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Operatorenrechnung und ihre Anwendung auf die Baustatik
Operational Calculus and its Application in Structural Statics

Le calcul opérationnel et son application & la statique des constructions

NIKOLA DIMITROV

Dr.-Ing., apl. Professor an der Technischen Hochschule Karlsruhe und Lehrbeauftragter
an der Technischen Hochschule Stuttgart, Karlsruhe

1. Allgemeines

Die meisten Tragsysteme sind so ausgerichtet, da sie stetig oder unstetig
verteilte Lasten diskontinuierlich iiber mehrere Auflager und Stiitzen abtra-
gen. Einzellasten, Einzelmomente, Streckenlasten, verédnderliche Steifigkeiten,
unstetig verteilte Schnittkréfte usw. sind unstetige oder nicht stetig differen-
zierbare Funktionen. Sie werden immer in der Baustatik und Elastizitdtslehre
gebraucht.

Je nach der mechanischen Voraussetzung des materiellen Korpers: starrer
Korper, dehnbarer Korper oder Kontinuum, hat man es mit drei verschie-
denen Aussagen fiir das Gleichgewicht zu tun: vektorielles Gleichgewicht,
virtuelle Arbeit oder die Differentialgleichung. Diese Entwicklung der Grund-
lagen zur Losung der Spannungsprobleme ist durch eine ungezdhlte Menge
der Rechenverfahren gekennzeichnet, die analog in drei gro3e Gruppen einge-
teilt werden konnen:

A. Graphische Methoden.
B. Mechanisch-analytische Verfahren.
C. Losungen von Anfangs- und Randwertproblemen.

Bei den Stabilitdtsproblemen, die durch Gleichgewichtswechsel unterschieden
werden, fallt die Fiktion des starren Korpers weg, und die Einteilung der
dazugehorigen Verfahren ist entsprechend:

D. Energiemethoden.
E. Losungen von Eigenwertproblemen.
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Die graphische Statik hat frither die gesamte Bautechnik gefordert, aber die
mechanische Deutung der Probleme durch Arbeitsgleichungen und Energie-
gleichungen, s. [1], hat die Entwicklung der Baustatik und der Festigkeitslehre
noch weiter getrieben und zu einem gewissen Abschlufl gebracht.

Bei manchen Tragwerken sind die oben angefithrten Unstetigkeiten wie
die Knotenpunkte einiger Fachwerke oder die Biegesteifigkeiten der ortho-
tropen Platte in kleinen Abstédnden vorgegeben, so dal mit der Annahme
einer gleichméfigen Verteilung der Steifigkeit keine groBen Fehler verursacht
werden. Man beachte dabei die Arbeit [2], in der iiber den Grenziibergang
zwischen der elastisch-isotropen Platte und Scheibe und dem elastisch-iso-
tropen, gelenkigen und engmaschigen Dreiecksfachwerk berichtet wird. Die
Losung als Kontinuum auf dem Wege der Differentialgleichung gewinnt dabei
an Ubersichtlichkeit und hat nur einen kleinen Bruchteil der Rechenarbeit,
die sonst die iibliche Berechnung erfordern wiirde. Die Berechnung der Fach-
werke als Balkenproblem, s. [3], und die der orthotropen Platte als Platten-
problem, s. [4], wird mit Fourieransétzen durchgefiihrt.

Die Anwendung der Fourier-Transformation ist aus folgenden beiden Griin-
den erforderlich: die Analysis stellt nur eine beschrinkte Auswahl von Funk-
tionen zur Verfiigung, so dafl die gesuchte Losung einer linearen oder nicht-
linearen Differentialgleichung immer durch Reihen angendhert werden kann;
die Fiktion des Kontinuums verlangt, dafl auch jede unstetige Funktion
durch stetige Funktionen ersetzt werden muf.

Mit Hilfe der Fourier-Reihe

n=+© .
f(t) = Z Ay et (1)
n=—owm
kann, beispielsweise, durch die Fourier-Transformation eine Einzellast P an
der Stelle x=¢ im Bereich 0 < ¢ < L durch die stetige Funktion p (z, &) ersetzt
werden, vgl. Fig. 1a,
2P & . x . 3
p(x, &) -——L—nglsmnfnfsmnwz. (2)
Diese Gleichung ist eine quellenméaBige Darstellung. Sie kann fiir P=1 rein
formal als EinfluBllinie der Belastung aufgefalit werden. Fiir jede beliebige
Lastverteilung kann man sie auswerten. Die gleichmifBig verteilte Belastung
b = konstant hat z. B. die Entwicklung, s. Fig. 2a,

| x
q(x) = 4q1;5ﬂsmnwf, (3)

die man durch Integration der Gl. (2) nach £ im Bereich 0 bis L erhélt.

Die Fiktion des Kontinuums verlangt, daf3 alle Funktionen im Bereich — co
bis + oo stetige Funktionen sind. In der Tat sind die duBeren Lasten gemif3
Gl. (2) und (3) in diesem ganzen Bereich stetig und auch im Gleichgewicht, so
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daf} die Ermittlung der Auflagerkrifte entfillt. Werden die Randbedingungen
fiir das Biegemoment erfiillt, steht der direkten Anwendung der Differential-
gleichung nichts im Wege. Aus M"(z) = —p(z) und M’ (z)=@ (x) hat man
sofort gem. Gl. (2) und Fig. 1

> 1. & . x .
M (x,¢() = PK (x,¢) = 2PLZ:Wsmnwfsmnwf, (2a)
_ p0K@E N € z
Q (x, &) —P——a;c————QPZn—T;smnw-Ecosnw—E. (2b)
P
l} L
a Belastung P,. ~ o-e--os G V- ?‘ S S
i s x, 1
b Querkraft Q (x, £) = ﬂ%%lﬁ : g e i L —
<t =P(1-4), el GG S
= ¢ e E% ] b |
x>§E: :—P-I—; —\ ' I
¢ Biegemoment M (x,£§)=PK (x,§) —— 5/\ - =

T<$: :PL%(I—% ,
o> ¢ :PL(l—%)%—.

Fig. 1. Balken auf zwei Stiitzen.

Gem. Gl. (3) und Fig. 2 hat man entsprechend:

gLl x\x 5 o1 x

M () = 3 (1 L)Z_4qLIZ3:5n—~—3W3s1nnnL, (3a)
_qL 2x\ SR z

Q) = ——2——(1——17) = 4qL123:5n———2ﬂ2 cos NI . (3b)

Die in Gl. (2a) angegebene Funktion K (z,&) ist der Musterkern der Fred-
holmschen Integralgleichung oder die EinfluBlinie des Biegemomentes fiir den
einfachen Balken im Bereich 0 bis L, s. Fig. 1¢c. Die obige Art der Berechnung
mit unbestimmten Integralen und Fourier-Entwicklungen ist miihevoll und
die Konvergenz ist schlecht. Stellt man bei nichtlinearen Problemen die Zu-
oder Abnahme der Schnittkrifte gegeniiber der linearen Theorie als Fourier-
Entwicklung dar, dann ist die Berechnung sinnvoll und die Konvergenz aus-
gezeichnet.

In Fig. 3 sind obige Lastfille durch eine Zugkraft H erweitert. Aus dem
Gleichgewicht am verformten Element hat man fiir den Lastfall ¢ in Fig. 3:

M(x,¢) = PK (2,8)—Hy (%,§) (2¢0)
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und fiir den Lastfall b:
2
M @) =1L (1-—ﬁ)3”——Hy<x); (3¢)

2 L)L

y bedeutet die Biegelinie und H den Horizontalschub, der selbst von der
dulleren Belastung abhingen kann. Fiir den ersten Lagtfall hat man dic
Loésung, s.a. [5]:

©_sinn 7 sinn £
2PH L T

M(x,f)IPK(x;‘f)_EIL - nzﬂz(n2ﬂ2+_ﬂ_ (Zd)
L? L2 EI
a
g
‘ | . & ‘IIIIIHIHIIIHHI R A
‘\ NN .{4 /. A //
| S \\“‘\'\~ ---;L‘JV/ £
Fig. 2. Balken auf zwei Stiitzen. Fig. 3. Verlauf der Biegemomente infolge einer
a gleichméfig verteilte Last ¢ = konst. Zugbiegung.
b Querkraft Q ()= _q2_L( _ng) . a Einzellast Pg an der Stelle ¢,

. b gleichméifige Belastung q.
¢ Biegemoment

M(x):%%(h%).

