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Three Dimensional Analysis of Curved Girder with Thin-Walled
Cross Section

Analyse tridimensionnelle des poutres courbes ä parois minces

Dreidimensionale Untersuchung gekrümmter Träger mit dünnwandigem
Querschnitt

ICHIRO KONISHI SADAO KOMATSU
Professor of Kyoto University Professor of Osaka University

Introduction

It is a well-known fact that the stress distribution along the height of the
curved beam bent in its own plane will deviate from what calculated by the
conventional bending stress formula for the straight beam.

Generally, the greater the curvature, the more the bending stress distribution

at the radial section will deviate from that of straight beam. Based on
this fact, it may be expected that, in the curved girder eonstructed out of
thin-walled members, similar phenomena will occur under any external force.

So, just in the same eorrelation that the theory of curved beam bent in its
own plane has been developed on the basis of primary bending theory for
straight beam, it should be desired that fundamental theory for curved girder
with thin-walled section, under arbitray loading condition, will be systemati-
cally established by developing the present structural theory for straight
thin-walled girder.

In this paper, much consideration is particularly given so as to clarify the
effects of curvature on all quantitative relations such as displacement, stress
distribution and so on.

So, generalized analysis has been conducted to obtain important formulae
coneerned with both stress resultants and deformation for seven fundamental
conditions of deformation of free-free girder. Then the general formula for all
kind of cross-sectional quantities have been derived.

Furthermore, paying careful attention to the bicoupling interrelation
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between bending and torsion of whole structure, the Solutions about the
longitudinal Variation of the stress resultants and deformations are induced in
the simply supported as well as continuous curved girder subjected to several

typical loading conditions.

I. Fundamental Theory of Curved Girder with Thin-Walled Section

1. Oeometrical Properties of Cross-Section

Prior to the statical discussion on curved girder, the geometrical properties
determined by the shape and dimensions of its cross section will be described.
As shown in Fig. 1, a point C is arbitrarily selected at the cross section. Now,
the center of curvature of the axis formed by connecting every point C in the
longitudinal direction is designated as 0. The girder is usually so constructed
that each point on the cross section is arranged along the cylindrical surface,
the axis of which passes through the center 0.

£-l2£
5=0

zo)(yo» P(y,z)
~-/°o

CÖi= Ri
CQa* Ra
CO R

Fig. 1. Systems of coordinate.

A point C is chosen as the origin, and the reetangular coordinate y and z

are taken in the radial outward direction and in the vertical downward direction

respectively at the cross section. Besides, the curvilinear coordinates s

are taken along the middle line of the thin plate member in the cross section.

Then, the geometrical moments of area for curved girder may be defined as

follows:

°y Rjnptds' (ll)

G, B
np

-tds, (i2



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 145

where R represents the radius of curvature of the girder axis formed by con-
necting the centroid of the cross section, t denotes the thickness of the thin
plate member, and n the ratio of the Young's modulus of the steel to that of
normal stress-carrying material at a considering point P — for instance,
n EJEC for slab concrete in composite girder where Es is the Young's modulus
of the steel and Ec is that of the concrete —, and p the distance between the
point P and the center of curvature 0 as measured in the radial direction of
that curved girder.

Next, the point C having the coordinates (yc, zc) is chosen as origin, and
the reetangular coordinates (y', z') are taken in parallel with the original ones
(y, z). So, the geometrical moment of area Qy>, Qz, with respect to the new
coordinate axes are evaluated by the following formulae:

fl _ fi _y J?
y' y c s'

^ Gz-ycFs,

where FQ R —ds, the area of the transformed cross section. As described
s J np

F
later, if the point C eoineides with the centroid, above equation may be written

F

When both geometrical moments of area with respect to any pair of mutually
perpendicular axes passing through a point 0n are equal to zero, the point 0n
is defined as the centroid of the cross section of curved girder.

Let us denote the coordinates of the centroid 0^ as (yn, zn), so the Situation
of the centroid is deeided by the following formula:

V =— z =—V. (2)

Again, in the thin-walled cross section as shown in Fig. 1, the quantities
expressed by the following formulae are defined as the geometrical moment
of inertia with respect to the axis y and z respectively,

(3)
h -Bf—da,

J nP
F

h B[tlds.
J np
F

In the similar manner,

yz ~-B[y^dS
J np
F

is defined as the produet inertia of area.

(4)
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The sectional moment of the second order Iy,, Iz,, with respect to any
other reetangular coordinates (yf, z') laid in parallel with those (y, z) are
evaluated by the following formulae:

iz=h-2ycGz+y2cFs,
ly' zf ~ -Lyz ~Vc^y^ zc ^z + Vc zc ^s •

In particular case when the origin C eoineides with the centroid, since
bot Gy and Gz are equal to zero,

l t l ArZ2Fy -Ly*^cs^
Iz, Iz + y2Fs,

I I 4-y z F¦*-y' z ^yz* ifc ^c ^s •

If any other coordinate (y, z) have the common origin 0 with the coordinate
(y, z) and incline in the clockwise direction at an angle #, the relations between
the sectional moments of the 2nd order with respect to both coordinate axes

may be evaluated as follows:

1$ Izsm2$ + IyGos2&-Iyzsin2&,
I- Izcos2d> + Iysin2& + Iyzsm2&9

Irz ^^sm2»^-Iyzcos2&.

Note the invariant relationship

T„I /2. / I —I2y z Myz *y Mz Myz%

It can be noted from above formulae that the sectional moments of the
2nd order with respect to the new coordinate axes vary according to the
magnitude of the angle of inclination #.

In the special case where the sectional moment of the 2nd order will reach
the maximum or minimum value, the coordinates axes will be defined as the
prineipal axes of the cross section, and then the sectional moment of the 2nd
order with respect to those axes might be called the prineipal moment of
inertia.

If it is assumed that the sectional moments of the 2nd order Iy, Iz, Iyz
with respect to arbitrary reetangular axes Oy and Oz have been known, the
direction of the prineipal axis and both maximum and minimum sectional
moments of the 2nd order may be easily found. That is to say, by the following
condition

dly
d& '
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the angle & to specify the direction of the prineipal axis may be evaluated as

follows:

z 1z~1y

In this special case, it may readily be noted that Iy~z vanishes, so the simpli-
fied relations may be expressed as follows:

I~I~ I I -I2V z ^y ¦*-% ¦'¦yzi

y*z ~~ y * •*¦ z

and then Ig and 1% will be either the maximum or minimum sectional moment
of the 2nd. order respectively. Their values will be given by the following
formula:

Iv or I~z ±{Iy + Is±V(Iy-Q* + 4:Iy,}.

2. System of Coordinates and Stress Resultants at Cross Section

As shown in Fig. 2, the center of curvature 0 of the girder axis is taken as

the origin, and the coordinates £ are taken perpendicularly upward to the
plane including the girder axis, and the coordinates p in the radial direction
over that plane. Here, the axis Op is assumed to pass through the centroid of
the cross section.

Next, the cylindrical coordinates 9 are taken from the primitive line OA
in the peripheral direction along the girder axis toward the other end B of the

Mz+dMz

N + dN

Q+dQ
T+ dT

A^J

*i

d<£

\.

Fig. 2. The system of coordinates and stress resultants produced at any cross-section
of a curved girder.
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girder. The origin of these cylindrical coordinates (p, cp, £) is the center of
curvature 0. Moreover, let us take a pair of orthogonal axes 0ny and 0nz through
the centroid 0n. An axis 0ny is parallel to and in the same direction as axis
0p, and another axis 0nz is parallel to and in the reversal direction as axis 0 £.

These reetangular coordinates (y,z) are assumed to be fixed to the cross
section of girder.

Likewise, another pair of coordinates (y, z) having the common origin 0n

with the coordinates (y, z) are introduced in the direction of the corresponding
prineipal axes of the cross section.

In this case, the axis Oy is inclined at an angle & to the axis Oy in the
clockwise direction.

Now, the stress resultants induced at any cross section of curved are denoted
as follows:

1. The shearing forces in the directions of the axis 0ny and 0nz by H and Q,

respectively;
2. the axial force acting on the centroid in the direction of the girder axis by N;
3. the bending moments about the axes Oy and 0z by My and Mz respectively,

and
4. the torsional moment about the axis of shear center by T.

3. Pure Torsion

This paragraph deals with the deformations and stresses of curved girder
under pure torsion. In this case, end pure torque TA — T0 and TB T0 act
on both ends A and B of a free curved girder mutually in the opposite direction

as indicated in Fig. 3. It is necessary to act suitable external forces besides
this torque for static equilibrium of whole structure unlike the straight
girder. In other words, the reactions VA V and VB V should be applied at
both supports A and B. The magnitude of V may be evaluated by

V T0/R0, (a)

where R0 is the distance as measured between the shear center and the center
of curvature 0. Regarding the shear center further description will be given
in paragraph 12. In each Figure, the symbol «- indicates the necessary torque
to advance the right hand screw in the direction of its arrow.

The symbol O indicates the force acting in the direction perpendicular to
the plane of this paper and toward the back, while the symbol © has a meaning
reverse to what was above described. Now, let us consider the stress resultants
under pure torsion at any cross section C which is situated at an angle cp'

measured from the primitive line 0^4.

From the conditions of static equilibrium of a free body A C cut off by the
cross section C, the torsional moment T, the bending moment My, and the
shearing force Q are expressed as follows:
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T T,0cos9' + Fi^0(l-cos(p,),

My -T0siixcp' + V R0sm<p',

Q V.

Fig. 3. Pure torsion.

Applying above relation (a),

T-T,,

*<
To

Ro

rv*/
i /

Fig. 4. Stress resultants at any
cross section under pure torsion.

Jf„ 0.

dw 1 dw w
9 p dcp p

€£
dt;
d£"'

i dw dw
p<p

p dcp dp
w
P

dw 1 dv
?&>

dv d w

It can be seen that the uniform torsional moment T0 and uniform shearing
force V are produced, but no bending moment is presented.

Generally in cylindrical coordinates, the required relations between six
components of the strain and the corresponding three components of the
displacement can be written as follows:

(5)

Furthermore, under pure torsion, the displacements u, v, w at any point
D (p, cp, £) within the girder should be investigated. For that purpose, let us
take the shear center S of the cross section as the origin, through which a
pair of axes of reetangular coordinates (Y, Z) shall be fixed perpendicularly
downward and radially outward at the cross section. Thus, any point at the
cross section can be expressed by those coordinates (Y,Z).

We must take into consideration the differential change dd — ddfdcp' • dcp'

of the torsional angle 6 in the case where the peripheral coordinates cp' change
by the differential quantity dcp'. So, the difference in the displacements of
two adjacent points (Y,Z) in the cross section C situated at the peripheral
coordinates cp' -f dop' and in the cross section C at cp' are du Zdd and dv=Y d6
in the p-direction and the ^-direction respectively.

How much contribution do these relative displacements of two neigh-
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bouring cross sections C, C make to the displacement of the points (Y, Z) at
another cross section D

As it may be seen in Fig. 6, the displacements u and w in the plane of girder
axis may be expressed by the following formulae:

w

Z j-j COS (cp-cp') dcp',

0

Cr dO W8 dO

(6)

ZdÖ

(£^
YdÖ

ii¦U-.
(Y,Z) —6p+

Z^d*

Z**d<

C"

cip.+;0

Fig. 5. Differential element ds and
reetangular coordinates (Y, Z).

Fig. 6. Displacements u and w
under pure torsion.

D2

d<p

DU*C)

-/>(l-co.(*-*))-^V
*£«•»'

Fig. 7. Displacement v under pure torsion.

On the other hand, the displacement v in the ^-direction may be expressed
by a following formula according to Fig. 7.

f{Y-Pll-cos(<p-<p')]}-^d<p'.
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The second term of the expression (6), represents the warping due to torsion
bending phenomena.

