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Three Dimensional Analysis of Curved Girder with Thin-Walled
Cross Section

Analyse tridimensionnelle des poutres courbes a parois minces

Dreidimensionale Untersuchung gekriommter Triger mit dimnwandigem
Querschnitt

ICHIRO KONISHI SADAO KOMATSU
Professor of Kyoto University . Professor of Osaka University

Introduction

It is a well-known fact that the stress distribution along the height of the
curved beam bent in its own plane will deviate from what calculated by the
conventional bending stress formula for the straight beam.

Generally, the greater the curvature, the more the bending stress distribu-
tion at the radial section will deviate from that of straight beam. Based on
this fact, it may be expected that, in the curved girder constructed out of
thin-walled members, similar phenomena will occur under any external force.

So, just in the same correlation that the theory of curved beam bent in its
own plane has been developed on the basis of primary bending theory for
straight beam, it should be desired that fundamental theory for curved girder
with thin-walled section, under arbitray loading condition, will be systemati-
cally established by developing the present structural theory for straight
thin-walled girder. '

In this paper, much consideration is particularly given so as to clarify the
effects of curvature on all quantitative relations such as displacement, stress
distribution and so on.

So, generalized analysis has been conducted to obtain important formulae
* concerned with both stress resultants and deformation for seven fundamental
conditions of deformation of free-free girder. Then the general formula for all
kind of cross-sectional quantities have been derived.

 Furthermore, paying careful attention to the bicoupling interrelation
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between bending and torsion of whole structure, the solutions about the
longitudinal variation of the stress resultants and deformations are induced in
the simply supported as well as continuous curved girder subjected to several
typical loading conditions.

1. Fundamental Theory of Curved Girder with Thin-Walled Section

1. Geometrical Properties of Cross-Section

Prior to the statical discussion on curved girder, the geometrical properties
determined by the shape and dimensions of its cross section will be described.
As shown in Fig. 1, a point C is arbitrarily selected at the cross section. Now,
the center of curvature of the axis formed by connecting every point C in the
longitudinal direction is designated as 0. The girder is usually so constructed
that each point on the cross section is arranged along the cylindrical surface,
the axis of which passes through the center 0.

O
nC
0 -
CUerze) |
s=0 Y!
(yo 220 p
P (y,z)
R ™ 2! y
P Z
(Y)I < RI
On Z (C;';gni gn Fig. 1. Systems of coordinate.

A point C is chosen as the origin, and the rectangular coordinate y and z
are taken in the radial outward direction and in the vertical downward direc-
tion respectively at the cross section. Besides, the curvilinear coordinates s
are taken along the middle line of the thin plate member in the cross section.
Then, the geometrical moments of area for curved girder may be defined as
follows:

-/
Gy = Rf;;;tds, (11)
F

@, = an—yptds, (1,)
o
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where R represents the radius of curvature of the girder axis formed by con-
necting the centroid of the cross section, ¢ denotes the thickness of the thin
plate member, and n the ratio of the Young’s modulus of the steel to that of
normal stress-carrying material at a considering point P — for instance,
n=E | E, for slab concrete in composite girder where E, is the Young’s modulus
of the steel and E, is that of the concrete —, and p the distance between the
point P and the center of curvature 0 as measured in the radial direction of
that curved girder.

Next, the point C' having the coordinates (y,, 2,) is chosen as origin, and
the rectangular coordinates (y’, z’) are taken in parallel with the original ones
(¥, 2). So, the geometrical moment of area G,, G, with respect to the new
coordinate axes are evaluated by the following formulae:

G, =G,—z2F,
Gz’ - Gz_ycﬁ?sﬂ

where F,= anipds, the area of the transformed cross section. As described

later, if the point C coincides with the centroid, above equation may be written

= fids.
n
F

When both geometrical moments of area with respect to any pair of mutually
perpendicular axes passing through a point 0, are equal to zero, the pomt 0,
is defined as the centroid of the cross section of curved girder.