Die Integration von 0 bis L nach ¢ ergibt die Momentenverteilung fiir den
zweiten Lastfall:

© " xr
_ql? x\x 4qH ST
M () == (1—3)3"];][, Z n3d mEat | H\ (3d)
13675 (_—L2 +E,—I)

Bereits fiir n=1 erhdlt man eine gute Konvergenz, und die maximalen
Momente lauten fir x=¢=L/2 und H,==? £ I|L?:

Hp
pPL 7 T 0189
Mmawz 4 Hy ’ (26)
7 Tl
Hy
2 2k 0,032
bzw. M, ..= ¢ L' H (3e)

8 Hy
7 !
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Die in der Statik wichtigste unstetige Funktion der Einzellast P=1 wurde
durch die Fourier-Transformation als Gl. (2) abgeleitet und formal als «Kin-
flullinie» gedeutet. In der Physik und insbesondere in der Elektrotechnik ist
sie als Dirac-Delta-Funktion 8 (x —§¢) bekannt. Hierfiir wird eine Operatoren-
rechnung von HEAvisiDE (1899) verwendet, s. [6], die als Laplace-Trans-
formation [7 bis 10] ihren Abschlufl fand:

9(v) = JerfB)dt = £ 1). (4)
Es bedeuten:

p  eine komplexe Verdnderliche.
f(t) Oberfunktion oder Originalfunktion.
g (p) Unterfunktion oder Bildfunktion bzw. die &-Transformierte von f(¢).

Das Integral (4) muf} in der Halbebene ¢ > 0 konvergieren.

Im Bauwesen ist die Laplace-Transformation selten angewandt. Ein Ver-
such, sie auf die Theorie des Balkens zu iibertragen, ist in [11] durchgefiihrt.
In [12] wird ein bekannter Stabilitdtsfall und in [13] eine wichtige Aufgabe
aus dem Gebiet des Stahlbetonbaus gelést. Diese Transformation scheint fiir
die Baustatik infolge der Auswertung einer komplexen Schwingung e?=
e~@+®¥)  jhnlich der Fourier-Transformation, etwas wesensfremd zu sein.
In der Elektrotechnik hat sich jedoch das Denken in komplexen Schwingungen
allgemein durchgesetzt, s. [7, 8 und 9].

Das Verdienst von MIKUSINSKI [14] ist es, gezeigt zu haben, dal Gl. (4)
keine Transformation bedeutet, wenn man statt der komplexen Variablen p
eine abstrakte Zahl s, die spéater als Differentialoperator definiert wird, ein-
fihrt. Statt der Bildfunktion ¢(p) hat man jetzt eine abstrakte Funktion
von s. Aus der Funktion f(z) erhilt man die Operatorfunktion

= {f@)} = F(s),
d.h. f = fe—sff ©)de = {f @)} (5)

Darin bedeutet

e—#¢ den Verschiebungsoperator, der auBerhalb des Integrals auch mit A¢
gekennzeichnet wird.

Fiir die Baustatik kann dieser Operator als EinfluBlinie gedeutet werden,
so daBl Gl. (5) rein formal die Auswertung selbst darstellt. In Fig. 4 ist der
Verschiebungsoperator e—s¢=h¢ als EinfluBlinie der Belastung P=1 aufge-
zeichnet. Man kann nun sowohl stetige Funktionen gem. Fig. 5, als auch
unstetige und nicht stetig differenzierbare, vgl. Fig. 7, als Operatoren nach
Gl. (5) darstellen. Eine wichtige Eigenschaft des Verschiebungsoperators 7%
ist in Fig. 6 gezeigt.
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o 5 c a als Streckenlast mit der Fla-
- che =1,
= b als Operatorfunktion k¢ und
pY-Slx-¥) Grenzwert der Fliache = 1 fur
) ={1} e— 0,
¥ & x ¢ als Dirac-Delta-Funktion
WE=8(x—¢) mit dem Wert
Fig. 4. Darstellung einer Einzellast =1 an der Stelle Null fir z+¢, mit dem Wert
x=E£. oo fur x=¢, aber Inhalt = 1.
%)
A lx) f1x)
GEn
{Fx)} K F(x)}
x)=L
, » X . » X
) 1
(sinx}= g3t Fig. 6. Verschicben der Funktion f(x) um die
g
e Strecke A in Operatorenform:
\ 0; fur x <A
A =1
R @) {f(o:——/\); far yc>/\}'

Fig. 5. Operatoren der stetigen
Funktionen: x; ¢** und sin x.

Die Operation gem. Gl. (5) stimmt mit der Laplace-Transformation, Gl. (4),
nur formal iiberein. Beide Methoden sind aber nicht dquivalent, da die Laplace-
Transformation nur anwendbar ist, wenn das Integral, Gl. (4), konvergiert.
Dagegen hat das Integral nach Gl. (5) immer einen Sinn, falls nur die Funktion
f(x) gem. Fig. 7 endlich viele Unstetigkeitsstellen in einem endlichen Bereich
besitzt und hier absolut integrierbar ist, d.h. f(z) ist in der Klasse der Funk-

)

A
a Streckenlasten ¢; und ¢a: g 92
_qh RN kA
f=t )~ s
o \1 \ 2
b Einzellasten Py, 71 und P3 an den Stellen
O, )tl und Az: Po B Pz
f = Poh®+ P1hM 4+ Pah?2; mit hO=1; X
O A1 2 g
¢ Gemischte Belastung: 20 Mp/m 30 Fipm
20
[ =—20+—(h—h2)—30s h3. ‘ . > x
§ o 1 2 3 "

Fig. 7. Operatoren der unstetigen Funktionen. -z pmp
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tionen eingebettet, die lokal (im Sinne von Lebesgue) summierbar sind. Dem-
nach ist es moglich, die bekannten Tabellen zur Laplace-Transformation
[7, 15, 16 und 17] zu gebrauchen. Eine Kenntnis der Funktionentheorie wird
dabei nicht vorausgesetzt.

Obwohl die Laplace-Transformation methodisch besser ist und an die
Funktionentheorie anschliet, ist die Operatorenrechnung nach MIKUSINSKI,
die zur abstrakten Algebra gehort und strenger mathematischer Schulung
bedarf, fiir den Bauingenieur durch den Begriff der Einflullinie geeigneter.

2. Der Operatorenkalkiil von Mikusinski

Die Theorie der Operatorenrechnung, s. [14, 18, 19 und 20], geht von dem
Begriff der Faltung aus, die durch das Volterrasche Integral

xz

=fa (w)du, u=w (6)
0

definiert ist.

¢ (x) bedeutet die Faltung oder das Faltungsprodukt der Funktionen a (x)
und b (z).

Man kann leicht nachweisen, dal die Faltung gem. Gl. (6) kommutativ ist:

x

- fa(x du—fb(x u)a (u)du (7)
0

Diese Kommutativitdt der Faltung ist ein Analogon zum Kommutativgesetz
bei der Multiplikation von algebraischen Zahlen, d. h.

ab="ba (7a)
fiir das beliebige Zahlenpaar a, b.