Next, by substituting the displacements (6) and (7) into the fundamental
Eqs. (5), the strain components may be given as follows:

d20
ep 0, H 0, €(p=WsW^, (8)

ir J'de., „dei i8ws lir\ de

(9)
9

1 r f rr de _ de 1

0

Assuming that the middle plane of the thin-walled member is inclined at
the angle <x to the axis Op at the considering point D now, the tangential
direction of the curvilinears coordinates s will have come to be inclined at the
same angle a to the axis Op. If the coordinate n is introduced in an outward
direction perpendicular to the coordinate s as shown in Fig. 8, the following
relations may be obtained:

dWa dWs dWs dWR dWs dWR
cos a + ——- sm a, _

°
^ sm a — cos a.

dp ds dn ' d£ ds dn

Substituting these relations into the Eq. (9),

(dWs p Z dWs p \dd^ (^^cosa+7 + ^^sma)^- (9)

In the same way,
(8WS P Y 8WS P \de A

The relationship between the corresponding strain components in the
directions of the reetangular coordinates (p, £, cp) and those in (s, n, cp) can be

readily written as follows:

es ep cos2 a -h €£ sin2 a + 2 yp£ cos a sin a,

7sq> Y<pP cos a + yft, sin a, (11)

7n<p yw »in a - y{fl, COS a.

Again substituting the Eqs. (8), (9) and (10) into the Eq. (11), the following
simplified formulae can be easily obtained.

ldW8 P Y Z \dB

From the geometrical relationship between the position of the point D
and that of the shear center S taken as the center of torsion shown as in Fig. 8,
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Ysinot +Z cos<x rs where rs denote the distance from the tangent DU at D
to the shear center. Then the shear strain of angles (s, cp) and (n, cp) will be

readily obtained as follows:

rs" \8s i22 p)d<p' 7nv \
8WS P rn\de

(12)8n B2 PJd<p'

where r„ denotes the distance from the normal Dn at D to the shear center.

vS»*»
rsinoc

Zcosoc ^\oL

Fig. 8. Relative position of shear
center to a differential element.

Fig. 9. Stresses under pure torsion.

»/

qs /

i / /

\ 9. /
/ / /

USA/ / /
\ // /
\ // /
\ I

\l I
I

0 "^,

Accordingly, the stress components may be found as follows:

„ -F W» d2° (-„ \
9 s n B*d<p*{ wh

p) d<p'8s B2* <*[

r(öWs P rAde
"> \8n B2 pjdcp'

(13)

In the case of pure torsion, no normal stress a^ is produced because dBjdcp'

become constant, and the shearing stress rn(p is generally small.
Next, let us consider the static equilibrium concerning the differential

elements cut out from the girder by two neighbouring cylindrical sections with
radii p and p-\-dp and two radial sections interacting on each other at a
differential angle dcp. As already described, there are only shearing stresses rS(p

which are uniformly distributed over the thickness t and are parallel to the
tangent to the middle plane of the thin member. So, the shear flow qs along
the cylindrical section with a radius p is expressed by the definition.

<ls TS(pt. (14)

About the differential element as shown in Fig. 9, let us consider the
equilibrium of two shear flows in the peripheral direction.

Here the middle plane of the element is assumed to be inclined at any
angle a to the axis Op. Then the equilibrium condition of the moments about



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 153

the point 0', where the axis 0 £ intersects with the plane including the element,
may be expressed as follows:

qsp2dcpseca lqs + -ridp\ (p-\-dp)2dcp

Neglecting the second order of the differential term,

'-p*+2qaP 0.

seca.

dq.

dp'

Solving this differential equation, the following general Solution can be
obtained,

9s P* const.

It may thus be noted that the magnitude of the shear flow qs is inversely
proportional to the square of the coordinates p of the considering point.

Now, let us the shear flow going around the kth. cell denote qsk, and then
put the integral constant equal to R2qk for the kth. cell. Then the following
equation will be obtained,

9s,kP2 ü29k-

Consequently, at the point p belonging to the kth. cell, the shear flow qsk
will have the following magnitude,

9s, k
R2

9k- (15)

In the Eq. (15), qk will be called the Standard shear flow belonging to the
kth. cell.

The Eq. (15) always be satisfied for the closed cross section with arbitrary
shape. If the girder has any closed section with multiple cells, the shear flow
qs in the thin member surrounding the kth. cell may generally be given as
follows:

9s 9s,k In tne nonboundary wall belonging to the kth. cell, (16J

9s 9s,k~9s,k-i m tne boundary wall between the kth. and (k-l)th.
cell, (162)

9s 9s,k-9s,k+x m tne boundary wall between the kth. and (&+l)th.
cell. (163)

Fig. 10. Section with multiple cells.

G

— P
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Furthermore, the torsional function qk is defined by

&-öv^b&' (17)

where Gs is the shear modulus of elasticity of steel. Substituting the Eq. (15)
into the Eq. (17), the circulating shear flow q8k is easily obtained.

%0^' <17'>*¦« - (7)

Hence, by applying the Eq. (17') to the Eq. (16), the shear flow qs in the
wall belonging to the kth. cell will have the following value:

9s (-2- 9k 2
9k±x) ®s -%j- ^ the boundary wall,

R2
Pdß

^
(18)

qs —g- qk Gs j in the nonboundary wall.

By applying above result to the Eq. (132), and then integrating it with
respect to s,

W,= W„+W0, (19)

where W0 represents the value of Ws at the original point s 0.

Besides, Ws may be evaluated as follows:

Wg f*3„- ng,n f Ä% ng
—^9k—^ds— -^qk±1~-ds — R2 I —^ds in the boundary wall,

\P ° ° (20)
C R* n Cr

Ws —^qk—^ds — R2 -^ds in the nonboundary wall.
0 0

Now, let us take the curvilinear integral around the kth. cell, then the
following equation may be obtained by means of the periodicity of Ws value.

k

dW°n*ds 0. (21)

By applying the conditions (21) to each cell, the following simultaneous
equations for qk can be readily obtained.

„ CR'sng. „rR*ngj „ CB*na. D2frs.
-9k-xj -^-f s+qkfyf qk+ij ~p*~?ds R f~^ds' (22)

k~X,k k k,k+X k

Where § is curvilinear integral around the kth. cell, and J boundary
k k,k±X

wall between the kth. and the k ± 1 th. cell.



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 155

The expression for torsional moment becomes

Ts =S9srsds.
F

Substituting the Eq. (17') into above expression, we obtain

/T7 ~ T du

where GSJ denotes the torsional rigidity and the torsion constant J can be
evaluated as follows:

J Z4k&täd8, (24)
F J P

k

where £] indicates the summation all over the cross section.
F

In the Eq. (23), since Ts is constant, ddjdcp is also constant for the girder
with the uniform section. Then, by eliminating 8 from both Eq. (17) and (23),
the shear flow qsk can be given as the function of the torsional moment jPs

1PT.
P29s,k=-jrj9k- (25)

4. Pure Bending Normal to the Plane of Curvature

Pure bending normal to the plane of curvature before deformation is defined
as the condition of deformation in the case where the curved girder is bent so
as to deflect along the side surface of a cone the Vertex of which coincides
with the center of curvature 0. In this fundamental deformation, the differential

element CCBB' which is initially situated in the plane of the sector
OAD and cut out by the diametric radii OO and 0C holding the differential
angle dcp', will remain on the common plane OCC" even after deforming. Then
the section B'C has come to be inclined at angle dy to the section BC and
translate to B"C". That is to say, ^B'BB" \ C'CC" dy, and that dyjdcp'
is constant all over the girder.

By the relative inclination between the two adjacent sections, the displacement

components of the point D(p,cp,t) at the section cp will be consequently
found by the following formulae,

f • / '\ dy • / /v dyu =$sm(cp-cp )zj^dcp v jpsin(cp-cp')j^dcp',

\ m
****.

9
(26)

w= Jcos (cp-cp)z -j^dcp
o <*>q>

where z is the distance between the point D and the neutral axis of the girder
section.
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d r(dv>
d H>

D3

dcp
D2

DOyf>0 dX
Ti;d«f>
dvf

.1
4 pd*>-*
z-rSd<f>

da>

d *P

Fig. 11. Displacements under pure bending normal to the plane of curvature.

By substituting the Eq. (26) into the fundamental equation of the strain
components (5),

ep H yP<P y<pz yzp 0>

Thereafter, only stress components are induced

z dy

z dy
9 p dcp

and all others are nothing.

a* Esnpdcp (27)

5. Pure Bending in the Plane of Curvature

Let us define as pure bending in the initial curvature the condition of
deformation in the case where the girder is bent so as to be wound into the cylindrical
surface the axis of which is 0 £, namely, the perpendicular through the center
of curvature 0.

D3
D2

DOvaC)
7<*<P

ö<p
d</>

d*
R d»
P dy'

d +
^if"R)7^6^ FiS- 12* Pure bending

in its own plane.

In the plane of the initial curvature, the adjacent section N'C defined by
angle cp' + dcp' rotates at differential angle dcf>' relatively to the section NC
defined by angle cp' after deforming as shown in Fig. 12.
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Due to this deformation, the displacement u,v,w of the point D at the
section 9 will be given as follows:

u —(Rsin (cp — cp')^-dcp', v 0, w ][p- Rcos (9 —<?')]:ttdcp'. (28)
0 dcp 0 dcp

If these values are substituted into the fundamental equations of the strain
components (5),

n V dcf>

*P h y?* y*i yip °> €* - ^>
hence the stress components will be expressed as follows:

^yd^

6. Pure Bending About the Principal Axis 0ny

(29)

Let us act two equal end moments MT about the prineipal axis of the cross
section and at the same time the uniformly distributed torque Mj/Rj per unit
length along the girder axis in order to maintain the statical equilibrium as

shown in Fig. 13.

(0) (b)

\\\

Mi

Mi

/Ml
/ /

r /

* v/ / /' 7

0

\ 1/ /

0

Fig. 13. External and internal forces under pure bending about the prineipal axis 0ny-

The stress resultants at any section D are calculated as follows:

Q =0,

M- =ImicoscP+ -^sin(cp-cp') Rdcp'\cos2& + MIsin2& Ml9
0

9
T — {Mj sin cp —jMz cos (cp — cp') dcp'} cos & 0.

0

It may be noted from the above equations that the constant moment Mz
about the prineipal axis 0n y is produced all over the girder axis, and no other
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stress resultants are present everywhere. This is nothing but a state of pure
bending.

If the girder has a uniform section, it also has a condition of uniform
deformation, namely, the constant curvature drj/dcp'. Thus, the displacements
at the point D(p,cp, £) will be found from expressions (26) and (28) as follows:

cp

|sin (9 — cp')zj-^cos& + R sin (cp — <p')j~rsm d\dcp',u
0

v jp sin (cp — cp') -j-L cos &dcp',
0 dcp

q>

w
0

<cos(<p — cp')z-~Lcosß' + [Rcos(cp~ cp')— p] j~ sin &\ dcp'.

Substituting the above expressions in the fundamental equation of strain
components (5).

z dr]
€P H yP<P y*t y& °> *<?=- ^•

Hence, the only stress components are produced as follows:

** *¦£$<-<*> (a)

and all others are nothing.
The relation between the bending moment M~ and the normal stress 07

may be obtained as follows:

^y=hizdF.
F

By substituting the Eq. (a) in the above equation,

where ij -^-tds is the prineipal moment of inertia about the prineipal
F

axis 0ny.
Next, by eliminating rj from the Eqs. (a) and (b),

Myz^ (30)
nly p

As no axial force is presented, the following equation may be given,

(lids 0. (31)
J nP

F
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7. Pure Bending About Principal Axis of Section 0nz

In the similar way to the pure bending described in the preceding section 6,
let us act two end equal moments Mu as well as the uniformly distributed
torque MU\RU per unit length all over the girder axis.

In this case the stress resultants at any section D are as follows:

Q 0, M~z Mn, T 0.

Again, bending moment MH about the prineipal axis 0nz is produced all
over the girder axis, and there are no other stress resultants. This is also a kind
of pure bending.

