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Three Dimensional Analysis of Curved Girder with Thin-Walled
Cross Section

Analyse tridimensionnelle des poutres courbes a parois minces

Dreidimensionale Untersuchung gekriommter Triger mit dimnwandigem
Querschnitt

ICHIRO KONISHI SADAO KOMATSU
Professor of Kyoto University . Professor of Osaka University

Introduction

It is a well-known fact that the stress distribution along the height of the
curved beam bent in its own plane will deviate from what calculated by the
conventional bending stress formula for the straight beam.

Generally, the greater the curvature, the more the bending stress distribu-
tion at the radial section will deviate from that of straight beam. Based on
this fact, it may be expected that, in the curved girder constructed out of
thin-walled members, similar phenomena will occur under any external force.

So, just in the same correlation that the theory of curved beam bent in its
own plane has been developed on the basis of primary bending theory for
straight beam, it should be desired that fundamental theory for curved girder
with thin-walled section, under arbitray loading condition, will be systemati-
cally established by developing the present structural theory for straight
thin-walled girder. '

In this paper, much consideration is particularly given so as to clarify the
effects of curvature on all quantitative relations such as displacement, stress
distribution and so on.

So, generalized analysis has been conducted to obtain important formulae
* concerned with both stress resultants and deformation for seven fundamental
conditions of deformation of free-free girder. Then the general formula for all
kind of cross-sectional quantities have been derived.

 Furthermore, paying careful attention to the bicoupling interrelation
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between bending and torsion of whole structure, the solutions about the
longitudinal variation of the stress resultants and deformations are induced in
the simply supported as well as continuous curved girder subjected to several
typical loading conditions.

1. Fundamental Theory of Curved Girder with Thin-Walled Section

1. Geometrical Properties of Cross-Section

Prior to the statical discussion on curved girder, the geometrical properties
determined by the shape and dimensions of its cross section will be described.
As shown in Fig. 1, a point C is arbitrarily selected at the cross section. Now,
the center of curvature of the axis formed by connecting every point C in the
longitudinal direction is designated as 0. The girder is usually so constructed
that each point on the cross section is arranged along the cylindrical surface,
the axis of which passes through the center 0.

O
nC
0 -
CUerze) |
s=0 Y!
(yo 220 p
P (y,z)
R ™ 2! y
P Z
(Y)I < RI
On Z (C;';gni gn Fig. 1. Systems of coordinate.

A point C is chosen as the origin, and the rectangular coordinate y and z
are taken in the radial outward direction and in the vertical downward direc-
tion respectively at the cross section. Besides, the curvilinear coordinates s
are taken along the middle line of the thin plate member in the cross section.
Then, the geometrical moments of area for curved girder may be defined as
follows:

-/
Gy = Rf;;;tds, (11)
F

@, = an—yptds, (1,)
o
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where R represents the radius of curvature of the girder axis formed by con-
necting the centroid of the cross section, ¢ denotes the thickness of the thin
plate member, and n the ratio of the Young’s modulus of the steel to that of
normal stress-carrying material at a considering point P — for instance,
n=E | E, for slab concrete in composite girder where E, is the Young’s modulus
of the steel and E, is that of the concrete —, and p the distance between the
point P and the center of curvature 0 as measured in the radial direction of
that curved girder.

Next, the point C' having the coordinates (y,, 2,) is chosen as origin, and
the rectangular coordinates (y’, z’) are taken in parallel with the original ones
(¥, 2). So, the geometrical moment of area G,, G, with respect to the new
coordinate axes are evaluated by the following formulae:

G, =G,—z2F,
Gz’ - Gz_ycﬁ?sﬂ

where F,= anipds, the area of the transformed cross section. As described

later, if the point C coincides with the centroid, above equation may be written

= fids.
n
F

When both geometrical moments of area with respect to any pair of mutually
perpendicular axes passing through a point 0, are equal to zero, the pomt 0,
is defined as the centroid of the cross section of curved girder.

Let us denote the coordinates of the centroid 0,, as (y,,, 2,,), so the situation
of the centroid is decided by the following formula:

G G
Yn =FE’ Zp = _ﬁTy (2)

Again, in the thin-walled cross section as shown in Fig. 1, the quantities
expressed by the following formulae are defined as the geometrical moment
of inertia with respect to the axis y and z respectively,

221

. RJ =L s,
np
o (3)

In the similar manner,

is defined as the product inertia of area.
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The sectional moment of the second order I,, I, with respect to any
other rectangular coordinates (y’,2’) laid in parallel with those (y,z) are
evaluated by the following formulae:

I,=1,-22,G,+22F,
Iz' = Iz_2ycGz+ygEs’
Iy’z’ = Iyz_yc Gy—zc Gz'*'yczcﬁj‘;'
In particular case when the origin C coincides with the centroid, since
bot G, and G, are equal to zero,
I,=1,4+22F,
I 2= I 2 +y(2: 8»
Iy’z’ = Iyz"'yczcﬁ;'
If any other coordinate (y,2) have the common origin 0 with the coordinate
(y,2) and incline in the clockwise direction at an angle ¢, the relations between

the sectional moments of the 2nd order with respect to both coordinate axes
may be evaluated as follows:

I; = 1I,sin?9+1,cos?d—1,,sin2,
I; =1,cos8?d+1,sin?d+1,sin2,

I,—1, .
Iy = ”2 *sin29+1,,cos29.

Note the invariant relationship
I§+I;= Iy+Iz,
IiI;-1=1,1,—-1Z,.

It can be noted from above formulae that the sectional moments of the
2nd order with respect to the new coordinate axes vary according to the
magnitude of the angle of inclination 3.

In the special case where the sectional moment of the 2nd order will reach
the maximum or minimum value, the coordinates axes will be defined as the
principal axes of the cross section, and then the sectional moment of the 2nd
order with respect to those axes might be called the principal moment of
inertia.

If it is assumed that the sectional moments of the 2nd order I,, I,, I,
with respect to arbitrary rectangular axes Oy and 0z have been known, the
direction of the principal axis and both maximum and minimum sectional
moments of the 2nd order may be easily found. That is to say, by the following
condition

al;
@ ="



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 147

the angle & to specify the direction of the principal axis may be evaluated as

follows:

1 21
- -1 fdd
19—2tan -

2 Yy

In this special case, it may readily be noted that I; vanishes, so the simpli-
fied relations may be expressed as follows:

I;I;=1,1,-1¢,
I 7t I;=1 o+ Iz
and then I3 and I; will be either the maximum or minimum sectional moment

of the 2nd. order respectively. Their values will be given by the following
formula:

I or I;=3{I,+I1,+V(I,—L?+412}.

2. System of Coordinates and Stress Resultants at Cross Section

As shown in Fig. 2, the center of curvature 0 of the girder axis is taken as
the origin, and the coordinates { are taken perpendicularly upward to the
plane including the girder axis, and the coordinates p in the radial direction
over that plane. Here, the axis 0p is assumed to pass through the centroid of
the cross section.

Next, the cylindrical coordinates ¢ are taken from the primitive line 0.4
in the peripheral direction along the girder axis toward the other end B of the

B

Fig. 2. The system of coordinates and stress resultants produced at any -cross-section
of a curved girder.
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girder. The origin of these cylindrical coordinates (p, ¢, {) is the center of cur-
vature 0. Moreover, let us take a pair of orthogonal axes 0, ¥ and 0,,z through
the centroid 0,. An axis 0,y is parallel to and in the same direction as axis
0p, and another axis 0,z is parallel to and in the reversal direction as axis 0. -

These rectangular coordinates (y,z) are assumed to be fixed to the cross
section of girder.

Likewise, another pair of coordinates (y,z) having the common origin 0,
with the coordinates (y,z) are introduced in the direction of the corresponding
principal axes of the cross section.

In this case, the axis 0y is inclined at an angle & to the axis Oy in the
clockwise direction.

Now, the stress resultants induced at any cross section of curved are denoted
as follows:

1. The shearing forces in the directions of the axis 0,y and 0,z by H and @,
respectively;

2. the axial force acting on the centroid in the direction of the girder axis by N;

3. the bending moments about the axes Oy and 0z by M, and M, respec-
tively, and

4. the torsional moment about the axis of shear center by 7'.

3. Pure Torsion

This paragraph deals with the deformations and stresses of curved girder
under pure torsion. In this case, end pure torque T, = T;, and T = T, act
on both ends 4 and B of a free curved girder mutually in the opposite direc-
tion as indicated in Fig. 3. It is necessary to act suitable external forces besides
this torque for static equilibrium of whole structure unlike the straight
girder. In other words, the reactions V, = V and Vz = V should be applied at
both supports 4 and B. The magnitude of V may be evaluated by

V=T,/R,, . (a)

where R, is the distance as measured between the shear center and the center
of curvature 0. Regarding the shear center further description will be given
in paragraph 12. In each Figure, the symbol << indicates the necessary torque
to advance the right hand screw in the direction of its arrow.

The symbol © indicates the force acting in the direction perpendicular to
the plane of this paper and toward the back, while the symbol ¢ has a meaning
reverse to what was above described. Now, let us consider the stress resultants
under pure torsion at any cross section C' which is situated at an angle ¢’
measured from the primitive line 0 4.

From the conditions of static equilibrium of a free body AC cut off by the
cross section C, the torsional moment 7', the bending moment M ,, and the
shearing force @) are expressed as follows:
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T = Tycosep’'+V Ry(1-cosg’),
M, = - Osin‘qa'-l—VRosin(p',
Q =V
My
T C
Q’,
A
l
I /\c,a,\
I / To
] /7
|
[ey/
[ 7
l,//
Fig. 3. Pure torsion. 0

Fig. 4. Stress resultants at any
cross section under pure torsion.

Applying above relation (a),
T=T,, M,=0.

It can be seen that the uniform torsional moment 7, and uniform shearing
force V are produced, but no bending moment is presented.

Generally in cylindrical coordinates, the required relations between six
compvonents of the strain and the corresponding three components of the dis-
placement can be written as follows: ‘

_ou _low u _ v
° T&p’ ' T T U (5)
lou ow w ow 1 ov ov Ju

= — —+4 —_— =——+———, = — 4 —.
T T o ae dp  p YTl Tpae Y% T ap T 0L

Furthermore, under pure torsion, the displacements u, v, w at any point
D (p, @, {) within the girder should be investigated. For that purpose, let us
take the shear center S of the cross section as the origin, through which a
pair of axes of rectangular coordinates (Y, Z) shall be fixed perpendicularly
downward and radially outward at the cross section. Thus, any point at the
cross section can be expressed by those coordinates (Y, Z).

We must take into consideration the differential change d = df/de’-dg’
of the torsional angle 6 in the case where the peripheral coordinates ¢’ change
by the differential quantity de’. So, the difference in the displacements of
two adjacent points (Y, Z) in the cross section C’ situated at the peripheral
coordinates ¢’ +dg’ and in the cross section C' at ¢’ are du=Zdf and dv=Y df
in the p-direction and the {-direction respectively.

How much contribution do these relative displacements of two neigh-
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bouring cross sections C, ' make to the displacement of the points (Y, Z) at

another cross section D?
As it may be seen in Fig. 6, the displacements » and w in the plane of girder

axis may be expressed by the following formulae:

*do o
U = J Z@TCOS@P—?’ )do’,
° (6)

ao . N W, df
w = ——fZZl—gsm(qp—q))dq) +ch_i$'

S - Y
e
rs Zd@
1 vd6 '
as
Fig. 5. Differential element ds and Fig. 6. Displacements « and w
rectangular coordinates (Y, Z). under pure torsion.

Clagil)

Fig. 7. Displacement v under pure torsion.

