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Contribution au calcul des coques continues et précontraintes
Contribution to the Analysis of Prestressed Shells Continuous over Supports

Beitrag zur Berechnung durchlaufender, vorgespannter Schalen

G. FONDER
Ingénieur Civil des Constructions, Aspirant F.N.R.S., Université de Liége (Belgique)

Introduction

Peu de coques continues ont été construites dans le monde. Pour la plupart
d’entre elles, le dimensionnement a été effectué par une méthode simplifiée:
méthode de la poutre ou bien calcul d’une coque biappuyée et extension a la
continuité par de simples considérations sur le diagramme des moments dans
les poutres sur appuis multiples. Dans le présent mémoire, nous montrons que
les fonctions de base, malgré certains inconvénients, offrent au probléme une
solution intéressante.

La précontrainte, pour étre vraiment utile, doit comporter des cibles dans
la coque et dans les poutres de rive. Ils donnent naissance & des efforts d’abouts
et des efforts de courbure, qui sont analysés séparément par la méthode la
mieux appropriée, puis superposés.

Les développements théoriques sont illustrés par un exemple numérique:
celui d’un shed de 2 x40 m de portée analogue a celui construit & Oosterhout
par le Professeur Haas. Dans ce cas particulier, nous donnons une disposition
originale des cables de précontrainte.

Notations et conventions de signe

Les notations et conventions de signe sont définies ci-apres:
Axes et déplacements

Axes x, @ ou ¥,z

Déplacements u
v ( positifs dans le sens des axes pouy .
w

d positif de v vers w Fig. 1.
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Dimensions et notations spéciales
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positifs en traction.

positifs lorsqu’ils produisent
une réduction de I’angle droit
des coordonnées.

positifs vers le haut pour des
facettes regardant les coordon-
nées négatives.

positifs dans le sens des axes.

positifs dans le méme sens que
N, N,,N.,,N,.

M, positifs lorsqu’ils donnent a

I’intrados des tensions de méme
sens que N, ,N ,N,,,N,,.

Q>

Premiére partie: Le probléme de la continuité

Aper¢u des méthodes existantes

Parmi I’abondante littérature traitant des coques, les indications concer-
nant le calcul des coques continues sont plutdt rares.

Au cours de notre examen des différentes méthodes, nous avons rapidement
exclu les méthodes a la rupture, encore incompléetement développées, les
méthodes trop compliquées comme celle de Vrasov ou la méthode itérative
de LUNDGREN et les méthodes approchées comme celles de BARETS-CALLARI
ou VAN pDER EB; pour I’étude de certains effets de précontrainte, nous avons
cependant eu recours a la méthode de la poutre.
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Restent donc les méthodes dites exactes, ¢’est-a-dire basées sur la théorie
mathématique de 1’élasticité et qui, moyennant des hypotheses simplificatrices
plus ou moins poussées, dérivent des trois équations fondamentales établies
par FLoGceE [1]. Elles conduisent finalement & une équation en w contenant
des dérivées partielles du 8e ordre par rapport & x et p. Habituellement, on
sépare les variables en écrivant w=w; (¢)wyy (z) ot wy; (z) est un développe-
ment en série de FOURIER dont on conserve un ou quelques termes. Il reste
alors une équation différentielle du 8e ordre en ¢; sa solution comprend une
intégrale particuliére pour laquelle on prend la solution de membrane et une
intégrale générale souvent appelée la solution de flexion.

On interprete physiquement cette double solution en disant que les charges
réparties sur la surface de la coque sont transmises aux appuis uniquement
par des tensions dans la surface moyenne de la coque: c¢’est 1’état membra-
naire. Mais cet état implique aux retombées de la coque des tensions et défor-
mations en général incompatibles avec les conditions & respecter en ces bords.
11 faut donc apporter le long de ceux-ci des charges linéaires qui vont donner
des moments et des efforts tranchants dans la coque: c’est la solution de
flexion.

Une des solutions proposées [2] [3] consiste a assimiler 1’effet de la conti-
nuité dans les coques a 1’effet de la continuité dans les poutres ordinaires. Par
exemple, les tensions longitudinales sur appuis d’une coque continue sont, en
grandeur et en signe, aux tensions longitudinales au milieu d’une coque bi-
appuyée comme les moments sur appuis d’une poutre continue sont au moment
a mi-portée d’une poutre bi-appuyée.

La comparaison avec une solution rigoureuse fait défaut pour estimer le
degré d’approximation de cette méthode. S’il est vraisemblable qu’elle est
satisfaisante pour les efforts M,, N, et ¢, comparables aux éléments de
réduction M, N, 7T des poutres, ses résultats sont beaucoup plus douteux
lorsqu’il s’agit de fixer I’évolution longitudinale d’efforts N,, N, @,, M,
M, , propres aux plaques et aux coques.

Le manuel de I’A.S.C.E. [3] propose une solution du probléme de la conti-
nuité qui est présentée comme rigoureuse.

On y résout d’abord le cas d’une membrane continue chargée de forces
réparties et développées en séries de FOURIER. On y remarque que les tensions
N,,N,, N,, et les déplacements u, v, w de membrane pour le terme d’ordre n
sont composés de deux parties:

— la premiere correspond & une membrane biappuyée et contient un facteur

nNmwTx nmwax
j— OU cos——,

— la seconde provient des conditions d’appui propres 4 la membrane continue
et a la forme d’un polyn6éme en x et en x.

sin

Le manuel passe ensuite au cas de charges distribuées sur les bords qui
donnent lieu & la solution de flexion. Par analogie avec les résultats de mem-
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brane, il suppose qu’elle se compose de deux termes: le premier correspond
a la solution de flexion dans la coque biappuyée; quant au second, ¢’est aussi
un polynéme en x et en n: il provient du réglage des constantes d’intégration
de facon & satisfaire aux nouvelles conditions d’appui.

La solution compléte se présente sous une forme compliquée et son emploi
est réservé aux coques a bords libres. En effet, la présence simultanée des
termes trigonométriques et polynomiaux dans les efforts et déplacements de
coque rend impossible le raccord avec les efforts et déplacements d’une éven-
tuelle poutre de rive.

Ordonnée de la chorge_l___j
concentrée: 1kg/m

Ordonnée maximum du
developpement en serie:

0,0125 kg/m
%% ) )
Ech.: ord.: = 0,001 kg/m Legende: —-—-— 1= terme
----- ers
abs.: ———iz= 4m z2 termes
{ —-— X3¢ jermes
7FX)

——— 3 4% termes

2 58 termes

| g 40m Fig. 5.
I

Nous avons tenté de calculer la coque continue sur trois appuis comme une
coque biappuyée soumise aux charges extérieures et a une force de souleve-
ment concentrée & mi-portée: la réaction de 1’appui central. Mais, alors que,
dans les développements usuels en série de FOURIER, on se contente de un ou
deux termes, il en aurait fallu un trés grand nombre pour rendre compte des
phénomenes localisés au voisinage de 1’appui. A titre d’exemple, nous mon-
trons a la fig. 5, I’énorme différence entre une charge de 1 kg/m, correspondant
& une réaction centrale répartie sur 0,40 m au milieu d’une poutre de 2 x40 m
de portée, et son développement en série dont on a conservé les cinq premiers
termes.
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La solution par les fonctions de base

Morice [4] fait remarquer que les développements en série de FOURIER ne
constituent pas la seule possibilité pour wy; (z) lorsqu’on pose w =wy () wyiy (%)
pour résoudre 1’équation aux dérivées partielles des coques.