The displacements will be induced at any point D due to constant curvature
dx/dcp after deforming, and may be expressed analogous to Eqs. (26) and (28)
as follows:

u (sin(cp — cp')~y(zsind' — Rcosd,)dcp',
o dcp

v —\psin(cp — cp')-^Tsind'dcp,
o dcp

w J{[p — R cos (cp — cp')] cos & -h cos (cp — cp') z sin &}-j^jdcp'.
o dcp

Substituting the above equations in the equation of strain components (5)
again,

e £&.
^ p dcpH yp<p y<Pt ytp 0>

Hence, the stress component is only

_F1ydK
9 n p dcp% —-^( ^//) (»)

and all others are equal to zero.
From the condition of no existence of axial force,

J np
F

ytds 0. (32)

The bending moment M% is clearly

M%=lanydF.
F

By substituting the Eq. (a) in the above equation,

Mi-*.h£j (b)

where /- [^tds. (33)
J np

F
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Eliminating cp from the Eqs. (a) and (b),

M~zy R
fj — #

*>h p

On the other hand, by applying the Eq. (1) to both conditions (31) and
(32), and by replacing the coordinates,

Gy 0, Gz 0. (34)

The above equations are nothing but the conditions for determining the
position of the neutral axis. From the Eq. (342) with attention to y=p — R,

Fs
R

(±ds
J np

(35)

For the reason that the Eqs. (34) agree with the definition of centroid
described in paragraph 1, it may be noted that both neutral axes pass through
the centroid 0n.

8. Pure Tension

Let us consider the case where two equal tensile forces NQ are applied at
both ends A and B of a free curved girder as shown in Fig. 14.

In this case, so as to maintain static equilibrium, uniformly distributed
radial transverse load N0 per unit central angle must be applied too.

/ a XN0

H2

NN

r ii^ *V/'' >
u // /\ h

\

R̂ //
'/ /

\ UV0' /
KW?'I *>

\ It
If/\'/

Fig. 14. Pure tension.

Under this loading condition, the stress resultants at the section defined
by angle cp may be evaluated as follows:

Q N0sin cp — N0 /cos (cp — cp') dcp' 0,
o

N N0coscp + N0Jsin(cp-cp')dcp' N0,
o

Mz=N0R-NR 0.

Consequently, the constant axial force N0 only is produced.
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As shown in Fig. 15, the relative displacement of the adjacent section N'C
defined by angle cp' + dcp' will be caused to the section NC defined by angle
cp, and N'C will move to N"C".

Fig. 15. Displacements under pure tension.

*>-«/>

t/v/>,C>
d*

dv>
dy>

CWC)

The displacement of the differential fibers NN' and CC are as follows:

N'N" CC" Rdi/j.

Therefore, three displacement components u,v,w at any point D(p,cp,t)) are
expressed as follows:

u I R~-jsin (cp-cp')dcp', v 0, w JR-j-^ cos (cp — cp')dcp'. (36)
o dcp o dcp

The strain components can be readily obtained by substituting the above

equation in the Eq. (5).
R di/j

eP H yp<P y<Pt==yzp °>
p dcp

Therefore, the stress components are

F E W, „ (a)

and all other stress components are vanishing.
The relation between the stress an and the axial force N is expressed as

follows:
N $ondF.

Substituting the Eq. (a) in the above equation

N E djj_ r .ä t_

'dcp) p n

By using the Eq. (35),

N-B.F*±. (b)
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By eliminating difi/dtp from both Eq. (a) and (b),

°n~nPFs- (37)

On the other hand, the bending moment Mz about the prineipal axis 0nz
will be found as follows:

M-z^janydF.
F

Substituting the Eq. (37) in the above equation, it will be noted that Mz
vanishes by means of the condition (32). Regarding the bending moment My
about another prineipal axis 0ny likewise vanishes. That is to say, no bending
moment is produced in pure tension.

9. Torsion Bending

If the nonuniformly distributed torque and transverse load are applied at
a curved girder so as to maintain the static equilibrium, both the torsional
moment T and the shearing force Q produced in the girder vary as the function

of variable cp. Such a condition of deformation is defined as torsion bending,
and that can be created practically. Since T is here not constant along the
girder axis, it can be seen from the Eq. (23) that the specific angle of twist
ddjdcp will also vary along the length of the girder even in the case of uniform
section. In the similar manner as the straight girder, the normal stress aw is

s p

\t
*Twt+^r^dp see oc) d*p(p+dp)

/ dp

(°"f ö£dV>)d/t>SeC0C

oc

i /
lTwtpd<f>

i /
/ /

/ /

/ /
' /

/ /

/ /

<rw t dp see oc

0 O'

Fig. 16. Stresses under torsion bending.
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produced as the result of restraint on warping and its value is found by means
of Eq. (13x). Then the secondary shearing stress rw should be induced to resist
secondary normal stress aw. In order to find this value, let us consider the
static equilibrium between the stresses acting on the differential element as
shown in Fig. 16. Taking such fact into account that the direction of the
middle plane of the differential element is generally inclined at an angle a to
that of the axis Op, the following equation for static equilibrium ean be
obtained.

d t-., t 2rwt \ d o\., t-^ + —^cos* +--^- 0. (c)
CS p p ccp

So, let us adopt the following formula as the secondary shear flow qw.

F d^ ß

^ rwt -^-^q*(s), (38)

where g* is a function of coordinate s only, and will be named as the torsion
bending function.

Substituting the Eq. (38) in the differential Eq. (c), and eliminating the
common terms,

dg*
ds

sntial

oCOSa *+ 2 g*
P

equation,

B
P n

g* ?(*K pds + SJ)¦ (39)

where Sw represents the quantity respected to a statically indeterminate shear
flow and may be found by the following process.

In the differential element of curved girder included between two radii
with the angle dcp between them, the potential energy du will be stored as
follows:

dn=lS(i+ihdsd^-T^-
F

Therefore, the total potential energy II of the curved girder is

n-i{/7^+7)«'*"-/<4 (d)
0 F 0

Generally, the shearing stress rk in the circumferencial wall of the kth.
cell is caused partially by shear flow qsk due to pure torsion as discussed in
paragraph 3, and partially by the secondary shear flow qwk. In the wall
belonging to open cross section, q8 is not present of course.
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Tk ~t
(9sk + 9wk) Nonboundary wall,

l (40)

-i(9sk-9s,k±x + 9wh) Boundary wall.

Of above expression, qwk may be written in the following form from the
Eqs. (38) and (39).

TP d^ ß 1

Iwk - -ß§ -jj-* -ä (?£* + swh) Nonboundary wall,

E Pd 1
(41)

~H*J~J~2 (q*k + S«*<-8w,k±i) Boundary wall,

where q& *] W.?£da. (42)
0 n

By means of the principle of least work, the Variation 811 oi II for the
Variation 8 Swk of Swk should be put equal to zero.

877=0.

Based on this condition, by the use of the Eqs. (d), and (40) to (42).

dO CR3ngj „ dß CRzngj

k,k-l
de [B?ngj r

¦^Bäp-j-fTds+f B^ds-Ji-i^ds 0.
Gpt RdcpJ p2

k,k+X k k

The first three terms and the fifth one of the above equation can be elim-
inated by using the Eq. (22), and then the following equation can be conse-

quently obtained.

~*°^d8 0. (43)
pt

k

Substituting the Eq. (41) in the conditions (43), the simultaneous equations
for Swk are obtained.

CRsngj 0 £Bsngj a CR3ngj f^3<&^,-S^^j ^ds + Swk^-^fds-SWtk+1^ ~^fds -j> *»* °ds. (44)

k,k-X k k,k+X k

The following integration will be referred to as the warping moment.

Mw=±jowWsPdF. (45)

F

Substituting the stress (13) in Eq. (45), the warping constant Cw can be

readily obtained as follows:



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 165

Cw=^W*~ds. (46)

F

Hence, the warping moment Mw may be expressed in the simplified form,
d2ß

M<--E-C-7ÜV- (47)

From both Eq. (47) and (13x), the practical formula for the normal stress

cjw due to torsion bending can be obtained in the analogous form to the bending.

aw~~c^^- (48)

On the other hand, the torsional moment Tw will be produced due to the
secondary shear flow qw.

Tw =$9wrsds.
F

Substituting the Eqs. (41) and (42) into above equation, and considering
the condition (43), qw may be transformed as follows:

dze
Tw -EsCwl^. (49)

Finally, since the total torsional moment T can be found as the sum of the
two kinds of torsional moment Ts and Tw, from the Eqs. (23) and (49),

Bd<p s wB3d<p3y=ösJl^-#sCWp-0-3. (50)

10. General Bending

In this paragraph, let us discuss the general bending, where two mutually
perpendicular bending moments My, Mz, two corresponding shearing forces
H, Q, to above moments and an axial force N are simultaneously presented.

In order to clarify the static characteristics in this case, the reetangular
coordinates (y, z) as shown in Fig. 17.

The origin is taken to eoineide with the centroid 0n of the cross section.
The displacements at any point (y, z) of cross section due to deformation

may be found by superimposing the respective displacements given in para-
graphs 4, 5, and 8. Therefore, the normal stress ax in the general bending may
be readily expressed as follows:

R y „ z
ux a— + 6-^- + (7 —, (a)

np np np
where a, b, and c are constant and may be determined from the equilibrium
of the stress resultants and stresses,

$oxtds N, $crxztds My, \oxytds Mz.FF F
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By substituting the Eq. (a) in the above equation, and solving for a, b,
and c.

NR MzIy-MyIyz R MyIz-MzIyz R
°* Fsnp+ IyIz-I2yz npy+ IyI.-I*. npZ' (51)

Generally, if the stress resultants My, Mz and N vary along the girder
length, the shearing stress r should be induced to balance with the normal
stress ax. Regarding the static equilibrium between ax and r, we arrive the
similar equation as the Eq. (c) in paragraph 9.

drt 2rt 1 d aTt „-tt— + cosa + -—^- 0.
CS p p CCp

(b)

My +dMy

\
dO*dWxVOn Mt^rN+<J ..^.dVV

\ R
\ J

d<f>u^y
Fig. 17. Reetangular coordinates.

Fig. 18. Internal forces at any cross section
under general bending.

From the static equilibrium of the differential elements, the following three
equations may be obtained,

AM,
d<p

BH,
dN
d<p

-H, dM
dq>

- B0Q — Hzs (52)

where Q represents the shearing force due to bending about the axis 0^ y, and
zs is the vertical distance between the shear center and the centroid.

Substituting the Eq. (51) in the Eq. (b), the shear flow q may be expressed
under consideration of the relation (52) as follows:

q rt -{Hqh{8) + Qqb(8)}9 (53)
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where qh(s) —(qh + Sh>k) Nonboundary wall,
P

^(9h + Sn,k~sh,k±x) Boundary wall,

9b (s) —£ (9b + sb, k) Nonboundary wall,
P

j>
^(% + sb,k - sb,fc±i) Boundary wall,
P

(54)

(55)

V z xyz xs

_ Izjy lyzfz t>*»= TT -T* R (57)
-*- Ii ¦*- V. -*- 112.Ly x3 Myz

Z*and Iy — Iy + -=rlyz,

1=1 + — IMyz Myz* t> *z>B

'.-/?*• '.-r> '-/^

(56')

ds. (58)

f

Again both quantities Shk and Sbk represent the terms respected to statically

indeterminate shear flow.
By applying the principle of least work to that structure, the similar

conditions to the Eq. (43) in paragraph 9 are obtained as follows:

*^ds 0, l^ds 0.
pt J pt

k k

Substituting the Eqs. (54) and (55) in these conditions, the following two
sets of simultaneous equations for unknown quantities Shk as well as Sbk.

-SK^1j^ds + SKkj^d8-SKMf^ds -j*ßpda, (59)

k,k-X k k,k+ X k

fR3ng CR*ngj [R*ng, C R*qbng
-Sb,k-x ] -^ds + Sbikj)~~^ds-Sb>k+1j ~~sfds -j *» gds.

k,k-X k k,k+X k

11. Shear Center

In general transverse loading condition, torsion always is produced in the
curved girder simultaneously with bending.

In this case, if the shear center is not chosen as the center of torsion, both

(60)
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bending moments and warping moment cannot be defined by such plainly
formulae that have already been given in previous paragraph.

It is very important to know the position of the shear center S by this
reason.

As shown in Fig. 19, let us adopt the coordinates (Y,Z) origin of which
coincides with the shear center S. It is assumed that the position of the shear
center are definitely decided by coordinates (ys, zs) and that both axes S Y
and SZ are parallel to the axes 0ny and 0nz respectively as shown in Fig. 19.

Ii

On - v
\
\ s(ys.zs)

\ \
\

\
>0 \

7 ;

Z

-—R—-

\

Vr -—X^
' ^*rc*.\

tdy
D

(y.z)
¦* ¦ y (Y,Z)

• "0 "i
p —

Fig. 19. Shear center.