On the other hand, the displacement v in the {-direction may be expressed
by a following formula according to Fig. 7.

v = {17 —p 1 —cos (p— ¢/} . )
0 P
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The second term of the expression (6), represents the warping due to torsion
bending phenomena. '

Next, by substituting the displacements (6) and (7) into the fundamental
Eqgs. (5), the strain components may be given as follows:

d*0
€p=0, €§=0, Gq,-——'- MW, (8)
P
1 ", aé do oW, do
yp¢=;[—JZd -sin (p —¢') do’ +Zd ] (8p8p+m)_—R2d(p

?)
1 do . N1 dé
—;[—!Zggsm(?’—ﬁv )do’ + W;Pm]

Assuming that the middle plane of the thin-walled member is inclined at
the angle « to the axis 0p at the considering point D now, the tangential
direction of the curvilinears coordinates s will have come to be inclined at the
same angle « to the axis 0p. If the coordinate % is introduced in an outward
direction perpendicular to the coordinate s as shown in Fig. 8, the following
relations may be obtained:

ow, oW, ow, . oW, oW, . ow,

9p  0s CoSaT T S —8§——_3—§_8ma— on

COS .

Substituting these relations into the Eq. (‘ 9),

(oW, Z oW p . \db ,
wa—(ﬁs Rz on RE )d_r; (%)
In the same way, |
LU IPN SRLL T WRY. ~
Ylw“‘(as ke +7 n R2°% )d(P’ vy =0. (10)

The relationship between the corresponding strain components in the
directions of the rectangular coordinates (p,,9) and those in (s,n,¢) can be
readily written as follows:

€ =€, cos? o + € sin® o + 2 Yy COS sin o,
Ysp = Yop COS &+ vy, Sin a, (11)
Yno = YgpSIN & — Y7, COS .
Again substituting the Eqgs. (8), (9) and (10) into the Eq. (11), the following

simplified formulae can be easily obtained.

ow, p

0 Y Z de
€& =0, Ysp = 58 R2 —smcx-{-;cOSa d‘P

From the geometrical relationship between the position of the point D
and that of the shear center S taken as the center of torsion shown as in Fig. 8,
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Y sin « + Z cos a =r, where r, denote the distance from the tangent DH at D
to the shear center. Then the shear strain of angles (s,p) and (n,¢) will be
readily obtained as follows:

_ (oW p i) 40
Yso T \os R2 P

(oW, p 7,\db
o’ Yno = (‘37 R ;)— (12)

where 7, denotes the distance from the normal Dn at D to the shear center.

S dp

a+2dp

Fig. 8. Relative position of shear
center to a differential element.

Fig. 9. Stresses under pure torsion.

Accordingly, the stress components may be found as follows:

W, d2¢

% = oy Baggr(= o)
(oW, p ) db

o = (5 i+ ) g (13)
_ ow, p r,\db

o= (G )

In the case of pure torsion, no normal stress o, is produced because df/d¢’
become constant, and the shearing stress 7, , is generally small.

Next, let us consider the static equilibrium concerning the differential
elements cut out from the girder by two neighbouring cylindrical sections with
radii p and p+dp and two radial sections. interacting on each other at a dif-
ferential angle dg. As already described, there are only shearing stresses 7,
which are uniformly distributed over the thickness ¢ and are parallel to the
tangent to the middle plane of the thin member. So, the shear flow ¢, along
the cylindrical section with a radius p is expressed by the definition.

qs =qu,t. (14)

- About the differential element as shown in Fig. 9, let us consider the equi-
librium of two shear flows in the peripheral direction. A

Here the middle plane of the element is assumed to be inclined at any
angle « to the axis 0p. Then the equilibrium condition of the moments about



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 153

the point 0’, where the axis 0 { intersects with the plane including the element,
may be expressed as follows:
dgs

gspidpseca = (QS+E;dP) (p+dp)2dopsecc.

Neglecting the second order of the differential term,

g, _
" +2q5p = 0.

Solving this differential equation, the following general solution can be
obtained,

¢sp* = const.

It may thus be noted that the magnitude of the shear flow ¢, is inversely
proportional to the square of the coordinates p of the considering point.

Now, let us the shear flow going around the kth. cell denote ¢, and then
put the integral constant equal to R?g; for the kth. cell. Then the following
equation will be obtained,

qs,k p? = R2qy.

Consequently, at the point p belonging to the kth. cell, the shear flow ¢
will have the following magnitude,

R2
Qs % =~;2-qk- (15)

In the Eq. (15), g5 will be called the standard shear flow belonging to the
kth. cell.

The Eq. (15) always be satisfied for the closed cross section with arbitrary
shape. If the girder has any closed section with multiple cells, the shear flow
¢s in the thin member surrounding the kth. cell may generally be given as
follows:

9s = s, 1 In the nonboundary wall belonging to the kth. cell, (16,)
qs = G5 —9s k-1 in the boundary wall between the kth. and (k—1)th.
cell, ‘ (165)
9s = 955 —9s,x+1 In the boundary wall between the kth. and (k+1)th.
cell. (165)
o [P
Fig. 10. Section with multiple cells. —F
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Furthermore, the torsional function §, is defined by
(17)

where G, is the shear modulus of elasticity of steel. Substituting the Eq. (15)
into the Eq. (17), the circulating shear flow q, ; is easily obtained.

R\2 ae . /
9o, = (7) GSWQk- (177)

Hence, by applying the Eq. (17’) to the Eq. (16), the shear flow ¢, in the
wall belonging to the kth. cell will have the following value:

2 2
q, = (ﬂz G _%Qkﬂ) G i in the boundary wall,

b "Rdgp
R2 dé (18)
qs = o G Gsm in the nonboundary wall.

By applying above result to the Eq. (13,), and then integrating it with re-
spect to s,

W, = W,+ W,, (19)

where W, represents the value of W, at the original point s=0.
Besides, W, may be evaluated as follows:
8 R3 ‘.S R3 /f
— . N . T :
W, = .[Fqkngs-—J ?qkil—t—gds——RzJ Fds in the boundary wall,
(20)

— ’ R3 . n, ] Te .
W, = —aqk—t—ds — R%} —3ds in the nonboundary wall.
P P
0 0

Now, let us take the curvilinear integral around the kth. cell, then the
following equation may be obtained by means of the periodicity of W, value.

ow,,
fﬁasds_o. (21)

k

By applying the conditions (21) to each cell, the following simultaneous
equations for ¢, can be readily obtained.

. R3 n, . [ R3n, . " R3 m, r
—qk_lf';)—a—TdS-{‘qk ?Tds—Qk+1J FTds = Rzﬁﬁds (22)
k—1,k k k,k+1 k

Where § is curvilinear integral around the kth. cell, and { boundary
k ko k+1
wall between the kth. and the k + 1th. cell.
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The expression for torsional moment becomes

Ts‘ = qursds.
F

Substituting the Eq. (17’) into above expression, we obtain

do ;
q?s = GSJR_d(p’ (23)
where (,J denotes the torsional rigidity and the torsion constant J can be
evaluated as follows:

J=Zg~kR2<f;’—;ds, (24)

where Z indicates the summation all over the cross section.
7

In the Eq. (23), since 7} is constant, df/de is also constant for the girder
with the uniform section. Then, by eliminating 6 from both Eq. (17) and (23),
the shear flow ¢, can be given as the function of the torsional moment 7.

RT
s & =?ij- (25)

4. Pure Bending Normal to the Plane of Curvature

Pure bending normal to the plane of curvature before deformation is defined
as the condition of deformation in the case where the curved girder is bent so
as to deflect along the side surface of a cone the vertex of which coincides
with the center of curvature 0. In this fundamental deformation, the differen-
tial element C'C' BB’ which is initially situated in the plane of the sector
0AD and cut out by the diametric radii 0C and 0C’ holding the differential
angle d¢’, will remain on the common plane 0C C” even after deforming. Then
the section B’C" has come to be inclined at angle dy to the section BC and
translate to B”C”. That is to say, | B BB"=| ¢"CC”"=dy, and that dylde’
is constant all over the girder.

By the relative inclination between the two adjacent sections, the displace-
ment components of the point D (p, ¢, {) at the section ¢ will be consequently
found by the following formulae,

. <P' ’ dy ’ ® 3 ’ ’
u=fSln(<P—sv)zd - de’, v=fPSln(<P—<P)d - de’,
0 ® 0 @ (26)

where z is the distance between the point D and the neutral axis of the girder
section.
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Fig. 11. Displacements under pure bending normal to the plane of curvature.

By substituting the Eq. (26) into the fundamental equation of the strain

components (5),

z dy
€. = €y = = ‘y = = 0 5 €, = — —.
p = €= Yoo ol = Y ° = o de
Thereafter, only stress components are induced
z dy
% =

and all others are nothing.

5. Pure Bending in the Plane of Curvature

(27)

Let us define as pure bending in the initial curvature the condition of defor-
mation in the case where the girder is bent so as to be wound into the cylindrical
surface the axis of which is 0 {, namely, the perpendicular through the center

of curvature O.

; f—R):—:,dv‘ Fig. 12. Pure bending
in its own plane.

In the plane of the initial curvature, the adjacent section N'C’ defined by
angle ¢’ +d¢’ rotates at differential angle d¢’ relatively to the section NC

defined by angle ¢’ after deforming as shown in Fig. 12.
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Due to this deformation, the displacement u,v,w of the point D at the

section ¢ will be given as follows:

s Ndd ., _ ¢ e A
u——OfRsm(??—(P)(—l?d‘P, v=0, w—J[P—RCOS(q’—‘P)]W (28)
If these values are substituted into the fundamental equations of the strain

_y9%

de¢'.

components (5),
€. = €y = = = = O’ €, = — s
p L= VYoo = Yol = Vip °= b de’
hence the stress components will be expressed as follows:
n p de

6. Pure Bending About the Principal Axis 0,y

Let us act two equal end moments M; about the principal axis of the cross
section and at the same time the uniformly distributed torque M;/R; per unit
length along the girder axis in order to maintain the statical equilibrium as

shown in Fig. 13.
(b)

(0}
M
m
M n T~ M;
! ,Mx D, Ry
i-FT )AI ' / /MI
B |t A ,’ r/
N 1 / ! 7 /A
\ i / f' ,/ /7 Ve
\ ’ /
\ | // ! /,/ /,
\\ Py } /7 ,L‘PI /’ //
/ .
\v/_i—'r-eg\’/ 'd}:,/’/?\’yz
N I ’ | ’/I‘:
\ [ 1/
N L
N7 (s
/
Ny ¥
0

Fig. 13. External and internal forces under pure bending about the principal axis 0.9

The stress resultants at any section D are calculated as follows:

Q@ =0,
@
My = {Mlcomp-i—f_Risin (p—¢") Rd<p’}cos2z9+MIsin2f} =M,,
0
9
T ={M;sinp—|M;cos(p—¢')dp'}cosd = 0.
0
* It may be noted from the above equations that the constant moment M,
about the principal axis 0, ¥ is produced all over the girder axis, and no other
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stress resultants are present everywhere. This is nothing but a state of pure
bending.

If the girder has a uniform section, it also has a condition of uniform
deformation, namely, the constant curvature d7/de’. Thus, the displacements
at the point D (p, ¢, {) will be found from expressions (26) and (28) as follows:

@
. dn . dn . } ,
u = | isin(p—¢')z-—cos?+ Rsin (p —¢') 5 sin 3¢ do’,
Of{ (p—9') do (p ‘P)dqp P

v = fp sin (¢ — ) dn, cos #dg’,
0 d‘P

w= f {cos (p—9¢')z ;(:, cos P+ [Rcos(p—¢’) —p]a%?,—sin 29'} de'.
O 9
Substituting the above expressions in the fundamental equation of strain
components (5).
zZ dny

€ = €y = = = = 0, €, = — 7.

p = €= Yoo = Vol = Yip ° = 5 de
Hence, the only stress components are produced as follows:

0¢=E——z——@

s,np d(P (= GI) (a‘)

and all others are nothing.
The relation between the bending moment M; and the normal stress o;
may be obtained as follows:

F
By substituting the Eq. (a) in the above equation,

d
M; = E, IgR—;)(P, (b)

where [; = f —ﬁi:tds is the principal moment of inertia about the principal

axis 0, .
Next, by eliminating » from the Eqs. (a) and (b),
_ My R
=0Ty o (30)
As no axial force is presented, the following equation may be given,
zt
f——ds =0. (31)

np
F
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7. Pure Bending About Principal Axis of Section 0,z

In the similar way to the pure bending described in the preceding section 6,
let us act two end equal moments M;; as well as the uniformly distributed
torque M;/R;; per unit length all over the girder axis.