Let us denote the coordinates of the centroid 0,, as (y,,, 2,,), so the situation
of the centroid is decided by the following formula:

G G
Yn =FE’ Zp = _ﬁTy (2)

Again, in the thin-walled cross section as shown in Fig. 1, the quantities
expressed by the following formulae are defined as the geometrical moment
of inertia with respect to the axis y and z respectively,

221

. RJ =L s,
np
o (3)

In the similar manner,

is defined as the product inertia of area.
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The sectional moment of the second order I,, I, with respect to any
other rectangular coordinates (y’,2’) laid in parallel with those (y,z) are
evaluated by the following formulae:

I,=1,-22,G,+22F,
Iz' = Iz_2ycGz+ygEs’
Iy’z’ = Iyz_yc Gy—zc Gz'*'yczcﬁj‘;'
In particular case when the origin C coincides with the centroid, since
bot G, and G, are equal to zero,
I,=1,4+22F,
I 2= I 2 +y(2: 8»
Iy’z’ = Iyz"'yczcﬁ;'
If any other coordinate (y,2) have the common origin 0 with the coordinate
(y,2) and incline in the clockwise direction at an angle ¢, the relations between

the sectional moments of the 2nd order with respect to both coordinate axes
may be evaluated as follows:

I; = 1I,sin?9+1,cos?d—1,,sin2,
I; =1,cos8?d+1,sin?d+1,sin2,

I,—1, .
Iy = ”2 *sin29+1,,cos29.

Note the invariant relationship
I§+I;= Iy+Iz,
IiI;-1=1,1,—-1Z,.

It can be noted from above formulae that the sectional moments of the
2nd order with respect to the new coordinate axes vary according to the
magnitude of the angle of inclination 3.

In the special case where the sectional moment of the 2nd order will reach
the maximum or minimum value, the coordinates axes will be defined as the
principal axes of the cross section, and then the sectional moment of the 2nd
order with respect to those axes might be called the principal moment of
inertia.

If it is assumed that the sectional moments of the 2nd order I,, I,, I,
with respect to arbitrary rectangular axes Oy and 0z have been known, the
direction of the principal axis and both maximum and minimum sectional
moments of the 2nd order may be easily found. That is to say, by the following
condition

al;
@ ="
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the angle & to specify the direction of the principal axis may be evaluated as

follows:

1 21
- -1 fdd
19—2tan -

2 Yy

In this special case, it may readily be noted that I; vanishes, so the simpli-
fied relations may be expressed as follows:

I;I;=1,1,-1¢,
I 7t I;=1 o+ Iz
and then I3 and I; will be either the maximum or minimum sectional moment

of the 2nd. order respectively. Their values will be given by the following
formula:

I or I;=3{I,+I1,+V(I,—L?+412}.

2. System of Coordinates and Stress Resultants at Cross Section

As shown in Fig. 2, the center of curvature 0 of the girder axis is taken as
the origin, and the coordinates { are taken perpendicularly upward to the
plane including the girder axis, and the coordinates p in the radial direction
over that plane. Here, the axis 0p is assumed to pass through the centroid of
the cross section.

Next, the cylindrical coordinates ¢ are taken from the primitive line 0.4
in the peripheral direction along the girder axis toward the other end B of the

B

Fig. 2. The system of coordinates and stress resultants produced at any -cross-section
of a curved girder.
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girder. The origin of these cylindrical coordinates (p, ¢, {) is the center of cur-
vature 0. Moreover, let us take a pair of orthogonal axes 0, ¥ and 0,,z through
the centroid 0,. An axis 0,y is parallel to and in the same direction as axis
0p, and another axis 0,z is parallel to and in the reversal direction as axis 0. -

These rectangular coordinates (y,z) are assumed to be fixed to the cross
section of girder.

Likewise, another pair of coordinates (y,z) having the common origin 0,
with the coordinates (y,z) are introduced in the direction of the corresponding
principal axes of the cross section.

In this case, the axis 0y is inclined at an angle & to the axis Oy in the
clockwise direction.

Now, the stress resultants induced at any cross section of curved are denoted
as follows:

1. The shearing forces in the directions of the axis 0,y and 0,z by H and @,
respectively;

2. the axial force acting on the centroid in the direction of the girder axis by N;

3. the bending moments about the axes Oy and 0z by M, and M, respec-
tively, and

4. the torsional moment about the axis of shear center by 7'.

3. Pure Torsion

This paragraph deals with the deformations and stresses of curved girder
under pure torsion. In this case, end pure torque T, = T;, and T = T, act
on both ends 4 and B of a free curved girder mutually in the opposite direc-
tion as indicated in Fig. 3. It is necessary to act suitable external forces besides
this torque for static equilibrium of whole structure unlike the straight
girder. In other words, the reactions V, = V and Vz = V should be applied at
both supports 4 and B. The magnitude of V may be evaluated by

V=T,/R,, . (a)

where R, is the distance as measured between the shear center and the center
of curvature 0. Regarding the shear center further description will be given
in paragraph 12. In each Figure, the symbol << indicates the necessary torque
to advance the right hand screw in the direction of its arrow.

