muß, daß

6D(x-y) 2D1x + 3D2x.

Beziehen wir den Abstand von D vom Druckrand auf x und bezeichnen diese

bezogene Größe wie in [1] mit A, so erhält man im vorliegenden Fall

A= X~V 2-l+Vb
x 6 + 5 vb

Damit sind Größe und Lage der Druckkraft bekannt.

(3.6)

b "b
k-jU

Im
-bo—

°e °e

3.2. Plattenbalken

wb «t

Fig. 6.

NL <*b "°d

D,

K-d

x-y

Fig. 7.

Querschnittsabmessungen, Spannungsbild und der Verlauf der
Vergrößerungsfaktoren sind aus Fig. 6 zu ersehen. Die Zerlegung des «Druckkeiles»
erfolgt ähnlich wie vorhin2), und zwar nach Fig. 7. Für die einzelnen Teil-
druckkräfte erhält man

2) Unter Verwendung von (3.4) und (3.5); vergleiche auch Fig. 5.
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^ x — d. b0l I+vd
6

*-t<»-'41££+1)- (">
D3 dbad.

Damit ergibt sich die gesamte Druckkraft wieder gemäß (3.4), wobei

^ (l_^M4^ (3.8)\ xjcibb\2 + vd I x\ cjb)\ 2 + Av xab
bedeutet.

Auf die gleiche Art wie beim Rechteckquerschnitt läßt sich die Lage der
Gesamtdruckkraft bestimmen; für den entsprechenden bezogenen Druckrandabstand

erhält man

x_D1Vd J + v^l dY\ D2d l + Av lD3d
A-:D Lx + 26T5^Il-xfl +2^x~ÖT5Jv + 2-Dx- (39)

Mit cj>b und A sind wieder Größe und Lage der Druckkraft gegeben, wenn man
beachtet, daß für

°d 7 äV °h>

t,d t,6(l-^, (3.10)

A
d

Av vh-°x
zu setzen ist.

4. Tragmomente des Rechteckquerschnittes

Je nachdem, ob das Versagen des betrachteten Rechteckquerschnittes
(Fig. 4) bei gleichzeitiger Zerstörung der Betondruckzone und Reißen der
Stahleinlage, oder infolge Zerstörung der Betondruckzone, oder infolge Reißens
der Stahleinlagen eintritt, unterscheidet man bei der Ermittlung des
Tragmomentes dementsprechend drei Fälle.

4.1. Grenzfall

Zuerst wollen wir den Idealfall, Beton und Stahl versagen gleichzeitig,
untersuchen. Die Randspannungen nach Fig. 4 haben am Betondruckrand
den Wert ap und im Schwerpunkt der Stahleinlagen habe die Stahlspannung
den Wert az erreicht. Es wird ferner angenommen, daß sämtliche Querschnitts-
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werte gegeben sind. Der Bewehrungsgehalt sei gerade so groß, daß der
vorausgesetzte Grenzfall eintritt. (In den folgenden Untersuchungen wollen wir stets
den jeweiligen Bewehrungsgehalt dem Grenzwert gegenüberstellen, der dem

angenommenen Idealfall entspricht, um feststellen zu können, welcher der
eingangs erwähnten drei Grundfälle jeweils vorliegt.)

Wenn wir uns zuerst die auftretenden Spannungen «linearisiert» denken, so
erhalten wir wie gewohnt die Lage der Nullinie aus der bekannten Beziehung

Ön xn~^ 1az h — x

oder nhöp (nöp + öz)x.

Unter Verwendung von (2.2) und (2.3) erhält man sofort den Abstand der
Nullinie auf den Druckrand bezogen, und zwar in dimensionsloser Schreibweise:

* =aV nap(l+vp)
*or h cjz + ncrp(l+vp) + (cjz-cjs)vz'

Die zum Grenzfall gehörenden, inneren Kräfte sind mit (3.1) und (3.4) gegeben,
wenn für die Randspannung arb cjp gesetzt wird. Man erhält dann

D=^Zer4>P°P (4-2)

und Z=Fe>graz. (4.3)

Ferner nach (3.2) und der Gleichgewichtsbedingung D Z die Grenzbewehrung

Pgr=ä€or<f>pzf- (4-4)
Z

Schließlich ist auch der innere Hebelsarm gegeben:

z h-(x-y) h(l-\gr£gr) ^h,
wobei in (3.6) für vb vp einzusetzen ist.