In this case the stress resultants at any section D are as follows:

Q =0, M; = My, T=0.

Again, bending moment M;; about the principal axis 0, z is produced all
over the girder axis, and there are no other stress resultants. This is also a kind
of pure bending.

The displacements will be induced at any point D due to constant curvature
dx/de after deforming, and may be expressed analogous to Eqs. (26) and (28)
as follows:

u = }Dsin(cp —q)')(ZTX, (zsin® — Rcos ¥)dy’,
0

? . dx .
v = [psin(p—o¢')=sindde’,
Ofp (¢ qo)d(P P
¢ ’ ’ s dX ’
w = [{[p— Rcos(p—¢')]cos?+cos(p—¢ )zsm&}dq), de'.
0

Substituting the above equations in the equation of strain components (5)
again,

T |
&e

€p=€Z='yptp=Yw§=7§p=O’ €W=

Hence, the stress component is only

_ B gax, _
nop

Op

and all others are equal to zero.
From the condition of no existence of axial force,

fﬂds =0. (32)
np
F

The bending moment Mj; is clearly
M;=[oyydF.
ba
By substituting the Eq. (a) in the above equation,

dx
ME = ESIEﬁTqD’ (b)

2

2
where I, = fﬂtds. (33)
np
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Eliminating ¢ from the Eqgs. (a) and (b),
_My B
o= n IE p .
On the other hand, by applying the Eq. (1) to both conditions (31) and

(32), and by replacing the coordinates,

G,=0, G,=0. (34)
The above equations are nothing but the conditions for determining the
position of the neutral axis. From the Eq. (34,) with attention to y=p— R,
F

S
—ds
np

R= (35)

For the reason that the Eqs. (34) agree with the definition of centroid
described in paragraph 1, it may be noted that both neutral axes pass through
the centroid 0,,.

8. Pure Tension

Let us consider the case where two equal tensile forces N, are applied at
both ends 4 and B of a free curved girder as shown in Fig. 14.

In this case, so as to maintain static equilibrium, uniformly distributed
radial transverse load N, per unit central angle must be applied too.

D
N I/
-2
B R I A
11/
No \\ ,// 7/ \No
! /
\\ 1 ’
A de 4 e
R i s
\ % /
N e %
N II/ S
\\V,//
0

Fig. 14. Pure tension.

Under this loading condition, the stress resultants at the section defined
by angle ¢ may be evaluated as follows:

Q = Nysing—N, cos(p—g)dg’ =0,
0

N =Nocos¢+Nostin(<p—¢')d¢’=N0,
0 _

M,=Ny,R—-NR=0.

Consequently, the constant axial force N, only is produced.
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As shown in Fig. 15, the relative displacement of the adjacent section N'(’

defined by angle ¢’ +d¢’ will be caused to the section N C defined by angle
¢, and N’ C’" will move to N”C".

Fig. 15. Displacements under pure tension.

The displacement of the differential fibers NN and C' ("’ are as follows:
N'N"=C"C" = Rdy.

Therefore, three displacement components u,v,w at any point D (p, ¢, () are
expressed as follows:

¢ d : ’ ’ P d ’ ’
uzngzsm(q)—q))d(p, v=0, w=0fRI;l‘700s(q>—(p)dq>. (36)

The strain components can be readily obtained by substituting the above
equation in the Eq. (5).

R dy
€ =€ =Yoo =Yl =V = 0, €m=73(;'
Therefore, the stress components are
R dy
Op = Esn—p E;(_ o) (a)

and all other stress components are vanishing.
The relation between the stress o, and the axial force N is expressed as

follows:
N ={(o,dF.
F

Substituting the Eq. (a) in the above equation

=g [E 2y
de) p n
F
By using the Eq. (35),
N=gr% | (b)
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By eliminating di/de from both Eq. (a) and (b),

RN

On the other hand, the bending moment M, about the principal axis 0,z

will be found as follows:
M;=(o,ydF.
F

Substituting the Eq. (37) in the above equation, it will be noted that M;
vanishes by means of the condition (32). Regarding the bending moment M3
about another principal axis 0,y likewise vanishes. That is to say, no bending
moment is produced in pure tension.

9. Torsion Bending

If the nonuniformly distributed torque and transverse load are applied at
a curved girder so as to maintain the static equilibrium, both the torsional
moment 7' and the shearing force ¢ produced in the girder vary as the func-
tion of variable ¢. Such a condition of deformation is defined as torsion bending,
and that can be created practically. Since 7' is here not constant along the
girder axis, it can be seen from the Eq. (23) that the specific angle of twist
df/de will also vary along the length of the girder even in the case of uniform
section. In the similar manner as the straight girder, the normal stress o, is

f P
(Tt +8-§:-'dp sec ou) dp (p+dp)

/ d
(o t+8""'d )d ’
LR v P)dp sec ot

ow! dpsec &«

Fig. 16. Stresses under torsion bending.
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produced as the result of restraint on warping and its value is found by means
of Eq. (13,). Then the secondary shearing stress r,, should be induced to resist
secondary normal stress o,. In order to find this value, let us consider the
static equilibrium between the stresses acting on the differential element as
shown in Fig. 16. Taking such fact into account that the direction of the
middle plane of the differential element is generally inclined at an angle « to
that of the axis 0p, the following equation for static equilibrium can be
obtained.

0Tyt 2’rwt 10do,t

5s T o Nt g

=0. (c)

So, let us adopt the following formula as the secondary shear flow g,,.

E, d30
Gw =Tt = "R dq>3 q (8): (38)

where ¢* is a function of coordinate s only, and will be named as the torsion
bending function.

Substituting the Eq. (38) in the differential Eq. (c), and eliminating the
common terms,

dg* gCOs & R Wt
+ J—

* .
ds p p m

By solving this differential equation,
q* =;~(RfW pds+S, ) (39)

where S,, represents the quantity respected to a statically indeterminate shear
flow and may be found by the following process.

In the differential element of curved girder included between two radii
with the angle dp between them, the potential energy dII will be stored as
follows:

1 (a2 72 do
dIl = f(E G)tpde(p T%d(p.

Therefore, the total potential energy IT of the curved girder is

{”(E )i JT—dw} | (@

Generally, the shearing stress =, in the circumferencial wall of the kth.
cell is caused partially by shear flow ¢, due to pure torsion as discussed in
paragraph 3, and partially by the secondary shear flow ¢,,. In the wall
belonging to open cross section, ¢, is not present of course.
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T (Yo + Quotc) Nonboundary wall,

(40)

eo-ll—l u-lt—i

(9o — 95, k+1+9wn) Boundary wall.

Of above expression, q,;, may be written in the following form from the
Eqgs. (38) and (39).

3
Tk = 11;}3 3 2 : —5 (@oor + Suon) Nonboundary wall,
(41)
E d30 1
S TR 4R (qwk+ka Sy rx+1) Boundary wall,
— s lp
where Qoo = B W= ~ds. (42)
0

By means of the principle of least work, the variation 811 of II for the
variation 6 S, of S, should be put equal to zero.
8IT=0.

Based on this condition, by the use of the Eqs. (d), and (40) to (42).
do “R3ng . df [ R3 My 1

~

"1 R g | o5t d”q’czqu; 5T
k, ‘—1
. df R3 ny wak R2r,
_q"“qu; p3t ds fﬁ Gpt as ”qu;é; ds = 0.

k,k+1

The first three terms and the fifth one of the above equation can be elim-
inated by using the Eq. (22), and then the following equation can be conse-

quently obtained.

qu“’—’ft@ds - 0. (43)

Substituting the Eq. (41) in the conditions (43), the simultaneous equations
for S,,;, are obtained.

S, k- 1fR =204 + + Sy Zingds wk+1fR ™0 ds = fﬁR qw’cngd (44)
i Kk

k,k—1

The following integration will be referred to as the warping moment.

Mw=—11—g—fostde. (45)
Va

Substituting the stress (13) in Eq. (45), the warping constant C,, can be
readily obtained as follows: ‘



THREE DIMENSIONAL ANALYSIS OF CURVED GIRDER 165

_ [Pyt
Cw—-fRW;nds. (46)
b
Hence, the warping moment M,, may be expressed in the simplified form,
dxo
Mw = ES CWW. (47)

From both KEq. (47) and (13,), the practical formula for the normal stress
a,, due to torsion bending can be obtained in the analogous form to the bending.
M, W,

0 m (48)

gw
w
On the other hand, the torsional moment 7, will be produced due to the
secondary shear flow g,,.
Tw = J.Qw TS ds *
F

Substituting the Eqs. (41) and (42) into above equation, and considering
the condition (43), ¢,, may be transformed as follows:

a0

(49)
Finally, since the total torsional moment 7' can be found as the sum of the
two kinds of torsional moment 7, and 7, from the Eqgs. (23) and (49),
de d36

T= GSJ—_‘——ESOWW

Rdyp (5]

10. General Bending

In this paragraph, let us discuss the general bending, where two mutually
perpendicular bending moments M,, M,, two corresponding shearing forces
H, @, to above moments and an axial force N are simultaneously presented.

In order to clarify the static characteristics in this case, the rectangular
coordinates (y,z) as shown in Fig. 17.

The origin is taken to coincide with the centroid 0, of the cross section.

The displacements at any point (y,z) of cross section due to deformation
may be found by superimposing the respective displacements given in para-
graphs 4, 5, and 8. Therefore, the normal stress ¢, in the general bending may
be readily expressed as follows:

ax=a£+bi+0—z—, (a)
np np np
where a, b, and ¢ are constant and may be determined from the equilibrium
of the stress resultants and stresses,

fo,tds = N, foyztds =M foy,ytds =M,.
F P F

Yy
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By substituting the Eq. (a) in the above equation, and solving for a, b,
and c.

o NE MI,-MI.R MI-MI,R

*“Fonp' I,L-1:, np’" I, I,—I2, np (51)

Generally, if the stress resultants M,, M, and N vary along the girder
length, the shearing stress = should be induced to balance with the normal
stress o,. Regarding the static equilibrium between o, and =, we arrive the
similar equation as the Eq. (c) in paragraph 9.

ort 27t 10o,t
e - =0.
75+ P cosa+P PP (b)

(
= — Y
Oon| glYq 39 -
w Y

M;

-——R————P‘
Y4

'
z

Fig. 17. Rectangular coordinates.

Fig. 18. Internal forces at any cross section
under general bending. 0

From the static equilibrium of the differential elements, the following three
equations may be obtained,

M, _ ppy N _ g aM,

— = = Q — 52

where  represents the shearing force due to bending about the axis 0, y, and
z, is the vertical distance between the shear center and the centroid.

Substituting the Eq. (51) in the Eq. (b), the shear flow ¢ may be expressed
under consideration of the relation (52) as follows:

g=r1t=—{H{ (5)+Q4(s)}, (53)
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where gy (s) = p—lz (9n+ Sh. 1) Nonboundary wall,
| 7 (54)
P2 (@n+ Sp— S xx1) Boundary wall,
. R,
qp (8) = rl (@p+ Sy, x) Nonboundary wall,
R (55)
p_20 (@p+ Sy, — Sp,x+1) Boundary wall,
o _Lyfa—Iyfy 5 s
“w=Tn-n n (56)
_ I, .
% = z—fz—f—f R - 6D
and I =1+ 1“3’ I,,
] , (56')
I, = ]yz+—1%12,
S . S - s
_ [y _ [z _ (L
fz_‘— f p ds, fy_J P ds, f, = f - ds. (58)
0 0 0

Again both quantities S, ; and S, ;, represent the terms respected to stati-
cally indeterminate shear flow.