11 suffit que wy; (z) soit un développement en série de fonctions orthogonales
dont la forme se répete apres des dérivations d’ordre 2, 4, 6, 8 c’est-a-dire
sous les ordres de différentiation contenus dans 1’équation aux dérivées par-
tielles des coques.

Par analogie avec des problemes rencontrés dans l’étude des vibrations,
Morick fait appel a des «fonctions de base». Il appelle ainsi les équations qui
représentent les déformées vibratoires & une, deux ou plusieurs ondes rencon-
trées dans 1’étude des tiges vibrantes. Ces équations sont de la forme

Fx) =A4, cosh 2= T —I—A cos 2= 7 +A3s1nh 7 +A4sm Lx,

OF () ([« . L0 gc_x) . (cc)
— = (—-L—) (Alsmh T —Azsm T +A coshL + A, cos )= \z I (x),
2 2 2

4 f:;ﬁgx) = (-%) (AlcoshaL — A4, cos +A sinh 2% —A4s1 j‘_‘Lﬁ) = (%) D (),
PF(x) [« _ [ x)?

D (—Z) (Alsmh 7 + A4, sin =% 7 +A eosh -4, cos> ) = (—E) I (x),
. 4
iBEx‘E—x)z (L) (A coshL + A, cosL +A s1nhL + A4, sin L) e (%) F (x)

Sous leur forme générale, les fonctions de base peuvent s’adapter & diverses
conditions d’appui, notamment au cas biencastré, au cas cantilever, au cas
encastré appuyé qui nous intéresse spécialement puisque le cas d’une coque
sur trois appuis & travées égales et également chargées s’y raméne par raison
de symétrie.

Pour ce dernier cas, quelles que soient les charges et 1’angle ¢, les déplace-
ments w =w, (p) wyy () doivent toujours

— étre nuls sur ’appui central — w=0 pour =0 — F (x)=0 pour x=0;

— étre nuls sur ’appui extréme — w=0 pour =L — F (x)=0 pour x=L;

. . . ow
— avoir une tangente horizontale sur ’appui central — ——=0 pour x=0 —

ox
dF (x) )
e =0 pour z=0;
— avoir une courbure nulle sur ’appui extréme (pas de moments M) —
2w d? F (x)
e =0 pour x =1L — e =0 pour z= L.
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Ces quatre conditions permettent de fixer des valeurs particuliéres aux

constantes
g A, A
1 A4’ 274, % A,

>

et « qui apparaissent dans 1’équation F (x). Tous calculs faits, on trouve que,
pour une coque sur trois appuis, un développement en série de fonctions de
base aura forme suivante:

f(@) =a, Fy (x) +a, (@) + -+ +a, F, (z)+

[cosh (77/42—77) x cos (17/4277) T_ inh (77/4—Li-77) & +sin (77/42—77) x] +

' 4
t+a, [COSh (Tr/4 tnm)e — CO8 (77/4 tnm)e — sinh.(z_/__tn_ﬂ)_x

L L L
. (m/4+nm)x
-+ sin —(—/—7 .
L
Fonctions F (x) Influence des termes
hyperboliques
I F(x) {cos hay ¢ -sin ha, )
¢
0 3L/4 3\./4
I L
/\FZ(X) M&smhazl_
- \(,/ )
1 Fy(x)
{coshaz3--sin haz )
3L/4 31_/4
Fig. 6.
Courbes T (x) Courbes P(x) Courbes . (x) Courbes F(x)
+2 +2 +2 +2
+ 0 (x) ‘(x) my (X) Fi(x)

Fig. 7

Pour information, nous reproduisons a la fig. 6 les courbes Fj(x), F,(x),
F, (x) avec, en regard, I’influence des termes hyperboliques qui différencient
ces courbes des développements habituels en sinus et cosinus. On peut consta-
ter que la partie hyperbolique joue un réle de plus en plus localisé au voisinage
de 1’appui central lorsque le nombre de termes du développement augmente.
Nous reproduisons également & la fig. 7 les courbes Fj(x), Iy (x), D,(x) et
IT, (z), qui s’en déduisent comme indiqué précédemment.
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Il est visible que F,(x) et @, (x), par exemple, s’adaptent tres bien aux
déplacements w et aux moments M de la coque continue.

Le principe de la détermination des coefficients d’un développements en
série de fonctions de base est le méme que pour un développement en série
de FOURIER.

Soit a déterminer le coefficient a, du développement

f(x) = a, F, () +a, Fy(x)+ -+ +a, F, (x)+ - - -

Multiplions chaque membre de cette équation par F, (z) et intégrons de
0aL
L L L
[[(@) B, (x)dw = a, [ B, () F,, (x)dx+ -+ +a, [ F,_, (*)F, (x)dx
0 0 0
L
0

Grace a 1’orthogonalité des fonctions de base, nous avons:
(fFl (x) F, (x) dx =f&_1 (@) F, (x)dx =fﬁ;l+1 (@) F, (x)dx = -+ = 0.
En conséquence 1’équation se réduit a:
{1 5, @) do = a,[72 o) o

De cette équation, on peut tirer la valeur de a,. En procédant de la méme
fagon pour tous les coefficients, nous pouvons écrire le développement de f (x)
sous la forme:

L
Off(x)Fl(%)d%

{1 @) B, (@) de
f(a) = L

F(x)+---+ F (x)+ -

L L
[ B (@) da [ F2 (x) do
0 0

De cette maniére, une charge uniforme p devient aprés développement
p = 0,858316 p F, (x) +0,0827317 p F, (x) +0,334394 p F} (x) + - -

La forme de p ainsi obtenue est donnée a la fig. 8.

" terme 3% terme

11 faut remarquer que les calculs des intégrales [ f (x) F, (x) dn se compliquent
0

fortement dés que f(x) n’est plus une fonction simple. C’est pourquoi, & plus
d’une reprise, nous avons travaillé graphiquement en tragant par un grand
nombre de points la courbe f(x)F, () et en surfacant cette derniére par la
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formule de StMpsoN ou un procédé équivalent. Des vérifications nous ont
montré que cette méthode était exacte & moins d’un pour cent.

La méthode de Schorer

Les fonctions de base, contrairement aux fonctions trigonométriques, ne
se reproduisent qu’apres quatre dérivations.
Elles s’appliquent bien & 1’équation de SCHORER

e3 Bw e *w

126 TR G2t
En introduisant dans celle-ci une expression de la forme w=w;(x)w (y) ou
on ne conserve de wy (x) que le premier terme du développement soit w, F; (z),
on obtient:
3 -8
Teéwl (95)‘0_?;)‘15#/‘) + Re?wn (y) et wy (x) = 0.

On peut simplifier par w;(x) et obtenir une équation différentielle linéaire &
coefficients constants en wyy (y).

Malheureusement, les fonctions de base ne s’appliquent & aucune des
autres équations des coques: celles de DISCHINGER, Aas JacosseN, A.S.C.E.,
FINSTERWALDER et méme 1’équation DK .J, souvent utilisée & 1’heure actuelle,
contiennent des dérivées partielles d’ordre 6 et d’ordre 2 de w par rapport
a x. La simplification par wj(x) et la séparation des variables ne serait pas
possible.