Die Faltung besitzt auch die Eigenschaft der Assoziativitit bei der Multi-
plikation von Zahlen:

(ab)ec = a(bc). (8a)
Ist ndmlich fwa (x—u)b (u)du = g (x)
0
und jwb (x—u)c(u)du = h(x),
0

so gilt stets

xr

j@g(x—u)c(u)du=fa(ac~u)k(u)du. (8)
0 0

Die Faltung enthélt noch die dritte Grundeigenschaft der Algebra, namlich
die Distributivitit des Produktes beziiglich der Addition:

ab+c) =ab+ac. (9a)
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Es ist stets

fma(ac*u) [b(u)+c(u)]du =fma (x—u)b(u)du—i—fwa(x——u)c(u)du. (9)
0 0 _ 0

Diese Analogien berechtigen zur Einfiihrung einer abstrakten Algebra, wenn
a,b,c, die Operatorfunktionen, kurz Operatoren genannt, nach Gl. (5) dar-
gestellt werden.

Man unterscheidet zwischen dem Operator f={f(z)} und dem Wert f(x)
der Funktion im Punkte x. Mit den Operatoren kann leicht die oft kompli-
zierte Integralrechnung und Integralumformung durch algebraische Rechnung
ersetzt werden. Die Addition und das Faltungsprodukt sind die grundlegenden
Operationen dieser Operatorrechnung. Man definiert demnach die Addition
und das Faltungsprodukt zweier Operatoren f und g durch

f+g={]()+g (@)} (10)

b, fo = {(f@Hg @) = ([t —u)g () du} ()
und das Skalarprodukt durch

af{f(x)} ={af(®)}. (12)

Hierbei ist « eine Zahl, die reell oder komplex sein kann. Diese so definierte
Algebra ist nullteilerfrei, und man kann aus der Beziehung

fg=c
eine Divisionsalgebra einfiihren.
Die Operatorenfunktion ‘
c
= 13
f p (13)

ist immer mdglich mit der Aussage g+{0}. Gl. (13) ist die zur Faltung (11)
inverse Operation.

Man nennt Il ={1} (14)
Integrationsoperator mit der Eigenschaft
LF @)} = {1 ) du. (15)
Der inverse Operator 1/l heif3t Differentialoperator s, d.h.
s = 1 (16)

[

Aus (14) kann durch n-malige Integration gem. Gl. (15) die Operatorenformel
fir simtliche Parabelfunktionen (n—1)-ten Grades erhalten werden:

=t {(nifll—)‘} (17)

Sn
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Ist f(x) fir x>0 eine total stetige Funktion, deren Ableitung /' (x) jedoch
endlich viele Unstetigkeitsstellen besitzt und in einem endlichen Intervall
absolut integrierbar ist, so gilt '

sf=f+1(0). (18)

Hierin bedeuten:

f(0) den Wert der Funktion f (x) an der Stelle x =0 (ein Zahlenoperator);
f'={f' (z)} den Operator der ersten Ableitung.

In GIl. (16) ist die 1 der Wert der Funktion f(z) =1 an der Stelle z =0, d.h.
f(0)=1 und f'={f (®)=0}=0. Ist zufillig f(0)=0, so bedeutet sf=f" eine
einfache Differentiation, womit die Vorstellung von HEeAvisipE in [6], die
Differentiale als Zahlen zu betrachten: a’ (x)=Da, nachgewiesen wird. Das
Produkt sf hat stets einen Sinn, auch wenn f (x) nicht differenzierbar wiire.

Aus der Grundgleichung:

st f =W+ (0)+ 5" 2 (0) 4 - - +5 f7D(0) + fn=D(0) (19)

erhilt man ein Kalkiil zur Losung von Differentialgleichungen, wenn die
(n—1)-te Ableitung f™~D (x) total stetig ist und f® = {f® (x)} den Operator der
k-ten Ableitung bedeutet.

Fiir Potenzreihen von Operatoren hat man die Grundgleichungen:

1 00

= 2 (20)

= (21)
f — < - n-1 fn

=S =1, (22)
P,

=N (23)

In diesen Formeln ist f* die n-fache Integration oder die n-fache Faltung der
Funktion f (x):

1
l e - a a f=h!=h (Einzellast P = 1),

o6 1 2 3 ¢ 5 & 7 e
7 1 1 1 1 b alternierende Einzellasten
bL r ! Is t! |s Js |7 > b ‘= ad (= 1) hn = 1
-1 - -1 -1 _nézo ) ~ 1+n’
T 1 ¢ monotone Einzellastfolge
N N N I IR
[ 7 2 3 [] 5 6 7 8 h

o0
_— j= 3 b=
Fig. 8. Einzellasten als Potenzreihen des n=1 -

Verschiebungsoperators h.
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P {[He—w) o ) duy = £

mit f'(z) = f (), oder f'=f={f(x)}.
Ist f=h der Verschiebungsoperator gem. Fig. 8a, so gilt die Beziehung
1 — S —_1\yepr — 1 — 234 ...

die eine alternierende Folge der Einzellasten P=1 gem. Fig. 8b wiedergibt.

Die Relation:
__h_._ = ihn =h+h24+h34+...
1-h 1
stellt den Verlauf der Folge in Fig. 8¢ dar.
Ganz allgemein gilt die Gleichung:
1 — S n(?t k npnA
AFahip = 2+ ( k )“"’ - (24)
Darin bedeuten: « eine reelle oder komplexe Zahl,
k eine natiirliche Zahl,
n+ky (n+1)(n+2)...(n+k)
E ] 1,2.. .k

. (24a)

Die Formel gilt auch fiir k=0, wenn (g) =1 angenommen wird.

Der Operator A?=¢=%" trigt dazu bei, dafl man sich um die Konvergenz
der Potenzreihe > a, h”, die eine Dirichletsche Reihe ist, nicht zu kiimmern
braucht. Diese Reihen sind Folgen von Koeffizienten. Der n-te Koeffizient der
Gl. (24) z. B. bedeutet den Wert einer Funktion f () an der Stelle x =n A, oder

fan) = 1y (")

/
In den Anwendungen wird man den Verlauf eines Biegemomentes M als eine
Operator-Potenzreihe darstellen:

M=M= My+ M b+ Myh?+ - - - (25)
0

k" gibt die Schnittstelle an und M, bedeutet den tatsdchlichen Wert des
Biegemomentes an der Stelle x =n, s. a. Fig. 9.

Fig. 9. Darstellung der Biegemomente als Einzel-
My M,

lastfolge | v vy e
e 3 st N T
nie. 0 1 2 3 1

n=0

Fiir die numerischen Methoden der Baustatik ist diese Darstellung sehr
erwiinscht. Es wird noch gezeigt, dal sich jede Rekursionsformel geschlossen
in Verschiebungsoperatoren 16sen 143t.
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3. Losung der linearen gewihnlichen Differentialgleichungen mit konstanten
Koeffizienten

Die Differentialgleichung
@y [ (@) + @y 1) (@) 4 - Fagf () = ¢ (2) (26)

mit a,, =0 und den Anfangswerten

oooooooo

kann mit Hilfe der Formel (19) gelést werden. Man erhilt in Operatorenform
die Gleichung

a’nsnf_*'a’nhlsn_lf_’_ e +a’0f = bn—lsn—1+bn—28n—2+ e +b0+q7
wobei
bi=ai+100+ai+2cl+”'+ancn—i—1; (i=0,1,2,...n——1). (27)

Hieraus hat man sofort die Losung:

by 8" 14 b
n—1 0+ q

. (28)
a,s"+---+a, a,s"+---+a,

f=

Um die Losung in der iiblichen Form zu erhalten, braucht man nur die Zer-
legung in Partialbriiche durchzufithren. Bei einer Partialbruchzerlegung be-
kommt man schliellich die Grundformel

1
S§—a

= e}, (29)

« ist dabei eine Zahl, die reell oder komplex sein kann.