By applying the principle of least work to that structure, the similar con-
ditions to the Eq. (43) in paragraph 9 are obtained as follows:

§thgds=0, é)mqbngdé*:()
pt pt
k k

Substituting the Eqgs. (54) and (55) in these conditions, the following two
sets of simultaneous equations for unknown quantities S, ; as well as S, ;.

3
Sy Ji""dswhkw Teds— Sy [ Fagde ——3§R-"”””d (59)

ke, k— k,k+1

Rs R?
— Sy 1] p”gds+s,,k5£R " s — S,,,mfl‘;””gz - fﬁ Z’;"gds. (60)

P
k,k—1 k,k+1

11. Shear Center

In general transverse loading condition, torsion always is produced in the
curved girder simultaneously with bending.
In this case, if the shear center is not chosen as the center of torsion, both
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bending moments and warping moment cannot be defined by such plainly
formulae that have already been given in previous paragraph.

It is very important to know the position of the shear center S by this
reason.

As shown in Fig. 19, let us adopt the coordinates (Y, Z) origin of which
coincides with the shear center S. It is assumed that the position of the shear
center are definitely decided by coordinates (y,,z,) and that both axes §Y
and S Z are parallel to the axes 0,y and 0,z respectively as shown in Fig. 19.

¢
On Y
o 3
\ S (¥s,2s) -
% '
s 4
z Y \&dl
z dy
D
(y,2)
R y (v,2)
Ro ‘! Fig. 19. Shear center.
P

Now, taking the point S as the center of torsion,
S f Sd Sd
T To y 2
—ds=J—ds—z f~+ — a
J P’ p* o) o T 2
0 0 0 0

where r, is the distance from the tangent at any point D to the middle line
of the thin member to the centroid 0,. The integral of the second and third
terms of the above equation may be evaluated as follows:

S S S

dy(s) y—vy dz (s) 1(z =z r
f 2 07 2 E(—‘——O-" —gds .
0 0 0

P P Po P P Po P

In above equation, y,, 2, and po denote the values of three kinds of coordi-
nates y, 2 and p at the point s=0 from which s is measured respectively.
Apply the above equation to the Eq. (a),

S S
s, _ By 7o Lz _2)\_, ¥=%

Po
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From Eq. (b), we readily obtain.

s 4. Ry [ 79
§?ds——ﬁf§?ds. (c)
P> K
Substituting Eq. (¢) in the right hand side of the Eq. (22), and putting
R P
dr = foQk,o’ (61)

a set of simultaneous equations for g;, , will be obtained as follows:
o R3 n, - R3 n, . R3 n, o [ 7o ,
- okl s — = s = O ds. (22
dx—1,0 o 1 d8+€lk,o§ o 1 ds Qk+1,0f P ds =R p? ds. (22)
k—1,k k kk+1 e
By solving the Eq. (22)" to find §j o, the torsional function §, may be
evaluated by means of the Eq. (61).

Furthermore, substituting the Eqs. (b) and (61) into the Eq. (20), the
warping function W, at any point s will be found.

Ry— R
W9='§m0+~;(zsy_ysz)+%’ (62)
$ s
_ B3, o
where W, = o8 7 ko ds — R? ?ds Nonboundary wall,
0 (63)
] R3 n . r
= f? _Zg (Tx,0 — Gr=1,0) ds — sz p—gds Boundary wall.

W, represents the value of W, at s=0, and should be determined by the
following conditions. The stress-system o,, of this type is set up, which consists
of self-equilibrating stress-systems which are called axial constraint stresses.
Therefore no axial force is produced due to secondary stress o,,, 80

[o,dF = 0. (d)
F
Substituting the Eq. (62) in the Eq. (d), W, will be
=
_R Ff"@o;ds
_ 0

Because of self-equilibrating stress-systems, no bending moment about two
mutually perpendicular coordinate axes also is produced due to secondary
normal stress o,,,

Ffowdezo, F["deF=O- (e)
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By means of the condition (e), the following system of equations will be

obtained.
(Iyz_Bz)ys_ Izzs = Oz’

(Iy— By Ys— L2, = Cy, (65)

where = fﬂ%ﬁds’ Cs = f@d‘* (66)
F P

g B (67)

Weo = _so+ %—R%. (68)

Finally, the coordinates of the shear center § is given by the following
equations.
y, = Oylz“'CzIyz 2 = Cy(Iyz"‘Bz)-OZ(Iy"By)
¢ Iz(Iy—By)_Iyz(I —'Bz)’ y Iz(Iy_By)“Iyz(Iyz_Bz)

Y

(69)

12. Deformation

If the curved girder is subjected to the vertical load, in general the whole
cross section will undergo vertical translation of and rotation about the shear

center S.
The assumed positive directions for the deflection 8 and the angle of rota-
tion B are given in Fig. 20.

¢

yn

Fig. 20. Deformation.
la————— Ry ——-—\

It may be clear from fhe fundamental condition of deformation, namely,
pure torsion, pure bending normal to and in the initial curvature, that the
torsional angle 8 is expressed by the following formula.

0 = B+R8——, (70)

0

where the positive direction for 8 is also given in Fig. 20.
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While the displacement of shear center v, in the { direction may be found
by putting ¥ =0, p= R, in the Eqgs. (7) and (26), and superimposing them up.

@ 9
. N , R/ R
Vo = Ro{fsm(go—q) )d;/,d‘P “f[l—cos(‘P‘"?’ )]g:p?d‘l’}-
0 0

By using the above equation, the following equation can be easily introduced.

d? v, _ dy
g2 T Ro(@“’)-
Taking into account the relation vy = —38,
d2é dy
& = —=L]. 1
P +8 = R, (0 d(p) (71)

I1. Three Dimensional Analysis of Curved Girder

1. Relations Between Stress Resultants and External Forces of Curved Girder
Bridges

Let us now introduce the relations between the stress resultants at whole
bridge section and the external forces for the curved girder bridge under the
distributed vertical load p (p,.¢) and horizontal load p, (¢).

Fig. 1. Stress resultants and
external forces.

Every stress resultant, namely, two bending moments M,, M, about two
mutually perpendicular axes 0, ¥ and 0,, 2, a torsional moment 7', two shearing
forces @, H in two direction 0,2z, 0,y, and a axial force N are assumed to be
positive in such direction as shown in Fig. 1.
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The statical equilibrium should be considered for differential elements cut
out by a pair of neighbouring radial section having a differential angle de.

a) Equilibrium of Forces in the Z-direction

dQ Ra
X = —[pp,¢)pdp, 1
o Ef‘p(p @) pdp (1)

where R; and R, are the horizontal distance from the center of curvature 0
to the inner and outer side of the distributed vertical load, respectively.

b) Equilibrium of Forces in the Peripheral Direction

2o =1 2)
¢) Equilibrium of Forces in the Y -direction
e +nap) =N = 0. )
d) Equilibrium of Moments About the Shear Center
aT Ra
@=My+ﬁfip(p,q>) Y pdp —py(p) Zp,— N z,, (4)

where Z, is the vertical distance between the shear center and the load p,,.

e) Equilibrium of Moments About the Axis 0,y

d£”=QR0—T—st. (5)
f) Equilibrium of Moments About the Axis 0,z

Firstly eliminating both H and N from the Eqgs. (2), (3), and (6), a following
differential equation for M, can be readily obtained.

BM, dM, __ .dp,

P + . o (7)

Next, eliminating both 7' and @ from the Eq. (1), (4), and (5), a. following
differential equation for M, can also be obtained. Putting z, =27, +z,,
M,

R,
d(Pz +Mz/ =thh—JPP2dP- (8)
R; ’

In similar way, eliminating H from the Eqgs. (2) and (3), the differential
equation for N can be given as follows:
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=+ N =pp- (9)

Consequently, by solving these three differential equations simultaneously
under given vertical load p and horizontal load p,, two bending moments
about mutually perpendicular axes and a axial force can be plainly found.
In a special case when only vertical load acts on the girder, as the quantities
pp and N vanish, the solution for M, can be found independently of any other
equations.

2. Solutions for the Simply Supported Curved Girder Bridge Under Several
Typrcal Loading

The differential Eq. (8) has been solved for six typical loading conditions
as shown in Fig. 2, and various kinds of stress resultants and deformations
will be found on the basis of those solutions.

(3)Radial line load (4) Concentrated load

(5)Partially and uniformly distributed load

Fig. 2. Typical vertical load.
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a) Bending Moment M,

The solutions have been obtained for bending moment M, as shown in
Table 1. Where,

L=i(R-F), L="2R-R. (10)

Table 1. Solution for bending moment M,

sin ¢ + 8in (P — @) _ 1]
sin @

| Lipo|

= sin @ +sin (@ — ¢)
| mwiRetiner

L Wmsm(¢— lF)sinqa, 0 e¢=V¥

.Ro sin @
* L Sin(q)—(p)sin‘l’ Y<op<o
Ro sin @ ’ =P=
= _ sin (®— ¥)
<<
e sing, O0=Z¢=V¥
& SN(P—9)inw, W<o<d
sin @ ! ’ = P=
l—cos(®—¥) .
<<
- Ly po s sing, O0=Z¢=s=V¥
sin p +s8in (P — ¢) cos ¥ ] . <
L1po[ S P —1|, ¥=¢=<9o
sin (® — P)
- <<
T sing, O0=Z¢=¥
© Sm((p—q))sm‘l’ Y<ops®
T "sino® ’ = ¥=S

The loading condition (6) corresponds to the case when the concentrated
torque m, about the axis of shear center acts at the position ¢ =4.

Where my is assumed to be positive in the case when the girder inclines
inward.

If not any horizontal load acts on the girder, the axial force N and bending
moment M, will not be evidently produced.

b) Warping Moment M,

In every loading condition shown in Fig. 2, both B, and N in the relation
(4) will vanish, so that
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ar Ra
——=M,+[pYpdp. (11)
d¢ v Ia
On the other hand, it may be fairly recognized that there is the relation (4)
between the warping moment M,, and torsional moment 7'.
aMmM, GJ ar

— 2 -
T B M =Ry (12)

By using the Egs. (‘11) and (12), the differential equation for M, can be
readily obtained.
am,

P —a2 M

w=—R(M +J.PYP(ZP) (13)

where o=

(14)

Table 2. Solutions for warping moment M,

1 R Ly Sin<;o+sin(¢15-—q>)_ Ly —_Iﬁ SiIlhozq)-i—Sinhoc((D—q))_ Ly
M| EPomiy sin ® 21 o sin o« @ 2
al Bw R® sinp+sin(d—g¢) ( B2 RRo\sinhag+sinha(d—9) RRo
(2) a2+ 1 sin @ 2+1" o sin o @ R
R Ly L3\ sinha(®P—¥) . Ls sin(d— V)
_ e B - ¥ I <<
) Ro {(oc2+l az)“ smhoo Snhevt oy —r s m"’}’ O=¢=¥
R Lo L3\ sinha(®—9¢) . Ly sin (P — o)
=t 2 By x\mTe <p<
Ry {(a2+l az)oc sinh o @ Slnhaw+o¢2+l sin @ Slnlp} ¥zo=2
R o\ sinhea«(®— ¥) R sin(9—%) .
<o<
@ RP{(a2+1 az)“ smha® CRRatt o Sm"’}’ Ose=¥
R Ry\ sinha(®—¢) . R sin(®—g) .
i) Wil S 5 <o<
RP{(a2+1 az)oc shad smhoc‘}’+m2+1 i sm’{’}, V<<
Li  Ls\cosho (®—¥)—1 . Li 1l—cos(®—¥) .
Rp°{(a2+ 1- ?) sinha®  SPhert Ty sind o0 "’}’
: . 0= =¥
(5) L sing+4sin(®—g¢)cos ¥
Bpoz11 sin @
Lo\sinhap+sinha (P—¢)cosha ¥  Ls
<
( 241 ocz) sinh o ¢ az} V=99
R sinh o (®— ¥) . sin (®— V) .
" "’”Tazu[ sinh o« @ Smh“”“?stm"’]’Oé"’gg’
R sinh o (& — ¢) sin (@ — ¢)
_ SNt <
mTocZ+l[a sinh o @ sinh & ¥+ sin @ Smlp] Y=oz
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The solutions of the above differential Eq. (13) under various loading con-
ditions are found as shown in Table 2, where
L, = R}(R,- R,). (15)
c¢) Torsional Angle 6
The torsional angle § may be readily obtained by integrating twice the
expression of M,,, that is
M
- w_ P2 2
0= || 5o B gy + A+ B, | (16)
where A and B are the integral constants and are determined by the boundary

conditions.
The results are shown in Table 3.

d) Angle of Rotation B of Section

The differential equation for angle of rotation B of section becomes as follows:

2B Re R
gt =Moot Mg 1 (7
. ’ 11212
where I, = b (18)

The terms including M, and M, in the right-hand side of the Eq. (17) have
- been already known as the function of available ¢ and given in Table 1 and 2.