Rappelons les hypothéses de la théorie des coques selon SCHORER:

— applicabilité de la loi de HoOKE.

— conservation des normales (hypothése de KIRCHHOFF).

— la tension normale a la surface moyenne est nulle.

— les déplacements sont petits vis-a-vis de 1’épaisseur de la votte.

— le coefficient de PoissoN v=0.
—onaM,=M,,=0—¢,=0,N,,=N,,.

— on néglige les déformations correspondant & N, et NV, .

— en cours de calcul, on conserve toujours le méme degré d’approximation.

Les quatre premiéres hypothéses sont communes & toutes les théories des
coques, les quatre dernieres sont spécifiques & SCHORER.

La méthode de SCHORER a été beaucoup critiquée & ses débuts. Mais, dans
la suite, on s’est aper¢u qu’elle donne des résultats en bon accord avec les
méthodes plus exactes, tant qu’on reste dans son domaine d’application. Celui-
ci a été défini par SCHORER lui-méme [5] puis précisé par LUNDGREN [6] et
TorTENHAM [7]. Notre coque est inclue dans ce domaine et nous avons pu lui
appliquer la théorie de SCcHORER. La continuité et la précontrainte ayant entre
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autres buts ’augmentation de la portée, il est vraisemblable que la plupart
des coques continues et précontraintes seront assez longues pour étre calculées
par la méthode de SCHORER.

Pour abréger I’exposé, nous indiquons seulement les formules qui permettent
de passer des déplacements w aux autres déplacements et aux efforts ainsi
que I’expression compléte d’un terme du développement de w apres intégration
de 1’équation différentielle en w (y)

M, = T, e
9 = v Y STDRY
K w’

N(p =—Fw , 84) = E,
, K o K oo
Nl‘(p: “sz B v = DR6w 5

1 (L\*

) ( mmipsm T @ 1

W, = 5z |—| 1€ 7 P'v'pLAICOSglanJ ; BISlnglpnfp}
n

tef1pno [Ctcos nyp, @+ Dising p, ¢]
+ e mpen(eo=D [ A cos & p,, (po— @) + B sIin &, p,, (po — )]
+ 6.~flpn((];0-(p) [OII COS 71 Py, ((PO — (P) -+ DII sin M Pn ((;DO - (P)]} &y ’F;L (x) .

On remarque dans le facteur entre accolades deux termes dont 1’'importance
diminue pour des valeurs de ¢ croissantes et deux termes qui diminuent pour
des (@, — @) croissants. Tout se passe comme si les bords ¢ =0 et p =¢, émet-
taient chacun une onde qui s’amortit exponentiellement en se dirigeant vers
le bord opposé. La méme constatation pourrait étre faite pour les autres défor-
mations et pour les tensions en un point donné; elles résultent de la super-
position de perturbations issues des deux bords, perturbations plus ou moins
amorties suivant la distance au bord. Les perturbations en question sont
constituées des charges linéaires appliquées aux bords dans la solution de
flexion pour rétablir la compatibilité des tensions et déformations.

Les constantes 41, B, O, DI A, BUI (CII DI constituent les 8 inconnues
du probléme, elles doivent se déterminer par des conditions aux bords.

La solution de membrane et les fonctions de base

Pour étre superposés aux résultats de la théorie de la flexion, les résultats
de la théorie de la membrane doivent étre exprimés en fonctions de base. Dans
ce but, les charges extérieures qui sont & l’origine des efforts et déplacements
membranaires doivent elles-mémes étre développées en séries de fonctions
de base.
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Outre les hypothéses habituelles de la solution de membrane: suppression
des moments de flexion M, et M, ,, des moments de flexion M, M, et des
efforts transversaux ,, @, , nous devons conserver les hypothéses de SCHORER:
prendre v=0, négliger les déformations correspondant & N, et N, et con-
server partout le méme degré d’approximation.

Moyennant quoi les efforts et déplacements habituels de la membrane sont
modifiés comme indiqué ci-dessous pour le niéme terme du développement
en série de fonctions de base.

N, =ZR, N,, = Z,R,
N; N,
Nacw:f(f(p*‘ Y)dx+01(90), Nxfpn =~J\( §n+yn)dx+01((p)’
Nyo r Noew
Nx = — (—E—+X)dx+02(¢) Z\/w” = - Tﬁ+Xn)dx+02(q))7
1 1
w =E’?f(Nx_VN¢’)dx+C3(q’)’ u, = mfondx+03(<P),
1 Ee . U,
v =E—gf[2(l+v)Nx¢——E-u]dx (2% =——f—ﬁdx+04(<p),
+O4((P)’
R . .
w = (NN, =o', Wy ==,
1 . w,
by =gw -, 8o = R

Ces simplifications ne correspondent pas seulement & un souci d’homo-
généité mais, dans certains cas et & cause des fonctions de base, & une réelle
nécessité. Si, par exemple, on ne négligeait pas les déformations dues & N,
dans l’expression de v, celle-ci contiendrait un terme en I1(x) provenant de
N, , et un terme I'(x) provenant de «'. Semblable inconvénient ne se présente
pas avec les développements en série de FOURIER: les fonctions trigonomé-
triques se retrouvent aprés une double dérivation et on obtiendrait un cosinus
dans les deux termes.

Les constantes C;(p), Cy(p), C3(p), C,(¢) sont nulles. La démonstration
mathématique en est beaucoup plus compliquée que pour les coques biappuyées.
Pour ces derniéres, il est aisé de voir que N, et cosp par exemple s’annulent
a mi-portée si la charge est uniforme. Pour les coques continues il faut exprimer

I’encastrement sur 1’appui central —u = 0 pour x = 0;
— v = 0 pour ¥ = 0;

la rigidité de ’appui extréme dans son plan — v = 0 pour x = L;

la souplesse de I’appui extréme perpen-
diculairement & son plan — N, =0 pour x = L.
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Ces quatre conditions fournissent quatre équations dont certaines con-
tiennent des dérivées des C par rapport & ¢.

C’est de ces équations qu’il faut tirer C(p)=C,(p)=C;(p)=C,(p)=0.
I’annulation des constantes est logique puisqu’elle ne fait que traduire des
conditions d’appui déja exprimées par la forme particuliere des fonctions

F, T ®et Il
Principe de résolution exposé sur un exemple numérique

L’exemple que nous avons traité est celui d’un shed de 2 x40 m de portée
dont les dimensions principales sont définies a la fig. 9.

5,50

Fig. 9.

1l s’agit de 1’élément courant d’un batiment industriel calculé par le Pro-
fesseur Haas et construit & Oosterhout (Hollande).

Nous y avons déterminé les tensions sous son poids propre, sous la neige,
sous ’effet du vent et, bien entendu, sous la précontrainte; 1’hypothése d’un
matériau obéissant & la loi de HoOKE permet d’obtenir 1’état réel par super-
position de ces différents états élémentaires. Pour la neige, nous avons supposé
une charge uniforme par m? de surface de coque et une accumulation dans le
chéneau; nous avons étudié le vent agissant en dépression pour voir s’il est
capable de provoquer en quelque point un retournement des tensions.

La méthode classique de résolution est la suivante:

1. On calcule les sollicitations extérieures et on les développe en fonctions de
base; on ne retient que le premier terme du développement.

