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On the Statics of Latticed Shells

Sur la statique des votles triangulés

Uber die Statik der Gitterschalen

DONALD L. DEAN ,
Professor of Civil Engineering, North Carolina State University, Raleigh, N. C.

Introduction

With increasing frequency in recent years, designers have been utilizing
the inherent strength of doubly curved roof structures in latticed form instead
of the continuous form classically associated with the term shell. Examples
include structures for the 1964 and the two previous world fairs as well as
earlier well known structures designed by P.NErv1 and by B. FuLLERr. The
preference for the latticed shape over the analogous continuum is rationally
based in many cases. Some reasons for the preference, in addition to special
functions and aesthetics, are: higher buckling strength with less material;
better suited to prefabrication, assembly line techniques and use of materials
in available form; more easily strengthened at highly loaded points; and easier
to dismantle and reassemble or salvage.

As compared with tractable shapes in the continuum, the analysis of latticed
shells is usually performed with less mathematical elegance. Instead of writing
the stress components as functions of the coordinates on the shell surface, one
of the following methods is used: 1. algebraic equations are solved simul-
taneously for the node deformations or member forces; 2. forces are predicted
through model studies; or 3. an empirical analysis is performed by use of
formulas for a similarly shaped continuous shell to approximate the member
forces near the point. The purpose of this brief paper is to present and illustrate
the elements of a field approach to the analysis of latticed shells; that is, the
determination of lattice member forces as closed form functions of the discrete
coordinates which label them. The objective is not an exhaustive treatment of
this broad and opening subject but rather an elementary study of a restricted
and, hopefully, heuristic class of latticed shells which are amenable to such
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an approach and show promise as practical civil engineering and architectural
structures.

Many designers who have become interested in continuous shells are
disinclined to become serious students of the esoteric mathematics required
for continued work at the theoretical frontiers of the subject. Even so, they
can gain insight into the manner in which these two-dimensional shaped
structures carry loads by studying the relatively simple and widely published
(for example, references [1, 2 and 3]) equations and formulas for the membrane
analysis of shells by use of cartesian coordinates in a projected reference
plane. The objective here is to obtain analogous equations and formulas for
latticed shells.

In order to avoid possible confusion with other, remotely related, classes
of problems which also require use of finite difference concepts, it should be
emphasized that the object problems here are in the discrete field category.
By writing closed form solutions to the governing difference equation, one
finds exact formulas for the desired quantities throughout the physical lattice
which may have an arbitrary number of nodes. This is as opposed, for example,
to the description of an open form method which uses difference equations to
approximately represent the mathematical model for a physical continuum.

Equilibrium Equations for the Latticed Shell

Consider a latticed surface whose nodes are connected by three sets of
two-force members and are spaced so that their projections on a reference
plane form an evenly spaced pattern; that is, the members (which are not
necessarily regular) project as a number of identical parallelograms with
diagonals (Fig. 1). The direction of the projection from the real node to its
image is perpendicular to the reference plane; that is, parallel to the unit
vector k. The unit basis vectors in the plane, ¢ and §, may be, but are not
necessarily, orthogonal; that is, o =7/2. In general, the diagonal length for a
typical element in the reference plane is related to the side lengths through
the cosine law;

2 =a?+b%+2abcosep. (1)

The position vectors for the surface nodes are given by:
X(x,y) =axi+byj+Z(x,y)k, (2a)

where Z is the function, of the plane coordinates x and y, which must be given
to specify the latticed surface geometry. Although not a theoretical necessity
for this two-dimensional problem, a third coordinate in the plane will be
introduced as a notation and conceptual aid. The third coordinate, u, is a
factor in the distance measured parallel to the projected element diagonal;
that is, in the direction of the unit vector I, where
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7 . b=
l=gz+27. (3)

This coordinate could be used in lieu of either z or y in Eq. (2a);

X (@, u)=ax'i+cul+2Z (&, u)k. (2b)

Ny (x=1,y}

N3 (x-1,y-1)
Nz(X,y—”

Z (x+l,y+1)

&1 ;
LR A

{@

T‘(*wy) =
Y T ) g ) (xt1y)

Yy (x,y-1) :

c) Lattice element

Fig. 1. A latticed shell.