4. Volterrasche Integralgleichungen

Besonders wichtig fiir die Baustatik sind die Integralgleichungen zweiter
Art von der Form

f(x);fgck(x——u)]‘(u)du+g(x), u<x; >0. (30)
6

Die gesuchte Funktion ist f(z). Diese Gleichung nimmt in Operatorenform
die Gestalt an
f=ki+g

und die Losung ist
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k
bzw. =g+g—7- (31a)
Mit G=—-=>k" (32)

1 5
hat man den sogenannten l6senden Kern, und die Losung der Integralglei-
chung (30) lautet:

x
/(@) =g(x)+0fG(96—u)g(u)du- (33)
Ist G aus den Tabellen der Laplace-Transformation nicht direkt zu finden, so
ist sie in der Form der Potenzreihe (32) als Neumannsche Reihe der iterierten

Kerne darstellbar, s. [19].
Die Integralgleichung erster Art

Jr@—wf)du =g () (34)

hat in Operatorform die Losung

f=1 (35)

die im Original, fall sie existiert, aus den Tabellen der Lapace-Transformation
[7,8,15, 16 und 17] zu finden ist.

9. Grundgleichungen der Baustatik

Die Differentialgleichung zweiter Ordnung
M (x) = f(x, M)

spielt in der Baustatik eine wesentliche Rolle. Zerlegt man die Fiktion des
dehnbaren Korpers (lineares Kontinuum) in eine Summe von starren Elemen-
ten dx, die elastische Forménderungen ausiiben kénnen, so wird das Gleich-
gewicht durch elementare &dullere Krifte, genannt Schnittkrifte, vgl. Fig.
10a—-d, vektoriell leicht gebildet. Gemidfl Fig. 10e hat man unmittelbar

Q@) =21

und fiir die eingepréigte Belastung f(z, M) die Gleichgewichtsbedingung

2]
f (e, M) = d%;x) _ ;iz(“). (36)

Die Losung dieser Differentialgleichung, vgl. [21], mit den Anfangswerten
M@O)=m; und M (0)=Q((0)=4

1
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Fig. 10. Positive duere Schnittlasten am Element bhdx als starrer Korper.

a Normalkraft H;
b Biegemoment M (z) aus linearisierten Forménderungen:
2¢ 1 d*y(x) M (x),
A~ R~ T de® —  EI’
¢ Querkraft als Scher-Streifenlast ;
d Torsionsmoment M;;

e Gleichgewichtsgruppe mit Auflast f(x, M).

ist eine Volterrasche Integralgleichung
M (x) = m@-—l—Aierf(x—u)f[u,M(u)]du, (37)
0
bzw. Q) =M (x) = Ai+ff [w, M (u)]du. (38)
0

Fiir die Biegelinie y (x) und den Drehwinkelverlauf y’(x) sind ganz analoge
Gleichungen vorhanden. Aus den Randbedingungen an der Stelle =z, sind
die Parameter der Anfangswerte M (0), M’ (0), v (0) und ¥’ (0) unmittelbar
gegeben. Die konsequente Anwendung dieser Tatsache hat Farx in [24]
durchgefiihrt. Er hat den Durchlauftrager als hochgradig statisch unbestimmte
Aufgabe in Verbindung mit dem Matrizenkalkil auf die Berechnung des
statisch bestimmten Balkens zuriickgefiihrt. Alle Schnittkrifte an einer belie-
bigen Stelle kann man mit Hilfe der obigen Reduktion durch die Anfangs-
werte ausdriicken. Die statisch Unbestimmten kommen gar nicht vor, sondern
bilden einen Teil der Zwischenrechnung. Das Prinzip beruht auf der Anwen-
dung der Volterraschen Integralgleichungen mit vorgeschriebenen Anfangs-
werten als Parameter, die aus den Randbedingungen des Endauflagers (des
Durchlauftrigers oder des Rahmens) genau ermittelt werden.

Kine geschlossene Losung der Stabwerke ist moglich. Die elastische Kon-
tinuitét ist ebenso wichtig wie das Gleichgewicht. Sie ist durch die Volterra-
sche Integralgleichung unmittelbar gegeben. Die Schwierigkeit liegt darin, daf3
jedes lineare Kontinuum durch unstetige Schnittkrifte gestort ist. Verzichtet
man auf die Fourier-Analyse, fiir die diese Schwierigkeiten entfallen, so kon-
nen die Unstetigkeiten der Schnittkrifte entweder als Differenzen zweier
Ableitungen oder aber als Anfangs- oder Endwerte erfallit werden. Bei der
Operatorenrechnung sind diese Storungen belanglos, vgl. die Beispiele im
nidchsten Abschnitt.

Das Beispiel in Fig. 3a wird vorerst auf dem Wege der Differentialgleichung
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ohne Fourier-Analyse gelost. Das Biegemoment an der Stelle x=¢ ist nicht
stetig differenzierbar, und die Querkraft weist demnach an dieser Stelle einen
Sprung von der Grofie P auf. Unmittelbar links und rechts von ¢ verlaufen
die Schnittkrifte stetig, so daB durch zweimaliges Anwenden des Anfangs-
wertproblems, s.a. [22], bei dem die Schnittstelle ¢ die Randwerte liefert, die
elastische Kontinuitit wieder hergestellt wird. Gem. Fig. 10e ist die Last-
funktion fiir den Lastfall in Fig. 3a:

f(x, M) = —Pf—%. (39)
Die Ringbelastung H/R resultiert aus der Entlastung infolge der Zugkraft H,
wenn man das Gleichgewicht am verformten Element beriicksichtigt. Aus der
Linearisierung der Forménderungen, 1/R = — M (x)/E I, folgt die malgebende
Gleichgewichtsbedingung:
M (x)

M (z) = = Pg+ H 5. (40)
Fiir den linken Bereich 0 <z < ¢ hat man die homogene Losung:
*M (x)hnks = Al @in P %
und fiir den rechten | (41)

M (x)rechts = A2 @in(]’) (1 ‘%) .

Diese Losung folgt auch unmittelbar aus den Volterraschen Integralgleichun-
gen, wie noch ausfiihrlich in den Anwendungen gezeigt wird.
Aus den Randbedingungen

M (§)Z’inks =M (g)rechts> (42)
M’ (g)li'nks - M (g)rechts =—P (42&)

sind die unbekannten Koeffizienten 4; und A, leicht zu bestimmen, und die
Losung lautet dann:

Sing(1-+) Gingy

.= P ; ’
x<§ L 2 Cmy
M = . . 43
@) @m(p% @Ingo(l—%) (43)
x>§¢:=PL .
pSing
@ erhilt man durch Einsetzen von Gl. (43) in die Gl. (40), d. h.
H
o= Y57

Ist die Horizontalkraft H oder die Biegesteifigkeit £ I mit x verénderlich,
dann kann man analog Fig. 10 kleine dehnbare Koérper von der Liange 4 L
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einfithren, bei denen H und E I konstant sind. Die Kontinuitiat ist an den n
Schnittstellen 4 L n-mal gestort. Mit Hilfe der Randbedingungen wird sie her-
gestellt, und es entstehen die wichtigen Rekursionsformeln, deren Ableitung
das Ziel der numerischen Methoden der Baustatik ist.

l’?
n y'ndn«») L
Fig. 11. Zur numerischen Berechnung der Zug- 2
biegung : Moo Mn+2

a Belastung infolge Py und M (x); n o el ne2 3
b Einteilung in gleiche Absténde; Ex«AxJ
¢ Randbedingungen der Querkraft an der Unste-

tigkeitsstelle (n+ 1). LS f

’ @ ™ c

In Fig. 11 ist der Verlauf des Biegemomentes und der Querkraft um den
Bereich der Einzellast P, , fir die Zugbiegung wiedergegeben. Das Tréigheits-
moment, sei verdnderlich, jedoch in kleinen gleichen Intervallen 4 L als kon-
stant angenommen (ebenso kann dies auch mit H und £ der Fall sein). Man
bezeichnet die Verhiltniszahlen links und rechts der Schnittstelle (n+ 1) mit