The symbol © indicates the force acting in the direction perpendicular to
the plane of this paper and toward the back, while the symbol ¢ has a meaning
reverse to what was above described. Now, let us consider the stress resultants
under pure torsion at any cross section C' which is situated at an angle ¢’
measured from the primitive line 0 4.

From the conditions of static equilibrium of a free body AC cut off by the
cross section C, the torsional moment 7', the bending moment M ,, and the
shearing force @) are expressed as follows:
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T = Tycosep’'+V Ry(1-cosg’),
M, = - Osin‘qa'-l—VRosin(p',
Q =V
My
T C
Q’,
A
l
I /\c,a,\
I / To
] /7
|
[ey/
[ 7
l,//
Fig. 3. Pure torsion. 0

Fig. 4. Stress resultants at any
cross section under pure torsion.

Applying above relation (a),
T=T,, M,=0.

It can be seen that the uniform torsional moment 7, and uniform shearing
force V are produced, but no bending moment is presented.

Generally in cylindrical coordinates, the required relations between six
compvonents of the strain and the corresponding three components of the dis-
placement can be written as follows: ‘

_ou _low u _ v
° T&p’ ' T T U (5)
lou ow w ow 1 ov ov Ju

= — —+4 —_— =——+———, = — 4 —.
T T o ae dp  p YTl Tpae Y% T ap T 0L

Furthermore, under pure torsion, the displacements u, v, w at any point
D (p, @, {) within the girder should be investigated. For that purpose, let us
take the shear center S of the cross section as the origin, through which a
pair of axes of rectangular coordinates (Y, Z) shall be fixed perpendicularly
downward and radially outward at the cross section. Thus, any point at the
cross section can be expressed by those coordinates (Y, Z).

We must take into consideration the differential change d = df/de’-dg’
of the torsional angle 6 in the case where the peripheral coordinates ¢’ change
by the differential quantity de’. So, the difference in the displacements of
two adjacent points (Y, Z) in the cross section C’ situated at the peripheral
coordinates ¢’ +dg’ and in the cross section C' at ¢’ are du=Zdf and dv=Y df
in the p-direction and the {-direction respectively.

How much contribution do these relative displacements of two neigh-
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bouring cross sections C, ' make to the displacement of the points (Y, Z) at

another cross section D?
As it may be seen in Fig. 6, the displacements » and w in the plane of girder

axis may be expressed by the following formulae:

*do o
U = J Z@TCOS@P—?’ )do’,
° (6)

ao . N W, df
w = ——fZZl—gsm(qp—q))dq) +ch_i$'

S - Y
e
rs Zd@
1 vd6 '
as
Fig. 5. Differential element ds and Fig. 6. Displacements « and w
rectangular coordinates (Y, Z). under pure torsion.

Clagil)

Fig. 7. Displacement v under pure torsion.

On the other hand, the displacement v in the {-direction may be expressed
by a following formula according to Fig. 7.

v = {17 —p 1 —cos (p— ¢/} . )
0 P
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The second term of the expression (6), represents the warping due to torsion
bending phenomena. '

Next, by substituting the displacements (6) and (7) into the fundamental
Eqgs. (5), the strain components may be given as follows:

d*0
€p=0, €§=0, Gq,-——'- MW, (8)
P
1 ", aé do oW, do
yp¢=;[—JZd -sin (p —¢') do’ +Zd ] (8p8p+m)_—R2d(p

?)
1 do . N1 dé
—;[—!Zggsm(?’—ﬁv )do’ + W;Pm]

Assuming that the middle plane of the thin-walled member is inclined at
the angle « to the axis 0p at the considering point D now, the tangential
direction of the curvilinears coordinates s will have come to be inclined at the
same angle « to the axis 0p. If the coordinate % is introduced in an outward
direction perpendicular to the coordinate s as shown in Fig. 8, the following
relations may be obtained:

ow, oW, ow, . oW, oW, . ow,

9p  0s CoSaT T S —8§——_3—§_8ma— on

COS .

