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Operatorenrechnung und ihre Anwendung auf die Baustatik

Operational Calculus and its Application in Structural Statics

Le calcul operationnel et son application a la statique des constructions

NIKOLA DIMITROV
Dr.-Ing., apl. Professor an der Technischen Hochschule Karlsruhe und Lehrbeauftragter

an der Technischen Hochschule Stuttgart, Karlsruhe

1. Allgemeines

Die meisten Tragsysteme sind so ausgerichtet, daß sie stetig oder unstetig
verteilte Lasten diskontinuierlich über mehrere Auflager und Stützen abtragen.

Einzellasten, Einzelmomente, Streckenlasten, veränderliche Steifigkeiten,
unstetig verteilte Schnittkräfte usw. sind unstetige oder nicht stetig differenzierbare

Funktionen. Sie werden immer in der Baustatik und Elastizitätslehre
gebraucht.

Je nach der mechanischen Voraussetzung des materiellen Körpers: starrer
Körper, dehnbarer Körper oder Kontinuum, hat man es mit drei verschiedenen

Aussagen für das Gleichgewicht zu tun: vektorielles Gleichgewicht,
virtuelle Arbeit oder die Differentialgleichung. Diese Entwicklung der Grundlagen

zur Lösung der Spannungsprobleme ist durch eine ungezählte Menge
der Rechenverfahren gekennzeichnet, die analog in drei große Gruppen eingeteilt

werden können:

A. Graphische Methoden.
B. Mechanisch-analytische Verfahren.
C. Lösungen von Anfangs- und Randwertproblemen.

Bei den Stabilitätsproblemen, die durch Gleichgewichtswechsel unterschieden
werden, fällt die Fiktion des starren Körpers weg, und die Einteilung der
dazugehörigen Verfahren ist entsprechend:

D. Energiemethoden.
E. Lösungen von Eigenwertproblemen.
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Die graphische Statik hat früher die gesamte Bautechnik gefördert, aber die
mechanische Deutung der Probleme durch Arbeitsgleichungen und
Energiegleichungen, s. [1], hat die Entwicklung der Baustatik und der Festigkeitslehre
noch weiter getrieben und zu einem gewissen Abschluß gebracht.

Bei manchen Tragwerken sind die oben angeführten UnStetigkeiten wie
die Knotenpunkte einiger Fachwerke oder die Biegesteifigkeiten der ortho-
tropen Platte in kleinen Abständen vorgegeben, so daß mit der Annahme
einer gleichmäßigen Verteilung der Steifigkeit keine großen Fehler verursacht
werden. Man beachte dabei die Arbeit [2], in der über den Grenzübergang
zwischen der elastisch-isotropen Platte und Scheibe und dem elastisch-isotropen,

gelenkigen und engmaschigen Dreiecksfachwerk berichtet wird. Die
Lösung als Kontinuum auf dem Wege der Differentialgleichung gewinnt dabei
an Übersichtlichkeit und hat nur einen kleinen Bruchteil der Rechenarbeit,
die sonst die übliche Berechnung erfordern würde. Die Berechnung der
Fachwerke als Balkenproblem, s. [3], und die der orthotropen Platte als
Plattenproblem, s. [4], wird mit Fourieransätzen durchgeführt.

Die Anwendung der Fourier-Transformation ist aus folgenden beiden Gründen

erforderlich: die Analysis stellt nur eine beschränkte Auswahl von
Funktionen zur Verfügung, so daß die gesuchte Lösung einer linearen oder
nichtlinearen Differentialgleichung immer durch Reihen angenähert werden kann;
die Fiktion des Kontinuums verlangt, daß auch jede unstetige Funktion
durch stetige Funktionen ersetzt werden muß.

Mit Hilfe der Fourier-Reihe

/(*)= 2 o»«-"" (i)
n= — oo

kann, beispielsweise, durch die Fourier-Transformation eine Einzellast P an
der Stelle x f im Bereich 0 < £ < L durch die stetige Funktion p (x, f) ersetzt
werden, vgl. Fig. la,

p(x,g) -y- 2 sin n rr -y sin n ir-y. (2)L n=i L L

Diese Gleichung ist eine quellenmäßige Darstellung. Sie kann für P 1 rein
formal als Einflußlinie der Belastung aufgefaßt werden. Für jede beliebige
Lastverteilung kann man sie auswerten. Die gleichmäßig verteilte Belastung
h konstant hat z.B. die Entwicklung, s. Fig. 2a,

00

q(x) 4q Y —sin7*77^, (3)

die man durch Integration der Gl. (2) nach | im Bereich 0 bis L erhält.
Die Fiktion des Kontinuums verlangt, daß alle Funktionen im Bereich — oo

bis + oo stetige Funktionen sind. In der Tat sind die äußeren Lasten gemäß
Gl. (2) und (3) in diesem ganzen Bereich stetig und auch im Gleichgewicht, so
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daß die Ermittlung der Auflagerkräfte entfallt. Werden die Randbedingungen
für das Biegemoment erfüllt, steht der direkten Anwendung der Differentialgleichung

nichts im Wege. Aus M" (x) —p(x) und M' (x) Q(x) hat man
sofort gem. Gl. (2) und Fig. 1

M(x,£) PK{x,€) 2PL^7±„ 0 sin wn-zr sin nir-zr,n27Tz L L

Q(X,{)=P8J^J1 2
1 t X

— sin nir-f cos n7r-r.mr L L

(2a)

(2b)

a Belastung Pt.

b Querkraft Q (x9 f) dx

c Biegemoment M(x,g) PK(x,{)
xx<£: =PL- ZZ

L

r />(».*;