2. On calcule les tensions et déformations de membrane dans la coque sous

les charges extérieures. Les tensions et déformations obtenues sont en
Fl (.’IJ), Fl (CC), qDl (x): Hl (x)



72

G. FONDER

On tire de la solution de flexion, les tensions et déformations aux bords I
et 1T de la coque. Elles sont de la forme F, (z), I'; (x), @, (x), I, (x) et dépen-
dent des 8 inconnues A!, B, ... DI,

On étudie les tensions et déformations dans la corniche,

— sous les charges extérieures (développées),
— sous les charges provenant de la coque.

On établit le raccord entre les tensions et déformations de la corniche et
celles de la coque (solution de membrane plus solution de flexion).

— AubordI: Correspondance des déplacements de la coque et de la corniche:
dans le sens des « (1 condition),
dans le plan ¢z (2 composantes — 2 conditions),
en rotation (1 condition).

— Au bord IT
on admet que le pilier de fenétre ne peut transmettre ni M, ni N,
M,=N,,=0 (2 conditions);
correspondance du déplacement de la coque et de la corniche dans 1’axe
du pilier (1 condition);
le pilier est sollicité axialement NLIsin =@ cos@ (1 condition).

Les huit conditions aux bords sont exprimées en fonctions de base et celles-
ci peuvent étre mises en évidence ce qui laisse subsister un systéme de
8 équations & 8 inconnues AL, B .. . DI, |

Une fois qu’on a déterminé ces 8 inconnues intermédiaires, on introduit
leur valeur dans les tensions et déformations de la coque et de la corniche.
On peut alors tracer les diagrammes de tensions et de déformations. C’est
a ce stade seulement que par des équilibres statiques on peut contréler
I’ensemble des calculs précédents.

La méthode classique est susceptible de simplification dans le cas des

coques symétriques pour lesquelles AT=A1 BI=PBU (CI=CU DI= DI
Quatre conditions aux bords et quatre équations & quatre inconnues suffisent

ce

qui abrége considérablement la solution du probléme.
Nous avons adopté une méthode légérement différente. Au lieu de prendre

comme inconnues hyperstatiques les constantes AL, Bl ...DY nous avons
o I
choisi les efforts M7, @, NL,, N, au bord I et ML, Q% NI, NI au bord IL.

Ll

Les quatre premiers points du calcul ne sont pas modifiés.

Calcul des sollicitations.

Calcul des tensions et déformations de membrane dans la coque.

Calcul de la solution de flexion dans la coque.

Calcul de la poutre corniche sous les charges extérieures et sous les charges
venant de la coque.
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5. Etudier la coque chargée au bord I d’'un moment unitaire ML =1 c’est-a-
dire une coque dont les conditions au contour sont ML =1,

Nj = Q5 = ¥, = My = Ni = QFf = NE, = 0.

Ces 8 conditions aux bords permettent de calculer 8 inconnues intermédi-
aires Ai, B]...DY. Ensuite nous calculons les déplacements u,v,w,d des
deux retombées sous ML =1 c’est-d-dire ce que nous appelons les coeffi-
cients d’influence de M}

{ul(MTw), wt (30}) {uﬂ (L3), Wi (IF)

ot (ME), ST(MY)

oIH(ME), ST (M)
6. De la méme fagon étudier la coque successivement chargée de
NL =1, QL =1, NL,=1.

. Par des considérations de symétrie, tirer des pbints 5 et 6 les coefficients
d’influence relatifs &

3

II I1 II 11
MY, N, NIL.

Q@

8. En utilisant les coefficients d’influence, nous pouvons obtenir pour tous
les déplacements des expressions analogues & la suivante:

ul = [ul (ME)] ML+ [ut (NL)] VL + [l (Q5)] QF + [k (NL,)] NL,
+ [t (M) ME + [ (D] NG+ [T (Q5)] QF + [w! (V)] N

ou u! (Effort) représente le coefficient d’influence sur ! de 1’effort considéré.

9. Comme au point 5 de la méthode classique, on établit alors le raccord entre
la coque et la corniche. Ce qui fournit un systéme de 8 équations en les
nouvelles inconnues

I I Ol 1 11 NI QI NII
ML, NI, QL, N3, MY, NI, Qf, NI

Qx>

La détermination de ces inconnues termine le probléme.

Les avantages de cette méthode sont les suivants:

— Elle permet de vérifier les calculs par des contrdles statiques des les étapes
intermédiaires 5, 6, 7 et de dépister d’éventuelles erreurs de calcul long-
temps avant le controle final qui, bien entendu, est toujours possible apres
le point 9.

— Alors que la méthode classique doit étre totalement recommencée pour
chaque cas de charge, les étapes 5, 6, 7 et 8 de la méthode adoptée restent
toujours valables. Cette derniére est donc d’autant plus avantageuse que
les cas de charge a traiter sont plus nombreux.

— Elle se préte particuliérement a 1’étude de la précontrainte qui, nous le
verrons, sera introduite sous forme de forces de bords.
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N.B.: Il est intéressant d’effectuer les calculs de fagon trés précise pour
qu’un contrdle défectueux puisse étre attribué & coup sir a une erreur de
calcul et non a une perte de précision progressive.

Probiéme de la torsion du chéneau

Pour assurer le raccord de la coque et du chéneau, les charges agissant sur
ce dernier sont développées en fonctions de base; ceci permet d’obtenir les
moments fléchissants, les efforts tranchants et normaux et les déplacements
correspondants sous la méme forme dans la coque et le chéneau. Lors de
I’écriture des conditions de raccord, chaque équation contient une seule fonc-
tion de base et peut étre simplifiée par celle-ci.

Mais les charges développées en fonctions /' n’agissent pas nécessairement
au centre de torsion du chéneau, il en résulte un moment de torsion qui fait
intervenir une intégrale de la forme

[ (charge - bras de levier)dz + C

c’est-a-dire une fonction IT plus une constante. Quant a 1’angle de rotation &
il est de la forme

moment
f (rigidité torsionnelle) de+0ye+ 0y

donc en fonction @ plus un polynéme en .

Or, les 6 du chéneau doivent se raccorder avec des déplacements de coque
exprimés sous forme de fonction F'! Donc, en écrivant 1’égalisation des rota-
tions dans la coque et le chéneau, on obtient une équation contenant un terme
en F, un terme en @ et un polynéme, ce qui bloque la solution.

On peut d’ailleurs constater, en retournant & la fig. 7, que la fonction @,
par sa forme convient trés mal pour représenter la rotation d’une poutre
empéchée de tourner & ses deux extrémités. La fonction F) serait beaucoup
plus appropriée.

La cause fondamentale de cet ennui est la non-homogénéité des théories
de la flexion et de la torsion: en flexion, les déplacements font intervenir
P’intégrale quatriéme de la charge; en torsion, ils font intervenir 1’intégrale
seconde. Cette différence n’apparait pas avec les séries de FOURIER mais bien
avec les fonctions de base qui ne se reproduisent qu’aprés quatre dérivations.

Yoici le remede que nous proposons. Pour étudier la torsion, nous ne déve-
loppons pas la charge p sur le chéneau mais nous la conservons sous sa forme
initiale (répartition uniforme), nous calculons le moment de torsion puis la
rotation & et nous développons & directement en la fonction de base appropriée
c’est-a-dire F. Nous commettons ainsi une incohérence car, sauf hasard excep-
tionnel, le premier terme du développement en série de p et le premier terme
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du développement en série de 6 ne font pas intervenir la méme fraction de la
charge. L’approximation commise est cependant du méme ordre que celle
qui consiste & ne retenir qu’un ou deux termes dans le développement de &
et disparaitrait si on prenait un tres grand nombre de termes tant dans le
développement de p que dans celui de 8.