By use of Eq. 3, the relation between coordinates z’, » and x, y is found to be:

x 1 —-1] (=
{u}=[0 1] y} ()
Z' (' u)=Z" (v ~y,y) = Z(z,y). (4b)
The member lengths are related to their projections as follows:
A2 =a*+(4,2)3, (5a)
B? = b2+ (4,Z)?, (5b)
C? =2+ (4, 2)?, (5e)

where the 4’s denote first forward differences with respect to the indicated
variables; that is, :
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4, Z =Z@x+1,y)—Z(x,y), (6a)
4,72 = Z(x,y+1)—Z(z,y), (6b)
A, Z =Z@x+1y+1)—Z(x,y) = (4,+V,) Z(x,y+1), (6¢c,d)

4,=4,+4,4,+4,. (6e)

The lattice is loaded at the nodes only and the components of the load
vector are denoted p, (x,¥y), Py (z,¥y) and p, (x,y).

P(x,y) = pyi+pyj+p,k. (7)

Instead of working with the member forces, N,, N,, and N, the plane
components of the member forces, T}, T,, and T, will be used. The com-

ponents are related to the total forces by:
1, =£N1; T, =%Nz; and 7T; =g

i N,. (8a,b,c)

The out-of-plane components are as follows:
1
R=1l, 2T V=5 @4,0T; and V= (4,2)T. (9a.b,c)

The three equilibrium equations can now be written by summing node
forces in the 7, j and k directions, respectively.

v,y + -V Ty+py = 0, (10a)
7, Tyt 0, Tyt py = 0, (10b)
1 1 1
V14, 2) T+ 7, (4, 2) B+ V.14, ) T]+p, = 0, (10¢)

where the ’s denote first backward differences with respect to the indicated
variables; that is,

Z;F(x,y) :F(x:y)_F(x_lay)a (113')
7, F(x,y) = F(x,y)—F@y-1), (11b)
V,F(2,y) = F(xy) - Fla-1y—1) = (F,+4,) F(z,y—1), (llc,d)
v, =V,~V,7,+F,. (le)

The third of the equilibrium equations, as written by inspection, (10¢), con-
tains differences of products. If one carries out these indicated differences
and substitutes Eqs. (10a) and (10b), the equation assumes a more convenient
form which contains only the member force components and the first difference
of Ty ; that is,
1
@

1 1 1

u

; . (12)
_?z‘i‘&(lzcz)?% +g([7yz)p2:



ON THE STATICS OF LATTICED SHELLS 69

where the //’s denote second central differences (product of 4 and V) with
respect to the indicated variables; that is,

N Z=Zx+1ly) —-2Z@xy)+Z(x-1y)), (13a)
N, 74 =Zxy+1l) —2Z(xy)+Zx,y-—1), (13b)
N, Z=Z(x+1Ly+1)-2Z (x,y)+Z(x—1,y—1). (13¢)

One can interpret the set, Eqs. (10a), (10b) and (12), as a three-component
vector equation. As it contains only three scalar unknowns, a solution is
possible, contingent upon the existence of suitable boundary conditions. In
other words, the lattice with three sets of members is internally statically
determinate. For some cases, the vector equation can be handled more easily
if it is transformed to a scalar equation. This is done by selecting a new func-
tion of z and y, ¥, which is related to the components of the unknown vector,
T, T, and T, so as to reduce Eqgs. (10a) and (10b) to identities. The gov-
erning equation for F is then found by substituting these relations into Eq. (12).
The results are:

a b
=0TV P~V g ="V F-Viip;  (14a,b)
Ty = V.7, F; (140)
and
wxzmm—mzmm &, D), +(mZ>WVF=cp,, (15)

1 1
ptE_pz+a(l7wz)pl+g(l7yz)p2+_( Z)lepﬁ' (N Z)V,1p,. (16)

A clearer understanding of the significance of the partial difference opera-
tors in Eq. (15) results from their presentation in the molecular form, as
popularized by SALvADORI and BARON [4], that is, the operator is shown as a
graphical array of coefficients of the function at adjoining nodes. For example,