By using these value, 8 may be found for the same typical conditions as
shown in Table 4. The constants «,, x, and «; included in Table 4 have the

following values.
; R? 1 1L, _
Ky = [Est(a2+l) +ESI;,] 35 (19-1)

R L L
2 = F,0, (2+1) (a2+1 ‘?)’ (19-2)
2
Kg R L2 Ll (19-3)

T E,C,2 T E,I,
The constants u,, u, and u, are given by putting L, = R%, L,= Ry R in «,, «,
and «; respectively. Moreover, the constants v, and v, is given by
R? 1 1L,
n1= [Est(oc2+ nt Esl;] i (20-1)
R? L, L,
o e ) 2072

v —
2 aZ+1 o2

e) Deflection &
The deflection & of shear center at any cross section may be found from the
results of tables (3) and (4) by the following formula, &= R, (6 —8).

The solutions for & under the same typical loading conditions are given in
Table 5.
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Table 3. Solutions for torsional angle 6
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Rpo{(Lz L )Sinhaq)-}—sinha(@—-(p) L 2Sin(p+sin-(¢—<p)

a) GsJ ?I‘azzﬂ 2 2sinhzx<1'> Terl” sin ®
Lpe 22 )
RW{(&_ R )—sinha¢p+sinh<x(<15—¢)_ R2 azsin<p+sin(<l>—q;)
@) GsJ olc;R_a@:-l . sinh o @ a2+ 1
22 (“;¢—“2¢—1)+R2}
RW {( Lo ___L_a) Sinh.a((p_ql)sinhmp
RoGsJ \o2+1 o? smhocdf
. —azL:1a2Sin;ii;W)sintp+L3(p;wcp}, 0S¥
) .
RfGI:fJ {(azL:I “‘f—;) %Sinh“ ¥
_azlea2SinS§:;¢)sin‘I’+L3(p;q)?’}, Y<o<d
[ —E{(i_&) Sinh.“((p_y,)sinha(p
GsJ\e2+1~ o2 sinh o ®
4 _
— afif 1 o2 sinsgf;; (P)sin Y+ Ro <p; Li ‘I’}, Y<op=o
- L N
(5)

GsJ

Ropo ([ Le L; \sinho p+sinha (®?— ¢)cosha ¥
o2 a2+ 1

sinh « @

Ly ,sing+sin(P—g)cos¥ Ly 0y @ 4 Ly
S sin @ —g e ¥t Le (@ ¥+ In— 50,
Y=¢p=9o
Ro sinha (@—¥) . sin(@—¥)
) TG T (a2+1)| sinha® T s o s
(6)
Ra sinh « (®— @) . sin (& — @) .
_mTGsJ(a2+l){ sinh « @ einh g ¥—ga sin @ sin ¥,
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Table 4. Solutions for angle of rotation B of section, A = (R2/L1) «

[l1—cos® sin ¢ )
Rpo{xl [W(quOSQSin_-—@—(PCOS(P)-*_((P_¢)Slnq)]

[sin p+sin(®P—¢) sinhae+sinha ((D—-—qu)] [sm<p+sm(<15 ®) ]
+ k2 n - B + k3 -1
sin @ sinh o @ sin @

(2)

l1—cos @ sin ¢ .
R - —®
RW{M[ s (tlicosglisinq5 <pcos<p)+(qo )smqu]

singp+sin (®—¢) sinhae-+sinh o (P — ¢) sin ¢ +sin (@ — ¢)
n| - Jou -

sin @ sinh o @ sin @

R sin (@ — ¥) sin ¢ N ] [ ] sineg
EW{VI [————~—(¢cos¢s—i—;6——q>cos<p +NP—¥Y—DP—¥cosP— V)

sin @

) . +v2a[ﬂ§§—}¥%¥1)sinha¢—asm(¢—W):;zl;{_]}; ()fiq,_g__ yl[_7
o[ o v )i d e d ]
+v2a[%"°—)sinhaw—asin(<p—¢):§‘1§]} Y<o<o
R~P {F-l [Sins(ii; ¥) ((p cos @ %111—; — @Cos <p) + (sin ¢IT'}-’— dir———_'}’cos <15rj5|”) :;l;]
i P — . . i
& {#1[ sin;q))(dicosdi:;g{p—'{’cos ‘1’)+(sm¢ p—DP—pcos D — ‘P)SE ¢]
+pza sin?—u%—y(sinha ¥ —osin (P — ¢) :izz]}, Y<op<o
Rpo{si:11¢ [(cos ®—cos ¥) ¢ssiin%+ @ Cos ¢ (cos gj‘l’— 1)+ ¥sin (@ — ¥)sin (p]
+xe [COSh:ir(li;:)_lsinhaqo+:l;1¢(1—cos<p Y’)]+x3[l—cos (@ — )] S:II:;}
Osp=V¥
(5) Rpo{si;1¢ [(cosd)—cos ¥) cb:ii::;— pcos ¢+ @cos (P — ¢) cos ¥+ ¥sin (P — ¢) sin lp]
4 'Sint;ﬁ"l-Sin.((p—cp)COS ¥ Sinhoup+sin¥1¢z(¢_¢)c()sha r;/]
. sin @ sinh « @
+ k3 :grr:—g-l—sin((D-—gp) :iolf:;l— 1]}, P<o<o
—mn {2 [ZE (0005 0 22— cos o) + (sin & — ¥ B~ Weos - ¥ S0 ]
3
(6) TE ‘?ﬁ“ZﬁL 1)2 [Sm;mqusmh P S_H%(;éqj—%,s—:q’]} rié ‘7’; ¥
—mr{% [SI—I;%——;TL)(¢COS¢:$‘;’— ¥ cos Y’)—i—(smtp p—P—pcosP— qp):lizg]

R34 [sinhcx (D—¢)
sinh « @ sin @

. sin (P
+ B, Cu (21 12 ~sinh o ¥ — o Msm 'I’]} VY<¢pxZo
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Table 5. Solutions for deflections &

Ly o2 R2 2

WE G Tt e = Eyayy tetee

(2)

RoRpo{_. 5; sinh « ‘P'f'Sinhoc(d’—tp)_wl Sin<p+:s,in(<]§—¢)
o sinh o @ Sin @
+ G:J [%2(“2;@5— e 1)+L1]
—n [%%E(MOWSE—Wm%(¢—¢>sin¢] +.<3}
RoR W{"fzz sinhaws-;-nslilljl;@—cp)_wg sinqoz;ilnq)(@_q,)
RENTORN.

1—cos @ sin ¢ .
—m [W(¢cos¢sin(p—<pcos<p)+(<p—-q5) Slntp] +p.3}

RW{— ———sirﬁ1a<p+ac2[vg

R W{— S & (D= %) irh o Wt a2 [vz

ve sinh o (P — ¥)

sin ¢

Ly ] sin (& — ¥)
o sinh « @

T GsJd (2+1) sin @

sin
D cos D —
sin

sin (@ — ¥) @ o8
i 5= oS
sin ¢ Ly &—¥
sin ¢ GsJ @

)
+(sin®— ¥ —®— ¥Ycos d— ¥) (p}, 0=V

ve sinh a (P — ¢) in ¥

L ] sin (@ —g) _

« snha® T GJ(2+1)] sino

—1n [S—m——(—?:—(p—) @ cos diS%n SU— Yecos ¥
sin & sin @

Sin L3 @ — @
sin @ GsJ @

. I 1 [
+(sin®P—¢p—P—gpcosP— ¢) 'P}, Y=<¢=9

Ry

RoR

R

. ¢_ .

: sin
a sinh « @ ?

R2 ]sin(ds—sv)

GsJ (2+1)] sin®
sin ¢

@ cos @ -

( cos Snd poOSqD)

[sin (2—-¥)
R sin @

Sin(p ROR -

. ¢l—| g)i__l @r-_]
+(Eme—g—2—gpcos —(P)sind>+GsJ e 7

}’ Oé‘l’é?’

P{E Msinha Y2 [#2_

R2 ] sin (@ — ¢) .
o sinh o« @

GsJ (oc2+ 1)

sin (@ — ¢) sin ¥
- PV Ve —
#1 [ Sind ( cos (psin @ Y cos ‘I’)

U R [ 1 sin¥?]  RoR ®—¢
D P — —
+ (sin @ pcos D— p) s ] G.J
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1 —cos(®— ¥)
sin @

sin ¢
dcos P ——— pcos
( sind 7 <p)

sinh o ¢ — w1 sin @

ha(P—¥)—

R _IE COS.

Bo R po {az sinh o @
Fsy

l—cos(®—¥)
2GsJ @

sin @

Sm"’]}, 0<p< ¥

+ (¢—¥f)2—x1[

—(®— ¥)sin (@— ¥)—2

R R &2 sinh & ¢ + cosh « ¥sinh « (¢—<p)__ sin ¢ + cos ¥sin (@ — ¢)
ol po o2 sinh o« @ “1 sin @
1 2 1 2 1 K1 dsin ¢
Li+ L -V —p—-¥ —— || — D — —r
+ GsJ [ .+ 2(2 7 27 o2 )] sin @ [(cos cos ¥) sin @

— @coS p+ ¢ cos (D— ¢)cos ¥+ Psin (@ — ¢)sin ‘1’] +x3}, VY<¢p=9o

R? sinh « (¢ — ¥)

—’"TR“R{Est(azH)za snhao °Snhae
n o2 [ R2 1 ]sin(cli——'z")si
1| ECp(o®2+1) GsJl smo %
A [sin (92— ¥) sin ¢
R2 [T(¢COS¢Sin¢ —(PCOS(P)
sin ¢
+(SnP—Y¥Y—-—P— ¥YcosP— ¥) 0<¢=V¥
sin @
8} R2 sinh o (¢ — @)
inh o (P— @) .
mTROR{E(,Cw(az-f-l)Za smhao Sone¥
o2 R2 1 1sin(®—g) .
+a2+l[Est(a2+l)_GsJ] sno 0¥

A [sin (D —¢) sin ¥
AT Nl R 24 ) —y
R2 [ sin @ cos sin @ cos YJ)

VP<op<d

] sin ¥
q§ D — D —
+ (sin @— @ COoS ®) ey qs]}

f) St-Venant’s Torsional Moment T,

St-Venant’s torsional moments 7, can be easily obtained by differentiating
the corresponding solutions for 6.

dé
T, = GJqua

The results are shown in Table 6.

g) Secondary Torsional Moments T,

The secondary torsional moments 7, can also be calculated by

AL

Tw = — ES Cwm.