Now, taking the point S as the center of torsion,
s s SS

(a)

where r0 is the distance from the tangent at any point D to the middle line
of the thin member to the centroid 0n. The integral of the second and third
terms of the above equation may be evaluated as follows:

s

I dy(s) y-y0
p2 PPo J^-ifc-MM

In above equation, y0, z0 and p0 denote the values of three kinds of coordinates

y, z and p at the point s 0 from which s is measured respectively.
Apply the above equation to the Eq. (a),

/?*-#/>*+**£-*)-¦
PPo

(b)
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From Eq. (b), we readijy obtain.

ra Rn C r{

J P2 * J P
k k

0^'0^ (c)

Substituting Eq. (c) in the right hand side of the Eq. (22), and putting

ft^fc.0» (61)

a set of simultaneous equations for qk 0 will be obtained as follows:

-&-!,„jf ^dS + qK0j>^^ds-qk+lt0j^-^ds B*j^ds. (22')
k-X,k k k,k+X k

By solving the Eq. (22)' to find qk0, the torsional function qk may be
evaluated by means of the Eq. (61).

Furthermore, substituting the Eqs. (b) and (61) into the Eq. (20), the
warping function Ws at any point s will be found.

Wa ^Wa0 + — (zay-yaz) + W0, (62)

S S

r R3 n r rwhere Ws0 —^ ~r9k,ods — R2 -\ds Nonboundary wall,

\ °
P

(63)
C R3 n Cr

J HT -f (9k,o ~ 9k±x,o) ds - R2\ -\ds Boundary wall.

W0 represents the value of Ws at s 0, and should be determined by the
following conditions. The stress-system crw of this type is set up, which consists
of self-equilibrating stress-Systems which are called axial constraint stresses.
Therefore no axial force is produced due to secondary stress aw, so

$awdF 0. (d)
F

Substituting the Eq. (62) in the Eq. (d), W0 will be

F
R Fs

*
ds

^o=-#^^^ (64)

Because of self-equilibrating stress-systems, no bending moment about two
mutually perpendicular coordinate axes also is produced due to secondary
normal stress aw,

jawydF 09 $awzdF 0. (e)
F F
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By means of the condition (e), the following system of equations will be
obtained.

(Iyz-Bz)ys-Izzs C„
(Iy-By)ys-Iyzz8 Cy,

where C,
J n
F

— ds,

B*=~B'

C,
J »

yt

B„ 9±
B'

wso ws0+w0
Bn

(66)

(67)

(68)

Finally, the coordinates of the shear center S is given by the following
equations.

Cy (lyz ~ Bz) — Cz (Iy — By)
ys

l^y *-z ^z -*-y

Jz (Jy - By) - !yz (Jyz ~ Bz) '
Ze

!z Vy - By) ~ Iyz Vyz ~ Bz)
(69)

12. Deformation

If the curved girder is subjected to the vertical load, in general the whole
cross section will undergo vertical translation of and rotation about the shear
center S.

The assumed positive directions for the deflection 8 and the angle of rotation

ß are given in Fig. 20.

2
Ro

*¦>

*-Y

Fig. 20. Deformation.

It may be clear from the fundamental condition of deformation, namely,
pure torsion, pure bending normal to and in the initial curvature, that the
torsional angle 0 is expressed by the following formula.

8
e ß+ R0'

(70)

where the positive direction for 0 is also given in Fig. 20.
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While the displacement of shear center v0 in the £ direction may be found
by putting Y 0,p R0in the Eqs. (7) and (26), and superimposing them up.

<p <p

v0 R0l \sin(cp-cp')j^dcp'- [l-cos(cp-cp'^-^-jdcp'Y
0 0

By using the above equation, the following equation can be easily introduced.

d2vn^o-l*, p ldy f\
d<p

Taking into account the relation v0 — 8,

+8 Ä»("-^)- <">

II. Three Dimensional Analysis of Curved Girder

1. Relations Between Stress Resultants and External Forces of Curved Girder
Bridges

Let us now introduce the relations between the stress resultants at whole
bridge section and the external forces for the curved girder bridge under the
distributed vertical load p (p,.cp) and horizontal load ph (cp).

NtdN

Fig. 1. Stress resultants and
external forces.

Every stress resultant, namely, two bending moments My, Mz about two
mutually perpendicular axes 0ny and 0nz, a torsional moment T, two shearing
forces Q9 H in two direction 0nz, 0ny, and a axial force N are assumed to be

positive in such direction as shown in Fig. 1.
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The statical equilibrium should be considered for differential elements cut
out by a pair of neighbouring radial section having a differential angle dcp.

a) Equilibrium of Forces in the Z-direction

du f*
j- -)P(p><P)pdp, (1)
d<P

Rt

where Rt and Ra are the horizontal distance from the center of curvature 0

to the inner and outer side of the distributed vertical load, respectively.

b) Equilibrium of Forces in the Peripheral Direction

c) Equilibrium of Forces in the Y-direction

^-+ph(<p)-N 0. (3)

d) Equilibrium of Moments About the Shear Center

dT Ä
^- My+jp(p,cp) YPdp-ph(cp)Zh-Nzs, (4)

' Ri

where Zh is the vertical distance between the shear center and the load ph.

e) Equilibrium of Moments About the Axis 0ny

d^=QB0-T-Hzs. (5)

f) Equilibrium of Moments About the Axis 0nz

dM,
dcp

HR. (6)

Firstly eliminating both H and N from the Eqs. (2), (3), and (6), a following
differential equation for Mz can be readily obtained.

^M1+dMA _ßdph
dcp3 dcp dcp

Next, eliminating both T and Q from the Eq. (1), (4), and (5), a, following
differential equation for My can also be obtained. Putting zh Zh + zs,

d2M Ä»

-1^ + My phzh-jpp*dp. (8)
' Rt

In similar way, eliminating H from the Eqs. (2) and (3), the differential
equation for N can be given as follows:
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d*N
<V

+ N Ph.

173

(9)

Consequently, by solving these three differential equations simultaneously
under given vertical load p and horizontal load ph, two bending moments
about mutually perpendicular axes and a axial force can be plainly found.
In a special case when only vertical load acts on the girder, as the quantities
ph and N vanish, the Solution for My can be found independently of any other
equations.

2. Solutions for the Simply Supported Curved Girder Bridge Under Several

Typical Loading

The differential Eq. (8) has been solved for six typical loading conditions
as shown in Fig. 2, and various kinds of stress resultants and deformations
will be found on the basis of those Solutions.

^ ^$-^/Ri/R"> <P-^/ R

(I) Uniformly disfributed load (2) Axial line load

4>¥-^/ K^Ro

(3) Radial line load (4) Concentrated load

*,*X**7*

(5) Partially and uniformly distributed load

Fig. 2. Typical vertical load.
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a) Bending Moment My

The Solutions have been obtained for bending moment My as shown in
Table 1. Where,

Lx \(&a-Bl), L2 ^(R2-R2). (10)

Table 1. Solution for bending moment My

(1) Li p0\[sin <p + sin (<P— <p)

sin0

(2) -2 rsiny + sin(g-<r) i
L sm 0 J

(3)

I2wsin 0-!?
-r=— W =—-—- SUl CD 0 < 9 < W
Ro sm 0 —t —

/to sm 0

(4)

5psin(*-y)s.n ^sm 0 — ~~

^psin(0-y)3in ^sm 0 ~~ ~~

(5)

r 1-COS(0~^) n^ ^u/£l po r-^r Sin <p 0 < <p < Wr sin 0 ~ ~

T rsin<p + sin(0-9>)cos W "1

L sm 0 1 '

(6)

sin(0-y) n ,w— mT : ^ -S1IKP, 0<a><¥/
sin 0 — t —

sm 0 — ^ —

The loading condition (6) corresponds to the case when the concentrated

torque mT about the axis of shear center acts at the position cp — i/j.

Where mT is assumed to be positive in the case when the girder inclines
inward.

If not any horizontal load acts on the girder, the axial force N and bending
moment Mz will not be evidently produced.

b) Warping Moment Mw

In every loading condition shown in Fig. 2, both Ph and N in the relation
(4) will vanish, so that
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dT Ä^ My+[pYPdp. (11)
' Ri

On the other hand, it may be fairly recognized that there is the relation (4)
between the warping moment Mw and torsional moment T.

d2Mw GSJ dT
-l^--E-CvEMw -R^- (12)

By using the Eqs. (11) and (12), the differential equation for Mw can be

readily obtained.
•72 Af Raa m"'-o?Mw -B(My+SpYPdp). (13)

Bf

where * B^-^L (14)

dy?

Table 2. Solutions for warping moment Mw

(i)
i Li sin9> + sin(0— <p) I Li jCä\ sinh <x<p +sinh a(<P—95) La\

^W+l sin* W + l ~ Ifi) sin«* 1?J

(2)
f R2 siny + sin(*-y) / R2 -R ffp\ sinh «y +sinh «(*-y) R Ra\
\a2+l sin* \a2+l ö2/ sina* a2 j

(3)

R wf/ L2 Ls\ sinha(*-r) L2 sin(*-y) 1 .^ ^ „,

^Tr/(^-^)a^g(»-^Binh«y+-^78in!*-^ainy}> yg„s*jßo l\a2 +1 a2/ sinh a$ a2 + 1 sm 0 J' r

(4)

__(/ P Äo\ sinha(tf-?P) Ä sin(*-!P) 1 .^ wjBP<(-r—y Ha r-^—-*—-smhay-h 9 V—r—-siiKp O^cp^Y\\a2 +1 a2 / Sinh ol0 oc2 +1 Sin 0 J' r
D_f/ R Ro\ sinha(0-<p) m i

R sin(0-<p) \ m^ ^^
\\a2 +1 a2 / sinh a$ a2 +1 sm 0 J' r

(5)

„ f/ -^1 Z>2\cosha(0-^)-l Li l-cos(0-¥/) 1

¦R ffo{| » 1 5- r-r—^ sinh a <p + r—-s sm <p\,^ \\a2 +1 a2/ sinh a$ a2 +1 sm 0 rJ'

Z/i sin 9? +sin (0— 9?) cos W

Äpo\«*+l sln^
I Li ^ L2\ sinh a 9 + sinh a (0 — 9) cosh a V7 2y2l w< < _"" \ia + I "" "^"j sinh a 0 ~^J' ^=^=0

(6)

P f sinha^-V) _ sin^-f') 1 ^-fflr-. -, I« ^r—^ sinhayH :—-—-sina> 0<cp<Wa2 +1 L sinh a 0 sm 0 J ' "~ ~
i? r sinha(0—<p) „. sin(0—9) 1 w^ ^^-mT -stT a / * sinh a !P+ ^ sm !P !P < 9 < 0

a2 + 1 L sinh a 0 sm 0 j > _ r _
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The Solutions of the above differential Eq. (13) under various loading
conditions are found as shown in Table 2, where

Zj-JSg (*„-£<). (15)

c) Torsional Angle 6

The torsional angle 6 may be readily obtained by integrating twice the
expression of Mw, that is

6=jj1^hB*(d<P)* + A<p + B, (16)

where A and B are the integral constants and are determined by the boundary
conditions.

The results are shown in Table 3.

d) Angle of Rotation ß of Section

The differential equation for angle of rotation ß of section becomes as follows:
d2 ß R2 R

W+ß M-Kc-w+My^ry' <17>

where I'y=Iy-^. (18)
•*-z

The terms including My and Mw in the right-hand side of the Eq. (17) have
been already known as the function of available cp and given in Table 1 and 2.

By using these value, ß may be found for the same typical conditions as
shown in Table 4. The constants k19 k2 and k3 included in Table 4 have the
following values.

T R2 1 IL
K«"*.c.(««+i)fc?+r-'# (19"2)

B*L2 Lx
+ -^rfr. (19-3)

<!SCW^ EsI'y

The constants p,x, p,2 and /x3 are given by putting Lx R2, L2 R0R in k± k2
and ks respectively. Moreover, the constants vx and v2 is given by

E,C^+l) + MJl\7 <2^»

Ä2--l^ni^T-^)- ^e) Deflection 8

The deflection 8 of shear center at any cross section may be found from the
results of tables (3) and (4) by the following formula, 8 Ro(0-ß).