Das Tragmoment für den Grenzfall kann schließlich wegen M Dz mit Hilfe
von (4.2) und (4.5) angegeben werden:

bh2
6MT =-ir<l>p€gr(l-Xgr€gr)cjp. (4.6)

Unter Beachtung von (4.4) kann dafür auch

MT bh2pLgr(l-\gr£gr)cjz (4.7)

geschrieben werden.
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4.2. Versagen der Beton-Druckzone

Bevor wir uns diesem, für die Praxis wichtigsten Fall zuwenden, wollen
wir den Grenzfall untersuchen, bei dem die Stahlspannungen gerade den Wert
gs erreichen. Mit dieser Stahlspannung endet voraussetzungsgemäß der elastische

Bereich der Stahlarbeitslinie. Wie in Ziffer 4.1 gezeigt ist auch in diesem
Sonderfall vorzugehen.

Anstelle (4.1) erhält man

n(l+vp).
bffr

as + n(\+vp)ap

unter Beachtung der oben gefundenen Gleichung gilt auch (4.2) sinngemäß.

(4.4) wird hier zu 7gr =-^r<j>p?v>^. (4.9)
O Gs

Mit Hilfe dieses Bewehrungsgehaltes kann nun bei gegebener Stahlfläche
festgestellt werden, ob die Stahlspannung im elastischen oder im plastischen
Bereich liegt.

Gegeben seien wieder sämtliche Querschnittsabmessungen, wobei auf Grund
des vorhandenen Bewehrungsgehaltes festgestellt worden sei, daß mit einem
Versagen der Beton-Druckzone gerechnet werden muß und daß die
Stahlspannung im plastischen Bereich liegen wird.

a) Stahlspannung im plastischen Bereich

Gesucht werden das Tragmoment und in der Folge davon die Lage der
Nullinie. Auf Grund der Art des zu erwartenden Versagens wird die größte
Randspannung im Druckbereich für den Fall des Versagens gp sein. Zur
Bestimmung der inneren Kräfte muß Ge noch ermittelt werden. Wenn ve der
zugehörige Vergrößerungsfaktor ist, stehen zur Bestimmung der unbekannten
Größen Ge, ve und £ die folgenden drei Bestimmungsgleichungen zur
Verfügung:

M=^^> (4.11)

t *(1rp)? r- (4.12)
(re + n(l+Vp)crp + (cre-cr8)ve

und ve - w(a*-^>3 —. (4.13)

£ und ve sind mit Ge gegeben. Mit £ aus (4.11) und (4.12) gleichgesetzt ergibt
sich unter Verwendung von (4.13) eine kubische Bestimmungsgleichung für

o\ + A2G2e+A1Ge + Ä0 0. (4.14)
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Die Koeffizienten lauten:

n (1 +V„) (j>V o r /, VTA° "6 v al l>» ~ (* + v^ ffJ'

Ai=n (l+Vp)<f>P<jl+n{l+Vp)(Tpas + (Th

A2=—^(oz-crs)-n(l+vp)<jp-2os.
VZ

Die Auflösung von (4.14) erfolgt zweckmäßig durch Probieren, zumal auf
Grund des gegebenen Bewehrungsgehaltes und seiner Größe im Verhältnis zu
den beiden Grenzwerten pugr und p,gr die ungefähre Größe der unbekannten
Spannung g6 abgeschätzt werden kann. Es muß nämlich gelten, daß

crz>ae>(Js'

£ kann wahlweise statt aus (4.12) mit der aus (4.14) bestimmten Zugspannung
Ge auch aus (4.11) ermittelt werden.