I I

o — B _____C
n+l Jlinks? n+1 Jrechts
n+1 n+1

(45a)

Die Losung der Differentialgleichung (40) als Integralgleichung (37) mit den
Anfangswerten M, und @, fiir den linken Bereich (n bis n+ 1) und mit der

reduzierten Belastung o, M (x) EHT lautet dann:

AL
Mtk = M+ QA Lot | (4 Li=) M (), (372)
9
Gemill Gl. (38) hat man auch:
AL
tinks — Q o, o fM(u) du. (38a)
n & El,
0

Fiir den rechten Bereich erhélt man analoge Gleichungen mit den Parametern
M,,, und @,.,. Aus den Randbedingungen an der Schnittstelle {=n41
gemif Gl. (42) und (42a) hat man zwei Gleichungen fiir die beiden Parameter
Q, und @, ... Die Losung als Rekursionsformel erhdlt man sofort, wenn man
fiir das unbekannte Moment M (x) einen ganz bestimmten Verlauf, z. B. einen
trapezformigen, annimmt. Die Integration nach Gl. (38a) néhert dann den
Verlauf der Querkraft, s. Fig. 11¢, parabolisch an. Gleichgewicht und elastische
Kontinuitdt werden durch die einzige Gleichung
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(“n-}—l +Bn+1) Mn+1 (1 +2 7) - (1 - ')’) [‘xn—f—l Mn +Bn+1 Mn+2] =A4L Pn+1 (44)
it - HAL
61
ausgedriickt.

Stiisst verwendet fiir diese numerische Methode meist Niherungsparabeln,
s. [23]. Seine Seilpolygonmethode als Gleichgewicht der Knotenlasten zwischen
zwei starren Korpern an der Stelle (n+ 1) ist mit diesem Verfahren der Inte-
gralgleichungen &quivalent. Die obige Rekursionsformel kann mit Hilfe des
GauBschen Algorithmus, der Matrizenrechnung oder aber direkt mit Hilfe des

Verschiebungsoperators, vgl. die Anwendungen, gelost werden.

(45)

c

Mnet

M P,‘ch(s Mn+2
n - + . .
plinks f Fig. 12. Zur numerischen Berechnung des
NOTTITTTITIAT 5% . §o . .
N_~ &) 99 Durchlauftragers mit verdnderlichen Verhilt-
niszahlen:
—Lnsg—Pe—— "y vinks _ Leln+1 recnts _ LeTn+1
n+l = T Tlingks? R+l = L rrechts *
«—EJ lin;q_.l EJ rec.;hf: ¢Ltn+l ¢ Ln+l
n+ ne

n+t

Die bekannte Dreimomentengleichung des Durchlauftrigers auf starren
Stiitzen kann ebenfalls mit Hilfe der Integralgleichungen als Losung der

Differentialgleichung
vy M ()

y'(x) = ) (46)
aufgestellt werden. In Fig. 12 ist ein Durchlauftriger iiber drei Stiitzen =,
n+1 und 7+ 2 mit den Randmomenten M, und M, , aufgezeichnet. Hierbei
denkt man sich das Tragheitsmoment I feldweise konstant. Die Spannweiten
sind verschieden und man bezeichne sie links der Stiitze » mit /, und rechts
davon mit r,, so da} r,=/[,,, und r,,,=1[,,, ist. Fithrt man noch die kon-
stanten Werte r, und I, ein, dann hat man folgende Verhéltniszahlen:

Ioryia
To Hrgcjits' *7)

o _ IO ln+1
n+l — links
7o 1505

bzw. B, =

Die Losung von Gl. (46) ist in Form von Integralgleichungen gegeben. Fiir
den linken Bereich (n bis n + 1) mit den Anfangswerten y, =0 und y,, hat man
beispielsweise

. % M (u)

inks — - —_)) —
J (48)

! (g )inks — of _ u

Yy (.’L’) S—yn fEI(u)du
0

Setzt man fiir das vorerst unbekannte Moment einen negativen trapezformi-
gen Verlauf mit den Unbekannten M,, M, ., und M, , an und fiir das be-
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kannte statisch bestimmte Moment einen positiven Verlauf, so ist durch die
Randbedingungen

links — , rechis — 'links — 5, rechis
y)%—yfb-l - 9n+1 — > yn—}—l - yn+1 (49)

der Zusammenhang zwischen M, , M, ., und M, , gegeben. Die Rekursions-
formel der Stiitzmomente fiir den Durchlauftriger lautet nun:

Bn+1+ Mn+21l/ln+1+Ln+1 =0. (50)
Gp+1 Mn+2 +2 Mn+1 + Rn+1

Hierin bedeuten L und R die Belastungsglieder, die im Sinne links und rechts
vom Schnittpunkt (n+1) verstanden werden und genau den Kreuzlinien-
abschnitten k;,,,, und £,,,;,;, entsprechen. Fiir eine gleichm#Big verteilte Last p
lauten sie beispielsweise:

links ]2 rechls ;2 .

Ln+1 — pn+14ln+1, Rn+1 — pn+147'n+1. (50&)

Die Losung der obigen Differenzengleichung (50) kann man geschlossen mit
Hilfe der Verschiebungsoperatoren A", s. die Anwendungen, durchfiihren.

6. Anwendungen

6.1. Lineare Biegung

Darunter versteht man die Spannungstheorie erster Ordnung.

Gegeben sei der einfache Balken mit Kragarmen. In Fig. 13 ist als Belastung
ein Einzelmoment m an der Stelle x=A, die Auflagerkraft A= (¢) an der
Stelle z=a im Sinne der Fig. 10e negativ und die positive Auflagerkraft B
im Abstand x=a+ L aufgetragen. Diese Lastfunktion f(x, M) kann nicht
ohne nidhere Beschreibung analytisch ausgedriickt werden, es sei denn, man
wahlt die Operatorenform:

{f(x, M)} = mshA — Ah® + Bho+L,
Die Losung von Gl. (36) als Integralgleichung (37) mit den Anfangswerten
M (0)=0 und ¢ (0)=0 lautet:
M(2) =] (@—u)f (u, M) du = | k(z—u)f () du.
0 0
. 1
Mit (@)} = (o) = 5

erhilt man die Losung gem. Gl. (17) in Operatorenform
M=FLf

oder M= Slz [msh? — Ao + Bho+L], (51)
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und fiir die Querkraft aus Gl. (38):

Q = [msh— A+ Bho+2]. (52)

Fig. 13. Reine Biegung unter Einzel-
moment m an der Stelle x=A.

a Belastung;

Biegemoment infolge des Einzel-
momentes;

¢ Biegemoment infolge der Auflager-
krafte;

e IERZA U d Verlauf des Gesamtmomentes M (x);

- e Verlauf der Querkrifte infolge der

drei Belastungen m, A und B;

f ll I Hl SN ar f Verlauf der Gesamtquerkraft @ (x).

Die Funktion des Biegemomentes (51) setzt sich aus drei Teilen zusammen,
die in Fig. 13b und ¢ dargestellt sind und von 0 bis co verlaufen. Ab x=a + L
16schen sie sich gegenseitig aus, so dafl Fig. 13d den genauen Verlauf wieder-
gibt. Die Querkraft ¢ (), s. Fig. 13f, hat ebenfalls drei Anteile: ein Krifte-
paar unendlich nahe von der Gro8e m, das als Einzellast m an der Stelle x=A
steht (diese Querkraft ist nur mit Operatoren sichtbar und sonst unberech-
tigterweise vernachlissigt), und aus den beiden konstanten Funktionen gem.
Fig. 13e. Die vorerst unbekannten Auflagerkrifte werden aus den Rand-
bedingungen M (a + L)=0 und @ (a + L) =0 ermittelt:

m m
B =+—.