«f

-B

Fig 1 Balken auf zwei Stutzen,

Gem. Gl. (3) und Fig. 2 hat man entsprechend:
00

,-.. v qL2 /, x\ x -r„ V1 1

2 \ LJL ife" '
00

e<*>^(>A) AS5^

r Sin W 7T £'

-COS mr-jr.¦l L

(3a)

(3b)

Die in Gl. (2 a) angegebene Funktion K(x,tj) ist der Musterkern der Fred-
holmschen Integralgleichung oder die Einflußlinie des Biegemomentes für den
einfachen Balken im Bereich 0 bis L, s. Fig. 1 c. Die obige Art der Berechnung
mit unbestimmten Integralen und Fourier-Entwicklungen ist muhevoll und
die Konvergenz ist schlecht. Stellt man bei nichtlinearen Problemen die Zu-
oder Abnahme der Schnittkrafte gegenüber der linearen Theorie als Fourier -

Entwicklung dar, dann ist die Berechnung sinnvoll und die Konvergenz
ausgezeichnet.

In Fig. 3 sind obige Lastfalle durch eine Zugkraft H erweitert. Aus dem
Gleichgewicht am verformten Element hat man für den Lastfall a in Fig. 3:

M(x,£) PK(x,£)-Hy(x,£) (2c)
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und für den Lastfall b:

M(x)=yf(l-^)^-Hy(x); (3c)

y bedeutet die Biegelinie und H den Horizontalschub, der selbst von der
äußeren Belastung abhängen kann. Für den ersten Lastfall hat man die

Lösung, s.a. [5]:

oprj^ sin nn -j- sin mr -=-

M(x,i) PK(x,i)— X ^ ^
EIL Li n2TT*/n27r2 H

L* \ L*
/n27r2 H \
\ L* + El)

(2d)

,9M

WM

^m>««<^

Fig. 2. Balken auf zwei Stützen,

a gleichmäßig verteilte Last q konst.

b Querkraft Q (x) -

c Biegemoment

qL (-¥)

«<*>AAA)-

lh-i)PL

Z ,2

+» ä

Fig. 3. Verlauf der Biegemomente infolge einer
Zugbiegung.

a Einzellast Pt an der Stelle £,

b gleichmäßige Belastung q.

Die Integration von 0 bis L nach £ ergibt die Momentenverteilung für den
zweiten Lastfall:

sm n-n-^r
(x) =!^/!_£U-i^ V *
K> 2 \ LI L EIL .tTi.r**z(f**Mix)

—V
EI!

(3d)

Bereits für n—\ erhält man eine gute Konvergenz, und die maximalen
Momente lauten für x £ L\2 und Hk 7T2E I/L2:

M =^^¦"* max a

+ 0,189

H + 1

bzw. M-*•"¦ max
qL>w-°'032

8 Hk '

ff ~l~

(2e)

(3e)
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Die in der Statik wichtigste unstetige Funktion der Einzellast P 1 wurde
durch die Fourier-Transformation als Gl. (2) abgeleitet und formal als
«Einflußlinie» gedeutet. In der Physik und insbesondere in der Elektrotechnik ist
sie als Dirac-Delta-Funktion 8(x — |) bekannt. Hierfür wird eine Operatorenrechnung

von Heaviside (1899) verwendet, s. [6], die als Laplace-Transformation

[7 bis 10] ihren Abschluß fand:

0(p)=Je-*7(O<fc S/(<). (4)
0

Es bedeuten:

p eine komplexe Veränderliche.
/ (t) Oberfunktion oder Originalfunktion.
g(p) Unterfunktion oder Bildfunktion bzw. die S-Transformierte von f(t).

Das Integral (4) muß in der Halbebene t^O konvergieren.
Im Bauwesen ist die Laplace-Transformation selten angewandt. Ein

Versuch, sie auf die Theorie des Balkens zu übertragen, ist in [11] durchgeführt.
In [12] wird, ein bekannter Stabilitätsfall und in [13] eine wichtige Aufgabe
aus dem Gebiet des Stahlbetonbaus gelöst. Diese Transformation scheint für
die Baustatik infolge der Auswertung einer komplexen Schwingung e~p

e-(x+iy)^ ähnlich der Fourier-Transformation, etwas wesensfremd zu sein.
In der Elektrotechnik hat sich jedoch das Denken in komplexen Schwingungen
allgemein durchgesetzt, s. [7, 8 und 9].

Das Verdienst von Mikusinski [14] ist es, gezeigt zu haben, daß Gl. (4)
keine Transformation bedeutet, wenn man statt der komplexen Variablen p
eine abstrakte Zahl s, die später als Differentialoperator definiert wird,
einführt. Statt der Bildfunktion g(p) hat man jetzt eine abstrakte Funktion
von s. Aus der Funktion / (x) erhält man die Operatorfunktion

/ {/(*)} *»,
d.h. /=fe-*/(£)<* £ {/(*)}. (5)

0

Darin bedeutet

e~8£ den Verschiebungsoperator, der außerhalb des Integrals auch mit h£

gekennzeichnet wird.

Für die Baustatik kann dieser Operator als Einflußlinie gedeutet werden,
so daß Gl. (5) rein formal die Auswertung selbst darstellt. In Fig. 4 ist der
Verschiebungsoperator e~s£ h£ als Einflußlinie der Belastung P=l
aufgezeichnet. Man kann nun sowohl stetige Funktionen gem. Fig. 5, als auch
unstetige und nicht stetig differenzierbare, vgl. Fig. 7, als Operatoren nach
Gl. (5) darstellen. Eine wichtige Eigenschaft des Verschiebungsoperators h*
ist in Fig. 6 gezeigt.