The Solutions for 8 under the same typical loading conditions are given in
Table 5.



(1)

(2)
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Table 3. Solutions for torsional angle 6

Rpo f{ 1,2 Li \ sinha <p + sinha (0—9?) Li sin 9? + sin (0— <p)

öT7\W ""a2+l/ sinh a 0 a2+la sin 0
J2/a20y a2^2 Irl¦?(~2 2—lrLii

RWJIRq R \ -sinh a<p + sinh a(0— it!2
2

sin 99 + sin (0— 99)

Gs J \\^ ~ a^TTJ sinh a 0 ^TT" sin 0

Ä0Ä(^-^-i)+iJ2}+ ;

(3)

RW
Ro Gs J«L2 L3\ sinha(0-^) _

^TT~^)a sinha0 Smhay

^9}>£2 2sin(0-^) _ 0-W n^ ^^——--a2 ;—zr sin?+ £3—^—9?» 0^99^ y7
a2 + 1 sm 0

i?TF (7 _L2 i>3\ sinha(0—9) _M a r—: ^—^ smh a *P[/ L2
_

Ls\
rl\a2+l a2/RoGsJ\\x2+l oc2) sinha0

L2 sin(0-<p) 0-9:2-—: r/ sin y+£8__i: <M ¥^<p^0a2 + 1 sin 0 4

(4)

(5)

iJPf/ # i?0\ sinha(*-y)
GTjK^TT - !?•) a sinha* Smh" *

Ä ,sin(*-¥') *-"P
x2 + 1 sin * tfT^}'siny + Äo—=—?}, O^^y

>(/ Jtf ' i?0\ sinha(0-9>) _ m
r\\a2+l a2/ smha0

Ä a2sin(0-y)ginyy+jRo0-^ yS^*a2 + 1 sin *

Rpoil Li Z,2\cosha(*-!f)-l
g7j\\^71~-^J iinhl* Bmhav

u .,i-co8(*-y)^v+^(0_y)^j> 0^^ya2 + 1 sin 0 -sin <

RpojjL2 Li \ sinh a 99 + sinh a (0— 99) cosh a W

Gs J\W ~~
a2-fl/ sinh a 0

_^a2siny + sin(*-y)cosy_^(y_y)2 + _^£2(0_y)ä + j:i_^)
^^(p^0

#a fsinha(0-?P) Sin(0-^) .1 A^ ^w-rnT äy T/ 9 1V
< r-r-—-r smha<p-a r—=r sin 9}, 0^<p^ V

GsJ(oc2+l) I smha0 sm0 rJ'
(6)

i?a fsinha(0-9?) m sin(0-<p) \
-mT „ T/ o ,v { uv r/sinhay-a r sin!P, *F^<p^0GsJ(a2-fl)l smha0 sin0 J
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Table 4. Solutions for angle of rotation ß of section, A (R2/Li) *i

n { rl —cos0/ sin 9 \ ^ 1

RP°\K1\ sin0 ^cos0^-^-ycosy +(y-0)smy
(1)

V \ /

[sin 9 + sin(0—9) sinh a 99 + sinh a (0— 99)] ["sin 994-sin (0— <p) 1)

sin 0 sinh a 0 J 3 [ sin 0 JJ

(2)

(3)
B_

Ro

_, Tir f rl — cos0/^ ^ sin 99 \ ^v • 1itlr ui —:—-—|0eos0 ——- — 99COS99 +(<?> —0)sm 99

[ l sm 0 \ sm 0 / J

[sin 99 +sin (0—99) sinh a 99 + sinh a (0— 99)"] ["sin 9 + sin (0—9) "Il

sin0 sinha0 J |_ sin0 JJ

R TTT f rsin(0— W) / sin 9 \ ^ 1 ^ 1 J~ 1 sind-ü-^^i V—^—-I#cos0-r—£-9>cos<p +(sin0- *F-0- *Fcos0- ¥)-7—±\
Ro [ L sm 0 \ sin 0 / sin 01

fsinha(0-¥/) ,_ im sin 9!) _^+ v2a r-^r—^—-sinh a 9 — asin (0— W)-—-J >, 0<9<!FL sinha0 sm 0JJ' "~ ~~

TTr f fsin (0- 9) / ^sin !P w \ ^
I

^
1 J" I sin YIWlvi\ ^ r/ 0 cos 0 -—-- W cos ^ + (sm 0-9-0-© cos 0-?) -—-{ L sin 0 \ sin 0 / sm 01

[sinh a (0—99) ,„ ,_ x sin W\] „, ^ ^^_v ^ y/sinhay-asin (0-9)-—- }, xF<<p<0sinha0 sin0lj' ~~

RP( fsin(0— W)l_. ^ sin 9 \ J 1 \ 1 J~ 1#vsin<jpl
——{Pi\ V--=:—- 0cos0-—i-©cos9 +(sin0- W-0- Wcos0- W) -—^
R \ l sm 0 \ sin 0 / sin 0J

pnhaftf-y)^ gin ajn*l) 0
L smha0 sin 0JJ'

i?P( rsin(0-9>)/ ^sin^ m \ ^
I

^
I r I sin Vi

_ <Ul : —-^— 0COS0— — VCOS ¥/|-|-(Sin0— 99—0— 9 COS 0 — 9) — -5 l sin* sm 0 / sin 0J

[sinh a (0—99) / _ .„ /Jt sin^ll ,„ ^ ^^,v r/ smh a^-asm 0-y>) -^—r }, ¥/<?<0smha0 \ ^sin^JJ' —

^Po<^-r|(cos0-cos W) 0 ^^r+cp cos 9 (cos 0- ^-D-f- !Psin(0- yOsinaJ
(sin 0 L sin 0 J

[cosha(0—
Y)— 1 sin 9,, I 11 r_ ._ ,„v_sina>l

-
' sinh a 9 + -^—\ l-cos0- ^) +K3[l-cos 0-y)]-^—£},smh a 0 sin 0 J sm 0J'

Rpol——-r (cos 0 —cos W) 0-—- — 99cos 99+ 99cos (0— ?)cos¥/+ ^sin (0—99) sin W\
Ism 0 L sm 0 vr/ j

[sin
99 4- sin (0—<p) cos W sinh a 9 + sinh a (0 — 9) cosh a V~\

sin 0 sinh a 0 J

[sin 9 /Jt cos V7 ,11 ,„ ^ _^-r-^ + sm 0-9)-T-_-l i Y^<p<>0sin 0 sin 0 JJ'

(A rsm(0—y)/, Asina) \ r 1 r 1 I" 1 sind-mT{— V—^—- 0COS0-T—i-9cos9) + (sm0- W-0- ^008 0- ^)-t—-^
[R L sm 0 \ sm 0 / sm 0J

R*a fsinha(0-^) sin(0-^) ]1 ^^ ^ mi+ w n o n. ¦ / ^—-Sinhay-a V—^—-Sin?}, 0^9^ ^^sOw(a2+l)2 L smha0 sm 0 JJ'
fA rsin(0-<?J)/^ ^Sin^ ,r/ ,rA /• ^

'

^
' I 'xSiny-l-my- : ^r-M0COS0^ — ^COS !P + SU1$- 9 — 0 — 9 COS 0 — 9)

\R L sm0 \ sm0 / v r r 'r/sin0j
Ä3a fsinha(0-9) sin(0~9) ^"11 w^ ^

EsCw((x2+ l)2 L smha0 sm 0 JJ' r —
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Table 5. Solutions for deflections 8

Li*2 R2*2
— 7+K1 + K2, CÜ2 ^ T / a i 1\ + /*! + /^2

<25J(a2+l) ' X ' " ' GsJ(*2+l)

n n i /c2 sinha 9 + sinha(0—9) sin 9 +sin (0—9)
^ 1 a2 smha0 sin0

[1
— cos 0 / sin 9 \ 1 1

—:—-— 0cos0-—-J — 9 cos 9 4-(9 — 0)sind 4-#c3}
sin0 \ sm0 J J

i?0P!F {-1/x2 sinha 9 +sinha (0—9) sin 94-sin (0— 9)
sinh a 0 sin 0

[1
— cos 0 /, sin 9 \ 1 1

_sin^_rCOS0sm^"9COS^ + ^~0)Sm9J+H

T)TI7Usinha(0-^) 9[ £2 -jsin(0-y)¦R W\— ^-T ^ ^Slnh a + a V2 - ^ ^—=r -Sin 9\a smha0 L £sJ(a2+l)J sin 0

rsin(0-«P)/_ ^sin9 \
— vi :

' I 0 COS 0 — — — 9 COS 91
L sm0 \ sm0 r 7

+ (sin0^-0^cos0^)^]+^^^9}, 0^9^^
(3)

„TT7fv2 sinha (0—9) „, 9 [ L2 1 sin(0—9) • «/jRJpJ-f v y/smha¥y4-a2U2-^ t,2i1J y/ sm !F
\a sinha0 L #sJ(a2+l)J sm 0

[sin(0—9)/_ ^sin^ \*——— 0 cos 0 -—— — y cos W\
sin 0 \ sm 0 /

+(sin*c;_0c;CO8<pri;)84nZ]+^L^a) y^*v r r sm0j GSJ 0 J

^oPpf/i2sinha(0-y) r i?2 1sin(0-y)^—— P{— r-r—^ smh a 9 4- a2 Uc2 — „ r/9l1J -—^ sm 9r \ol sinh a0 L ö«J(a24-l)J sm0

rsin(0-¥/)/_ ^sin9 \
— /*i ^—^—- ^ cos 0 -—i — 9 cos 9

L sm 0 \ sm 0 /

4-(sm0-9-0-9COS0-9)^^ + -^-j 0 yj, 0^9^ y
(4)

'
_

R0R „f/Lt2 sinha (0-9) • ,„ 9[ #2 1 sin (0-9)-P<— • - sinha¥y4-a2Li2-/nr r/9l ,J ~ sm y\a Sinha0 |_ #s J (a2+ 1)J Sin0

f sin (0-9)/. ^siny m m\
— ah —^—¦^-LL ® cos 0 -—- — y cos y

L sm 0 \ sm 0 /

/• I '

*
' I L sin VI RoR0-9uA w^ ^*+ (sm0-9-0-9cos0-9)-^—- 4-t^-t- ^ y}, y^9^0r sm0j GSJ 0 J

J?
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(5)

D D i*2 cosha 0- y -l i-cos 0-y)Ro K po {-w —, -= smh a 9 — a>i :— sm 9[a2 sinh a 0 sm 0
L29 ltVk lm9 fl-cos(0- y)/_ ^sin9 \+ 0^7^ (0~ ^)2-^l ^Tk -|0COS0-r——-9COS9)2 Gs J 0 L sm 0 \ sm 0 r 7

-(0-y)sin(0-y)-^^l}, o<9<ysm 0JJ ~~

D 73 f /C2 sinha 94-cosha ysinha(0—9) sin 9 + cos Wsin (0— 9)
sinh a 0 sin 0

+
* \Li + lJ^^12-U^2-1)1 - -^s f(cos0-cos y) *ÄGs J L \2 0 2r a2/J sm0L sm0

— 9cos 9+ 9cos(0— 9)cos y+ ysin(0— 9)sin w\ -\-k3\9 W^<p<L0

(6)

r> „l B2 sinha (0-y)— mT RoRi^ „ 9 r—r—— smha9\EsCw(ol2+\)2ol smha0
a2 r i?2 1 1 sin(0- y)+ ^TT [Es Cw (a2 + 1) ~ G~J\ sm~0 Sm *

A rsin(0-y)/ ^sin9 \
r3T r—Z 0COS0 — — -9 COS 9R2 L sm0 \ sin0 r 7

I I I I I I sin d 1

+ (sin0- y-0-ycos0-y)-^—| }, o<9< ysm0jj' ~~

D D( #2 sinha (0-9) w

«2 r ^2 * 1sin^-^ciny
a2+lL#*Ou>(a2+l) £SJJ sin0

A fsin(0-9)/, ^siny m \
TW ^ 0 cos 0 -—- - y cos yR2 L sm 0 \ sm 0 /

I I I I I I sin y11
4-(sm0— 9— 0— 9COS0— 9) -—— >, y^9^0

f) St-Venant's Torsional Moment Ts

St-Venant's torsional moments Ts can be easily obtained by differentiating
the corresponding Solutions for d.