Substituting these relations into the Eq. (‘ 9),

(oW, Z oW p . \db ,
wa—(ﬁs Rz on RE )d_r; (%)
In the same way, |
LU IPN SRLL T WRY. ~
Ylw“‘(as ke +7 n R2°% )d(P’ vy =0. (10)

The relationship between the corresponding strain components in the
directions of the rectangular coordinates (p,,9) and those in (s,n,¢) can be
readily written as follows:

€ =€, cos? o + € sin® o + 2 Yy COS sin o,
Ysp = Yop COS &+ vy, Sin a, (11)
Yno = YgpSIN & — Y7, COS .
Again substituting the Eqgs. (8), (9) and (10) into the Eq. (11), the following

simplified formulae can be easily obtained.

ow, p

0 Y Z de
€& =0, Ysp = 58 R2 —smcx-{-;cOSa d‘P

From the geometrical relationship between the position of the point D
and that of the shear center S taken as the center of torsion shown as in Fig. 8,
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Y sin « + Z cos a =r, where r, denote the distance from the tangent DH at D
to the shear center. Then the shear strain of angles (s,p) and (n,¢) will be
readily obtained as follows:

_ (oW p i) 40
Yso T \os R2 P

(oW, p 7,\db
o’ Yno = (‘37 R ;)— (12)

where 7, denotes the distance from the normal Dn at D to the shear center.

S dp

a+2dp

Fig. 8. Relative position of shear
center to a differential element.

Fig. 9. Stresses under pure torsion.

Accordingly, the stress components may be found as follows:

W, d2¢

% = oy Baggr(= o)
(oW, p ) db

o = (5 i+ ) g (13)
_ ow, p r,\db

o= (G )

In the case of pure torsion, no normal stress o, is produced because df/d¢’
become constant, and the shearing stress 7, , is generally small.

Next, let us consider the static equilibrium concerning the differential
elements cut out from the girder by two neighbouring cylindrical sections with
radii p and p+dp and two radial sections. interacting on each other at a dif-
ferential angle dg. As already described, there are only shearing stresses 7,
which are uniformly distributed over the thickness ¢ and are parallel to the
tangent to the middle plane of the thin member. So, the shear flow ¢, along
the cylindrical section with a radius p is expressed by the definition.

qs =qu,t. (14)

- About the differential element as shown in Fig. 9, let us consider the equi-
librium of two shear flows in the peripheral direction. A

Here the middle plane of the element is assumed to be inclined at any
angle « to the axis 0p. Then the equilibrium condition of the moments about
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the point 0’, where the axis 0 { intersects with the plane including the element,
may be expressed as follows:
dgs

gspidpseca = (QS+E;dP) (p+dp)2dopsecc.

Neglecting the second order of the differential term,

g, _
" +2q5p = 0.

Solving this differential equation, the following general solution can be
obtained,

¢sp* = const.

It may thus be noted that the magnitude of the shear flow ¢, is inversely
proportional to the square of the coordinates p of the considering point.

Now, let us the shear flow going around the kth. cell denote ¢, and then
put the integral constant equal to R?g; for the kth. cell. Then the following
equation will be obtained,

qs,k p? = R2qy.

Consequently, at the point p belonging to the kth. cell, the shear flow ¢
will have the following magnitude,

R2
Qs % =~;2-qk- (15)

In the Eq. (15), g5 will be called the standard shear flow belonging to the
kth. cell.

The Eq. (15) always be satisfied for the closed cross section with arbitrary
shape. If the girder has any closed section with multiple cells, the shear flow
¢s in the thin member surrounding the kth. cell may generally be given as
follows:

9s = s, 1 In the nonboundary wall belonging to the kth. cell, (16,)
qs = G5 —9s k-1 in the boundary wall between the kth. and (k—1)th.
cell, ‘ (165)
9s = 955 —9s,x+1 In the boundary wall between the kth. and (k+1)th.
cell. (165)
o [P
Fig. 10. Section with multiple cells. —F
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Furthermore, the torsional function §, is defined by
(17)

where G, is the shear modulus of elasticity of steel. Substituting the Eq. (15)
into the Eq. (17), the circulating shear flow q, ; is easily obtained.

R\2 ae . /
9o, = (7) GSWQk- (177)

Hence, by applying the Eq. (17’) to the Eq. (16), the shear flow ¢, in the
wall belonging to the kth. cell will have the following value:

2 2
q, = (ﬂz G _%Qkﬂ) G i in the boundary wall,

b "Rdgp
R2 dé (18)
qs = o G Gsm in the nonboundary wall.