F,y)-F@-Ly)-F@y-)+F@-Ly-1)=VVF(@y (17a)
would be represented as:
(®—2) (x—1) (2)
(y—2) [0y  (0)  (0)
=1 3 0 () (=1 ¢ F. (17b)
®) 0y (=1) (D)
This useful representation of partial finite difference operators can be given
a formal basis. Through use of the displacement operator, the coefficients in

the molecules can be treated as elements of a matrix. A two-dimensional
backward difference operator of order m in « and n in y can be representated as:

O (H,, Ey) F(x,y) = [E][C;1{EL} (18a)
with ¢ = —n(1)0 and j = —m(1)0.
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For m=n=2,
C g5 C g4 Oy EZ?
P(E,,E)F (x,y)=[ElE]E)]|Cy 5 Cq 4 Cyo|| £ F(a,y), (18b)
Co—2 Co,1 Coo | | B}

where the E’s are the standard displacement operators [5], defined so that:
EiE F (x,y) = F(x+),y+1). (19)

In accordance with these definitions, the node coefficient matrices, [C};], for
the operators in Eq. (15) are:

0O 1 0

for 7,7, [Ciyl=|0 —1 —1], (20a)
0 0 1]
0 0 0O

for V1, [Cyl=1]1 -1 0}, (20Db)
0 -1 1
[0 0 O]

for I, V,, [Cyl=10 1 —1][, (20¢)
|0 -1 1|
[ —1 1 0

for V.V, V,, [Cy]l= 1 0 —1/|. (20d)
0 -1 1_

Eqgs. (10a), (10b) and (12), or Eq. (15), can be solved in closed form or
numerically to find the member forces for any loading on a given lattice con-
figuration with suitable boundary conditions. Here, attention will be restricted
to finding closed form, or function type, solutions.

The Hyperbolic Paraboloidal Lattice

As a first illustrative example of the application of Kqgs. (10a,b) and (12)
to the analysis of a latticed shell, consider the system shown in Figs. 2a,b.
In order to appreciate the breadth of application for the solution to this case,
one should recall that any hyperbolic paraboloidal lattice — which is formed
by (1) connecting opposite sides of an arbitrary space quadrilateral with
straight members spaced uniformly along the edge members and (2) adding
diagonal members to brace the elemental quadrilaterals — projects a uniform
pattern upon a plane parallel to the two directors (common normals) for the
two sets of surface generators. The lattice, and indicated boundary force
capacities, in Figs. (2a,b) may serve as the entire structure or it may be one
of a number of such lattices comprising a more complex system. Examples of
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systems of hyperbolic paraboloidal lattices are shown in Figs. 2¢,d, e, f. Many
other, both practical and fanciful, combinations have been constructed as
continuous shells.

by
{o,n

Fig. 2. Hyperbolic paraboloidal lattices.

The formula for the node heights of this lattice, and the various operations
upon it, are: '

_ fxy _ 1y _ Iz
Z =N 2 =yxy  WZ =3y (labo
f
VJUVIIZZTN’ NxZZO, NyZ=O, (21d,e,f)
7z =1 @ry—1) 7,7 = 2L 21g,h)
w2 =gty T MN (g,

The joint loads, corresponding to a uniform snow load on the roof supported
by the lattice, are taken as follows: '
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py=ps =0 forall z,y, (22a,b)

p,=—py for 0<x<M and O<y<N, (22¢)

p, = —%p, on edges, except, p,=0 at (M,0) and (0, N). (22d)

total load, W = M N p,. . (22e)

Substitution of Eqs. (21) and (22) into Eq. (12), for the interior nodes, gives:
cMN

(=R T = “5 = po. (23)

The total solution for Eq. (23) can be written by inspection or through use of
standard procedures [5] as:

7, = S5 ol (— 1Y 6 o=y, (24)

Substitution of Eq. (24) into Egs. (10a, b) gives:
_aMN

Va:jvlz f po(—l)yG(x—y), (253’)
7,7, = =2 gy (~ 1 G @), (25b)