^-^lldcp'
The results are shown in Table 6.

g) Secondary Torsional Moments Tw

The secondary torsional moments Tw can also be calculated by

t =-f r dH
s wB3d<p3'

The Solutions for T.„ are shown in Table 7.
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Table 6. Solutions for St-Venanfs torsional moments Ts

cosh a (0 — 9) — cosh a 9U Li _
2v2\

P°\\a2+1 a2/a Sinha0
(1) '

Li oc2 cos (0—9)— cos 9 7-/0 \)+ ^TT inT* + i2^"2"~,'))

il R2 RRo\ cosh a (0—9) —cosh a 9
IV^TT ^2") a sinh a 0

(2) u
_

'
R2ol2 cos(0-9)-CQS9 - /0 \1

+ ^1 shT0 + ^^0^-9))

HM/ £2 £3\ 9sinha(0-y)
TT" SI-5 T TTt a :~1 ^ COSh a 9i?o \\a2 4-1 a2 / smh a 0 r

£2a2 sin(0-y) 0-W
r—-r ~— COS9 + iv3—-T }, 0^9^ W

a2 + 1 sm 0 0 I'
(3)

W ilLs L2 \ cosha(0-9)

Z>2a2 cos(0-9) ^ _ yi m^ ^.+ 9 —: .r;siny-£3-r, y^9^0a2 -h 1 sm 0 0J

pf/ -R Po\ 9sinha(0-y)P<|-5 =- H a ^-i ^—^cosh a 9\\a2 -hl öl2] smh a 0 r
Roc2 sin(0-y) „ 0-yi

~^+T sin* '"»V +Bo-j-), Og^-f

\\ a2 a2 4-1/ smh a 0
Pa2 COS (0-9) .„ _ yi 1W^ ^+ ^-TT ..wsiny-i?o-r, W^cp^0a24-l sm0 0J

«ii 2>2\ cosh a 9^TT-^)aiinh7*[cosha(0-y)-1]

^«'[i-oos^-yji^ + ^^-yji oi?gya2+l v /Jsin0 ' 2 0
(5)

«Li L2\ cosha(0— 9) cosh a W— cosh a 9
sinh a 0

a2 fsinha(0-y) sin(0~y) 1 A^— mT-n—H ~ü—^ cosh a 9 ^—-—-cos 9 0<9<ya2 4-1 L smh a 0 r sm 0 \] ' — ^ —

mT-^—7 ^—i —cosha(0— 9) : COS (0—9) y< 9<0a2-h 1 Lsinha0 Y sm0 v rJ' — r —
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Table 7. Solutions for the secondary torsional moments Tw

(1) j/L2 Li \ cosh a (0— 9) — cosh a 9 Li cos (0—9) — cos 9I
V° iVa2"

~" aM7!/ * sinh a 0 *"
a2+l sin 0 J

(2) jIRRo R2 \ cosha(0— 9) — cosh a 9 R2 cos (0—9) — cos 9I
U"^2 ^TT/ a sinh a 0 "" a24-l sin0 J

(3)

W^tlLs
Ro

(IL3 L2 \ „sinha (*-f) £2 sin(*-y) 1 a^ *• •»{b-^Tl)tt2 sinha* C08hay-^TT-^iK*-C°S4 ° ^
^(^_Mgacosh^-^sinhay+-^cos(0-^siny\ y^g*Bo l\a2 +1 a2 / sinh a * a2 + 1 sm * J'

(4)

Df/Äo i? \ ,sinha(*-y) R sin(*-"P) 1
wPl(^-^Tl)a sinha* C°sh^-aTTT sin* C°Sy)' °^ *

P((*_4 a* cosh«<»~*>sinha y+-iL cos(*~y)sin yj, y^g*l\a2 +1 a2 / smh a 0 a2 4- 1 Sin 0 J

(5)

«2,2 Li \ cosha(0-y)-l^-^Tl)a smTTa-0 C°Sha^

Li l_cos(0-y) \ A^ ^urr-5-^ COS 9} 0 ^ 9 ^ y
a2 H- 1 sm 0 rJ' r

«ii 2>2\ cosh a 9 — cosh a (0 — 9) cosh a y
a^TT~^2"/a sinha0

Li cos9-cos(0-9)cos_yi ^^ ^0a2 4-1 sin 0

(6)

mr f .sinha (0-y) sin(0-y) \ .^ w
9

<a2 ^f—-—-cosh a 9 4- —-=¦ cos 9}, O^cp^W
a2 +1 l smh a 0 sm 0 7 '

— mT\ „sinhay sin W .1

-3 7ia2-^i —cosh a (0-9) 4- ' cos (0—9)}, W<cp<0a2-hll smha0 sm 0 y ~

h) Total Torsional Moments T

The total torsional moments T can be calculated from the formula,
T TS + TW and shown in Table 8.

i) Shearing Forces Q

By using the Eq. (5), shearing force Q can be obtained from the Solutions

My and T found in Table 1 and 8.

The results is shown in Table 9. It is evident on viewing the Eq. (5)' that the
torsion contributes to the shearing force in the curved girder bridge.
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Table 8. Solutions for total torsional moments T

¦{'po\Li
COS(0— 9) —cos 9

sin0 + L< (74
™-7m7i;7°,r+«°{7*)}

WiT sin(0-y) 0-yi n^ ^w-=-{L2 V—K—coscp-Ls—-Z-—}, 0^9^ yRo \ sm 0 0 J

^f-. cos (0-9) m T W\ m^ ^ _;x2—: r smy-^3 } y<9^0i?o l sm 0 0 J'

_p^sin(*-y)co *-yj rl sin 0 0 J' ~~ ~

p^cos(*-y)g.ngy_ yi ^l sm0 0J' ~~

-cos(0-y)
sin0

^ fr cos (0-9) cos y-cos 9 T I02+V2 \\
{-^

sin(0-y) n^ ^u/mr ^—^—-cos 9, 0<9<ysm 0 — r _
sin y-mT-—-cos (0—9), y<9<0sm 0 ~"
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3. Stress Formulae

The stress at any point in the curved girder bridge may be easily calculated
by using the Solutions for various stress resultants given in preceding section.
For practical purpose, the following stress formulae are very important.

MvIz-MzIyz\ R
[

MWWS

Ilz )np Gw n'

a) Normal Stress o

N R (MzIy-MyIyz MyIz-MzIyz \
a Fsnp+\ IyIz-I2yZ V+ IvIz-I2yz 7

b) Shearing Stress r
For the shearing stress, either of two different expressions should be used

according to the Situation of the considering point, that is to say:

I. At any point in nonboundary wall surrounding the k th. cell,

l R2qkTs
t

q* Tn
r -(Hqh + Qqb)i + ^2^^ +t ' p2 t J ' t Cw

(22-1)
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(4)
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Table 9. Solution of shearing force Q

Ro Po(t-)
5w(±-9)

-(Ma-Ri)W^, y^y^*

*— yP—zr-, 0<9><y0 ' —

y-p—, y<9<00' —

^-(Ä2-i?2)(0-y)2, 0^9^
2

_ _ / d>2 i U/2 \

II. At any point in boundary wall between the &th. and k ± 1 th. cell,

1 R2 T a* T
(22-2)

The quantity Q included in the formula (22) represents the shearing force
due to bending and its corresponding values to the above mentioned typical
loading conditions are given in Table 10.

4. Strain Energy Stored in Continuous Curved Girder Bridge

Under the general loading condition, the strain energy 77 stored in
continuous curved girder bridge may be expressed as a following formula.

0m

(23)n=Ti\\\[i + i)prndFmdcpn
0 Fm

where ]T means the total of the strain energy all over the length of continuous
m

curved girder bridge. And also suffix m denotes the quantity concerned with
the m th. span.
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Table 10. Shear forces due to bending Q

185

(1)

(2)

(3)

(4)

(5)

(6)

po Li
COS 9 — COS(0— 9) 1

sin0 Ro

WR2
COS 9 —COS (0—9) 1

sin0 Ro

w L2 sin(0-y) 1 n^ ^mW~B -r-TZ ^COS9-7--J 0^9^yRo sm 0 Po

TT7
2>2 cos (0-9) 1

TF-^ '——— sm y-r=r-, y<9<0Po sm 0 Po — ~~

-sin(0-y) 1

PR K* ;cos9-^-, 0<9<ysm 0 Po ~~ —

p-cos(*-y)s.n 1 ^sin 0 Po ~" ~~

r l-cos(0-y) 1 n^ ^mP0L1 r-1^—-cos 9-=-, o^9^yr sm 0 Po

T cos 9 —cos (0—9) cos y 1 „, ^ ^ ^poi/i—r «-, y^9^0r sm 0 Po

sin(0-y) 1 A^ ^u,— my ^— COS 9-=— 0<9<ysm 0 Po ~~ ~~

cos(*-y)siny 1 ^sin 0 Po — r —

Substituting the stress formula [formula (21) and (22) in previous section 3]
into expression (23), and arranging that, a following simplified expression may
be obtained.

0m

where

^-^^Jkfc+^+^(x+^+^yHry- (24)

(25)

(26)

3 J?*»^-£<fe,
?T t It

The underlined terms may be generally neglected as compared with other
terms.

5. Stress Resultants in Continuous Curved Girder Bridge

Now, by cutting a prescribed continuous curved girder bridge at the cross
sections on every intermediate supports, the simply supported girder system
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will be produced. So, they have a couple of bending moment and warping
moment at both ends of each span.

Mm-i

Wtm-i

Mm

Wen

Mm«-i

t *m-i

-A-

*m

J±.

Fig. 3. Continuous curved girder bridge.

The stress resultants which will be caused at the bridge section defined by
peripheral coordinate cpm may be readily given by the following formulae,
where the quantities with suffix 0 represent the stress resultants of the imag-
inary simply supported curved girder bridge in the rath. span under given
loading. cp'm <Pm-cpm.

a) Bending Moment Mym

M -M +M sin^
i M Siny™ (27}Mym - MrnO + Mm^n0^ + Mm+lsin0^. (27)

b) Warping Moment Mwm

M -M cm smham?4 m sinham(pm

"m ^m (28)

Rm [M fsiny^ sinham<pg Jf f"sin(pm sinha^Jj
«m+U mLsm^m sinham<2>J m+1 |_sm<Z>m sinham0mJj-

c) St-Venanfs Torsional Moment Tsm

m 77 ^m/ * *m^hcLmcp'n\ Wm+1 l*m COsh aw cpm 1\
1sm ^0+ d \0 sinha & I R \ sinha & 0 I

mL«m+1\ msm$m msmham<Z>J <Z>J

if [J L2COS<Pm. coshaOTym\]
m+1 K «2.+ 1 P"sin<?>m + ™sinh«m<Z>„JJ •

d) Secondary Torsional Moment Twm

m /TT J_/cm «mCOshamq4 w amCOshamym\
"m J—oi"Pm\JJC- sinham0m "Wl sinham0m / (30)

1 \M /COS ?4 am COsh am y^\ ^ /COS <pm ocm cosh am <pm\l

«5» + 1 L
m \sin <Pm sinh am <&m / m+1 \sin 0m sinh am 0m / J '

e^ Shearing Force due to Bending Qm

Qm= Qm0l{MJ^-Mm+1C-^\. (31)^m ^° i?0m\ msin0m m+1sin0j

f) Total Torsional Moment Tm
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6. Elastic Equations for Continuous Curved Girder Bridge

In order to find both unknown end moments Mm and 50im? principle of
least work may be applied to the whole system composed of main girders.

en sn
0, 7T7^r- 0.

dMm ' dmn,

Substituting expression (24) into above conditions, and then using the
stress resultants (27) to (31), a set of simultaneous equations for unknown
quantities Mm and 9Jtm.

am,m-i Mm__x + amm Mm + amm+1 Mm+14- bmm_1 JJtm_i

~^~ "mm *"h» "^ ^m,m+l -"W»41 ~~ -^m > /qq\
®m,m—1 -M-m—1 ~^~ ^rnm ^m^ ^m,m+l -"^m+1 + ^ra,m-l ^m-1

4- dmm jjlm 4- dmm+1 JJlm+1 —JS m,

(m 1, 2, .,n— 1).

If the structure is simply supported at both ends (m 0, and m n),
M0=Mn=o, m0=mn=o.