By applying above result to the Eq. (13,), and then integrating it with re-
spect to s,

W, = W,+ W,, (19)

where W, represents the value of W, at the original point s=0.
Besides, W, may be evaluated as follows:
8 R3 ‘.S R3 /f
— . N . T :
W, = .[Fqkngs-—J ?qkil—t—gds——RzJ Fds in the boundary wall,
(20)

— ’ R3 . n, ] Te .
W, = —aqk—t—ds — R%} —3ds in the nonboundary wall.
P P
0 0

Now, let us take the curvilinear integral around the kth. cell, then the
following equation may be obtained by means of the periodicity of W, value.

ow,,
fﬁasds_o. (21)

k

By applying the conditions (21) to each cell, the following simultaneous
equations for ¢, can be readily obtained.

. R3 n, . [ R3n, . " R3 m, r
—qk_lf';)—a—TdS-{‘qk ?Tds—Qk+1J FTds = Rzﬁﬁds (22)
k—1,k k k,k+1 k

Where § is curvilinear integral around the kth. cell, and { boundary
k ko k+1
wall between the kth. and the k + 1th. cell.
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The expression for torsional moment becomes

Ts‘ = qursds.
F

Substituting the Eq. (17’) into above expression, we obtain

do ;
q?s = GSJR_d(p’ (23)
where (,J denotes the torsional rigidity and the torsion constant J can be
evaluated as follows:

J=Zg~kR2<f;’—;ds, (24)

where Z indicates the summation all over the cross section.
7

In the Eq. (23), since 7} is constant, df/de is also constant for the girder
with the uniform section. Then, by eliminating 6 from both Eq. (17) and (23),
the shear flow ¢, can be given as the function of the torsional moment 7.

RT
s & =?ij- (25)

4. Pure Bending Normal to the Plane of Curvature

Pure bending normal to the plane of curvature before deformation is defined
as the condition of deformation in the case where the curved girder is bent so
as to deflect along the side surface of a cone the vertex of which coincides
with the center of curvature 0. In this fundamental deformation, the differen-
tial element C'C' BB’ which is initially situated in the plane of the sector
0AD and cut out by the diametric radii 0C and 0C’ holding the differential
angle d¢’, will remain on the common plane 0C C” even after deforming. Then
the section B’C" has come to be inclined at angle dy to the section BC and
translate to B”C”. That is to say, | B BB"=| ¢"CC”"=dy, and that dylde’
is constant all over the girder.

By the relative inclination between the two adjacent sections, the displace-
ment components of the point D (p, ¢, {) at the section ¢ will be consequently
found by the following formulae,

. <P' ’ dy ’ ® 3 ’ ’
u=fSln(<P—sv)zd - de’, v=fPSln(<P—<P)d - de’,
0 ® 0 @ (26)

where z is the distance between the point D and the neutral axis of the girder
section.
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Fig. 11. Displacements under pure bending normal to the plane of curvature.

By substituting the Eq. (26) into the fundamental equation of the strain

components (5),

z dy
€. = €y = = ‘y = = 0 5 €, = — —.
p = €= Yoo ol = Y ° = o de
Thereafter, only stress components are induced
z dy
% =

and all others are nothing.

5. Pure Bending in the Plane of Curvature

(27)

Let us define as pure bending in the initial curvature the condition of defor-
mation in the case where the girder is bent so as to be wound into the cylindrical
surface the axis of which is 0 {, namely, the perpendicular through the center

of curvature O.

; f—R):—:,dv‘ Fig. 12. Pure bending
in its own plane.