It is noted that the homogeneous solution alternates in sign but has a
constant magnitude along a given set of diagonals. This fact, along with
knowledge of the membrane stress variation in the continuous case, suggests
that suitable boundary conditions may be met if G (x—y)=0. This trial
solution will be tested. Substitution of G (x—y)=0 into Eqgs. (24), (25a,b)
gives:

T, = .C—J;[]C——Npo, T,=G,y) and T, = G,(x). (26a,b,c)

Reasonable and desirable boundary conditions are: 1. zero net j force compo-
nent along y=0; and 2. zero net ¢ force component along x =0; that is,

T(z,0)+ 2T (@,0) =0 and  T(0,9)+27,(0,9) =0. (27a,b)

Equations (27a, b) are satisfied provided:

aMN bMN
T% and T, = “——27—200- (26d,e)

T, = -

Eqgs. (26a,d,e) comprise a solution to the problem outlined. It remains

only to study the edge forces which must be supplied in order that this statics

solution be consistent. Along the horizontal edge, x=0, the equilibrant force
vectors are:

2} = b M N

P(0,0) = 0i+0j+0k. (28b)

p0;+07<: for y=1(1)N, (28a)
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Along y =0,

f p07,+09+0k for e =1(1)M. (28¢)

In other words, only a strut or cable is required along the horizontal edges
depending upon where the resultant force is to be resisted; that is, struts for
reaction at (M, 0) and (0, N) or cables for reaction at (0, 0). In either case, the
required reactions for forces along =0 and along y =0, respectively, are:

and R,=-—-— (29a,b)
Along the sloping edge =M, the equilibrant force vectors are:

bMN M
P(M,y) =0;+—— 57 p07+ pok for y =0(1)N—=1, (30a)

P(M,N)=0i+0j+0k. (30Db)
Along y=N:
E(x,N)zg%—I?gpo'z+Oy—'+§polE for x=0(1)M—1. (31)

Eqgs. (30) and (31) represent force vectors which are parallel to the sloping
edges so that there too simple struts or cables are sufficient to furnish the
necessary edge forces. It should also be noted that the total of the vertical
components of the edge forces is M N p,, which balances the total vertical
load, W, given in Eq. (22e). -

The Elliptic Paraboloidal Lattice

For a second illustrative example of the application of projected plane shell
lattice equations, consider the system shown in Figs. 3a,b. For this elliptic
paraboloidal lattice the formula for the distance from the reference plane to
the nodes, and the various operations upon it, are:

d e ‘ d

4 =pTtyEy R.Z =o(2e—1),  (32a,b)
e 2d |
2e

Yy Z = j .V, Zz =0, (32e,f)
d e 2d 2e

VeZ =3 Qr—1)+-5(2y-1), Sl =3+ (32g, h)

At this point, the loading is partially spemﬁed as having components in
the % direction only; that is,

PL =Py =0. (33a,b)
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Substitution of Eqs. (32) and (33) into Eq. (12) gives:

2d 2( d e 2e
a3t (37 + e Bty e =~ (34

As Eq. (34) contains all three components of the vector unknown, the “Stress
Function’’ approach is indicated. Substitution into (Eq. 15) and collection of
terms yields:

e d c
(372 5+ 32 50 F@9) =~ pu o+ Ly+1). (35)

Eq. (35) is a second order partial difference equation which occurs fre-
quently when a discrete field approach is used to problems in structural
mechanics. Solutions, for certain boundary conditions, are available [6]. Here,

é@%ﬁ%&‘};“ ‘%?Z;,H
AN K I

5% V
» y

¢) Common Dome d) Butterfly Dome

Fig. 3. Elliptic paraboloidal lattices.
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as in the first example, boundary conditions are considered which establish
that all edge forces are in the plane of the boundary nodes; that is, 1. zero j
components at =0, N and 2. zero ¢ components at x =0, M. This means that
the edge structures have only in-plane loads. If the Quarter-Dome Lattice,
Fig. 3b, is not the entire structure but only a part of a Common Dome, Fig. 3¢,
edge members may not be needed along the two interior sides, where edge
loads and boundary forces from adjoining sections serve as edge force equili-
brants for the section in question. Quarter-Dome Lattices may be joined with
diagonals oriented so as to form a full dome symmetric with respect to x=0
and y=0. In this case, different boundary conditions are needed to eliminate
stiffeners in those planes; that is, zero j components at =0 and zero ¢ com-
ponents at y=0. The Butterfly Dome, Fig. 3d, is another system which can
be erected with Quarter-Domes. For this structure, one may require different
boundary statements, depending upon the type of supports under study.