A== L

Es ist interessant darauf hinzuweisen, da3, wenn A — 0 und a — 0 streben,
die Losung wie oben bestehen bleibt und die sogenannten Anfangswerte msh®
und 44° zur dulleren Belastung {f (x, M)} gehoren, so wie es auch in der Statik
iblich ist.

6.2. Nichtlineare Biegung

Darunter versteht man die Spannungstheorie zweiter Ordnung. Die maf-
gebende Differentialgleichung

M" () = | (x, M)
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hat fiir die Lastfille in Fig. 3 die Anfangswerte M (0)=0, @ (0)=A und die
Endwerte M (L)=0, @ (L)= B. Zéhlt man diese Werte der dufleren Belastung
zu, dann ist

{f(x, M)} = AR® — Phé + {%M(x)}+BhL, (563)
und die Losung lautet:
M (@) = [ (@—u)f [w, M ()] du. (54)
0
In Operatorenform nimmt diese Gleichung die Gestalt
M=la-—prer Ly gz (55
T T ET )
an, mit der Losung
M=A—" PR 4B (56)
§2 ——— 8T —— s2—
EI EI EI

Fiihrt man den dimensionslosen Parameter

H
=L}z (67)

ein, dann hat man aus den Tabellen der Laplace-Transformation die Original-
funktion

1 Gine+
- = : (58)
22— 2
L? L

Unter Beachtung von Fig. 6 lautet nun das Biegemoment:

x ’ x

- @mqo—-—-—
L_pL (z L)+BL . (59)
¢ ¢

Sing

M@)=AL

Durch Differenzieren erhilt man die Querkraft

x

Q(x)=A(&ofqa%—]’(io’iqa(z—%)JrB@oi(p(%—l). (60)

Bei beiden Gleichungen (59) und (60) verlaufen die ersten Funktionen auf der
rechten Seite von 0 bis co, die zweiten von £ bis co und die dritten von L bis co.
Da der Balken nur im Bereich 0 bis L existiert, erhilt man aus den Aussagen,
dafl M (x) und @ (x) im ganzen Bereich L bis oo verschwinden miissen, zwei
Bestimmungsgleichungen fiir 4 und B. Die Kontinuitdtsbedingung M (L)=0
und ¢ (L)=0 heilt, da beide Funktionen im Bereich x> L verschwinden
und nicht wie bei der harmonischen Analyse (Fourier-Reihen) nur am Rande,
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s. a. Fig. 1c. Demnach hat man sofort:

Sing(1-£) o P@imp—jf—
Sing ““ ~ ' Ging

A=P

6.3. Rekursionsformeln und Differenzengleichungen

6.3.1. Nichtlineare Biegung. Die im vorigen Abschnitt geloste Aufgabe ist
auch als Differenzengleichung numerisch formuliert, vgl. Gl. (44). Wahlt man
das Tragheitsmoment durchgehend konstant, dann erhilt man die einfache
Gleichung mit konstanten Koeffizienten
1+2 4L
T M+ Mo = — P,

1_,)/ n+11_,y'

Gemill Fig. 14 ist die Spannweite in gleiche Abschnitte 4 L-—-% unterteilt.

Fihrt man die Parameter

142y 1
(SD 2 = ’ cC = ——-
5= 4 m (1 —y)
ein, dann bekommt man die Rekursionsgleichung
Mn_zgoszn+1+Mn+2=—CLPn+1' (61&)

Das gesuchte Biegemoment ist nur an den Schnittstellen » 4 L=%L vorge-
geben, so daf} eine Darstellung wie in Fig. 9 durch die Verschiebungsoperatoren
h™ moglich ist:
M=>M,h" (62)
0

Das Biegemoment M, ., im Schnittpunkt (n» + 1) ist allgemein durch die Reihe
charakterisiert:
1

;ann—i-l = 7

(M~-My) =M, +Myh+Mzh2+ - -- (62a)
und das Biegemoment M, ,, durch

S M, o h = (M = My— Myh) = Myt Myh+ M2 4---  (62b)
0

h? (

Gl. (61a) nimmt jetzt in Operatorenform die Gestalt an:

M-M, M-M,~M,h  P-P
M—2Cofz——+ e =—cL—~".
Die Losung lautet mit M,=0 und P — P,= Pht:
M=M h —cP LI o (63)

11-2hCofz+h2 1-2hC@ojz+h*
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Die Losung im Original kann man finden, wenn man die rechte Seite dieser

Gleichung nach Potenzen von A entwickelt.
Der Ausdruck

h © .
1—2hGojz+ 2 =& zn;)@m (nz)h (64)

ist eine erzeugende Funktion der Tschebyscheffschen Polynome, vgl. [17 und
26]. Der Beweis, dafl Gl. (64) stimmt, liefert das Produkt der beiden Potenz-

reihen (1 —2A €ojz+A2) und @tin‘z‘i Sin (nz) h* gemal3 der Regel (78). Danach
0

verschwinden alle Koeffizienten von A" bis auf die 1 fiir n=1. Die Losungs-
gleichung (63) hat die allgemeine Entwicklung

i Sin (nz) b i Gin(n—§&)zh"

_ 0 _ n=¢ 5
M=MT PLEE o (65)

Der Koeffizientenvergleich mit Gl. (62) liefert das allgemeine Glied

M, =y, 8002 ppGnln-fz

- v 66
o Ginz Gz (66)

Aus der Randbedingung M, =0, beispielsweise, und n=m folgt die Bestim-
mungsgleichung fiir M, (m> §)

_ Sin (m—§£)z
My =P —me (67)
und fiir n> 1 gemaf3 Gl. (66) erhilt man die geschlossene Formel:
Ginéz .
Mn—cPLm@m(m—-n)z. (67a)
Beispiel :
L EI HAL? 2
. — — . —_ 2 C. — — — 2! .
£=2; AL—m, m=8; H T Y 6L g 0,0257;
@oiz—1+2”—108- z = 0,39729; c—— 1 01283
1_')/ > b 3 2 8(1—')/) b .
Gemiaf3 Gl. (67) hat man
Sin bz o ‘
Ml—0,1283PL@m8Z—0,0515PL. (67Db)
Fir n> 1 gilt die Gl. (67a)
. Cofz ., A .
M, = ZcPL@n87@1nz(8—n) = 0,0231&Gin(8—n)z P L. (67c)

Beachtet man die Rechenschiebergenauigkeit, so ist z. B. fiir n=2:

M, = 0,0231 Gin (2,3837) PL = 0,1242 P L.
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InJder Tabelle sind die Ergebnisse eingetragen. Verglichen sind sie mit den

genauen Werten nach Gl. (43) und mit den Resultaten nach Stissi, s. [25].