In the plane of the initial curvature, the adjacent section N'C’ defined by
angle ¢’ +d¢’ rotates at differential angle d¢’ relatively to the section NC

defined by angle ¢’ after deforming as shown in Fig. 12.
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Due to this deformation, the displacement u,v,w of the point D at the

section ¢ will be given as follows:

s Ndd ., _ ¢ e A
u——OfRsm(??—(P)(—l?d‘P, v=0, w—J[P—RCOS(q’—‘P)]W (28)
If these values are substituted into the fundamental equations of the strain

_y9%

de¢'.

components (5),
€. = €y = = = = O’ €, = — s
p L= VYoo = Yol = Vip °= b de’
hence the stress components will be expressed as follows:
n p de

6. Pure Bending About the Principal Axis 0,y

Let us act two equal end moments M; about the principal axis of the cross
section and at the same time the uniformly distributed torque M;/R; per unit
length along the girder axis in order to maintain the statical equilibrium as

shown in Fig. 13.
(b)

(0}
M
m
M n T~ M;
! ,Mx D, Ry
i-FT )AI ' / /MI
B |t A ,’ r/
N 1 / ! 7 /A
\ i / f' ,/ /7 Ve
\ ’ /
\ | // ! /,/ /,
\\ Py } /7 ,L‘PI /’ //
/ .
\v/_i—'r-eg\’/ 'd}:,/’/?\’yz
N I ’ | ’/I‘:
\ [ 1/
N L
N7 (s
/
Ny ¥
0

Fig. 13. External and internal forces under pure bending about the principal axis 0.9

The stress resultants at any section D are calculated as follows:

Q@ =0,
@
My = {Mlcomp-i—f_Risin (p—¢") Rd<p’}cos2z9+MIsin2f} =M,,
0
9
T ={M;sinp—|M;cos(p—¢')dp'}cosd = 0.
0
* It may be noted from the above equations that the constant moment M,
about the principal axis 0, ¥ is produced all over the girder axis, and no other
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stress resultants are present everywhere. This is nothing but a state of pure
bending.

If the girder has a uniform section, it also has a condition of uniform
deformation, namely, the constant curvature d7/de’. Thus, the displacements
at the point D (p, ¢, {) will be found from expressions (26) and (28) as follows:

@
. dn . dn . } ,
u = | isin(p—¢')z-—cos?+ Rsin (p —¢') 5 sin 3¢ do’,
Of{ (p—9') do (p ‘P)dqp P

v = fp sin (¢ — ) dn, cos #dg’,
0 d‘P

w= f {cos (p—9¢')z ;(:, cos P+ [Rcos(p—¢’) —p]a%?,—sin 29'} de'.
O 9
Substituting the above expressions in the fundamental equation of strain
components (5).
zZ dny

€ = €y = = = = 0, €, = — 7.

p = €= Yoo = Vol = Yip ° = 5 de
Hence, the only stress components are produced as follows:

0¢=E——z——@

s,np d(P (= GI) (a‘)

and all others are nothing.
The relation between the bending moment M; and the normal stress o;
may be obtained as follows:

F
By substituting the Eq. (a) in the above equation,

d
M; = E, IgR—;)(P, (b)

where [; = f —ﬁi:tds is the principal moment of inertia about the principal

axis 0, .
Next, by eliminating » from the Eqs. (a) and (b),
_ My R
=0Ty o (30)
As no axial force is presented, the following equation may be given,
zt
f——ds =0. (31)

np
F
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7. Pure Bending About Principal Axis of Section 0,z

In the similar way to the pure bending described in the preceding section 6,
let us act two end equal moments M;; as well as the uniformly distributed
torque M;/R;; per unit length all over the girder axis.

In this case the stress resultants at any section D are as follows:

Q =0, M; = My, T=0.

Again, bending moment M;; about the principal axis 0, z is produced all
over the girder axis, and there are no other stress resultants. This is also a kind
of pure bending.

The displacements will be induced at any point D due to constant curvature
dx/de after deforming, and may be expressed analogous to Eqs. (26) and (28)
as follows:

u = }Dsin(cp —q)')(ZTX, (zsin® — Rcos ¥)dy’,
0

? . dx .
v = [psin(p—o¢')=sindde’,
Ofp (¢ qo)d(P P
¢ ’ ’ s dX ’
w = [{[p— Rcos(p—¢')]cos?+cos(p—¢ )zsm&}dq), de'.
0

Substituting the above equations in the equation of strain components (5)
again,

T |
&e

€p=€Z='yptp=Yw§=7§p=O’ €W=

Hence, the stress component is only

_ B gax, _
nop

Op

and all others are equal to zero.
From the condition of no existence of axial force,

fﬂds =0. (32)
np
F

The bending moment Mj; is clearly
M;=[oyydF.
ba
By substituting the Eq. (a) in the above equation,

dx
ME = ESIEﬁTqD’ (b)

2

2
where I, = fﬂtds. (33)
np
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Eliminating ¢ from the Eqgs. (a) and (b),
_My B
o= n IE p .
On the other hand, by applying the Eq. (1) to both conditions (31) and

(32), and by replacing the coordinates,

G,=0, G,=0. (34)
The above equations are nothing but the conditions for determining the
position of the neutral axis. From the Eq. (34,) with attention to y=p— R,
F

S
—ds
np

R= (35)

For the reason that the Eqs. (34) agree with the definition of centroid
described in paragraph 1, it may be noted that both neutral axes pass through
the centroid 0,,.