Eqgs. (27a,b) are a partial statement of the boundary conditions for a
Quarter-Dome with plane edge supports. At y=N and z= M, the conditions
are:

Tz(x,N)+Ebf},,(x,N)=0 and TI(M,y)+§T3(M,y)=O. (36a, b)

Substitution of the definitions for 7}, 7, and 7}, in terms of the ‘““Stress
Function’’, Eqgs. (14), into the physical boundary statements, Eqgs. (27) and
(36), give the following conditions on F':

-1 —1
NyF(M_l,y—1)=0, NxF(x—l,N_1)=O. (37a,b)

Eqgs. (37a,b) require that F vary linearly along the boundary. As linear
variations have no effect on the force components, 7;, 7, and 7j, the func-
tions may be taken as zero on the boundaries; that is, Eqs. (37a, b) are replaced
by:

F( —1 y—1)=0 F(x—l —1)=0 (38a,b)
M-1 ’ "N—1 . )

Solutions for Eq. (35) which satisfy Egs. (38a,b) can be found by separation
of variables [5, 6] provided the loading term can be appropriately expressed.
Either a single series or a double series can be used; that is,

F(x,y) = Z ZA”smM x+1)s1nN (y+1), (39)

i=1 j=1

F(x,y) = Z YsmM(x—l- 1), (40)

where A4;; are a set of constants and Y; are a set of functions of ¥ which must
be determined.
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For use of the double series solution, the loading function, p, (x,y), must
also be expressed as a double series; that is,

M—1 N-
P, (x,y) = D] ZP sin -7 wsmjv—y, (41)

i=1 j=1

where the coefficients, P,.

%i» are found for a given loading, P, (z,y), from [6,7]:

= 42
Bi=rw le yzlpz Z, y) sin M Ysin17Y N (42a)
: M,N
————A 1A —1 nl— nﬂ/ ; 42b
3 4 4 ) sin g sin T (42b)

In the case of a uniform load, p, (x,y)=p,, the coefficients in Eq. (41) are:

4 -
_Pij=M—-—~Np000t Mcot 7 1,7:133:5:75"' (43)

For a single load, p,, at joint x=«, y=p, Kronecker Deltas serve as discrete
functions for the loading; that is,

P, (%, y) = Py 8% 68, (44)
0,
Sg:{I z:} (45)

and the series coefficients for this kernel loading are:

4 jm B
= LA 4
FP; MNposm M *sin N (46)

Now, the coefficients for the double series solution, 4, are found by
substituting Eqgs. (41) and (39) into Eq. (35) and matching coefficients of like
terms. The result is:

P.
A’i] == 1 e — L - . (4:7)

ﬁ(l —cos%) -+ %(1 ——cosyzvz)

Eqs. (47) and (39) comprise a solution for F in Eq. (35) for an arbitrary
loading function, p,. The loading coefficients, F;;, are given for two particular
loading conditions, 1. the uniform load, Eq. (43), and 2. the single concentrated
load, Eq. (46) (repeated use of this case for given p,’s at specified coordinates,
o, B, enables one to find F for any and all loadings).

The double series solution, Eq. (39), is easily programmed on a computer,
but may be inconvenient for manual computation if M and N are large. In
view of the probability that the double series will be used primarily for auto-
matic computation, separate formulas will not be given for 7, 7, and 7j.
Instead, it is recommended that the program for Eq. (39) be used repeatedly,
in accordance with the relations given in Eqs. (14) or their molecular equi-
valents, to find the member force components directly; for exemple,