Coefficients a, b, and d contained in Eqs. (33) may be given by the following
expression.

m
amm 2 Wmi (34)

3=m— 1

and

[^-sin^cosCP/] t
Rj [ af ^4-sin^cos^r„l R* r^-sin^cos^l JRj_ [ af

Laj^ 2 ^s/;, L sin2<Z>, J +
GsJj [2 (af + 1j j "s-j l-v-j • -/ sin20y

+
af lcos<Pj coshay^- \ 1 1

af + 1)2 \sin 0y a.j sinh a^- #3- / <P} J '

m_ rsin^m-0mcos0m1
_

Bm [ o&
/;WL sin2<Z>m J G8Jm Ij^+l)

(35)

iL, \sm&m-&mcoss$7\ Bm [ xl sin0m+0M)cos<2>„
2 #s /;w L sin2 0m J G8 Jm [_2 (a2, + 1) sin2 <2>„

+ * (-J- +
* )_-LI

(«5» + )2 \sin 0m am sinh am <£J <Z>J '

-Rm-l f S^ #m-l - <Pm-l cos ®m-l]
2^8/;,m_iL sin2«^ J

Rm-±_ \ «Si-i «in 0m_i + 0m_i cos 0m_!
,-xL2K-!+l)

(36)

ö, «4_i L2 (a^-i + 1) sin2 ®m_x
(37)

+ "™-* / 1

+
: LI

(«»-i + 1 )2 \sm 0m_! «„_! sinh a.m_x 0m_J <J>m_x J '

TU

bmm 2 [&W (38)
j m—1

_
1 [ 1 af / COS0J cosha^A]

LÖJw> "ö,JyL<Py af + lp'Sn^T+sinha^JJ' (dW'
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bm-m+1 GÄn te+T Ym^K + sinh«m0m) ~ÄJ ' (40)

K'm-X GÄ^i RA" r-^riE^I + sinha^^J " 0~|' (41)

j=m—1

<-+1 =ö^^fe"a-sinham0j' (44)

<m"1 G.Jn-iBu-i fcT"am_1 sinha^.O" (45)

From formulae (36), (37), (40), (41), (44), and (45), it may be seen that the
following reciprocal relations can be satisfied.

®m m+1 am+l,m> ®m,m+l ^m+l,m> ^m,m+l =z ^m+1 mm

7. Loading Terms of Elastic Equations

For several typical loading conditions, the loading terms contained in the
right-hand side of elastic equations may be obtained as follows:

a) Uniformly distributed load

In the case when the uniformly distributed load pj per unit area of floor
slab in the jth. span, the loading terms Lmj and Nmj may be expressed as
follows:

T =A* R* (i-cos^H^-sin^)
mj Vj[ ljEsFyj 2sin2<Py

-S24^fTi(a|ta4 + itanh^) -%}]]- (46)

_ ViN ¦ -m} GSJ}:{*»M^7r^Y^r^-%l(47)
iwhere 8„ -(i^.-i??,), (48)

82j.=^(i?2,-£?,)• (49)
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b) Axial Line Load

If we put ßiy -> R], £2j -> RjRoj, pj -> Wj in both Eqs. (46) and (47),
the loading terms Lmj and Nmj for an axial line load may be obtained directly.

c) Radial Line Load

Let us consider the case of radial line load Wj per unit length. It also is
assumed to be placed at the Situation cpj=ifjj in the jth. span.

T
W™ f E™ 9 <ftmsin 0m ~ 0m Sm xjj'm COS &m
R0Mlym^2M 2sin2<Z>m

[o am / T71 0m «in 0m ~ 0m ™1 */4 COS0„
L 2m(«m+l)2\ m 2sin20m

/ 1 f"m*
l\fl4+M Sil

^m
GsJm

sin 0m
+ sinham^\ 0 / 1 famsin0m

sin0m sinhocrn0ynl 3 m W2,4-1 I sin<2>

sinham^;
sinh

iqm0m| _ 0^\11+ - \am0j 0JJJ'

7" _ "m-1 | -^m-1 o
¦umim—l — n l JP T' ^2,

-^O, m-1 L^s 1 y, m-1

0m-l Sin 0m-l - 0m-iSJn(/rm_1COS0m_1
m-x 2sin2<£m—1

+ ^Pr1-1 s
&s Jm-1 L

am-l
ö.^m-lL*""1 («4^1+1)
~2 Tl^m-lSiny^,!-^C—1+1 2^hl

sinho^.!^.^ 0 / 1 /«m-isin^!

^ 71 'Am-lSin fm-l - 'P'm-lsin K-l COS #m-l Snn/.^
am-1+ W07^ 55*— (51)¦(¦

sinhq^,!^,^ / 1 [a
«™l»«»-i*«-i/ 3'm_1\«m-i+M sin0,

^ sinh am_x ^m_i| _
ym_x\11

J Ollsinha^!^
AT

Wr» fo gm /siny^ sinhamy^\
^„.ö^r^o^+lW*,,, sinh «„,<*>J

o /sinham^ _ ^\1+ V3»\SinhaM0m 0j}>
N Wm-i fo «m-i /siny,»,! sinha«^
x,m,m-l d /j t |^2,m-l 2 i !_.•sin #m_! sinh am_x 3>m_1;

o /Sinh am-l «Am-l
_

¦ftm-lU
+ ^-1\sinhaw_1<Pm_1 <*>m_J/'

(50)

(52)

(53)

m—1 ^*m-

where ß3m ^jm (i?am - £<w). ' (54)

e^ Concentrated Load

If we put Wj->R0JPj, %2j^Rj, äsj^Roj in Eqs. (50) to (35), the loading

terms Lmj and NmJ for a concentrated load i^- may be directly obtained.
It also is assumed to be placed at the Situation designated by coordinates

cpj ifßj and p Rj.
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Thus, under the simultaneous loads acting on both the m th. and the m 4-1 th.
spans, the loading terms Lm and Nm may be given as follows:

¦^m %m"'"^m,m-l' -^m ¦** mm •" ^* m,m—1 * \ **«¦*/

6\ Coefficients and Loading Terms of Elastic Equations for Straight Span

Let us consider the continuous girder bridge where the straight girders are
connected with the curved ones on the intermediate supports. For the curved
span, coefficients and loading terms of elastic Eqs. (33) may be evaluated
again according to previous formulae as shown in sections 6 and 7. While the
following formulae should-be used for the straight span.

a) Coefficients of Elastic Equations

I. The Case Where the m th. Span is Straight
L

3 Es lym
+ Mm, m-1» (56)

am,m+l ~ a jp ji > V^)

®mm LyJm,m—1> °m,m+l "9

mm ~ Gsjm r-smhämzm -d+[ ]m'm-1' m
dm>m+1 0Ät"SShfx)' (59)

where äm l/^k. (60)

II. The Case Where the m — 1 th. Span is Straight

amm — o jp ji HaJmm> (°"1)

^m-1

§EsIy,m-l
(62)

°wm l/'Jmm? ®m,m—1 ^>

// -—J_/?r COshVll-l 1 \ r//1 ,äqx^mm ~ n J \ m-1 _• u - 7 ""7 I ~t~ L^Jmm j V°ö;
"s^m-l \ smn am-l V-l ^m-l/

rl l I l ^m-1 \ /ß.x"^m-l — TT-? 7 G- U 77 7 I * V°*/
^s^m-l Vm-1 smn\-l%-l/

b) Loading Terms of Elastic Equations

I. Uniformly Distributed Load

For the case where the uniformly distributed load p3 per unit area is placed
over the breadth ay in the jth. span, the loading terms Lmj and Nm may be

given by the following expressions.
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mi 24^/;/ (65)

where Cj is the horizontal distance between the shear center of the bridge
section and the position of resultant of load.

The suffix j should be equal to j — m or m — \ for the case where the mth.
or the m — 1 th. span is straight respectively.

II. Axial Line Load

Lmj and Nmj for an axial line load Wj, per unit length, placed with
eccentricity Cj may be readily obtained by putting p^a^ -> Wj in previous formulae
(65) and (66).

III. Radial Line Load

Let us consider the case of a radial line load W per unit length. It also is
assumed to have a breadth a and be placed at x c with eccentricity e.

1. The case where the mth. span is straight. If the mth. span is straight
and above described load acts on that span, necessary loading terms may be
evaluated by the following formulae.

W a c
L'mm ~ TT^B f/ T~ (^ ^m ~ Cm) \^m ~ Cm) > \°'/ß TP T 7° -^s 1ymf/m

N "m emam I SmhccmCm
_

Cm\

GsJm \sinhäm/m lm}'' mm m^

2. The case where the m — 1 th. span is straight

L —
*^rn-lam-lCm-l ,]2 _r2 /ßQ\-um,m-l ~ ajp j' j \°m-l cm-l) > \VVJ° ^s 1y>m-lvm~l

j\T — yrm~i em~l am~l Ismn am-l cm-l Cm-1 \ /^q\r m,m—1

III. Concentrated Load
"'s ^m-i \ smh am-1 lm_1 lm_

For the case where the jth. span is straight and a concentrated load Pj
acts on that span, if we put W^a^ -> Pj, j m or m — 1 in previous formulae
(67) and (68) or (69) and (70), every formulae in preceding article c) are
valid again.

9. Deformations of Continuous Curved Girder Bridge

The deflection and rotating angle of cross section of the continuous curved
girder bridge will be obtained by superposing the deflection and angle of
rotation of imaginary simply supported bridge,under the prescribed loads upon
those due to end moments respectively.



(71)

(72)
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a) Angle of Botation ßm

a =/? Rm f/cm Rm, M Wsinhamff;, siny^
Pm P™° + EsCwm(*l+l)\\JJl™ «2,+ liJ»iMsinh«m0m sintfj

\ «»+1 m+7\smh«m$m smfljj

Bmsm0m\ mYm Ym msm0J

+ Mm+1 \0m cos 0m^g - 9m cos <pmj J,

where A"Uow(a2+i)+^7;J-
6^ Deflection 8m

The deflection of shear center 8m may be evaluated by the following formula.

S - S j. 7? f^™ [_L_ /sinhaOT94 siny^\ _ ?4]
m ~ B0+tak Jm k+1 lsinh«m0m + a™sin0j *J

^m+l I" 1 /sinhaOTyM ^2 sinym\
_ .pj

ös«4 L< + 1 \sinh am0m msin<Z>J 4>J

ff Rm /sinhaTO94 T—5 sinyU i?m <p'm]

'\[GsJm(ccl+ir\SmhOcm0m + OCm+ a"*sin$J ö,Jm*J

-ß»sm0mrm ym M sin $J|
_af ff ^m /sinhamyOT 7-5, sinym\ .Bm ym]

m+1UG!8^(«|l+l)2lsinham0m + a-+ ^sin^J GsJm0m\

+ "ö ^7r~ l^m cos^m Sm^m - 0)OT COS <pm) \ I.
i?msm<2>m\ m msm<Z>m Tm rm/jJ

So that the deflection of a point situated at a horizontal distance Y from the
shear center.

8m(Y) 8m-Yßm, (74)

where Y p-R0. (75)

10. Numerical Example

The influence of the stress resultants and deformations will be found for
a three-span continuous composite box girder bridge as shown in Fig. 4 a. The
length of each span is equally 33.527 m. Both side spans have straight main
girders while a center span has circularly curved girder with a radius of
curvature 30m. And then the road width is 6.705m and.the cross section of
bridge is assumed to be constant all over the bridge length. Both the shape
and main dimensions of cross section also are shown in Fig. 4b. According to

+

-M
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the fundamental theory developed in previous paper, the necessary cross-
sectional properties have been evaluated for respective span as follows:

Cw\ ^3 0.488 03 X 1012 cm6

C* 0.481 35 X 1012 cm6 Ln r„ 10.230 8 x 106 cm4yw2 yi' Lys

Iy2 10.260 1 X 106 cm4 J± J3 4.977 3 X 106 cm4

J2 5.022 9xl06cm4 ax a3 1.972 X 10~3 1/cm

oc9 5.9364

a)

$«&. &*>

fcnz

(b)

5" 9 _r

Fig. 4. Continuous curved girder bridge a), b).