The solutions for 7}, are shown in Table 7.
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Table 6. Solutions for St-Venant’s torsional moments T's
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P {( I Lz) cosh a (?— p)—cosh a ¢
0

2+1 o2 sinh « @
Lio? cos(P—¢)—cosg P
+ a?+1 sin @ +Le 7—(;7)}

{( R2 R_Ro) cosh o (#— ¢)—cosha g
o

(2) a2+;_;2 :;@— )_c(ii;nhac? )
RES s ¢+RRO(?—¢)}
—W—{(—Li_ia) SR P ) cosh o g
Bo \e2+1  o? sinh o @
) _52-:? Sins(ii;W)cos¢+La¢;-W}, 0<ps ¥
3
R
aI;g:i cossgll); ‘P)sin Y’—Lalg}, P<o<od
{(%_%) 2%008]’1&(})
& ’“ffl Sins(ii;mc"SWfRo@;q]}, 0Sp=<¥
P{(_Iaizo - oc?}f— 1) g cozlilnoil(f; i sinh o ¥
jjzl cossgf(; "’)sin Y- Ro%}, Y<op<®

L Le cosh a ¢
po{(m e ?) Otm[cosha(¢— W)—' 1]

p=P

LlO(2 CcOoS ¢ LZ )
Te2F1t - 5 (P— <¢=
az_*_l[l cos (P ‘I’)]Sin(p+2¢(¢ '{’)}, 0<¢p=<V¥
Ly L\ cosha(P—g¢)cosha ¥—coshag
PleE+17 2 sinh « @
Ly a? cos (@ — ¢) cos ¥—cos ¢ 1 \
a2 +1 sin @ +L2[”’—¢+—2—¢(¢—Y’)]}, ¥=
o2 sinh o (& — W) Sin((D‘-— y)
_mTa2+1[ Sinh o & COSh“‘P‘—Sm‘q)—COSvJ], 0sp=s¥
o2 [sinhoa¥ sin ¥ . .
mTozz-l-].[SinhaQCOSha(q)_(P)_sinq;cos(qs_?’)], Y=<¢p=9
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Table 7. Solutions for the secondary torsional moments T,

(1) {__% L cosh a (®— ¢) —cosh a Li cos(®P—¢)—cose
Po\% * sinh « @ 2+1 sin @

@ w RR, R2 cosh « (P — ¢)—cosh « ¢ R? cos(P—¢)—cosep
2 o241 sinh « @ 2+ 1 sin @
W ((Ls Lz \ ,sinha(d—¥) Ly sin(®— %) - <
o) E{(Zf a2+1)°‘ smhad oM P BIT T snd °°S‘P}’ Ose=¥
w Lo Ls z‘cosha(d5—<p) . Lo cos(P—¢) . &
"E;{(m—?)“wsmh““aul Sin @ S‘“"’}’ Fze=9
R R \ ,sinha(®—¥) R sin(®-—¥) - <
(4) P{(?—a2+l)a sinh « @ COShWP_az-}-l sin @ coser, Ose=¥
R Ro)\ ,cosha(P—9) . R cos(®—o) . < <
P{(ﬁ—ﬂ—?)““m—s‘“h”’nzﬂ sme o TEes?
Lo . L cosho (P— ¥)— lcosh
Po a2 a2+1 * sinh « @ *®?

Ly 1—cos(®—Y)
T2+ sin @
Ly Ls\ coshag—cosha(®P—¢)cosha ¥
0{(a2+1 “?) sinh o @
_ L; cose—cos (P — ¢)cos ‘I’} @
a4+ 1 sin @ ’

cosvo}, 0<ps¥
(5)

Se=9

mp | ,sinha (®—¥) sin (¢ — ¥)
® a2+1{°‘ sinha® PPt i

—mm{ 2sinha‘l’ in
o

cos ‘P}, O=e=V¥

sin ¥
- f = <o<
a+1 Sinh @ ol = gl o eon [ 9’)}, V=p=o

h) Total Torstonal Moments T

The total torsional moments 7' can be calculated from the formula,
T=T,+T, and shown in Table 8.
1) Shearing Forces @

By using the Eq. (5), shearing force ¢ can be obtained from the solutions
M, and T found in Table 1 and 8. :

o= {4)

The results is shown in Table 9. It is evident on viewing the Eq. (5)’ that the
torsion contributes to the shearing force in the curved girder bridge.
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Table 8. Solutions for total torsional moments T

cos (P— p) —cos ¢ ()]
o] oo e
— = cos(P— p)—cosgp L4
(2) RW{R s + Ro )
w sin (@ — ¥) D —
A el Sl - <p<
. Re {Lz Snd cos ¢— L3 @ ",}, O0<¢=V¥
w cos (P— @) . L4 - <
E{L2W81HT-L35}, YJ=(P=¢
= 8in (P — V) - o
(4) —P{R——Sm——COSqJ Ro ) }, 0=(P___ql
=cos(P— @) . m ¥ <. <
P{RWSInW ROE}, ‘I’_97._¢
1 —cos(P—¥) Ly 0 o
" PO{—LI—WCO’SlP'*'—z(D(‘p ¥)Eo, O=se=V¥
cos (P — ¢)cos ¥ —cos ¢ P24 W2 <. <
po{ s sin & T3~y ¥=es?
sin (@ — ¥) I
(6) T sin @ Ccos ¢, qu)_Y’
2 i), Wspso
T n @ ®)s =9

3. Stress Formulae

The stress at any point in the curved girder bridge may be easily calculated
by using the solutions for various stress resultants given in preceding section.
For practical purpose, the following stress formulae are very important.

a) Normal Stress o

N R +(le,,——M,,Iyz MyIz—MzIyzz)ﬂ M, W

“FEap \I,I—I2, YYVTII-T, tT, (21)

7 np C, mn

b) Shearing Stress T
For the shearing stress, either of two different expressions should be used
according to the situation of the considering point, that is to say:

I. At any point in nonboundary wall surrounding the k th. cell,

_ LS L R2§klz; q* Tw
T = (th_‘_Q%)—i—l-?Tj-*—T_ﬁ;' (22-1)
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~ Table 9. Solution of shearing force Q

Ly [®
m| wm(z-9)
__ (&
(2) RW(?—qD)
(Ra—Ei)W(D;W, 0<o=¥
(3)
—(Ba-R)W, ¥seso
qu;lp, 0<o= ¥
(4)
-P%’ VY<¢=d
PR R (d—¥), O0<e=<¥
4¢ a i » ¢—
5
() Po I_ez = (152_*_'}12 & e
E‘( a — L3 20 (2 B ,Il—-‘P b
6)| o

IT. At any point in boundary wall between the kth. and k + 1 th. cell,

. =..1 R2 _ T. q* T
7'=_(HQh'*'QQb)‘t‘+7;2‘(qk_Qk:i:1)27+TF:*- (22-2)

The quantity @ included in the formula (22) represents the shearing force
due to bending and its corresponding values to the above mentioned typical
loading conditions are given in Table 10.

4. Strain Energy Stored in Continuous Curved Girder Bridge

Under the general loading condition, the strain energy II stored in conti-
nuous curved girder bridge may be expressed as a following formula.

o
1 2 2
H,=Z§JJ(%+T—G)pmdFmd<pm, | (23)
™0 Fm

where ) means the total of the strain energy all over the length of continuous
m

curved girder bridge. And also suffix m denotes the quantity concerned with
the m th. span.
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Table 10. Shear forces due to bending (j

cosp—cos(P—¢) 1
W poln =73 o
—zcosw——cos(di—qp)i
)| WE sin @ Ry
Ly sin(®—¥) 1 o
3 WRy “smd ®Pg, 05e=¥
Ly cos(P— o) . 1 o<
“Wg sne “n¥g, ¥Yses9®
sin (@ — ¥) 1 <
" PR—Gig 89 g,, 0ses¥
_PREP Pl weoco
@ Ry’ =9
1—cos(®—Y) 1 <
(5) po In i cos s 0S¢V
cos,qp—cos(d'—qo)cos&”_l_ &
po Ln sin @ R, T=9s9
sin (@ — V) 1 . <
(6) —WI/T—W-‘—COS(PFO, O=(P=Yj
cos (P — ¢) 1 o
T sind) an—RO—’ III_‘P_(D

Substituting the stress formula [formula (21) and (22) in previous section 3]
into expression (23), and arranging that, a following simplified expression may
be obtained.

Mim  Mim) | 1 (T3 @, Zn
= Z f{ ( T )+ﬁ(J +F’ cz Tﬂgm)}dq’m’ (24)

wm S
where . Z=F£Q*2%%d8, (25)
1 o n, p3 :
7 =1 ngP_sds. (26)

The underlined terms may be generally neglected as compared with other
terms.

5. Stress Resultants in Continuous Curved Girder Bridge

Now, by cutting a prescribed continuous curved girder bridge at the cross
sections on every intermediate supports, the simply supported girder system
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will be produced. So, they have a couple of bending moment and warping
moment at both ends of each span.

Mm- Mm ) Mme
im-r Mm My

7y [y
LL’“"—L* o m il—

Rm-1 Rm

Fig. 3. Continuous curved girder bridge.

The stress resultants which will be caused at the bridge section defined by
peripheral coordinate ¢,, may be readily given by the following formulae,
where the quantities with suffix 0 represent the stress resultants of the imag-
inary simply supported curved girder bridge in the mth. span under given
loading. ¢,, =P, — @,

a) Bending Moment M,

sin ¢, sin g,),
= M " .
Mym Mm0+ msin(pm m+lsin(pm (27)
b) Warping Moment M,
sinh o, @, sinh o, @,,
Moom = Moo+ e sinha, @, =~ "t'sinha,d, (28)

+ R, { . [sin Pm _ Sinhe, cp;n] M, [sin ¢, Sinha, <Pm]}

2 - . . - .
o2, + sin®, sinha,®,, sin®,, sinha,P,

¢) St-Venant’s Torsional Moment T,,

T =T + g'Rm __1_ _ % cosh %n (P;n + 9:Rm+1 %m cosh Em Pm _ i
sm — “sm0 T R \®,  sinhe,P,, R, \ sinhe«,®, O,
1 cos ¢, cosh o, @, ) 1 :
M 2 = —— ) — —— 29
+ [a‘fn +1 (am sin®,, + “”? sinhe, @,/ @, : (29)
1 1 COS @ cosh o, ¢
_ 2 m m t'm
M [qu o2+ 1 (“m sin®,, "+ “"sinh a, rpm)] '

d) Secondary Torsional Moment T,

1
Twm = wm0+R

a,, cosh o, @, o, cosh a,, (pm)

(s'mm sinhoa, ®,, D sinh «,, D,, (30)

m

4 1 cOS @, oy COsh ay, @) M COS @, &y COSh o, @y
a2, +1|" ™\sin®,  sinhe,?,, mtl\sin®,,  sinha,@, /|
e) Shearing Force due to Bending ém
— — 1 CcOS @, cOS @
= - M, —=2-M —"]. 31
Qm Qmo ROm ( Main ¢m m+1 sin @m) ( )

f) Total Torsional Moment T,

_ 1 B cosg,, 1 1 cos (pm) '
Tm - TmO + lm (g'Rm 9Jtm—i—l) +Mm (sin (bm @m) +Mm+1 (¢m sin @m . (32)
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6. Elastic Equations for Continuous Curved Girder Bridge

In order to find both unknown end moments M n and M, . principle of
least work may be applied to the whole system composed of main girders.

oIl oIl

oM,

Substituting expression (24) into above conditions, and then using the
stress resultants (27) to (31), a set of simultaneous equations for unknown
quantities M,, and IN,,, .