36 NIKOLA DIMITROV

ZL
2e

f-e F F+e >x

-{rh •*r

->x ->x

Fig. 4. Darstellung einer Einzellast P=l an der Stelle
x £.

a als Streckenlast mit der Fläche

1,

b als Operatorfunktion h> und
Grenzwert der Fläche 1 für
€-> 0,

c als Dirac-Delta-Funktion
h> 8 (x — f) mit dem Wert
Null für x 4= £, mit dem Wert
oo für x i, aber Inhalt 1.

m

fO-TÄs-oc

f*H

^x;=Ti

w

>x

Fig. 5. Operatoren der stetigen
Funktionen: x; erxx und sin x.

{«*)}

m

-> x

hxfm}

-> x

Fig. 6. Verschieben der Funktion f(x) um die
Strecke A in Operatorenform:

hZf(-)} \T;
n rürx<?

I / (» — A); für a; > A

Die Operation gem. Gl. (5) stimmt mit der Laplace-Transformation, Gl. (4),

nur formal überein. Beide Methoden sind aber nicht äquivalent, da die Laplace-
Transformation nur anwendbar ist, wenn das Integral, Gl. (4), konvergiert.
Dagegen hat das Integral nach Gl. (5) immer einen Sinn, falls nur die Funktion
/ (x) gem. Fig. 7 endlich viele Unstetigkeitsstellen in einem endlichen Bereich
besitzt und hier absolut integrierbar ist, d. h. / (x) ist in der Klasse der Funk-

a Streckenlasten q\ und qi:

/=___+(g2_gi)___g2^

b Einzellasten Po, Pi und P% an den Stellen
0, Ai und A2:

/ P0Ä° + PiÄAi + PaÄA2; mit Ä°=l;

m

-> x

-> x

c Gemischte Belastung:
20

/ -20 + — (h-h2)-30sh*.

Fig. 7. Operatoren der unstetigen Funktionen. -20 riP

20 MP/m
30 Mpmn -> *
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tionen eingebettet, die lokal (im Sinne von Lebesgue) summierbar sind. Demnach

ist es möglich, die bekannten Tabellen zur Laplace-Transformation
[7, 15, 16 und 17] zu gebrauchen. Eine Kenntnis der Funktionentheorie wird
dabei nicht vorausgesetzt.

Obwohl die Laplace-Transformation methodisch besser ist und an die
Funktionentheorie anschließt, ist die Operatorenrechnung nach Mikusinski,
die zur abstrakten Algebra gehört und strenger mathematischer Schulung
bedarf, für den Bauingenieur durch den Begriff der Einflußlinie geeigneter.

2. Der Operatorenkalkül von Mikusinski

Die Theorie der Operatorenrechnung, s. [14, 18, 19 und 20], geht von dem
Begriff der Faltung aus, die durch das Volterrasche Integral

X

c(x) §a(x — u)b(u)du, u^x (6)
o

definiert ist.
c (x) bedeutet die Faltung oder das Faltungsprodukt der Funktionen a (x)

und b(x).
Man kann leicht nachweisen, daß die Faltung gem. Gl. (6) kommutativ ist:

X X

§a(x — u)b(u)du $b(x — u)a(u)du. (7)
o o

Diese Kommutativität der Faltung ist ein Analogon zum Kommutativgesetz
bei der Multiplikation von algebraischen Zahlen, d. h.

ab ba (7a)

für das beliebige Zahlenpaar a, b.

Die Faltung besitzt auch die Eigenschaft der Assoziativität bei der
Multiplikation von Zahlen:

(ab)c a(bc). (8a)
X

Ist nämlich $a(x — u)b (u) du g (x)
o

X
und $b(x — u)c(u)du h (x),

o

so gilt stets
X X

J g (x — u)c(u)du ja(x — u)h(u)du. (8)
o o

Die Faltung enthält noch die dritte Grundeigenschaft der Algebra, nämlich
die Distributivität des Produktes bezüglich der Addition:

a(b + c) =ab+ac. (9a)
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Es ist stets

x xx§a(x — u)[b (u) + c(u)]du §a(x — u)b (u)du+$a(x — u)c(u)du. (9)
o ooDiese Analogien berechtigen zur Einführung einer abstrakten Algebra, wenn

a,b,c, die Operatorfunktionen, kurz Operatoren genannt, nach Gl. (5)
dargestellt werden.

Man unterscheidet zwischen dem Operator f {f(x)} und dem Wert f(x)
der Funktion im Punkte x. Mit den Operatoren kann leicht die oft komplizierte

Integralrechnung und Integralumformung durch algebraische Rechnung
ersetzt werden. Die Addition und das Faltungsprodukt sind die grundlegenden
Operationen dieser Operatorrechnung. Man definiert demnach die Addition
und das Faltungsprodukt zweier Operatoren / und g durch

f + 9 {f(x)+g(*)} (10)
X

bzw. fg ={f(x)}{g(x)} {$f(x-u)g(u)du} (11)
o

und das Skalarprodukt durch

«{/(*)} {«/(*)}. (12)

Hierbei ist a eine Zahl, die reell oder komplex sein kann. Diese so definierte
Algebra ist nullteilerfrei, und man kann aus der Beziehung

eine Divisionsalgebra einführen.
Die Operatorenfunktion

g

ist immer möglich mit der Aussage g + {0}. Gl. (13) ist die zur Faltung (11)
inverse Operation.