e
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T3(x7y) = _VxVyF(x:y) = F(x—l,y)+F(x,y—1)—F(9c,y)—F(x-—l,y—L).
(48)
For manual computations, the single series solution, Eq. (40), is much
preferred over the double series form. It arises more naturally through the
separation of variables (one series in Eq. (39) is actually an expansion of non-
trigonometric functions) and converges; that is, not all terms are needed for
engineering accuracy. Of more importance than computational advantages,
however, is the fact that the single series solution is valid for arbitrary con-
ditions over part of the boundary; for example, the solution, Eq. (40), satisfies
the boundary condition, Eq. (38a), but is not restricted to the condition,
Eq. (38b). It is possible to adjust Y, so as to satisfy a total of two conditions
for given values of y, of which Eq. (38b) is a special case.
Again the loading function, p, (x,y), must be expressed in a series form:

B et S
P. (2, y) = p; (y)i;Pi sin— . (49)
In the case of a uniform load; p, (x,y)=1p,,
’ 2 v .
(y) =1, y = =rPocots—= ©¢=1,3,5,... a,
P, (y) =1 B = gppocot o7 1,3,5 (50a,b)

In the case of a single concentrated load at «, 8, Eq. (44),

) .
piy) =8, P= Mposinf-]%“. (51a,b)

The Euler Functions, Y; (y), in the single series solution, Eq. (40), can now
be determined by substituting Eqs. (40) and (49) into Eq. (35) and matching

coefficients of like terms. This results in an ordinary difference equation for
Y, ; that is,

2

M3c ,

v = g(%)z(l—cosé—;). (53)

As the parameter, y,, is always positive, the solution to Eq. (52) can be written
routinely [5, 6]:
M2c
Yi=33

F,[C;sinho;y+ D;cosho;y+ Y], (54)

where Y, are particular solutions to Eq. (52) and

cosho, =y, +1. (55)

For the single load (the most general case), use of Eq. (51a), gives:
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_sinho; (y—B+1)

Lo = he VWA, (56)
Y(y—B) = {?Z;ﬁ} (57)

In order to constrain Eqs. (54) and (56) to fit boundary conditions cor-
responding to in-plane-only forces at y =0, N, Eq. (38b), the following formulas

are used:
_ sinh o, (N —B)
- sinhoy, N

Substitution of Eqgs. (58) and (50) into Eq. (54), yields:
K: =

O'i = (cOth O.'L')‘D’l:7 'D’L (583:, b)

szl%‘-i% sin zj}“ [Slilil;ﬁfszv B)sinh o;(y+1)—sinho,(y—B+1) ¥ (y—-ﬁ)] .
(59)
Eqgs. (59) and (40) comprise a single series solution for the stress function,
F, related to the member forces in an Elliptic Paraboloidal Lattice which is
loaded vertically at joint «, 8 and supported by in-plane forces on the boundary
of a Quarter-Dome.
The solution for a uniform load, corresponding to Eq. (59) for the single
load, is:

Cc
Yi = 5dy, Py

N
Bar OOShO'i(y'——é"i‘l) :
[1— < ] i=1,3,5,... (60)
coshoi?

Operation upon the solution for ¥ due to a uniform load, Eqs. (60) and (40),
in accordance with formulas relating the stress function to the plane com-
ponents of the member forces, Eqs. (14), gives the following results:

Me M1 cos%sinhoi(y—l—;—+%) i 1
T, = = Po N 3 cosﬂ(x—l-E) t=1,3,5,... (61)
= cosh 5 0% sinh§ a;
Ma & cOtQiJ—TI . N 1 T
T, = -5 pOZ S 4, I:smhai (y—— — 5) sinw] (62)
= sinh§ o; cosh~2— o; 2
t=1,3,5,...
T
2Mb RS %%Sapg y y—N\ in{ 1
= ——F— ——4 [Sinh 0-(—) sinh a’-(-——) COS—~ (x—-—)] (63)
d pﬁ; '}/Zcosh__él\zo-i u t\9 [ 2 M 2
1=1,3,5,...

These formulas complete the solutions for the Elliptic Paraboloidal Lattice
for impulse and uniform vertical joint loads.