£ 6-£^-. (4.15)
9pup

Das Tragmoment kann nunmehr aus

MT bh2pi(l-\g)Ge (4.16)

bestimmt werden. A ist mit (3.6) gegeben, wenn wir dort für vb vp setzen.
Wieder seien alle Querschnittswerte gegeben. Aus der Gegenüberstellung

des gegebenen Wertes /x zu pugr und p,gr sei festgestellt worden, daß mit einem
Versagen der Beton-Druckzone gerechnet werden muß und daß die

Stahlspannung Ge im elastischen Bereich liegen wird.

b) Stahlspannung im elastischen Bereich

Es gilt pL>fMg,
/

weshalb g6<gs sein muß, d.h. die Stahlspannung ist von vornherein linear;
ve interessiert nicht, da eine Linearisierung der Spannungen nicht mehr
notwendig ist und somit (4.13) entfallen kann.

Durch Gleichsetzen von £ aus (4.11) und aus (4.12), wobei dort der dritte
Term im Nenner entfällt,

£ 6p>ve=z n(l+vp)ap
cf>pGp Ge + n(l+vp)Gp

erhält man eine quadratische Bestimmungsgleichung:

a2 +n(l+vp)op<je-^(l+vp)a2p 0,
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woraus sich die unbekannte Stahlspannung sofort anschreiben läßt:

Für die Formulierung des Tragmomentes gilt wieder Gleichung (4.16).

4.3. Versagen der Stahleinlagen

Gegeben sind alle Querschnittswerte. Die vorhandene Bewehrungsfläche
in der Zugzone sei kleiner als die Grenzbewehrung (schwache Bewehrung):

P<Pgr-

Wie im vorhergehenden Abschnitt stehen auch hier wieder drei Bestimmungsgleichungen

zur Verfügung, um die unbekannte Randspannung, diesmal ist
es die Beton-Randspannung gö<gp, zu bestimmen.

~6~tu*'/^=™^6. (4.19)

Unter Beachtung von (3.5).

f nab(l+vb)
°z + nGb(l+vb) + (Gz-Gs)vz

und vb ^ (4.21)
(l+Vp)Gp-GbVp

Nach Gleichsetzen von (4.19) und (4.20), unter Beachtung von (3.5) und
Einsetzen von (4.21) bekommt man wieder eine kubische Gleichung zur Bestimmung

der unbekannten Randspannung Gb:

of + B2g2 + BtGb + B0 0. (4.22)

Die Koeffizienten lauten:

i?0= 12^i±^[az+K-asK],n vp

\_l+Vp UGp p,Vp Gz J

Die Auflösung von (4.22) erfolgt wie (4.14) am zweckmäßigsten durch
Probieren. £ kann auch wahlweise aus

f 6Ä (4.23)
9b <*b
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berechnet werden. Mit den soeben ermittelten Werten, unter Beachtung von
(3.6) und gz als Stahlspannung eingesetzt, ist das Tragmoment nach Gleichung
(4.16) gegeben.

Bei Verwendung von weichem Baustahl mit ausgeprägter Streckgrenze ist
in (4.22) für gz gs zu setzen.

5. Freie Bemessung

Mit den im vorangegangenen Kapitel gefundenen Beziehungen ist es ohne
weiteres möglich, Bemessungsformeln, wie sie bei den gebräuchlichen w-Verfahren

üblich sind, anzugeben.
Bei Einhaltung von vorgegebenen Randspannungen, für die Beton-Druckzone

z.B. Gb und für die Stahleinlage z.B. Ge> gs (unter Verwendung von
(4.12) mit orp Gb), erhält man für die dimensionsgebundene Bemessung
bekanntlich

h1 b

für eine dimensionslose Bemessung nach [1]

1 bGb

Die entsprechenden Koeffizienten sind nach dem vom Verfasser vorgeschlagenen

Verfahren gegeben mit:

(5.2)-1:

In Abhängigkeit vom Bewehrungsgehalt und von der maßgebenden
Stahlspannung kann dafür auch geschrieben werden:

W;rä? <5-3»

-J/Sj- <">

Es konnte gezeigt werden, daß mit der Einführung der «Vergrößerungsfaktoren»

ein modifiziertes n-Verfahren auch bei Vorhandensein von nicht linear
zunehmenden Spannungen (im Zug- und Druckbereich) angewandt werden
kann.
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6. Schlußbetrachtung

Die gezeigten Beziehungen gelten bei linearem Verlauf der Vergrößerungs-
faktoren. Bei polygonalem Verlauf im Betonbereich ist das Verfahren bei
Einführung entsprechender Festwerte an den Knickstellen des v-Polygons
sinngemäß durchführbar. Auch eine Ergänzung des ^-freien Verfahrens bei
Vorhandensein hochfester Stahleinlagen ohne ausgeprägte Streckgrenze ist möglich.