Man nennt Z {1} (14)

Integrationsoperator mit der Eigenschaft

l{f(x)} {(f(x-u)du}. (15)
ö

Der inverse Operator Iß heißt Differentialoperator s, d.h.

s=j. (16)

Aus (14) kann durch %-malige Integration gem. Gl. (15) die Operatorenformel
für sämtliche Parabelfunktionen (n — l)-ten Grades erhalten werden:

*k sH(Sjt}- (17)
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Ist / (x) für x ^ 0 eine total stetige Funktion, deren Ableitung /' (x) jedoch
endlich viele Unstetigkeitsstellen besitzt und in einem endlichen Intervall
absolut integrierbar ist, so gilt

8f f' + f(0). (18)
Hierin bedeuten:

/ (0) den Wert der Funktion / (x) an der Stelle x 0 (ein Zahlenoperator);
/' {/' (x)} den Operator der ersten Ableitung.

In Gl. (16) ist die 1 der Wert der Funktion f(x) 1 an der Stelle x 0, d.h.
/(0) 1 und f' {f'(x) 0} 0. Ist zufällig /(0) 0, so bedeutet sf f eine
einfache Differentiation, womit die Vorstellung von Heaviside in [6], die
Differentiale als Zahlen zu betrachten: a' (x)=Da, nachgewiesen wird. Das
Produkt sf hat stets einen Sinn, auch wenn f(x) nicht differenzierbar wäre.

Aus der Grundgleichung:

snf f(n) + sn-lf(Q)+sn-2f'(0)+. +8 j(n-2) (Q) + f(n-l) (Q) (19)

erhält man ein Kalkül zur Lösung von Differentialgleichungen, wenn die
(n-l)-te Ableitung fn~^(x) total stetig ist und /<*> {/<*>(x)} den Operator der
k-ten Ableitung bedeutet.

Für Potenzreihen von Operatoren hat man die Grundgleichungen:

_L fj(-i)» /», (20)
l+l. n=0

r^-f i /". (2i)

f CO

IA=2(-1A1/", (22)

f °°

Yzrf=Zfn- (23)

In diesen Formeln ist fn die ?i-fache Integration oder die ^-fache Faltung der
Funktion / (x):

a f h1 h (Einzellast P 1),
5 6 7

1 b alternierende Einzellasten
I

I«
I

f
I

J-
I

f
l '" " /=| (_!,.*.= _£_,

/
n=0

c monotone Einzellastfolge
-> n

Fig. 8. Einzellasten als Potenzreihen des

Verschiebungsoperators h.

00 h

n=l L n
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fn {^(x-^f^^du) ffn~X
0

mit f1 (x) =f(x), oder /! / {/ (x)}.

Ist f h der Verschiebungsoperator gem. Fig. 8 a, so gilt die Beziehung
1

2(-l)nAw l-h + h2-h* +
ir/fr

tarierende ]

Die Relation

1+A o

die eine alternierende Folge der Einzellasten P=\ gem. Fig. 8b wiedergibt.

h °°

l-h f
stellt den Verlauf der Folge in Fig. 8 c dar.

Ganz allgemein gilt die Gleichung:

(l + aÄ*)**1

Darin bedeuten: a eine reelle oder komplexe Zahl,
k eine natürliche Zahl,

(n+l)(n + 2). .(n + k)

WrA<±i)fiy*->. m

ln + k\
_Ur (24a)

1,2. ..k
Die Formel gilt auch für k 0, wenn I 1 1 angenommen wird.

Der Operator hn e~m trägt dazu bei, daß man sich um die Konvergenz
der Potenzreihe ^anhn, die eine Dirichletsche Reihe ist, nicht zu kümmern
braucht. Diese Reihen sind Folgen von Koeffizienten. Der n-te Koeffizient der
Gl. (24) z.B. bedeutet den Wert einer Funktion f (x) an der Stelle x — n\, oder

f(nX) (±l) ¦CT)--
In den Anwendungen wird man den Verlauf eines Biegemomentes M als eine

Operator-Potenzreihe darstellen:

M f]Mnhn MQ + M1h + M^h2+ • • • (25)
o

hn gibt die Schnittstelle an und Mn bedeutet den tatsächlichen Wert des

Biegemomentes an der Stelle x n, s. a. Fig. 9.

Fig. 9. Darstellung der Biegemomente als Einzel-
lastfolge M2

-J nM= 2 Muh".
n=0

Für die numerischen Methoden der Baustatik ist diese Darstellung sehr
erwünscht. Es wird noch gezeigt, daß sich jede Rekursionsformel geschlossen
in Verschiebungsoperatoren lösen läßt.
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3. Lösung der linearen gewöhnlichen Differentialgleichungen mit konstanten
Koeffizienten

Die Differentialgleichung

an fW (x) + an_x /(-1) (x)+-.-+a0f(x)=q (x) (26)

mit an 4= 0 und den Anfangswerten

/(0) =c0
f'{0)=c1

f(n~1)(0)=cn_1,

kann mit Hilfe der Formel (19) gelöst werden. Man erhält in Operatorenform
die Gleichung

an*ft/ + Vi*n"1/+ • • * +<*o/ 6w_1«n-1 + 6n_a«w"2+ • • • +b0 + q,
wobei

bi ai+iCo + ai+2ci+" ' +a>ncn-i-i> (i 0,l,2,. .n-l). (27)

Hieraus hat man sofort die Lösung:

7

ansn+--+a0 ansn+--+a0 {^}

Um die Lösung in der üblichen Form zu erhalten, braucht man nur die
Zerlegung in Partialbrüche durchzuführen. Bei einer Partialbruchzerlegung
bekommt man schließlich die Grundformel

1

={e«x}. (29)
s — oc

oc ist dabei eine Zahl, die reell oder komplex sein kann.