Le méme type de probléme se rencontre lors de 1’étude de la torsion du
chéneau sous 1’action des forces déja développées provenant de la coque et
agissant en son bord. Nous ’avons résolu de la méme fagon en redéveloppant

le plus tard possible les seuls résultats indispensables a la suite du calcul.

Résultats numériques

Les calculs sont trop longs pour étre reproduits ici; nous indiquons seule-
ment quelques résultats a savoir les diagrammes de o, dans la coque et le
chéneau, de uw et w dans la coque (Fig. 10, 11 et 12). Ces courbes sont a lire
comme suit: les valeurs tirées du diagramme principal doivent étre multi-
pliées par un certain facteur tiré du diagramme d’évolution longitudinale et
correspondant & la section ol on se place.

Fig. 11.
Py Diagramme de oy I
3 ! 3 Ech.: abscisses:——=1m
Ech..abscisses— =1m cqende: oM
2  Légende:---- PM 2 Legende:---- X
—-— PM+Neige PM+ Varde
— PM+Ven en
1
R
1
I
1P I |
R ¢ Diagramme de "L“
/] +100 %9 /.2 //,//— —l\\:\
I 73 N,
i //— N
N l' K Ocm
LI if 1+ 50 ¥9/em2 /f
P /
04 Y o} k“/cmz I/
4 ‘" Y
Al
4 ! -0.5cm Evolution longitudinale 7 (x) \
,/ ! X ,ll' ~-50 kglcmZ ' 101
% | W l"/ o l
| T F e,
; +-100 M2 1 1,434
Evolution fongitudinale & (x) Diagramme de”w”
2
/}\ Ocm
i
f\/ 1o W\ 2 L
[ e
_],32 _1,32 // \
Fig. 10. SR g MR e
g 5cmr\.---”/ ~-\~\

Evolution longitudinale F (x)
g ! 1,49

144 1,23
Fig.12. N\ /\o 02
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Deuxiéme partie: Le probléme de la précontrainte

Avantages

Déja du point de vue théorique, la précontrainte offre des avantages. Par
compression préalable des zénes tendues, on évite la fissuration du béton; or,
on sait que 1’apparition de fissures est une des causes principales pour lesquelles
le béton n’obéit pas parfaitement a la loi de Hookg; la précontrainte améliore
donc la validité de cette loi.

Par une précontrainte appropriée du voile et des poutres de rive, on peut
éliminer les discordances de déformations entre ces deux parties et notamment
réaliser des poutres de rive dont le comportement élastique est voisin de celui
du renfort idéal rigide et sans poids ce qui a pour effet de diminuer la grandeur
des moments fléchissants dans la coque.

La précontrainte des z6nes tendues réduit les déformations, maintient la
forme de la coque et ainsi augmente la sécurité au voilement.

Les conséquences pratiques de ces avantages sont:

— L’augmentation de la portée.

— La réduction des armatures et une diminution sensible du poids par suppres-
sion des surépaisseurs nécessaires dans les zénes tendues et par réduction
du nombre de nervures.

— L’amélioration de 1’étanchéité par suppression des fissures.

— Eventuellement la possibilité de préfabriquer des coques complétes ou
d’assembler des éléments de coques préfabriquées.

Placement des cdbles

Comme les tensions de traction se produisent surtout aux retombées des
votutes, on avait pris I’habitude d’établir des poutres fortement armées aux
retombées. ‘

Trés naturellement c’est dans ces poutres de rive qu’on a d’abord introduit
la précontrainte mais cela présentait deux inconvénients:

— A moins de donner aux poutres de rive une hauteur excessive, il n’est gueére
possible de donner une courbure aux cibles; ils doivent étre rectilignes et
réaliser une précontrainte uniforme des poutres de rive.

— Lors de la mise en précontrainte, les poutres de rive se raccourcissent et
entrainent la coque dans leur raccourcissement. Pour transmettre les effets
de la précontrainte a la coque, il apparait d’importantes tensions de cisaille-
ment au raccord coque-poutre et il faut fortement armer cette zoéne.

L’étape suivante a consisté a introduire la précontrainte dans le corps de la
coque. En utilisant des cibles courbes, on obtient un double effet (voir fig. 13):
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— Les efforts d’about introduisent des compressions dans la coque.

— Les efforts de courbure ou poussées au vide «portent» une partie du poids
mort et des surcharges. Ces efforts de courbure sont dirigés suivant la normale
principale au céable.

Mais un céble courbe dans une coque cylindrique posséde une double cour-
bure et I’effort ¢ comporte une composante utile dans le plan tangent au voile,
une composante parasite dirigée suivant le rayon de la coque et tendant &
aplatir celle-ci. Pour éliminer cette composante parasite et réduire les frotte-
ments du cable, on épaissit progressivement la coque vers les retombées de
fagon a placer les cables dans un plan.

Si les composantes utiles de ¢ deviennent suffisantes pour équilibrer le
poids mort, la coque est suspendue aux cébles, les poutres de rive ne sont
pratiquement plus soumises qu’a leur propre poids et peuvent étre supprimées.
(Voir fig. 14.)

Q, = Résultante de la
contrainte

Q=
Résultante du poids épaississements

tangentiels

\poulres de retombée
@ supprimer

Fig. 14.

/(_ﬁ\ Fig. 13.

Q, 2

Dans le cas d’un shed, la poutre chéneau est indispensable. Si des cibles
sont introduits dans la coque, celle-ci se raccourcit; il est tout a fait logique,
a la fois pour réduire les cisaillements au raccord coque-poutre et pour amé-
liorer le comportement de la poutre chéneau de la précontraindre également.
La situation idéale est atteinte lorsque la résultante des efforts de courbure
dans la poutre chéneau, dans la partie supérieure et la partie inférieure de la
coque, équilibre la résultante du poids mort et des surcharges. Par la dis-
position de nos cables, nous avons essayé de nous rapprocher de cette solution
idéale. Toutefois, & cause de la dissymétrie de la toiture, il est trés difficile
que @, soit égal et directement opposé a . (Voir fig. 27.)

Méthode de calcul

Pour étudier les effets des cables, nous les décomposons en une série d’efforts
fictifs équivalents: efforts d’abouts et efforts de courbure des cables du ché-
neau, efforts d’abouts et de courbure des cibles de coque. Aucun d’eux pris
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individuellement, ne pourrait exister mais la superposition de tous ces efforts
fictifs rend la sollicitation réelle de précontrainte.

Pour chacun de ces efforts, nous avons choisi la méthode de calcul qui s’y
adapte le mieux.

E{forts de courbure des cables

1. Cdbles situés dans la poutre chéneau. Un cable courbe placé dans le chéneau
donne dans chaque section un effort normal, un moment fléchissant et un
effort tranchant. Nous laissons provisoirement de c¢6té ’effort normal envisagé
lors de 1’étude des efforts d’abouts. Dans la flexion du chéneau, il ne faut pas
sous estimer l’importance des moments secondaires de précontrainte dus a
I’hyperstaticité du systéme.