The matrix representation of the elastic equations becomes as follows:

^1.424 510 0.561727 0.637 130 X 10~3 0.471 472 X 10"3
0.561727 1.424 510 0.471 472 X 10~3 0.637 130 X 10~3

0.637 130 X 10-3 0.471 472 X 10~3 8.923 880 X 10"6 0.733 130 5 x 10~6

0.471 472 Xl0~3 0.637 130 XlO-3 0.733 130 5 X 10~6 8.923 880 X 10~6

[M2~] [L21
M3 L3
m2 N2
m3 w

(76)

Corresponding loading terms to respective loading condition are as follows:

I. For the Loading on the First Span:

L2 L21, L3 0, N2 N21,

II. For the Loading on the Second Span:

N3 0.

L9 L22' ¦"3 ~~ -^32' N2 N2

III. For the Loading on the Third Span:

L2 0, L3 L33, N2 0,

#« #»

N3 N33.
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a) The Influence Line for Stress Resultant

From the Solutions of elastic Eq. (76), the influence lines for the bending
moment M2 and the warping moment 3Jl2 at the intermediate supports B are
given as shown in Fig. 5 and 6.

kg cm / kg

500
400

-300
200
100

100

200

OUTSIDE

CENTER

INSIDE

Fig. 5. The influence^lines for bending moment M% at support B.

kg cm/kg

6x10

-4x10

2x10

C^

2xl04

4x10*
OUTS DE

CENTER
6x I04

INSIDE

Fig. 6. The influence lines for warping moment 9#2 at support B.

The füll line and two kinds of dotted line represent the influence line for
loading along the outermost side, the innermost side, and the center of the
road width respectively.

Regarding the bending moment M2, the ordinate for outside loading
becomes considerably large owing to curvature in the middle span, while it is

comparatively small for inside loading.
So, the one is about twice as large as the other.
However, it may be seen that there is little difference owing to eccentricity

of loading so far as the bending moment is concerned.
For the warping moment W2, the ordinate for outside loading has the

opposite sign to corresponding one for inside loading.
The same is also valid for the middle span BC.
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This result shows apparently that the warping moment takes the opposite
sign due to torque loading in the opposite direction.

Next, the influence lines for bending moment My at the middle cross section
of the center span are shown in Fig. 7.

There is little radial Variation of ordinate owing to eccentricity of loading,
and the ordinate for inside loading is little larger than that for outside loading.

The shape of influence lines for bending moment My is very similar to that
about the straight girder.

OUTSIDE
- - CENTER
— INSIDE

kg cm/kg

-200
-100

100

\\ ///200
300

^\ //400

w500
600

Fig. 7. The influence lines for bending moment (My)i2/2 at the middle section in the
center span.

kg cm/kg

OUTSIDE-4x10
CENTER
INSIDE

-2x10*

2x10

4xl04

6xl04

8x10

10x10

Fig. 8. The influence lines for warping moment (Mw)i2/2 at the middle section in the
center span.

The influence lines for warping moment Mw at the middle cross section of
the center span are shown in Fig. 8.

The ordinate for outside loading is opposite to that for inside loading and
the former absolute value is not less than twicenfrs large as the latter in the
center span.

On the other hand, there is little effect of radial eccentricity of loading
and the absolute value of ordinate is very small all over,both side spans.
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Therefore, when the secondary normal stress aw due to warping moment
Mw is superimposed to the primary normal stress ab due to bending moment
My, the total normal stress ct ab + ow caused at the cross section of loaded
girder becomes larger than that of unloaded girder.

The same fact under the outside loading appears more considerably than
that under the inside loading.

Although a load travels along the axis of bridge, the total normal stress
in the outside girder is generally larger than that caused at the same time in
the inner girder.

This fact is owing to the superposition of two kinds of normal stress. Under
non-eccentric loading, the sign of crw is the same as that of ab in the outside
girder, while opposite in the inside girder.

As the stress aw can be restricted to fairly small value compared with ab

value by adopting the closed cross section, the difference between the normal
stress ct in the inside girder and that in the outside girder becomes considerably
small according to this type of structure.

kg cm/kg OUTSIDE
CENTER

60 INSIDE

40

-20

20

40

60

Fig. 9. Influence lines for St-Venant's torsional moment Ts at the middle cross section
in the center span.

The influence lines for St-Venant's torsional moment Ts at the middle cross
section of the center span are shown in Fig. 9. They are just antisymmetric
about the middle span, and the absolute value of its ordinate for the outside
loading always is larger than that for the inside loading.

Moreover, it should be noted that considerably large torsional moment Ts

would be occured under the side span loading.
The jnfluence lines for secondary torsional moment Tm at the middle cross

section in the center span are shown in Fig. 10.

It is discontinuous at the middle section and antisymmetric about that
section.

The ordinate decrease suddenly during travel toward the ends of bridge.
This fact shows that the influence of adjacent span may be neglected.
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kg cm /kg
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B^^ —.
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Fig. 10. Influence lmes for secondary torsional moment Tw at the middle cross section
in the center span.
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Fig. 11. Influence lines for total shearing force Q at the support B,
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0.2
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Fig. 12. Influence lines for total shearing force Q at the middle cross section in the
center span.

The influence lines for the total shearing force at the support B and at the
middle section in the center span are shown in Fig. 11 and 12 respectively.
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The effects of both eccentric loading and curvature are scarcely recognized
in this example. Then both shape and magnitude are very similar to those of
the continuous straight girder.

The influence lines for bending moment My at the middle section in the
side span are shown in Fig. 13. Respecting the straight side span, it is quite
similar to the influence line for bending moment of straight continuous girder.

kg cm/kg

— OUTSIDE
— CENTER

INSIDE

Fig. 13. Influence lines for bending moment My at the middle cross section in the side span.

— OUTSIDE
— CENTER 0)
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kg cm /kg

8xl04

6x10

-4xl04

2xl04

2xl04

4x10
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8-10

Fig. 14. Influence lines for warping moment Mw at the middle section in the side span.

However, respecting the curved center span, the ordinate for the outside

loading becomes larger than that for the inside loading owing to the curvature
of bridge axis.

The influence line for warping moment at the middle cross section in the
side span are shown in Fig. 14. The value for the outside loading has opposite
sign to that for the inside loading and the absolute values for both cases almost
are mutually equal.

Those both decrease suddenly according as the load falls away from the
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considering section, and that scarcely undergo the influence of loading on the
adjacent span. It may be seen that the phenomenon of torsion bending has

not been observed under the noneccentric loading. It will be caused by the
fact that the considering section lies just in the straight span.

The influence lines for St-Venant's torsional moment and secondary
torsional moment at the middle section in the side span are shown in Fig. 15

and 16 respectively.
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Fig. 15. Influence lines for St-Venant's torsional moment Ts at the middle section in
the side span.
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Fig. 16. Influence lines for secondary torsional moment Tw at the middle section in the
side span.

In any case, the sign of ordinate converts at the considering middle section.

In former case, the absolute maximum value between the middle section and
the end support A is greater than that between the middle section and the
intermediate support B. This difference is considered to be owing to restraint
on warping at the intermediate support B. In latter case, it is much similar
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to the influence line for imaginary straight girder, simply supported between
two points A and B. The decrement is rapid, so the ordinate in adjacent
span is very small.

The influence lines for total shearing force Q at the end section A, the middle
section in the side span, and the left side section of support B are shown in

OUTSIDE
CENTER

kg/ kg INSIDE
0.2

0.2

0.4

0.6

0.8

Fig. 17. Influence lines for total shearing force Q at the end cross section A.
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Fig. 18. Influence lines for total shearing force Q at the middle section in the center span.
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Fig. 19. Influence lines for total shearing force Q at the left side section of support B.
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Fig. 17 to 19. In any case, those are much similar to ones for straight continuous

girder, while the effect of curvature may be recognized in the center
span.

The influence lines for total torsional moment T T, + TIC at the middle
cross section in the center span and the side span are shown in Fig. 20 and 21

respectively.
In former case, they are just antisymmetric about the considering middle

section, and show curvilinear Variation unlike the straight continuous girder.
In latter case, they are scarcely differ from those of straight girder, except

that little effect of curvature can be recognized in the center span.
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-I50H
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Fig. 20. Influence lines for total torsional moment T at the middle cross section in the
center span.
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Fig. 21. Influence lines for total torsional moment T at the middle cross section in the
side span.
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b) Influence Lines for Deformations

The influence lines for deflection S at the middle cross section in the center
span are shown in Fig. 23. They are just Symmetrie about the middle section.
The ordinates for outside loading are about twice as large as those for inside
loading.

OUTSIDE
CENTER
INSIDE

x 10 cm/kg

-2 i

Fig. 22. Influence lines for the deflection 8 at the middle cross section of the center span.

x 10 °/kg

OUTSIDE
CENTER
INSIDE

Fig. 23. Influence lines for the angle of rotation ß at the middle cross section of the center
span.

While the influence lines for angle of rotation ß at the same section are shown
in Fig. 23. They take negative sign in the center span. These results indicate
that the middle section always rotate in the direction that the outside girder
have vertical larger displacement than that of inside girder. In the case when
the load is placed on the side span, the same section will rotate in the inverse
direction. The effect of eccentric loading appears apparently in any case,

especially very large rotation is caused by outside loading. It is remarkably
characteristic of curved girder bridge with large curvature that the cross-
section rotates in the same direction regardless of the radial Situation of
loading.
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Summary

In this study, the torsion bending theory has been developed into the three
dimensional analysis for curved girder, and following general results have
been obtained.

1. The various statical quantities related to geometrical factor of cross
section have been explicitly defined.

2. Seven fundamental conditions of deformation have been investigated
and the relations among the deformation, stress resultants and stress have
been made clear with regard to free-free curved girder.

3. The formula which gives the position of shear center has been derived.
4. The relation among the torsional angle, absolutely angle of rotation

of whole section and deformation has been obtained.
5. The Solutions for stress resultants and deformations have been obtained

for both simply supported and continuous curved girder under typical loading
conditions.

6. In a numerical example, influence lines for stress resultants and
deformations have been found, so that some important statical characteristics of
curved girder have been made clear.

Resume

Les auteurs developpent la theorie de la torsion-flexion en l'appliquant ä

l'etude tridimensionnelle des poutres courbes. Ils presentent les resultats
generaux suivants:
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1. Us definissent explicitement les grandeurs statiques relatives aux don-
nees geometriques de la section.

2. On etudie sept conditions fondamentales de deformation et, pour la
poutre courbe ä extremites libres, on precise les relations entre les deformations,

les sollicitations et les contraintes.
3. On etablit une formule donnant la position du centre de cisaillement.
4. On deduit la relation liant 1'angle de torsion, 1'angle de rotation absolu

de la section et la deformation.
5. Des Solutions pour les sollicitations et les deformations sont obtenues,

dans des cas de charge typiques, soit pour des poutres courbes simples, soit

pour des poutres continues.
6. Dans une application numerique, on donne des lignes d'infiuence pour

les sollicitations et les deformations; on met ainsi en evidence quelques carac-
teristiques statiques importantes des poutres courbes.

Zusammenfassung

In dieser Studie wurde die Biege- und Torsionstheorie für die dreidimensionale

Untersuchung gekrümmter Träger weiterentwickelt, wobei folgende
allgemeine Ergebnisse erzielt wurden:

1. Zuerst werden die verschiedenen statischen Werte im Zusammenhang
mit den geometrischen Querschnittsgrößen definiert.

2. Sieben fundamentale Beziehungen für die Verformungen werden untersucht

und die Beziehungen zwischen Verformungen, Schnittkräften und
Spannungen werden erläutert im Zusammenhang mit einem gekrümmten
Träger mit freien Enden.

3. Die Gleichung, welche die Lage des Schubmittelpunktes angibt, wird
abgeleitet.

4. Die Beziehung zwischen Torsionsdrehwinkel, absolutem Verdrehungswinkel

des Gesamtquerschnitts und Verformung werden angegeben.
5. Die Beziehungen für die Schnittkräfte und die Verformungen werden

sowohl für den einfachen als auch den kontinuierlichen gekrümmten Träger
für die typischen Belastungsfälle angegeben.

6. In einem numerischen Beispiel werden die Einflußlinien für die

Spannungen und für die Verformungen angegeben, so daß einige wichtige statische

Eigenschaften gekrümmter Träger klar ersichtlich werden.
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