4. Volterrasche Integralgleichungen

Besonders wichtig für die Baustatik sind die Integralgleichungen zweiter
Art von der Form

X

f(x)=$k(x — u)f(u)du + g(x), u<x\ x>0. (30)
o

Die gesuchte Funktion ist f(x). Diese Gleichung nimmt in Operatorenform
die Gestalt an

f kf + g

und die Lösung ist

/ =^ (31)
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k
bzw. / =Sr + Öry3p (31a)

Mit Q J^ J\lc« (32)
1 — k i

hat man den sogenannten lösenden Kern, und die Lösung der Integralgleichung

(30) lautet:
X

f(x) g (x) +J 0 (x -u)g (u)du. (33)
o

Ist G aus den Tabellen der Laplace-Transformation nicht direkt zu finden, so

ist sie in der Form der Potenzreihe (32) als Neumannsche Reihe der iterierten
Kerne darstellbar, s. [19].

Die Integralgleichung erster Art

$k(x — u)f(u)du g (x) (34)
o

hat in Operatorform die Lösung

/ £ (35)

die im Original, fall sie existiert, aus den Tabellen der Lapace-Transformation
[7, 8, 15, 16 und 17] zu finden ist.

5. Grundgleichungen der Baustatik

Die Differentialgleichung zweiter Ordnung

M" (x) / (x, M)

spielt in der Baustatik eine wesentliche Rolle. Zerlegt man die Fiktion des

dehnbaren Körpers (lineares Kontinuum) in eine Summe von starren Elementen

dx, die elastische Formänderungen ausüben können, so wird das
Gleichgewicht durch elementare äußere Kräfte, genannt Schnittkräfte, vgl. Fig.
lOa-d, vektoriell leicht gebildet. Gemäß Fig. 10e hat man unmittelbar

Q(x)-dM{x)
dx

und für die eingeprägte Belastung / (x, M) die Gleichgewichtsbedingung

f{x'M)=-dx- -d^- (36)

Die Lösung dieser Differentialgleichung, vgl. [21], mit den Anfangswerten

M (0) mi und M' (0) Q (0) Ai
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T
H —n rr~v *

^dx-> Wx |«*/x-»|Xe dx_ dx
h/2

' 2 ~ 2R

dP

\Q Mt

f(x>M)

M,
et l>W+dM

Q + dQ

hc/x+I

^* - _..

a 6 c cf e

Fig. 10. Positive äußere Schnittlasten am Element bhdx als starrer Körper.

a Normalkraft üZ;
b Biegemoment M (x) aus linearisierten Formänderungen:

ll - — — d2y(x) _ _ m(x) %

h ~ It ~ dx* ~ ~TäF~'

c Querkraft als Scher-Streifenlast;
d Torsionsmoment Mt;
e Gleichgewichtsgruppe mit Auflast f(x,M).

ist eine Volterrasche Integralgleichung
X

M (x) mi + Aix+^(x-u)f{u,M(u)'\du,

bzw. Q(x) M,{x)^Ai+^f[u,M(u)']du.
o

(37)

(38)

Für die Biegelinie y (x) und den Drehwinkelverlauf y' (x) sind ganz analoge
Gleichungen vorhanden. Aus den Randbedingungen an der Stelle x xk sind
die Parameter der Anfangswerte M (0), M' (0), y(0) und y' (0) unmittelbar
gegeben. Die konsequente Anwendung dieser Tatsache hat Falk in [24]
durchgeführt. Er hat den Durchlaufträger als hochgradig statisch unbestimmte
Aufgabe in Verbindung mit dem Matrizenkalkül auf die Berechnung des
statisch bestimmten Balkens zurückgeführt. Alle Schnittkräfte an einer beliebigen

Stelle kann man mit Hilfe der obigen Reduktion durch die Anfangs-
werte ausdrücken. Die statisch Unbestimmten kommen gar nicht vor, sondern
bilden einen Teil der Zwischenrechnung. Das Prinzip beruht auf der Anwendung

der Volterraschen Integralgleichungen mit vorgeschriebenen Anfangs-
werten als Parameter, die aus den Randbedingungen des Endauflagers (des
Durchlaufträgers oder des Rahmens) genau ermittelt werden.

Eine geschlossene Lösung der Stabwerke ist möglich. Die elastische
Kontinuität ist ebenso wichtig wie das Gleichgewicht. Sie ist durch die Volterrasche

Integralgleichung unmittelbar gegeben. Die Schwierigkeit liegt darin, daß
jedes lineare Kontinuum durch unstetige Schnittkräfte gestört ist. Verzichtet
man auf die Fourier-Analyse, für die diese Schwierigkeiten entfallen, so können

die Unstetigkeiten der Schnittkräfte entweder als Differenzen zweier
Ableitungen oder aber als Anfangs- oder Endwerte erfaßt werden. Bei der
Operatorenrechnung sind diese Störungen belanglos, vgl. die Beispiele im
nächsten Abschnitt.