Nous inspirant de la disposition courante dans les poutres sur trois appuis
uniformément chargées, nous avons placé les cibles dans la poutre en » du
chéneau comme indiqué a la fig. 15.

t 2 3 4

[ [ [ A [ ]
P / [T
l La | La | La | ta
L L
. (D . @ " @ 2 @ e cable
M M% M " o cable résultont
\ \ Z surface ol ¥
N = " Y o ¥ “ mig. 15.

Les cables de précontrainte sont en nombre égal dans la partie horizontale
et la partie relevée; leur mouvement dans chacune de ces parties est réglé de
telle fagon que le cable fictif équivalent se déplace sur I’axe y,,: nous n’avons
donc jamais de flexion autour de cet axe mais une précontrainte uniforme; les
déplacements du cable fictif équivalent par rapport a 1’axe z,, sont ceux d’un
cable concordant. Comme les charges sont statiques et uniformément réparties,
nous connaissons de suite 1’allure du diagramme des moments fléchissants
dans la poutre sur trois appuis (voir fig. 16), un cable tendu suivant un profil
semblable & ce diagramme ne produit aucune réaction d’appui: il est concor-
dant; c¢’est ce profil que nous adoptons.

En pratique, nous avons cependant encore accentué I’excentricité dans la
section 4, ce qui ferait sortir le cible de la poutre si le point anguleux n’était
recoupé par un raccordement parabolique. Il est évident aussi que le trait
unique dans chaque aile correspond & un faisceau de cibles et qu’il faut tenir
compte de leur encombrement.

L’excentricité du cable étant spécifique & une poutre sur trois appuis se
préte au développement en fonctions de base, et la fonction @ la représente
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particulierement bien avec un seul terme. On en déduit sans peine le moment
M courant qui, en raison de la concordance, vaut 1’excentricité multipliée par

Peffort de précontrainte, puis 1’effort tranchant 7' =% puis les déplacements

u,v,w. .. ete., et tout cela dans les fonctions de base appropriées qui per-
mettent le raccord avec la coque et la détermination dans celle-ci des consé-
quences de D’effet de courbure des cables du chéneau.

$F

Etforts cable

N
\\\\\ o

\\\ Ettorts normaux
N F

Tl +
s

Efforts d'abouts
Fig. 17. F—=

2. Cables situés dans la coque. Les efforts de courbure des cibles de coque
sont répartis le long de ceux-ci. Mais il est & peu prés impossible de tenir
compte de leur situation exacte et il est couramment admis de transporter
aux bords les efforts normaux et les efforts tangents qui résultent de la cour-
bure (voir fig. 17). Quant aux efforts d’abouts ils sont traités séparément.

La disposition des cables dans le chéneau s’est révélée rationnelle du point
de vue tensions et avantageuse du point de vue calcul; aussi, allons-nous nous
en inspirer pour placer les cibles de coque (fig. 18).

Nous maintenons la résultante des cables placés & la partie inférieure et a
la partie supérieure sur I’axe z,, du systéme coque et chéneau. Compte tenu
de 1’espace disponible aux appuis et & mi-portée, ceci est pratiquement réalisé
en plagant trois fois plus de cables & la partie inférieure qu’a la partie supérieure.

Par rapport a 1’axe y,,, nous essayons de faire en sorte que la résultante
se déplace suivant le mouvement d’un cible concordant. Les cables sont inter-
rompus au droit de 1’appui central; nous pouvons done y conserver un point
anguleux. Mais 1’espace disponible ne nous permet pas d’adopter le profil
concordant correspondant au diagramme parabolique des M sous charge répar-
tie. Le profil adopté est un profil parabolique dérivé du profil concordant par
une transformation linéaire comme indiqué sur la fig. 19. Le seul effet de la
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transformation linéaire est d’introduire des réactions d’appui additionnelles
qui n’influencent que le calcul des portiques de support.

Si, pour étudier le chéneau, nous avons envisagé les éléments de réduction
dans une section particuliere d’abscisse z, pour étudier la coque nous envi-
sageons la situation représentée a la fig. 20. Les efforts normaux et tangents
développés par la méthode semi-graphique en fonction F et I, sont considérés
comme des charges extérieures N, et NV, agissant aux bords de la coque.
Comme les déformations obtenues aux bords dans cet état particulier de
charge sont incompatibles avec celles du chéneau non chargé, il faut une fois
de plus établir le raccord coque-chéneau au moyen des coefficients d’influence.

Appui
Mi-portée

Appui

Fig. 18.

Efforts d’abouts des cables

L’inclinaison des cdbles aux appuis est source d’efforts tangentiels 7' (voir
fig. 17).

Nous admettons que ces efforts sont directement transmis aux portiques
de support.

La représentation de la composante normale des efforts d’abouts pose de
sérieux problemes; pour simplifier leur exposé, nous raisonnons sur le cas d’une
coque avec poutres de rives seules uniformément postcontraintes (fig. 21).

Pour la coque sur appuis simples, le Professeur Haas [8] propose de traiter
I’effort de compression S, constant sur toute la portée comme on traite habi-
tuellement les charges réparties c’est & dire par développement en série de
Fourier (voir fig. 22). L’effort et la tension dans une section courante valent:
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Alors qu’en général le fait de ne prendre que le premier terme du développe-
ment n’entraine pas de conséquence grave, la représentation des tensions est
ici trés mauvaise: sauf & mi-portée ou o, est a peu pres correct, on a partout

une valeur trop faible de o,; 1’écart est maximum aux appuis ou on trouve
So
)
aux appuis ou la situation reste inchangée.

o,=0, au lieu de o, == . Avec plusieurs termes 1’accord devient meilleur sauf

T orsvemieenter

Représentation
par 1 terme

AT rer'svormes”
par 3 termes
Diagramme de
s =L “u" & représenter
M Représentation
Fig. 21. Fig. 22.

Par contre le déplacement u est assez bien représenté par le premier terme
de son développement

— | Z= e_ % Sy 1L
u—fde—{—ae_ - EQ:;’I?@ . coso, x+0.

Or, c’est par la compatibilité des déformations » dans la coque et dans la
poutre de rive qu’on peut tenir compte dans la coque de la précontrainte de
la poutre de rive. En ce qui concerne la coque, la méthode, méme avec un seul
terme peut donner satisfaction.

Si la coque est continue, I'imperfection du développement de o, subsiste
mais le développement de u devrait faire intervenir une constante comme
indiqué a la fig. 23.

Le mécanisme des simplifications dans 1’équation de raccord coque-chéneau
et toute la suite de la solution s’en trouveraient perturbés.

Les fonctions de base bien que spécialement adaptées & la continuité
n’arrangent pas du tout la situation.

Pour assurer le raccord avec les efforts N, dans la coque, D’effort de pré-
contrainte S, et les tensions ¢, doivent étre développés en série de fonction ®.
Qu’on prenne 1, 3 ou davantage de termes, la représentation d’un diagramme
de tensions constant par des fonctions @ est extrémement mauvaise (voir
fig. 24).

Pour les coques biappuyées, la situation s’était améliorée lors de la repré-
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sentation de u. Pour les coques continues, le déplacement u, le plus important
pour la transmission de la précontrainte du chéneau dans la coque, doit étre
exprimé en fonction I'. Pas plus que la fonction cosinus, celle-ci ne convient
pour représenter un déplacement variant linéairement de 1’appui central vers
Pappui extréme; ceci s’explique si on remarque sur la fig. 6 que la différence
entre ces fonctions réside dans les termes hyperboliques qui diminuent d’impor-
tance quand 1’ordre du terme augmente.