ON THE STATICS OF LATTICED SHELLS 79
Conclusions

The object here is to encourage the use of discrete field techniques for the
analysis and design of latticed shells. The paper is of an introductory nature
and attention is restricted to the more elementary problems within the subject
area. Difference equations are derived for the statically determinate member
forces in single-layered triply-latticed systems whose joints project as evenly
spaced points on a reference plane. New closed form solutions are found for
the forces in a uniformly loaded Hyperbolic Paraboloidal Lattice and in the
Elliptic Paraboloidal Lattice with an arbitrary variation of vertical joint loads.

Acknowledgments
The work presented is from lecture notes for a graduate course, Shells and
Space Lattices, taught at the University of Delaware in the Spring of 1964.

Preparation of the paper was also supported by that institution. Mr. C. H.
Bernard Lee drew the figures and helped with the illustrative examples.

Appendix: Notation

The following symbols have been adopted for use in this paper:

A,B,C = Actual lengths of lattice members.

Ay = Coefficients in double series.

a,b,c = Projected lengths of lattice members.

C;, D, = Constants in single series.

Cy; = Elements in finite difference operator matrix.

E.  E, = Finite difference displacement operators.

F(x,y) = Stress Function.

i,9 = Exponents of displacement operators and indices denoting
terms in series.

i,7,k,1 = Unit basis vectors.

G,G,,G, = Arbitrary functions of discrete coordinates.

M,N = Discrete coordinates of lattice boundaries.

m,n = Orders of finite difference operators.

P,p,,ps,p, = Load vector and its components.

Pi> Po = Linear combination of p;, p,, p, and a reference load.

P,P,,P, = Edgeload vector and coefficients of loading series.

N,,N,,N; = Forces in lattice members.

T.,T,,T, Plane components of forces in lattice members.
d,e,f Reference out-of-plane distances for lattice corners.
u,z,Y = Discrete coordinates in the reference plane.

If
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V(@y—pB) = Discrete step function.

Vi, Ve, Vs = Out-of-plane components of member forces.

X,Y, = Joint position vector and Euler functions in single series.

/4 = Distance from reference plane to lattice node and total load on
lattice.

o, = Coordinates of load. ‘

Vi O; = Related parameters in single series.

a4,V,~ = Forward, backward and second central finite difference ope-

: rators.

8%, 868 = Kronecker Delta load functions.

e, P = Angle between lattice coordinates and function of displacement
operators.
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Prentice-

Summary

The governing difference equations are derived for the member forces in a
class of latticed shells constructed so that the node projections are evenly
spaced on a plane. The approach is the discrete analog to the popular pro-
jected plane analysis of continuous surface shells. A “Stress Function’’ is used
to convert the vector equation to scalar form. Solutions are written for the
Latticed Hyperbolic Paraboloid and the Latticed Elliptic Paraboloid. The
lattices are single layered and designed for two-force members.

Résumé

L’auteur établit les équations aux différences qui déterminent les efforts
dans les barres de voiles triangulés dont les noeuds, en projection sur un plan,
sont équidistants. Ce procédé est analogue, pour une structure discontinue,
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a celui bien connu pour 1’étude en projection plane des contraintes des voiles
classiques. Pour ramener 1’équation vectorielle & une forme scalaire, on utilise
une «fonction de contrainte». L’auteur donne des solutions pour les treillis en
forme de paraboloide hyperbolique ou elliptique. Toutes les barres du treillis
se trouvent dans une méme surface et résistent aussi bien & la compression
qu’a la traction.

Zusammenfassung

Fiir die Bestimmung der Stabkrifte von Gitterschalen, deren Knoten in
der Projektion auf eine Bezugsebene einen gleichen Abstand aufweisen, werden
die maBgebenden Differenzengleichungen abgeleitet. Das Verfahren ist analog
zur bekannten Berechnung kontinuierlicher Schalen in der Grundrifprojek-
tion. Es wird eine Spannungsfunktion benutzt, um die Vektorgleichung in
skalarer Form anschreiben zu kénnen. AnschlieBend werden Losungen ange-
schrieben fiir Gitterschalen mit der Form eines hyperbolischen oder elliptischen
Paraboloids. Die Gitter sind in einlagiger Anordnung und entworfen fiir
druck- und zugfeste Stabelemente.
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