Das Beispiel in Fig. 3 a wird vorerst auf dem Wege der Differentialgleichung
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ohne Fourier-Analyse gelöst. Das Biegemoment an der Stelle x £ ist nicht
stetig differenzierbar, und die Querkraft weist demnach an dieser Stelle einen

Sprung von der Größe P auf. Unmittelbar links und rechts von f verlaufen
die Schnittkräfte stetig, so daß durch zweimaliges Anwenden des

Anfangswertproblems, s.a. [22], bei dem die Schnittstelle £ die Randwerte liefert, die
elastische Kontinuität wieder hergestellt wird. Gem. Fig. 10 e ist die
Lastfunktion für den Lastfall in Fig. 3a:

f(x,M) -Pi~. (39)

Die Ringbelastung HjR resultiert aus der Entlastung infolge der Zugkraft H,
wenn man das Gleichgewicht am verformten Element berücksichtigt. Aus der

Linearisierung der Formänderungen, IjR — — M{x)\EI, folgt die maßgebende
Gleichgewichtsbedingung:

M"(x) -Pi + H^j>. (40)

Für den linken Bereich 0 <x < g hat man die homogene Lösung:

Mahnte Ai®mvj;
und für den rechten (41)

M (x)rechts A2®in<p\l-^Y

Diese Lösung folgt auch unmittelbar aus den Volterraschen Integralgleichungen,

wie noch ausführlich in den Anwendungen gezeigt wird.
Aus den Randbedingungen

M{£)Unks=M(Z)recMs, (42)

M'({)Hnks-M'(Z)rechts -P (42a)

sind die unbekannten Koeffizienten A± und A2 leicht zu bestimmen, und die

Lösung lautet dann:

&incp\l-jA dSiricp^
s \ rzi*+ ^

x

x<£: PL- v "' L
9<Sitt<p

M{xZ)= ~. f ~. /. x\ (43)

x>£: PL z^r,
9?@tn<p

cp erhält man durch Einsetzen von Gl. (43) in die Gl. (40), d.h.

9 -tä-
Ist die Horizontalkraft H oder die Biegesteifigkeit EI mit x veränderlich,

dann kann man analog Fig. 10 kleine dehnbare Körper von der Länge A L
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einführen, bei denen H und EI konstant sind. Die Kontinuität ist an den n
Schnittstellen A L w-mal gestört. Mit Hilfe der Randbedingungen wird .sie

hergestellt, und es entstehen die wichtigen Rekursionsformeln, deren Ableitung
das Ziel der numerischen Methoden der Baustatik ist.

Fig. 11. Zur numerischen Berechnung der Zug¬
biegung :

a Belastung infolge Pt und M (x);

b Einteilung in gleiche Abstände;

c Bandbedingungen der Querkraft an der Unste-
tigkeitsstelle (n+ 1).

a>#%t
Mn+1

n n+1 n+2

n ©1
1

L©_
n+z

In Fig. 11 ist der Verlauf des Biegemomentes und der Querkraft um den
Bereich der Einzellast Pn+1 für die Zugbiegung wiedergegeben. Das Trägheitsmoment

sei veränderlich, jedoch in kleinen gleichen Intervallen A L als
konstant angenommen (ebenso kann dies auch mit H und E der Fall sein). Man
bezeichnet die Verhältniszahlen links und rechts der Schnittstelle (n+l) mit

"-n+1 Jlinks > Pn+1 ~ Trechts '
2n+l

(45a)

Die Lösung der Differentialgleichung (40) als Integralgleichung (37) mit den

Anfangswerten Mn und Qn für den linken Bereich (n bis n+l) und mit der
Hreduzierten Belastung ocn+1 M (x) yry lautet dann:' EIc

Al

M^ Mn + QnAL + an+1^J(AL-u)M(u)du. (37a)

AL
Gemäß Gl. (38) hat man auch:

Qllf =Qn + «n+1 ^J-JM(u)du. (38a)

Für den rechten Bereich erhält man analoge Gleichungen mit den Parametern
Mn+2 und Qn+2 • Aus den Randbedingungen an der Schnittstelle £ n+l
gemäß Gl. (42) und (42 a) hat man zwei Gleichungen für die beiden Parameter
Qn und Qn+2. Die Lösung als Rekursionsformel erhält man sofort, wenn man
für das unbekannte Moment M(x) einen ganz bestimmten Verlauf, z.B. einen

trapezförmigen, annimmt. Die Integration nach Gl. (38a) nähert dann den
Verlauf der Querkraft, s. Fig. 11c, parabolisch an. Gleichgewicht und elastische
Kontinuität werden durch die einzige Gleichung
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mit

(^Zl+ßn+l)^nZl^+^y)-^-r)[^nZl^n+ßn+l^u+2] ^ LPn+1 (44)

HAL*
7~ (SEP (45)

ausgedrückt.
Stüssi verwendet für diese numerische Methode meist Näherungsparabeln,

s. [23]. Seine Seilpolygonmethode als Gleichgewicht der Knotenlasten zwischen
zwei starren Körpern an der Stelle (n+l) ist mit diesem Verfahren der
Integralgleichungen äquivalent. Die obige Rekursionsformel kann mit Hilfe des

Gaußschen Algorithmus, der Matrizenrechnung oder aber direkt mit Hilfe des

Verschiebungsoperators, vgl. die Anwendungen, gelöst werden.

Mn+2necMs

Pn.
UIUII11

n+2n+l

In. n+1

links p -x rechtstJn+1 "EJ

Fig. 12. Zur numerischen Berechnung des

Durchlaufträgers mit veränderlichen Verhält¬
niszahlen :

„linksan+l '

J-c^n orechts J-cfn+l
V Jrechts

Die bekannte Dreimomentengleichung des Durchlaufträgers auf starren
Stützen kann ebenfalls mit Hilfe der Integralgleichungen als Lösung der
Differentialgleichung

M(x)y"(x) EI(x) (46)

aufgestellt werden. In Fig. 12 ist ein Durchlaufträger über drei Stützen n,
n+l und n + 2 mit den Randmomenten Mn und Mn+2 aufgezeichnet. Hierbei
denkt man sich das Trägheitsmoment I feldweise konstant. Die Spannweiten
sind verschieden und man bezeichne sie links der Stütze n mit ln und rechts
davon mit rn, so daß rn ln+1 und rn+1 ln+2 ist. Führt man noch die
konstanten Werte r0 und 70 ein, dann hat man folgende Verhältniszahlen:

x-n+1 T Jlinks'01n+l
bzw. ßn+1

r JrecMs*/01n+l
(47)