Auf die besondere Anwendung des Verfahrens zur Bestimmung des

Bruchmomentes mit Vorspannung wird der Verfasser noch ausführlich
zurückkommen.

Das hier vorgeschlagene Verfahren ist ebenso für die Bemessung anderer,
verstärkter, plastischer Stoffe anwendbar.

Für die Förderung dieser Arbeit dankt der Verfasser Herrn o. Professor Dr.
techn. H. Beer, für wertvolle Anregungen im Verlaufe geführter Diskussionen
Herrn Dr. techn. J. Kriso.
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Zusammenfassung

Zur Beschreibung des Tragverhaltens von Verbundquerschnitten auf
Biegung, die aus allgemein elastisch-plastischen Verbundbaustoffen aufgebaut
sind, gibt der Verfasser ein einfaches Verfahren an. Unter Verwendung eines

dehnungsabhängigen Vergrößerungsfaktors wird der Spannungsverlauf lineari-
siert. Bei Verbundkonstruktionen, wo die Anfangsmoduli der Verbundstoffe
unterschiedlich sind, werden diese in bekannter Art in Beziehung zueinander
gesetzt.

Der Verfasser zeigt die Anwendung des Verfahrens für zwei häufig vorkommende

Stahlbeton-Querschnittsformen. Es wird die Biegetheorie des
Rechteckbalkens im plastischen Bereich allgemein vorgeführt und gezeigt, daß sich
auch bei Berücksichtigung des plastischen Verhaltens hochfester Stahleinlagen

einfache Formulierungen entsprechend den gebräuchlichen n-Verfahren
ergeben. Das Verfahren eignet sich auch zur Bestimmung des Bruchmomentes
mit Vorspannung sowie auch für die Bemessung anderer, verstärkter, plastischer

Stoffe.
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Summary

The author indicates a simple method making it possible to describe the
behaviour on destruction of composite sections constructed of materials
exhibiting general elasto-plastic characteristics. By using an increase factor
which is a function of the elongation, he succeeds in linearising the distribution
of the stresses. For composite sections constructed of materials exhibiting
different initial moduli of elasticity, the conventional ratios are employed.

The author applies his method to two commonly occurring sections of rein-
forced concrete. He deals generally with the theory of the bending of beams
of reetangular section in the plastic ränge and shows that even when the
plastic behaviour of high-strength reinforcement bars is taken into aecount,
simple formulae are obtained corresponding to the conventional method. The
procedure can also be applied to the determination of the moment of rupture
of prestressed sections and of the design dimensions of other reinforced plastic
materials.

Resume

L'auteur indique une methode simple permettant de decrire le comportement

ä la ruine des sections mixtes realisees en materiaux presentant des

caracteristiques elasto-plastiques generales. En utilisant un facteur de majora-
tion qui est fonetion de l'allongement, on reussit ä lineariser la distribution des
contraintes. Pour les sections mixtes realisees en materiaux presentant des
modules d'elasticite initiaux differents, on utilise les rapports classiques.

L'auteur applique sa methode ä deux sections de beton arme courantes.
II traite de facon generale la theorie de la flexion des poutres ä section reetan-
gulaire dans le domaine plastique et montre que, meme en tenant compte du
comportement plastique des armatures ä haute resistance, on obtient des
formules simples, correspondant ä Celles de la methode classique dite du
«coefficient d'equivalence». Le procede peut aussi s'appliquer a la determination

du moment de rupture des sections precontraintes et au dimensionnement
d'autres materiaux plastiques armes.
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