Tabelle. Genaue und numerische Berechnung von M (x) nach Fig. 14

Gl. (43) n. [25] Gl. (67b u. c)
M, 0,0583 0,05807 0,0575
M- 0,1255 0,12520 0,1242
Ms 0,0836 0,08362 0,0824
M, 0,0551 0,05511 0,0542 PL
Ms 0,0358 0,03520 0,0345
Mg 0,0208 0,02080 0,0203
M, 0,00965 0,00965 0,0095
l’%
H i L ) I I 1 I Jn:n‘::GH
A7 2 3 4 5 6 7 A
]
J -
N M/ M, H, Pg) Fig. 14. Beispiel zur Berechnung der Zugbiegung.
2

6.3.2. Durchlauftriger mit gleichen Spannweiten und konstantem Trigheits-
moment. Mit «=f hat man gemif Gl. (50) die einfache Differenzengleichung

Mn+4Mn+1+Mn+2 = _Ln+1_Rn+1' (68)

Wihlt man, beispielsweise, eine konstante gleichmiBig verteilte Last p, dann
lauten die Belastungsglieder, s. Gl. (50a):

2
Lyy+R, =K, = P

wenn L die Spannweite bedeutet.
Mit Gl. (62), (62a) und (62b) erhidlt man die Operatorenform

M-M, M-M,~M,h  K-K,

M4a——=0 s 2. (69)
Die rechte Seite dieser Gleichung ergibt sich aus Fig. 8¢
Y R Ly gy VYt S SOE ol - VS Lo
K-K,= 5 (h+h%2+h%+ )_p2§k =P 17
Die Losung nimmt die Gestalt an, wenn M, =0 ist:
2 2
M=M h L h (70)

Y yah+ht P2 (U+ah+0d)(1—h)

© 2 o ©
oder M=M>U, (z)h“—p%Zh”Z U, (z) k" (70a)
0 T 0
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Nach Gl. (64) konnen die Tschebyscheffschen Polynome auch geschrieben wer-
den, vgl. a. [26]:

h ©
Toheiiz = 5 Unh
it = (1) i (2) v
oder U,=0: U,(z) = 2z; U,(z) = 828—4z;
U, =1, Ug(z) = 422—1; Us(z) =162 —1222+1.

Den Nachweis, daf3 diese Koeffizienten stimmen, gibt die Regel fiir die Multi-
plikation zweier Potenzreihen, vgl. Gl. (78). Zum Beispiel wird Uj(z) aus der
Relation ermittelt

0="U;(2)—22U,(2)+ Us(2)
oder Ug(2) =22(823—4z)—422+1.

Fiir 2z = — 2 hat man nun
Uy=0; U;=1; U,=-4; Uz;=15; U,=-56; Uz=209.

Der erste Ausdruck der rechten Seite der Gl. (70a) lautet demnach

h

Trahihe & Unh™

Der zweite Ausdruck stellt ein Produkt zwischen dieser Reihe und der Potenz-
reihe

dar, d.h.

O+h+h2+B+ ) (Ug+ U h+Uyh2 4+ Uyh3+---) = D g, b
0

n—1
Demnach ist g9, =2 U,
i=0

oder g,=0; ¢,=0; ¢g,=1; g3 =—-3; ¢9,=12; g, = —44; Gl. (70a) kann auch
geschrieben werden:

0 L2oo
M=M1§ Unh”——'p-i;gn. (70b)

Durch Koeffizientenvergleich mit Gl. (62) bekommt man das allgemeine Glied

des Stiitzmomentes
2

L
Mn=M1Un'p'?gn' (71)

Hat der Durchlauftriger n=m gleiche Offnungen und ist er iiber der End-
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stiitze m frei gelagert, dann wird der endliche Bereich 0 bis m durch die Glei-
chung abgegrenzt

M=SM-5M k=3 M,k (72)
0 m 0

Fir n>2m verschwinden alle Werte fiir M, , und aus der Bedingung

no
L2

Mm=0 leUm—p?gm

hat man die Bestimmungsgleichung fiir M,

L? g .
M1=p? UZ (73)
Beispiel: m=49;
12 —44 22
\ 79y e e R B8 T3 - 9 2
Nach GI. (73): M, =p 5 309 209pL 0,10521 p L?;
209 33
T‘ 7 . . = — _— = —— 2:- 2:
Nach Gl. (71): M, Ml( 4+44) 418pL 0,0789 p L2
M, = M (15— —2 = —0,0789 p L2
Te T 0,21042 - P
M,=M ~‘36+~——1—2- = —0,10521 p L2
1= | TP T 0 21042 - P
Beispiel: m=4;
L* 12 3
= p— - 2 2 _ _ 2.
M, =p 5 TE6 QSpL 0,10714 p L?;
o, = pre(3a ) _ oo oomiaspre
2 147 2 14 ’ ’
3 3 3
= 2 . " 154+—) = — — 2 _ J 2.
M, pL( 2810+2) 5qP L 0,10714 p L2;
M4=7)L2(§g56~6) =0, wie es sein mufl.

6.3.3. Durchlauftrdager mit beliebigen Spannweiten und feldweise verdnderlichem
Trigheitsmoment. Die maligebende Rekursionsformel ist die Dreimomenten-
gleichung (50). Die Schreibweise in Operatoren lautet:

M2 M— M, n L—1Ly

h h — _B_BOZ_K (74)
M—-Mo—Mih , M—DM, R — Ry o, :
e tE gt °
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Die Auflosung nach M ergibt, wenn M =0 gewdhlt wird:
kh h

M =M1K(1+2h)+2h+h2 —[(L—L0)+K(R—RO)]K(1+2h)+2h+k2. (74a)
h e n

Setzt man A=K(l+2h)+2h+h2 =20]Anh (75)

und B =«A, (75a)

dann hat man bereits die Entwicklung fiir M nach den Verschiebungsopera-
toren

M = M, 3 B, hn—(L—Ly) X A, b — (R—Ry) > B, I, (76)
0 0 0

Die Belastungsglieder (L —L;) und (R— R,) sind vorgeschrieben und als
Potenzreihen von A leicht darstellbar.
Aus dem Produkt zweier Potenzreihen

ab=§anh"§bnh"=c=icnh" (77)
0 0 0

mit Co = by
¢ = by +a,by;
62 = a0b2+a1b1+azbo;

¢, =agb, +ab, ;+ - +a, 1by; (78)
erhilt man das allgemeine Stiitzmoment von Gl. (76)
M,=M,B,-C,-D,. (79)
Diese Gleichung gilt fiir » =0 bis .
Hat der Durchlauftrager » =m Offnungen, so kann der beschrinkte Bereich

von 0 bis m durch eine zweite Potenzreihe von rechts nach links abgesteckt
werden.

Ist M, =0, dann ist diese Endstiitze der Anfangswert M,=0 fir die

Potenzreihe von rechts nach links und ihr erster Wert M, =M, ,, vgl. dazu
Fig. 15. Fiir die Losung dieser zweiten Reihe hat man analog
M,=M,B,-C,-D,,. (79a)
n=0 bis co A =0 bis oo
— n=0 bis co A=0 bis oo
¢ 1 -2 mdm R R S
rM,:Ff-,;‘:«y M,,l,,_1=/‘_17 /;_* /‘{- l 1 J\ J\ /__:
il / My Lt | . L7 M=y
von rechts \\ // : -4 // L7
I e I:;';’.on unks ‘“‘;" \A70
‘_//\ von/’/ \m"??(é‘,‘r
Fig. 15. Zur Berechnung des Durch- Fig. 16. Zur Berechnung des Durch-

lauftragers mit Endgelenk. lauftrdgers mit Endeinspannung.
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Aus den Relationen nach Fig. 15
M,=M, , und M,=0M, ,

Ml — Bm—i Cm—l -+ Dr_n_—l -+ Om—l 3 Dm—l. (80)

Ist die Endstiitze eingespannt, dann hat man gem. Kig. 16 eine spiegel-
bildliche Anordnung fiir die zweite Potenzreihe von rechts nach links, und
aus der Relation M, =M, erhilt man die Bestimmungsgleichung fiir M, aus
der Randbedingung

M,=M,,
d.h. Mle_(Om+Dm) =MIEm_(—m+l_)m)
oder Ml _ (Cm+Dnz)_@m+Dnl (81)
Bm—Bm

Beispiel: In Fig. 17 ist ein Durchlauftriger iiber fiinf Felder aufgetragen.
Die Berechnung wird zweimal, d. h. von links nach rechts mit den Operatoren
(¢, B, L, R, M) und von rechts nach links mit (z, B, L, R M ) aufgestellt.
‘GeméiB Gl. (74) hat man fiir den Quotienten «, s. Fig. 17,