Die Lösung von Gl. (46) ist in Form von Integralgleichungen gegeben. Für
den linken Bereich (n bis n + 1) mit den Anfangswerten yn 0 und y'n hat man
beispielsweise

x ]}f (u\
ylinks{x) ==yn+y>nX_S(X_ ^ EI(u) du,

X (48)

Setzt man für das vorerst unbekannte Moment einen negativen trapezförmigen

Verlauf mit den Unbekannten Mn, Mn+1 und Mn+2 an und für das be-
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kannte statisch bestimmte Moment einen positiven Verlauf, so ist durch die
Randbedingungen

»links _ ».rechts _ (\ »/links _ »/rechts (ä.Q\9n+1 — Vn+1 ~ u> Un+1 — Un+1 \*v)

der Zusammenhang zwischen Mn, Mn+1 und Mn+2 gegeben. Die Rekursionsformel

der Stützmomente für den Durchlaufträger lautet nun:

Pn+i ™n + 2 Mn+1 + Ln+1 _
an+i Mn+2 + 2 Mn+1 + Bn+1

Hierin bedeuten L und R die Belastungsglieder, die im Sinne links und rechts
vom Schnittpunkt (n+l) verstanden werden und genau den Kreuzlinienabschnitten

klinks und krechts entsprechen. Für eine gleichmäßig verteilte Last p
lauten sie beispielsweise:

rZlinks 72 ^rechts r2r _ Pn+1 ln+l r> _ Pn+1 'n+1 /Kflo\-^n+l — J 9 Kn+1 — J • ^OUaj

Die Lösung der obigen Differenzengleichung (50) kann man geschlossen mit
Hilfe der Verschiebungsoperatoren hn, s. die Anwendungen, durchführen.

6. Anwendungen

6.1. Lineare Biegung

Darunter versteht man die Spannungstheorie erster Ordnung.
Gegeben sei der einfache Balken mit Kragarmen. In Fig. 13 ist als Belastung

ein Einzelmoment m an der Stelle x X, die Auflagerkraft A Q(a) an der
Stelle x a im Sinne der Fig. 10 e negativ und die positive Auflagerkraft B
im Abstand x — a + L aufgetragen. Diese Lastfunktion f(x,M) kann nicht
ohne nähere Beschreibung analytisch ausgedrückt werden, es sei denn, man
wählt die Operatorenform:

{ / (x, M)} mshx - Aha + Bha+L.

Die Lösung von Gl. (36) als Integralgleichung (37) mit den Anfangswerten
M (0) 0 und Q (0) 0 lautet:

X X

M(x) $(x-u)f(u,M)du $k(x — u)f(u)du.
o o

Mit {&(*)} {*}=_L

erhält man die Lösung gem. Gl. (17) in Operatorenform

M 4/

oder M -^ [mshx -Aha + Bha+L], (51)
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und für die Querkraft aus Gl. (38):

1

Q - [mshx -Aha + Bha+L]. (52)

~—r

-a^

flx,M)

a + L s+L+b
—*U 6-

i i

t|i '

*B(x-a-L)

Mfx)

JJ.lUlJ.1,1,1,1,1 -

QM

Fig. 13. Reine Biegung unter Einzel¬
moment m an der Stelle x A.

a Belastung;
b Biegemoment infolge des

Einzelmomentes ;

c Biegemoment infolge der Auf
lagerkräfte ;

d Verlauf des Gesamtmomentes M (x);
e Verlauf der Querkräfte infolge der

drei Belastungen m, A und B;
f Verlauf der Gesamtquerkraft Q(x).

Die Funktion des Biegemomentes (51) setzt sich aus drei Teilen zusammen,
die in Fig. 13b und c dargestellt sind und von 0 bis oo verlaufen. Ab x a + L
löschen sie sich gegenseitig aus, so daß Fig. 13 d den genauen Verlauf wiedergibt.

Die Querkraft Q(x), s. Fig. 13f, hat ebenfalls drei Anteile: ein Kräftepaar

unendlich nahe von der Größe m, das als Einzellast m an der Stelle x X

steht (diese Querkraft ist nur mit Operatoren sichtbar und sonst
unberechtigterweise vernachlässigt), und aus den beiden konstanten Funktionen gem.
Fig. 13e. Die vorerst unbekannten Auflagerkräfte werden aus den
Randbedingungen M (a + L) 0 und Q (a + L) 0 ermittelt:

Es ist interessant darauf hinzuweisen, daß, wenn A -> 0 und a -> 0 streben,
die Lösung wie oben bestehen bleibt und die sogenannten Anfangswerte msh°

und Ah° zur äußeren Belastung {/ (x, M)} gehören, so wie es auch in der Statik
üblich ist.