8. Pure Tension

Let us consider the case where two equal tensile forces N, are applied at
both ends 4 and B of a free curved girder as shown in Fig. 14.

In this case, so as to maintain static equilibrium, uniformly distributed
radial transverse load N, per unit central angle must be applied too.

D
N I/
-2
B R I A
11/
No \\ ,// 7/ \No
! /
\\ 1 ’
A de 4 e
R i s
\ % /
N e %
N II/ S
\\V,//
0

Fig. 14. Pure tension.

Under this loading condition, the stress resultants at the section defined
by angle ¢ may be evaluated as follows:

Q = Nysing—N, cos(p—g)dg’ =0,
0

N =Nocos¢+Nostin(<p—¢')d¢’=N0,
0 _

M,=Ny,R—-NR=0.

Consequently, the constant axial force N, only is produced.
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As shown in Fig. 15, the relative displacement of the adjacent section N'(’

defined by angle ¢’ +d¢’ will be caused to the section N C defined by angle
¢, and N’ C’" will move to N”C".

Fig. 15. Displacements under pure tension.

The displacement of the differential fibers NN and C' ("’ are as follows:
N'N"=C"C" = Rdy.

Therefore, three displacement components u,v,w at any point D (p, ¢, () are
expressed as follows:

¢ d : ’ ’ P d ’ ’
uzngzsm(q)—q))d(p, v=0, w=0fRI;l‘700s(q>—(p)dq>. (36)

The strain components can be readily obtained by substituting the above
equation in the Eq. (5).

R dy
€ =€ =Yoo =Yl =V = 0, €m=73(;'
Therefore, the stress components are
R dy
Op = Esn—p E;(_ o) (a)

and all other stress components are vanishing.
The relation between the stress o, and the axial force N is expressed as

follows:
N ={(o,dF.
F

Substituting the Eq. (a) in the above equation

=g [E 2y
de) p n
F
By using the Eq. (35),
N=gr% | (b)
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By eliminating di/de from both Eq. (a) and (b),

RN

On the other hand, the bending moment M, about the principal axis 0,z

will be found as follows:
M;=(o,ydF.
F

Substituting the Eq. (37) in the above equation, it will be noted that M;
vanishes by means of the condition (32). Regarding the bending moment M3
about another principal axis 0,y likewise vanishes. That is to say, no bending
moment is produced in pure tension.

9. Torsion Bending

If the nonuniformly distributed torque and transverse load are applied at
a curved girder so as to maintain the static equilibrium, both the torsional
moment 7' and the shearing force ¢ produced in the girder vary as the func-
tion of variable ¢. Such a condition of deformation is defined as torsion bending,
and that can be created practically. Since 7' is here not constant along the
girder axis, it can be seen from the Eq. (23) that the specific angle of twist
df/de will also vary along the length of the girder even in the case of uniform
section. In the similar manner as the straight girder, the normal stress o, is

f P
(Tt +8-§:-'dp sec ou) dp (p+dp)

/ d
(o t+8""'d )d ’
LR v P)dp sec ot

ow! dpsec &«

Fig. 16. Stresses under torsion bending.
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produced as the result of restraint on warping and its value is found by means
of Eq. (13,). Then the secondary shearing stress r,, should be induced to resist
secondary normal stress o,. In order to find this value, let us consider the
static equilibrium between the stresses acting on the differential element as
shown in Fig. 16. Taking such fact into account that the direction of the
middle plane of the differential element is generally inclined at an angle « to
that of the axis 0p, the following equation for static equilibrium can be
obtained.

0Tyt 2’rwt 10do,t

5s T o Nt g

=0. (c)

So, let us adopt the following formula as the secondary shear flow g,,.

E, d30
Gw =Tt = "R dq>3 q (8): (38)

where ¢* is a function of coordinate s only, and will be named as the torsion
bending function.