L

Diagramme de

ox & représenter || |]][][[[[]]]] . 3 repré

sl [N HHIH
doéizcodmr::résenterwm i Représentation par 1 terme |

Représentation
par 1 constante [U]IDIIII[ (N
Ly L2

+

+ 1 terme % (2) nj:frésenmﬁon par 3 termes

- e TTTTN

Représentati ] o
eprésentation WB) Fig. 23. W Fig. 24.

Lors du probléme de la torsion, nous nous sommes tirés d’embarras en
développant le plus tard possible les seuls éléments indispensables & la suite
des calculs. Le méme procédé, appliqué a la précontrainte n’a donné aucun
résultat.

Donc, les développements en série conviennent mal pour représenter les
efforts d’about surtout dans les coques continues.

En particulier, les fonctions de base sont parfaites pour représenter des
courbes ou diagrammes dont ’allure est spécifique aux poutres continues mais
sont totalement inefficaces pour une charge S, indépendante du mode d’appui.

Pour traduire les efforts d’abouts, nous utilisons le premier stade de la
méthode de la poutre de Lundgren: nous considérons la coque et son chéneau
comme une poutre & parois minces et a section ouverte.

Le cas fondamental que nous remontrons est celui d’une poutre sur trois
appuis d’épaisseur e comprimée par un effort S excentré de e, et ¢, par rapport
aux axes principaux d’inertie.

Les réactions d’appui valent: au centre 311.1” , aux extrémités —3—121—.
Les tensions valent
e R
o, =0,=0,
s S
T _IT_J e zeds.
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Les déplacements valent

w = [
- [%

M S 2 E: s
5, = f J Y gat 4 Cox+Cy, les constantes d’intégration s’annulent

EI, vu les conditions d’appui.

MZ ’ ’
8y=ff—E,—Izdx2+01x+Cz;

Les déplacements 6, et 5, sont transformés en déplacements v et w de la sur-
face moyenne par projection sur la direction de ces derniers en chaque point.

Les déplacements 6, et 5, d’un point de la section étant assimilés au déplace-
ment de I’axe, le shed subit des translations d’ensemble mais il h’intervient
pas de rotation 8.

On peut montrer que cette solution obéit aux conditions de compatibilité
et aux conditions de contour de manieére telle qu’elle constitue une solution
satisfaisante du probleme des efforts d’about.

La restriction de Saint-Venant aux extrémités de la poutre n’a pas grande
importance ici, car si nous parlons toujours d’un cable de précontrainte, il y
en a en réalité un grand nombre répartis sur la section.

C’est de cette fagon qu’on calcule les effets d’abouts des cables du chéneau.

Les cables de coque, comme leur résultante passe par le centre de gravité
des sections d’appui de la poutre coque chéneau, n’introduisent qu’une com-
pression uniforme o, et un déplacement .

Toutes les grandeurs dues aux effets d’about sont exprimées en polynémes
en z, tandis que celles dues aux effets de courbure et aux charges extérieures
sont exprimées en fonctions de base. Pour représenter un effort, N, par
exemple, il ne suffit plus de tracer son évolution transversale dans une section
quelconque puis de représenter son évolution longitudinale, ce que nous avions
fait aux fig. 10 & 12; 1’allure de la répartition transversale varie cette fois
d’une section a I’autre et doit étre calculée dans chaque section ou elle est
désirée.

Choix des efforts de précontrainte

Si nous examinons les résultats obtenus sous poids mort et surcharge, nous
constatons que les tensions de loin les plus dangereuses sont les tensions axiales
o,. Dans le cas du poids mort et de la neige (voir fig. 10), elles varient

de —195 & + 225 kg/em? sur I'appui central,
de +129 & —149 kg/ecm? & 5/8 L.

La précontrainte doit &, tout prix réduire ou supprimer les formidables ten-
sions de traction et réduire les tensions de compression.

Jusqu’a présent, nous n’avons fixé ni la valeur de la précontrainte du
chéneau F}, ni celle de la coque F,. Nous allons le faire en nous basant sur
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I
2
PI
I
PI PC

Appui extréme
Poids mort 0 0 0 0 0
Neige 0 0 0 0 0
Vent 0 0 0 0 0
Précontrainte F1| [+9,260-10-6F| |-5,042-10-6F| |-52,23-10-6F4| (-51,32-10-6F| |-39,66-10-6F
Précontrainte Fa| |~35,94-10-6F| |-35,94.10-6F,| |-35,94-10-6F5| {-35,94-10-6F5| |-35,94-10-6F,

{ ! ! i ' !
/8 L
Poids mort +100,95 -58,21 +110,81 +10,50 -131,81
Neige + 19,87 -11,18 + 17,46 + 0,35 - 18,16
Vent + 3,611 +23,90 - 31,91 - 0,087 + 32,09
Précontrainte F; | |-81,01:10-6F| |-31,86-10-6F| {-237,5-10-6F | |-145,8-10-6F| [+65,66-10-6F;
Précontrainte Fa | [+248,2-10-6F,| |+21,02-10-8F 3| [-242,9-10-6F;| |-168,3-10-6F,| |+71,81-10-8F

! ! i ! [ !
Appui central
Poids mort -152,79 +88,103 -167,70 -15,892 +199,49
Neige - 30,08 +16,928 - 26,43 - 0,531 + 27,49
Vent + 76,29 -36,188 + 48,30 + 0,132 - 48,56
Précontrainte F1| |-60,21-10-6F| |-142,3-10-6F] |+143,4-10-6F| }+5,092-10-6F;| |~308,6-10-8F;
Précontrainte F'a | |+174,9-10-6F5| |-232,6-10-6F5} |+166,9-10-6F,| |-88,49-10-6F,5| {-309,4-10-6F5

Tensions en kg/cm? permettant de choisir /'y et F»

Fig. 25.

I’évolution de o, en cing points de trois sections transversales =0 (appui
central), x=25m (5/8 L), x=40m (appui extréme) (voir fig. 25). En chacun
des points, nous avons indiqué l'influence du poids mort, de la neige, de la
précontrainte F; (effets de courbure et d’abouts), de la précontrainte F,
(effets de courbure et d’abouts).

L’examen du tableau montre les inconvénients de cables placés unique-
ment dans le chéneau:
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— Ils ne peuvent pas réduire les compressions au point II sur I’appui central.

— A moins de créer des tractions ou des compressions excessives respective-
ment aux points II de la coque, en Pl et PC' du chéneau dans la section
extréme initialement non chargée, ils ne peuvent pas éliminer les tensions
de traction au point II & 5/8 L.

— En résumé, ils sont efficaces dans le chéneau mais insuffisants pour les
points fort éloignés de celui-ci.

Les cables de coque, seuls, permettent d’améliorer partout la situation.
Mais n’utiliser que des cables de coque ne constitue pas une solution intéressante:

— Leur placement est plus difficile que le placement des cables dans le chéneau.
— Pour la validité de la loi de Navier, les cables doivent étre répartis de fagcon
a peu pres égale sur toute la section du shed.

Aprés tAtonnements, nous avons trouvé que des efforts F;, =300000 kg et
F,=450000 kg permettent de maintenir partout o, compris entre 0 et —125
kg/em? pour les 3 cas: poids mort seul, poids mort + neige, poids mort + vent.
Nous avons constaté & posteriori que la disposition et le nombre des cables
étaient & peu de chose preés identiques a ceux obtenus a Oosterhout par une
méthode de calcul assez différente.