_B—By  h+0875R2+h34+0,75k*  1+0,875h+h*+0,754
Ca—ay h+h24+0,87T5R3 LA+ 0,758  1+A+0,875h2+A3 40,7504

K

Die Werte fiir 8 und « werden aus Gl. (47) mit r=4m und I,=20dm* ermit-
telt. Die Belastungsglieder sind in der Figur als monotone Folgen aufgezeichnet.
Unter Beachtung der Regel (78) hat man

= | | |17
20 o= o= 0,875 1 0,75
L4 —
s ] I
B 7 0875 7 : 075
4 —_
L ] | ] R
4 6,25 3,0625 6,25 225
. : s
R | I L
y 625 3,0625 625 225
-2,220 - 1,368 - 1,564 -1,853 [Mpm] . L. .
Fig. 17. Beispiel eines Durch-
M e I ' o lauftriagers mit funf Feldern.
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k=1-0,125kh+0,250 h2—0,390625 A3 + - - -

Die Potenzreihe fiir A nach Gl. (75) nimmt die Gestalt an

h h
T k(L+2h)+2h+h?  1+3,8T5h+h2+0,10937543
oder A = h—3,875h%+14,015625 h3 — 50,544921 k3 + - - -

Entsprechend lautet B nach Gl. (75a):
B=xA=h—4h*4+14,75h%—53,65625h*+ - - -
Gem. Fig. 17 erhédlt man fir das linke Belastungsglied L die Potenzreihe:
L—Ly=4h+6,25h%+3,0625h3+ 6,25 h*+ 2,25 h5.
Die Reihe C=(L-Ly)A
bekommt man nach der Regel (78)
C =4h%>-9,25h%+34,90625h*— - - .

Fiir das rechte Belastungsglied R hat man analog, s. Fig. 17,

R—R, = 6,25h+3,0625h% 46,25 h3 4 2,25 h2.
Die Potenzreihe D= (R-R,B

lautet demnach
D = 6,25h2—-21,9385Ah%+86,1875h%— - - -

Fiihrt man dieselbe Operatorenrechnung von rechts nach links mit den Folgen
gem. Fig. 17 durch, d. h.

a—ay = 0,75h+h2+0,875h3 + ht;

B—By, = h+0,875h2+h3+h4;

L—L, = 2,25h+6,25h2+3,0625h3 + 6,25 ht + 4 h5;
R— R, = 6,25h+3,0625h2+ 6,25 h3+ 4 ht;

dann hat man

I

7 =1,33333—0,61111%+0,59259 2 —0,521604 43+ - - -
B =h—3,5h2+10,812499 43— 32,804695h% + - - -

A =0,75h—2,28125h%+6,730472h3 —20,211444 bt + - - -
C = 1,6875h%—0,445312 1%+ 3,182625ht— - - -

D =6,25h2—18,8125h3 + 63,109368 AL — - - -

I

Mit m =5 liefert Gl. (80) das erste Stiitzmoment

—32,804695-121,09375 + 66,291993
53,65625-32,804695 — 1

M, = = —2,22044 Mpm
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und gem&B Gl. (79) entsprechend:
M, = —2,22044 (—4)—4—6,25 = — 1,36824 Mpm;
My = —2,22044-17,45+ 9,25+ 21,9375 = —1,56369 Mpm;
M, = —2,22044 (— 53,65624) —121,09375 = —1,85237 Mpm.

Dasselbe Beispiel in [27] liefert die Werte:
M, =-2,191 Mpm; My =—1,567 Mpm ;
M, = —1,430 Mpm ; M, =—1,820 Mpm.

7. Zusammenfassung und Ausblick

Die Existenz von unstetigen und von nicht stetig differenzierbaren Funk-
tionen ist im Bauwesen unbestritten. Mit diesem Beitrag wird ein erster Ver-
such unternommen, das Interesse des Bauingenieurs auf die Operatoren-
rechnung zu lenken. Diese Operatorenrechnung kann man aus der Theorie der
Laplace-Transformation oder als abstrakte Algebra nach MIKUSINSKI ableiten.

Mit Hilfe des Verschiebungsoperators h=e=% ist es moglich, eine Menge
von Operationen durchzufiihren, so dafl sich eine Fourier-Analyse eriibrigt.

Die Losung der Rekursionsformeln der Baustatik und der Elastizitétslehre
einerseits und die der Stabilitidtstheorie und der Flichentragwerke anderer-
seits, ganz gleich, ob man dabei grobe gewéhnliche Differenzen, das Seil-
polygonverfahren nach Sttissi-DuBas, das Mehrstellenverfahren nach CorraTz-
ZurMUHL oder das hier verwendete Verfahren der Volterraschen Integralglei-
chungen beniitzt, ergibt sich als einfaches Rechnen mit Potenzreihen beson-
derer Art.

Das Produkt der Operator-Potenzreihen ist dem Produkt der Matrizen und
dem Faltungsprodukt dquivalent, da die Volterrasche Integralgleichung die
Grundlage der Stabstatik bildet.

Bei den Beispielen, in denen eine mehrma,hge Multiplikation stattfindet,
ist der Gebrauch von Rechenmaschinen unentbehrlich.

Es ist abschlieBend darauf hinzuweisen, dal eine Umstellung auf den
Differentialoperator s als abstrakte Zahl, die alle anderen Zahlen umfaf3t, und
das Rechnen mit dem Verschiebungsoperator rasch mdglich ist. Mit dieser
Operatorenrechnung kann eine kiinftige Entwicklung folgen, die einfach und
deswegen wiinschenswert ist.
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Zusammenfassung

Im Anschlul an allgemeine Betrachtungen iiber die Losungsprobleme der
Baustatik wird der Operatorenkalkiil nach Jan Mikusinski abgeleitet und fiir
die speziellen Belange der Baustatik eingefithrt. Mit Hilfe der Volterraschen
Integralgleichungen vom Faltungstypus werden die Gleichgewichts- und Kon-
tinuitdtsbedingungen neu definiert. Das Rechnen mit stetigen, unstetigen oder
nicht stetig differenzierbaren Funktionen wird mit algebraischen Operationen
ermdoglicht. Die zahlreichen Tabellen der Laplace-Transformation koénnen
ohne Kenntnis der Funktionentheorie verwendet werden. Die Rekursions-
formeln der numerischen baustatischen Methoden werden mit Hilfe des Ver-
schiebungsoperators A"=e¢" in Potenzreihen dargestellt und sehr einfach
gelost.

Summary

After some general considerations regarding the solution problems of struc-
tural statics the operational calculus according to Jan Mikusinski is derived
and presented for the problems that are of particular importance for structural
statics. By means of Volterra integral equations of the convolution type the
equilibrium and continuity conditions are redefined. Calculation with conti-
nuous, discontinuous or non-continuous differentiable functions is made possible
with algebraic operations. The numerical tables of the Laplace transform can
be employed without a knowledge of the theory of functions. The recurrence
formulae of the numerical methods of structural statics are obtained as expo-
nential series by means of the displacement operators 2" =e—"¢ and are very
easily solved.

Résumé

Apres quelques considérations générales sur la résolution des problemes de
la statique, I’auteur expose le calcul opérationnel de Jan Mikusinski et Pappli-
que au domaine particulier de la statique. On redéfinit les conditions d’équi-
libre et de continuité a I’aide des équations intégrales de Volterra. Le calcul &
effectuer avec des fonctions continues, discontinues ou pourvues de dérivées
non continues revient alors & des opérations algébriques. Sans connaitre la
théorie des fonctions, on peut utiliser les nombreux tableaux donnant les trans-
formées de Laplace. On exprime en séries puissances, au moyen de I'opérateur
h"=e—"3, les formules de récurrence obtenues par les méthodes numériques
de la statique, et il est tres simple de les résoudre.
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