Substituting the Eq. (38) in the differential Eq. (c), and eliminating the
common terms,

dg* gCOs & R Wt
+ J—

* .
ds p p m

By solving this differential equation,
q* =;~(RfW pds+S, ) (39)

where S,, represents the quantity respected to a statically indeterminate shear
flow and may be found by the following process.

In the differential element of curved girder included between two radii
with the angle dp between them, the potential energy dII will be stored as
follows:

1 (a2 72 do
dIl = f(E G)tpde(p T%d(p.

Therefore, the total potential energy IT of the curved girder is

{”(E )i JT—dw} | (@

Generally, the shearing stress =, in the circumferencial wall of the kth.
cell is caused partially by shear flow ¢, due to pure torsion as discussed in
paragraph 3, and partially by the secondary shear flow ¢,,. In the wall
belonging to open cross section, ¢, is not present of course.
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T (Yo + Quotc) Nonboundary wall,

(40)

eo-ll—l u-lt—i

(9o — 95, k+1+9wn) Boundary wall.

Of above expression, q,;, may be written in the following form from the
Eqgs. (38) and (39).

3
Tk = 11;}3 3 2 : —5 (@oor + Suon) Nonboundary wall,
(41)
E d30 1
S TR 4R (qwk+ka Sy rx+1) Boundary wall,
— s lp
where Qoo = B W= ~ds. (42)
0

By means of the principle of least work, the variation 811 of II for the
variation 6 S, of S, should be put equal to zero.
8IT=0.

Based on this condition, by the use of the Eqs. (d), and (40) to (42).
do “R3ng . df [ R3 My 1

~

"1 R g | o5t d”q’czqu; 5T
k, ‘—1
. df R3 ny wak R2r,
_q"“qu; p3t ds fﬁ Gpt as ”qu;é; ds = 0.

k,k+1

The first three terms and the fifth one of the above equation can be elim-
inated by using the Eq. (22), and then the following equation can be conse-

quently obtained.

qu“’—’ft@ds - 0. (43)

Substituting the Eq. (41) in the conditions (43), the simultaneous equations
for S,,;, are obtained.

S, k- 1fR =204 + + Sy Zingds wk+1fR ™0 ds = fﬁR qw’cngd (44)
i Kk

k,k—1

The following integration will be referred to as the warping moment.

Mw=—11—g—fostde. (45)
Va

Substituting the stress (13) in Eq. (45), the warping constant C,, can be
readily obtained as follows: ‘
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_ [Pyt
Cw—-fRW;nds. (46)
b
Hence, the warping moment M,, may be expressed in the simplified form,
dxo
Mw = ES CWW. (47)

From both KEq. (47) and (13,), the practical formula for the normal stress
a,, due to torsion bending can be obtained in the analogous form to the bending.
M, W,

0 m (48)

gw
w
On the other hand, the torsional moment 7, will be produced due to the
secondary shear flow g,,.
Tw = J.Qw TS ds *
F

Substituting the Eqs. (41) and (42) into above equation, and considering
the condition (43), ¢,, may be transformed as follows:

a0

(49)
Finally, since the total torsional moment 7' can be found as the sum of the
two kinds of torsional moment 7, and 7, from the Eqgs. (23) and (49),
de d36

T= GSJ—_‘——ESOWW

Rdyp (5]

10. General Bending

In this paragraph, let us discuss the general bending, where two mutually
perpendicular bending moments M,, M,, two corresponding shearing forces
H, @, to above moments and an axial force N are simultaneously presented.

In order to clarify the static characteristics in this case, the rectangular
coordinates (y,z) as shown in Fig. 17.

The origin is taken to coincide with the centroid 0, of the cross section.

The displacements at any point (y,z) of cross section due to deformation
may be found by superimposing the respective displacements given in para-
graphs 4, 5, and 8. Therefore, the normal stress ¢, in the general bending may
be readily expressed as follows:

ax=a£+bi+0—z—, (a)
np np np
where a, b, and ¢ are constant and may be determined from the equilibrium
of the stress resultants and stresses,

fo,tds = N, foyztds =M foy,ytds =M,.
F P F

Yy
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By substituting the Eq. (a) in the above equation, and solving for a, b,
and c.

o NE MI,-MI.R MI-MI,R

*“Fonp' I,L-1:, np’" I, I,—I2, np (51)

Generally, if the stress resultants M,, M, and N va<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>