Nous donnons a la fig. 26, les diagrammes de o, sur I’appui central, & 5/8 L
et a ’appui extréme.

Effets de la précontrainte

La précontrainte réduit trés fortement les efforts N ,. Ceci est un effet
prévu et désiré: nous avons choisi F; et F, pour le réaliser au mieux. Mais
également en ce qui concerne les autres tensions et surtout les déformations,
la précontrainte a des effets trés heureux. Pour le mettre en évidence nous
comparons ci-dessous les valeurs maxima de tous ces éléments dans les cas
poids mort + neige et poids mort + neige + précontrainte.

Poids mort + meige - -« + précontrainte Comparaison
M, e =— 455,84kgm/m — 49748 kgm/m  trés légére aggravation
Nymar =— 2858,36 kg/m —1923,48 kg/m réduction de 1/3
Qomaz =+ 475,35 kg/m — 308,56 kg/m réduction de 1/3
Ny mar = +19138,84 kg/m +7853,97 kg/m réduction de 6/10
Upae = — 0,784 cm —1,555 cm valeur doublée
Vpae = —4,471 cm +1,10l em réduction de 6/10
Wpaw = — 8,120 cm —2,574 cm réduction de 7/10
8pmax = +0,8012-10~2rad +1,418-10"2rad valeur & peu prés doublée

Les efforts de précontrainte sont considérés comme appliqués aux retom-
bées de la coque; il est normal que des efforts aux bords produisent des M, ,, ...
et des rotations §,,,,, plus grands que des forces réparties comme le poids mort
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Diagrammes de oy
I

G. FONDER

Diagrammes de U

3 Ech: abscisse: —— 1m I 3 Ech.: abscisse: —— 1m
2 [égende: — PM +neige 2
—— Total +neige
. TR |
S— F'
Py
_/ I I
Al o
x=0
A L'APPUI CENTRAL Ocm
x=Ya
+150 |
osb— |
+100°+ x=t/, _//17/
|
1em x="a
+50 T /
0 k9/em2 { 15 S~ xL A
Y Fig. 28.
-50 4 g
VY,
\\
-100 \
A
-150
Diagrammes de w
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+100 H | 1
| !
+50 | o cm x=0 ix
x=L
0 kglcmZ P . /
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Fig. 26. ; ~I_1 nd Fig. 29.
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et la neige. Il est logique également que la précontrainte cause un raccourcisse-
ment de la coque et un déplacement u,,,, sur I’appui extréme relativement
élevé: le portique extréme doit se déplacer de 1,555 cm perpendiculairement
a son plan.

Toutes les autres tensions et déformations sont fortement réduites, en parti-

culier le rapport (analogue au rapport fiéche
1 L portée

Wmax

des poutres) passe de 4%)2

& TpE5
Cette amélioration d’ensemble s’explique si nous nous rappelons que les
cables courbes donnent non seulement une compression mais aussi une com-
posante verticale ¢ capable de combattre efficacement 1’effet du poids mort.
La fig. 27 montre que la composante verticale de la précontrainte ¢ =2610 kg/m
équilibre assez bien la résultante p=3820 kg/m des sollicitations extérieures.
Aux figures 28 et 29, nous donnons 1’évolution de » et w dans la coque.

Armatures

Nous les avons calculées par la méthode proposée par FLiGcGE (fig. 30).

Des armatures ne sont pas nécessaires dans le plan moyen. Un calcul des
facettes et tensions principales nous a montré que la précontrainte avait
redressé toutes les isostatiques parallélement aux axes x et ¢; les tensions
principales o; et o, sont pratiquement égales & o, et o, et, en tout cas, ne
dépassent pas les tensions admissibles.

@

g max

2
surface s F < - - =
surface m - 7
surface i € & = —L,_—_:
F i Lo
Fig. 30. TR
=X *' --H ‘~
e
15 =[l4 15 =[kgio I.;»O_ 50 S50 I%
V7 | EELS
2 2 / > +___ b
3 ﬁ I '
I I
Surface "s"” Surface “i"
Fig. 31. Fig. 32.

Dans le plan ¢ il faut un quadrillage de 5 barres % 8 mm par m sur la moitié
supérieure de la coque et, dans le plan s, il faut un quadrillage de 8 barres
@ 8 mm par m sur la moitié inférieure, sauf dans une zbéne spécialement solli-

citée ou 4 barres supplémentaires par m sont nécessaires dans la direction ¢
(fig. 31).
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L’armaturage des portiques de support et des zones d’ancrage des cables
ne représente pas de difficultés spéciales. Sur 1’appui central, les cibles se
croisent suivant le schéma déja exécuté & Oosterhout (voir fig. 32).
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Résumé

Aprés un bref exposé critique des méthodes existantes pour traiter les
coques continues, 1’auteur propose une solution faisant appel aux fonctions
de base. Quoiqu’elle présente certains inconvénients: emploi obligatoire de
I’équation de Schorer, approximation dans la théorie de la membrane et dans
la torsion des poutres de rive, cette solution convient bien pour rendre compte
des phénomeénes de continuité dans les coques continues sur deux ou plusieurs
travées et dans les coques a encorbellement.

Les fonctions de base sont aussi utilisées pour traduire les effets de cour-
bure des cables de précontrainte. Mais, pour les effets d’abouts, il est montré
que la méthode de la poutre est préférable.

Des résultats numériques et une disposition originale des cables sont donnés
pour un cas pratique: celui d’un shed de 2 x40 m de portée précontraint par
des cables dans la coque et dans le chéneau.

Zusammenfassung

Nach einer kurzen Diskussion der bestehenden Methoden zur Berechnung
durchlaufender Schalen schlagt der Autor eine Losung vor, die auf Grund-
funktionen beruht. Trotz einiger Schwierigkeiten (Verwendung von SCHORERS
Gleichung, Anndherungen in der Membrantheorie und der Verdrehung der
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Randtrager) ist diese Losung gut geeignet zur Untersuchung der iiber zwei
oder mehr Offnungen durchlaufenden Schalen und der Schalen mit iiber-
stehenden Enden.

Die Grundfunktionen werden ebenfalls zur Beriicksichtigung der Ablen-
kungskrifte der gekriimmten Spannkabel verwendet; der Einflufl der Kabel-
endkrifte wird dagegen besser mit Hilfe der Balkenmethode untersucht.

Numerische Ergebnisse sowie eine neuartige Kabelanordnung werden fiir
einen praktischen Fall angegeben; es handelt sich dabei um eine Shediiber-
dachung von 2x40 m, die mit Kabeln in der Schale und im Rinnentriger
vorgespannt ist.

Summary

After a short appraisal of the existing methods for analysing shells continu-
ous over supports, the author proposes a solution founded on basic functions.
In spite of some difficulties: use of Schorer’s equation, simplifications in the
membrane theory and in the twisting of the edge beams, this solution is quite
suitable for taking account of the continuity phenomena in shells continuous
over two or more spans -and for shells with cantilevered ends.

Basic functions are also used to describe the curvature effects of the pre-
stressing cables, but for anchorage effects it is demonstrated that treatment
by means of the beam method is preferable.

Numerical results and a novel arrangement of the cables are given for a
practical case: a north-light shed of 2 X 40 m, prestressed by cables in the shell
and in the edge beam.
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