Oy M o1+ Qi Mo+ O a1 M1+ b, g1 My
+ by émm + bm,m+1 9Rm+1 =-L,,

bm,m—l Mm—l + bmm Mm + bm,m+1 Mm+1 + dm,m—-l %m—l
iy M + A i1 M1 = =Ny,
(m=1,2,...,n—1).

(33)

If the structure is simply supported at both ends (m=0, and m=n),
My=M,=0, M;=M, =0.

Coefficients a, b, and d contained in Eqgs. (33) may be given by the following
expression.

amm = j*%-l[a’]mj (34)
and
[a],,; [ - si'n D, cos ¢j] R; [ o D, +sind;cosP;
w = smT | G 2 +T) s, (35)
of cos®;  cosha;
T @1y (sin(D x; sinh o cb) ]
a R, [sm b, —D, cosD, ] [ o« sin®, +P,,cosP,
mmtl = g T - sin2®,, G J 2 (a2, +1) sin?2®,,
L ( 1 1 ) 1 ] : (36)
(a2, +1)2\sin®,,  «,sinhe,?,/ D,]°
. R, , [ sin®,_,~®, . eds.qu_l]
mm—1 = 9 T J— sin?®,, ,
R, 4 [ o2 _, sin®, +9D, 0089, , (37)
Gy 2003 +]) sin2®,,

N a2y 1L 1 1
(e2,_1+1)2\sin®,,_, o, ;sinha, D, , R
bmm = Z [b]m] ’ (38)

j=m—1
1 o? cos D; + cosh o; D;
[0 2 R .
Jsin <Dj sinh o; D;

(39)
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bmmsa = GlJm L{S’f I ("‘m sin1¢m * Sinh olzm @m) - %J ! (40)
O m—1 = G, elfm_ [a?j_";—-il- 1 (am“l sin ;m_l + Siah ozml_l (Dm_l) B @,,}_1] ’ (41)
Qo =j=§_1 [y (42)
[@ms = GSJI,.R,. [ % :1051111 : g’ & ] (43)
s = G i ) (4
Dn,m=1 = G J,,,_l1 B (@,:_1 ~%m-1 ik am1_1 ¢m_1)' (45)

From formulae (36), (37), (4()), (41), (44), and (45), it may be seen that the
following reciprocal relations can be satisfied.

A m+1 = Ant1,m bm,m+1 = bm+1,m ’ dm,m+1 = dm+1 m-

7. Loading Terms of Elastic Equations

For several typical loading conditions, the loading terms contained in the
right-hand side of elastic equations may be obtained as follows:

a) Uniformly distributed load

In the case when the uniformly distributed load p; per unit area of floor
slab in the jth. span, the loading terms L,,; and N,; may be expressed as
follows:

(1 -cos®;)(D; —sinD;)
p’[SI’E’ I, 2sntd,
+ G—i’]—] [21]'2—(“.;3%-—)‘2‘ {(02;2——%1 sir?éij —g::]a) tan% + %tanhg—%%}
S |
N, =5 J{sl, 2i1(tang;——-:1)t h“’¢)+82,(ljtanhfi;ﬁ—%)}, (47)
where &y = %(E?w'_ E), \ (48)
Ly = %(Rz — RY%). (49)
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b) Axial Line Load

If we put &;; - R_’}, Laj — EjRoj, p; — W; in both Eqgs. (46) and (47),
the loading terms L,,; and N,,; for an axial line load may be obtained directly.
¢) Radial Line Load

Let us consider the case of radial line load W; per unit length. It also is
assumed to be placed at the situation ¢;=4; in the jth. span.

W, [ R, Q, Y sin i, — i, sin iy, cos D,,
m

Lo =g\ 7, T 2s5in?d,,
Rm o2, . Y, sins,, — i, siny,, cos D,
ta [532'"(0:,2“r 1)2( Uk osin?®,,
-, : , N (50)
__singy, T sinh a,, 7\ Q 1 a2 siny,,
sin®,, sinha,?,, 3mla2 +1)| sin®,,
+ sinho,, | ¥
sinhe«,®?,] o,/1)
L — Wm—— —1 8 ¢m—1 sin '/’m 1 ‘Mn—-l sin ‘/’m—l cos ¢m—1
"L RemaLE Iz'/ g 2m1 28in?®,, ,
+ m~1 8 a?n 1
Gst—— Bm= 1( m—1+1)
Vi, _qsing; _—, ising, cosD, , sinyg,
A2 m—1 m—1 m—1 m—1 1_ . m—1 51
(am_l +1 2sin2®,,_, sin®,,_, (51)
sinh e, 4 x/}m_l) _Q 1 a1 SNy, 4
sinh o, P,,_, am-llge 41 sin®,, ,
+ sinh %Xn—1 l)['m——l} _ {l’m—l ]
Sinh am_l ¢m—1 @m_l ’
N w,, Q ay, (sing,  sinha, z/;;n)
mn = R God |2 ol +1 sin®, sinha,®,
(52)
+Q sinh a,, ¥, P
3m\sinh «,, D,, D,/]’
Wm 1 ocgn—l sin lrt'm—l sinh %m—1 S[’m—l
Noms = B G T 5™ o2y 11 \sind,,,  sinhay, ;&
0,m—1 Y's¥m—1 %m—1 + S, 1 smhoy, 1%, 1 (53)

sinh Cm—1 lpm 1 ”/‘m—l)
25, m1 (smha 0, ., D)

where Lam = B2, (Bop— Rin) .- "(54)

d) Concentrated Load
If we put W;— R,; P;, 82]—>R3, L3; —~ Ry; in Eqgs. (50) to (35), the load-
ing terms L,; and N, for a concentrated load P, may be directly obtained.
It also is assumed to be placed at the situa’cion designated by coordinates
(P‘7’=l/l.7 a;nd P='R]'
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Thus, under the simultaneous loads acting on both the m th. and the m + 1 th.
spans, the loading terms L,, and N,, may be given as follows:

Lm = me+Lm,m—1: Nm = Nmm+Nm,m—1' (55)

8. Coefficients and Loading Terms of Elastic Equations for Straight Span

Let us consider the continuous girder bridge where the straight girders are
connected with the curved ones on the intermediate supports. For the curved
span, coefficients and loading terms of elastic Eqs. (33) may be evaluated
again according to previous formulae as shown in sections 6 and 7. While the

- following formulae should-be used for the straight span.

a) Coefficients of Elastic Equations
I. The Case Where the m th. Span is Straight

Qo = ﬁ;+ (@), m—1> (56)
bum = Oluym-1>  bmmir =0,
g s, o9

_ ]/ G, J, ‘ 3
where a,, “Vzo. | (60)

II. The Case Where the m —1 th. Span is Straight
b

Q= m+ (@] » (61)
ek =SB T ()
bom = Blim> Bmms =0,

b =g i ) s (6)
mm-1 = G’s}m_l (zml_l - sinhZ::j lm_l)' (64)

b) Loading Terms of Elastic Equations
L. Uniformly Distributed Load

For the case where the uniformly distributed load p; per unit area is placed
over the breadth a; in the jth. span, the loading terms L,,; and N,; may be
given by the following expressions. -
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— P ;13
N, =Pi%% itanhz"—l’—'—-—ll' (66)
™o G \g 2 2)

where e; is the horizontal distance between the shear center of the bridge
section and the position of resultant of load.

The suffix j should be equal to j=m or m —1 for the case where the m th.
or the m — 1 th. span is straight respectively.

II. Axial Line Load

L,; and N,,; for an axial line load W;, per unit length, placed with eccen-
tricity e; may be readily obtained by putting p;a; — W, in previous formulae
(65) and (66).

ITI. Radial Line Load

Let us consider the case of a radial line load W per unit length. It also is
assumed to have a breadth a and be placed at x=c with eccentricity e.

1. The case where the m th. span is straight. If the mth. span is straight
and above described load acts on that span, necessary loading terms may be
evaluated by the following formulae.

_ Wm A Cm _ _
Lo —m(z bn=Cm) (b =€) 5 (67)
W, enty (sinhz, c,, c;n)
= n - 68
Nonm G, J, ( sinhz,l, 1, (68)
2. The case where the m — 1th. span is straight
W1 @1 Cone
Lm,m—l = 6 Es }111,”;_]; lm:]l_ (l12n——1 - 61271——1) ’ (69)
W 1€m1Gm—y (sinh&, ¢, , ¢ _1)
} » — m m m m—1 __ “m . 70
Nm,m—l Gs Jm—l ( Sll’lh am—l lm—l lm—l ( )

ITI. Concentrated Load

For the case where the jth. span is straight and a concentrated load P,
acts on that span, if we put Wa; — F;, j=m or m—1 in previous formulae
(67) and (68) or (69) and (70), every formulae in preceding article c) are
valid again.

9. Deformations of Continuous Curved Girder Bridge

The deflection and rotating angle of cross section of the continuous curved
girder bridge will be obtained by superposing the deflection and angle of
rotation of imaginary simply supported bridge; under the prescribed loads upon
those due to end moments respectively.
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a) Angle of Rotation B,

_ R2, R, sinh e, @,, sin <p,’n>
Bm = IBm0+ Es me (a%+ 1) {(mm ag@-}- 1 m) (smh o, D sin ¢m

m = m

R, sinhe, @, sing,
+ (Emm“ o2+ 1 M’"“) (sinh o, D, SIN @m)} -
+ Am M cos o’ —® sin @, (71)
R, sin®, | ™ Pm OO Pm =% m gin D,
sing,,
+M, ., (‘Dm cosP,, s gm — @, COS ‘Pm)} ,
R? R? 1
where A= -5 [Escw @) + T I,’,] . (72)

b) Deflection 3,

The deflection of shear center 8,, may be evaluated by the following formula.

~ M, [ 1 (sinha,ql,  ,sing,) on
On = Omo+ R"”‘[Gs I [a?n +1 (sinh 2B, | ™ S0 %) 9,

4 M i1 1 (sinh Uy P, o SID (pm) _ Pm
G.J, |« +1\sinho, @,  “™sin®,) &,
R, sinhea, @,, 2 , sin cp,’n) R, on
_M"‘{[Gst (o2 + 1)2(sinh 2 @ TomtZm s | TG @,
A, , sin @, (73)
+ R, sin®d,, (<Pm 008 P~ Pry sin (pm)}

R, sinha, @, =2 , sing, R, onm]
u m+l{ [G T, (o2, +1)2 (sinh 2, @, Tom T2 gy @m) G.J,. o,
A sin g, ]
+ B, sin®, D, cosD,, Sn @, ®m oS @, )t

So that the deflection of a point situated at a horizontal distance Y from the
shear center.

O (¥) = 8,,— Y B, (74)
where Y =p—R,. (75)

10. Numerical Example

The influence of the stress resultants and deformations will be found for
a three-span continuous composite box girder bridge as shown in Fig. 4a. The
length of each span is equally 33.527 m. Both side spans have straight main
girders while a center span has circularly curved girder with a radius of cur-
vature 30 m. And then the road width is 6.705m and.the cross section of
bridge is assumed to be constant all over the bridge length. Both the shape
and main dimensions of cross section also are shown in Fig. 4b. According to
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the fundamental theory developed in previous paper, the necessary cross-
sectional properties have been evaluated for respective span as follows:
Cp1 = O3 = 0.48803 x 1012 cm$
Ope = 048135 102¢m® I, = I,, = 10.230 8 X 108 cm?
I, =10.2601x108cm?* J; =J; =4.9773x10%cm?*
Jy =5.0229x108cm*  a; = oy =1.972xX10"31/cm
%, = 5.9364

4 - WTS667(-60°)

—

8= ¢

R ] i

4 S |

‘ S

®) J 4
L L L

2 '
e gL

Fig. 4. Continuous curved girder bridge a), b).

The matrix representation of the elastic equations becomes as follows:

1.424 510 0.561 727 0.637130x 103 0.471472x10-3
0.561 727 - 1.424510 0.471472x 1073 0.637130x 1073
0.637130x 1073 0.471472x 103 8.923880x10-% 0.7331305x 106
0.471472x 1073 0.637130x 10~3 0.7331305x 106 8.923 880 x 106

M, Ly
Mo |~ | V|
M, Ny

Corresponding loading terms to respective loading condition are as follows:
I. For the Loading on the First Span:
L, = L,,, L;=0, N, =N,,, N, =0.
II. For the Loading on the Second Span:
‘ Ly = Ly, Ly = Ly,, Ny = Ny, N3 = Ng,.
III. For the Loading on the Third Span:
L,=0, Lj = L, ‘ N,=0, N3 = Ng;.
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a) The Influence Line for Stress Resultant

From the solutions of elastic Eq. (76), the influence lines for the bending
moment M, and the warping moment I, at the intermediate supports B are
given as shown in Fig. 5 and 6.

kg cm/kg

-500
-400
-300
-200
-100
o]

100
200

—— - OUTSIDE
—-— 1 CENTER
------ : INSIDE

Fig. 5. The inﬂuence:lines for bending moment M, at support B.
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1;
-4x10%

i
-2xl0%

4x10% N /
| N /) —— ! OUTSIDE
6x 10% N ~—-—: CENTER
T e . INSIDE

Fig. 6. The influence lines for warping moment 9 at support B.

The full line and two kinds of dotted line represent the influence line for
loading along the outermost side, the innermost side, and the center of the
road width respectively.

Regarding the bending moment M,, the ordinate for outSIde loading
becomes considerably large owing to curvature in the middle span, while it is
comparatively small for inside loading. '

So, the one is about twice as large as the other.

However, it may be seen that there is little difference owing to eccentricity
of loading so far as the bending moment is concerned. |

For the warping moment I,, the ordinate for outside loading has the
opposite sign to corresponding one for inside loading.

The same is also valid for the middle span BC.
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This result shows apparently that the warping moment takes the opposite
sign due to torque loading in the opposite direction.

Next, the influence lines for bending moment M, at the middle cross section
of the center span are shown in Fig. 7.

There is little radial variation of ordinate owing to eccentricity of loading,
and the ordinate for inside loading is little larger than that for outside loading.

The shape of influence lines for bending moment M, is very similar to that
about the straight girder.

— : OUTSIDE
—— ¢ CENTER

e © INSIOE

-200

-100 L EEEEEETR f—;\
0

A
100

200
300
400
500
600

Fig. 7. The influence lines for bending moment (My),, at the middle section in the
center span.
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Fig. 8. The influence lines for warping moment (Muw)i,, at the middle section in the
center span.

The influence lines for warping moment M,, at the middle cross section of
the center span are shown in Fig. 8.

The ordinate for outside loading is opposite to that for inside loading and
the former absolute value is not less than twiceias large as the latter in the
center span.

On the other hand, there. is little effect of radial eccentricity of loading
and the absolute value of ordinate is very small all over;both side spans.
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Therefore, when the secondary normal stress o, due to warping moment
M,, is superimposed to the primary normal stress o, due to bending moment
M,, the total normal stress ¢=o0,+4 0, caused at the cross section of loaded
girder becomes larger than that of unloaded girder.

The same fact under the outside loading appears more considerably than
that under the inside loading. :

Although a load travels along the axis of bridge, the total normal stress
in the outside girder is generally larger than that caused at the same time in
the inner girder.

This fact is owing to the superposition of two kinds of normal stress. Under
non-eccentric loading, the sign of ¢, is the same as that of ¢, in the outside
girder, while opposite in the inside girder.

As the stress o, can be restricted to fairly small value compared with o,
value by adopting the closed cross section, the difference between the normal
stress o in the inside girder and that in the outside girder becomes considerably
small according to this type of structure.

kg cm/kg — .. OUTSIDE

—-— i CENTER
-==--: INSIDE

Fig. 9. Influence lines for St-Venant’s torsional moment 7' at the middle cross section
in the center span.

The influence lines for St-Venant’s torsional moment 7 at the middle cross
section of the center span are shown in Fig. 9. They are just antisymmetric
about the middle span, and the absolute value of its ordinate for the outside
loading always is larger than that for the inside loading.

Moreover, it should be noted that considerably large torsional moment 7,
would be occured under the side span loading.

The influence lines for secondary torsional moment 7), at the middle cross
section in the center span are shown in Fig. 10.

It is discontinuous at the middle section and antisymmetric about that
section.

The ordinate decrease suddenly during travel toward the ends of bridge.
This fact shows that the influence of adjacent span may be neglected.
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Fig. 10. Influence lines for secondary torsional moment 7', at the middle cross section
in the center span.
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Fig. 11. Influence lines for total shearing force @ at the support B.
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Fig. 12. Influence lines for total shearing force @ at the middle cross section in the
center span.

The influence lines for the total shearing force at the support B and at the
middle section in the center span are shown in Fig. 11 and 12 respectively.
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The effects of both eccentric loading and curvature are scarcely recognized
in this example. Then both shape and magnitude are very similar to those of
the continuous straight girder.

The influence lines for bending moment M, at the middle section in the
side span are shown in Fig. 13. Respecting the straight side span, it is quite
similar to the influence line for bending moment of straight continuous girder.
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Fig. 13. Influence lines for bending moment M, at the middle cross section in the side span.
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Fig. 14. Influence lines for warping moment M, at the middle section in the side span.

However, respecting the curved center span, the ordinate for the outside
loading becomes larger than that for the inside loading owing to the curvature
of bridge axis. ,

The influence line for warping moment at the middle cross section in the
side span are shown in Fig. 14. The value for the outside loading has opposite
sign to that for the inside loading and the absolute values for both cases almost
are mutually equal.

Those both decrease suddenly according as the load falls away from the
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considering section, and that scarcely undergo the influence of loading on the
adjacent span. It may be seen that the phenomenon of torsion bending has
not been observed under the noneccentric loading. It will be caused by the
fact that the considering section lies just in the straight span.

The influence lines for St-Venant’s torsional moment and secondary tor-
sional moment at the middle section in the side span are shown in Fig. 15
and 16 respectively.

kg cm/kg

- a .
of — oy
/ \ -----: INSIDE

Fig. 15. Influence lines for St-Venant’s torsional moment 7s at the middle section in
the side span.
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200

Fig. 16. Influence lines for secondary torsional moment 7', at the middle section in the
side span.

In any case, the sign of ordinate converts at the considering middle section.
In former case, the absolute maximum value between the middle section and
the end support A4 is greater than that between the middle section and the
intermediate support B. This difference is considered to be owing to restraint
on warping at the intermediate support B. In latter case, it is much similar
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to the influence line for imaginary straight girder, simply supported between
two points A and B. The decrement is rapid, so the ordinate in adjacent
span is very small.

The influence lines for total shearing force @ at the end section 4, the middle
section in the side span, and the left side section of support B are shown in

— . OUTSIDE
—-—: CENTER

== D

Fig. 17. Influence lines for total shearing force @ at the end cross section A.
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Fig. 18. Influence lines for total shearing force @ at the middle section in the center span.
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Fig. 19. Influence lines for total shearing force @ at the left side section \of support B.
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Fig. 17 to 19. In any case, those are much similar to ones for straight contin-
uous girder, while the effect of curvature may be recognized in the center
span.

The influence lines for total torsional moment 7'=7.+7, at the middle
cross section in the center span and the side span are shown in Fig. 20 and 21
respectively.

In former case, they are just antisymmetric about the considering middle
section, and show curvilinear variation unlike the straight continuous girder.

In latter case, they are scarcely differ from those of straight girder, except
that little effect of curvature can be recognized in the center span.
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Fig. 20. Influence lines for total torsional moment 7' at the middle cross section in the
center span.
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Fig. 21. Influence lines for total torsional moment 7' at the middle cross section in the
side span.
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b) Influence Lines for Deformations

The influence lines for deflection & at the middle cross section in the center
span are shown in Fig. 23. They are just symmetric about the middle section.
The ordinates for outside loading are about twice as large as those for inside
loading.
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Fig. 22. Influence lines for the deflection & at the middle cross section of the center span.
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Fig. 23. Influence lines for the angle of rotation B at the middle cross section of the center
span.

While the influence lines for angle of rotation 8 at the same section are shown
in Fig. 23. They take negative sign in the center span. These results indicate
that the middle section always rotate in the direction that the outside girder
have vertical larger displacement than that of inside girder. In the case when
the load is placed on the side span, the same section will rotate in the inverse
direction. The effect of eccentric loading appears apparently in any case,
especially very large rotation is caused by outside loading. It is remarkably
characteristic of curved girder bridge with large curvature that the cross-
section rotates in the same direction regardless of the radial situation of
loading.
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Lol 8 s

Summary

In this study, the torsion bending theory has been developed into the three
dimensional analysis for curved girder, and following general results have
been obtained.

1. The various statical quantities related to geometrical factor of cross
section have been explicitly defined.

2. Seven fundamental conditions of deformation have been investigated
and the relations among the deformation, stress resultants and stress have
been made clear with regard to free-free curved girder.

3. The formula which gives the position of shear center has been derived.

4. The relation among the torsional angle, absolutely angle of rotation
of whole section and deformation has been obtained.

5. The solutions for stress resultants and deformations have been obtained
for both simply supported and continuous curved girder under typical loading
conditions. ;

6. In a numerical example, influence lines for stress resultants and defor-
mations have been found, so that some important statical characteristics of
curved girder have been made clear. |

Résumé

Les auteurs développent la théorie de la torsion-flexion en I’appliquant a
I’étude tridimensionnelle des poutres courbes. Ils présentent les résultats
généraux suivants:
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1. Ils définissent explicitement les grandeurs statiques relatives aux don-
nées géométriques de la section.

2. On étudie sept conditions fondamentales de déformation et, pour la
poutre courbe & extrémités libres, on précise les relations entre les déforma-
tions, les sollicitations et les contraintes.

3. On établit une formule donnant la position du centre de cisaillement.

4. On déduit la relation liant 1’angle de torsion, 1’angle de rotation absolu
de la section et la déformation.

5. Des solutions pour les sollicitations et les déformations sont obtenues,
dans des cas de charge typiques, soit pour des poutres courbes simples, soit
pour des poutres continues.

6. Dans une application numérique, on donne des lignes d’influence pour
les sollicitations et les déformations; on met ainsi en évidence quelques carac-
téristiques statiques importantes des poutres courbes.

Zusammenfassung

In dieser Studie wurde die Biege- und Torsionstheorie fiir die dreidimen-
sionale Untersuchung gekriimmter Triger weiterentwickelt, wobei folgende
allgemeine Ergebnisse erzielt wurden:

1. Zuerst werden die verschiedenen statischen Werte im Zusammenhang
mit den geometrischen Querschnittsgrofien definiert.

2. Sieben fundamentale Beziehungen fiir die Verformungen werden unter-
sucht und die Beziehungen zwischen Verformungen, Schnittkriften und
Spannungen werden erliutert im Zusammenhang mit einem gekriimmten
Trager mit freien Enden.

3. Die Gleichung, welche die Lage des Schubmittelpunktes angibt, wird
abgeleitet.

4. Die Beziehung zwischen Torsionsdrehwinkel, absolutem Verdrehungs-
winkel des Gesamtquerschnitts und Verformung werden angegeben.

5. Die Beziehungen fiir die Schnittkrifte und die Verformungen werden
sowohl fiir den einfachen als auch den kontinuierlichen gekriimmten Triger
fiir die typischen Belastungsfille angegeben.

6. In einem numerischen Beispiel werden die EinfluBlinien fiir die Span-
nungen und fiir die Verformungen angegeben, so dall einige wichtige statische
Eigenschaften gekriimmter Trager klar ersichtlich werden.
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