6.2. Nichtlineare Biegung

Darunter versteht man die Spannungstheorie zweiter Ordnung. Die
maßgebende Differentialgleichung

M"(x) =f(x,M)
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hat für die Lastfälle in Fig. 3 die Anfangswerte M (0) 0, Q(0)=A und die
Endwerte M (L) 0, Q (L) B. Zählt man diese Werte der äußeren Belastung
zu, dann ist

{f(x9M)} Ah°-Phf+^M(x)\ + BhZ, (53)

und die Lösung lautet:
X

M (x) $(x-u)f[u,M (u)] du. (54)
o

In Operatorenform nimmt diese Gleichung die Gestalt

M \ \A-Ph£ + -^jM + BhL]
s2 [ EI J

(55)

an, mit der Lösung

M =A jr-Phf rr + BhL w. (56)
S EI S ' EI "EI

Führt man den dimensionslosen Parameter

ein, dann hat man aus den Tabellen der Laplace-Transformation die Originalfunktion

.2 9*
S ~Iß

(3iU(p~\

9_

L
(58)

Unter Beachtung von Fig. 6 lautet nun das Biegemoment:

M(x)=AL ^-PL U L, + BL lA^ 1. (59)
cp cp cp

Durch Differenzieren erhält man die Querkraft

<?(»)= ^^9j-^®of9^-|-U5g;of9(j-iy (60)

Bei beiden Gleichungen (59) und (60) verlaufen die ersten Funktionen auf der
rechten Seite von 0 bis oo, die zweiten von £ bis oo und die dritten von L bis oo.
Da der Balken nur im Bereich 0 bis L existiert, erhält man aus den Aussagen,
daß M (x) und Q (x) im ganzen Bereich L bis oo verschwinden müssen, zwei
Bestimmungsgleichungen für A und B. Die Kontinuitätsbedingung M(L) 0
und Q(L) 0 heißt, daß beide Funktionen im Bereich x^L verschwinden
und nicht wie bei der harmonischen Analyse (Fourier-Reihen) nur am Rande,
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s. a. Fig. lc. Demnach hat man sofort:

©itt<p(l—|-) @in<p-f
A=P ^ — und B P „.(Strtcp <Sxri(p

6.3. Rekursionsformein und Differenzengleichungen

6.3.1. Nichtlineare Biegung. Die im vorigen Abschnitt gelöste Aufgabe ist
auch als Differenzengleichung numerisch formuliert, vgl. Gl. (44). Wählt man
das Trägheitsmoment durchgehend konstant, dann erhält man die einfache
Gleichung mit konstanten Koeffizienten

M»-2T=* Mn+x + Mn+i ~Pn+i4zZ- (61>

Gemäß Fig. 14 ist die Spannweite in gleiche Abschnitte AL — unterteilt.

Führt man die Parameter

&0)Z=- '-, C= -' 1— y m(l—y)
ein, dann bekommt man die Rekursionsgleichung

Mn-2&o\zMn+1 + Mn+2 -cLPn+1. (61a)

Das gesuchte Biegemoment ist nur an den Schnittstellen nA L — L
vorgegeben, so daß eine Darstellung wie in Fig. 9 durch die Verschiebungsoperatoren
hn möglich ist:

M 2Mnh". (62)
o

Das Biegemoment Mn+1 im Schnittpunkt (n+l) ist allgemein durch die Reihe
charakterisiert:

2Ä»Jfn+1 1{M-M0) M1 + M2h + Msh2 + • • • (62a)
o ™

und das Biegemoment Mn+2 durch

2 Jfw+2Ä» ~(M-M0- Mxh) M2 + Mzh + MJi2 + • ¦ • (62b)
o ^

Gl. (61a) nimmt jetzt in Operatorenform die Gestalt an:

1 h h2 h

Die Lösung lautet mit M0 0 und P — P0 Ph%:

Ll -2ft(£of z + h2 l — 2h&o]z + h2
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Die Lösung im Original kann man finden, wenn man die rechte Seite dieser
Gleichung nach Potenzen von h entwickelt.

Der Ausdruck
h 1 °°

2@tn(raz)Aw (64)l-2h&o\z + h2 ©inz w,=0

ist eine erzeugende Funktion der Tschebyscheffschen Polynome, vgl. [17 und
26]. Der Beweis, daß Gl. (64) stimmt, liefert das Produkt der beiden Potenz -

1 °°

reihen (1 — 2A(£of z + h2) und ^—J^ (gin (n z) hn gemäß der Regel (78). Danach

verschwinden alle Koeffizienten von hn bis auf die 1 für n=l. Die Lösungs-
gleichung (63) hat die allgemeine Entwicklung

00 oo

Z<5in(nz)hn 2 <&in(n-i;)zhn
M M^ — cPL"^-—^ (65)

@mz @mz

Der Koeffizientenvergleich mit Gl. (62) liefert das allgemeine Glied

@mz &xnz

Aus der Randbedingung Mm Q, beispielsweise, und n m folgt die
Bestimmungsgleichung für M1 (m > |)

©mm z

und für n> 1 gemäß Gl. (66) erhält man die geschlossene Formel:

Mn cPL-, ®™£z—®in(m-n)z. (67a)

Beispiel :

> ^ A T L n TT O E Ip JH A L2 TT2
~ ^~_~| 2; ^£ —; m 8; H tt2-^; y -—^ 0,0257;

(£ofz 1+2y 1,08; z 0,39729; c —-1—- 0,1283.l-y 8(l-y)
Gemäß Gl. (67) hat man

Jf, 0,1283PL®m^ 0,0575P£. (67b)©m 8 z

Für^>l gilt die Gl. (67a)

Mn 2cP£jt^@inz(8-?i) 0,0231 ©in (8-n)z PL. (67c)

Beachtet man die Rechenschiebergenauigkeit, so ist z.B. für n 2:

M2 0,0231 ©in (2,3837) PI 0,1242 PL.
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Injder Tabelle sind die Ergebnisse eingetragen. Verglichen sind sie mit den

genauen Werten nach Gl. (43) und mit den Resultaten nach Stüssi, s. [25].

Tabelle. Genaue und numerische Berechnung von M (x) nach Fig. 14

GL (43) n. [25] Gl. (67 b u. e)

Mi 0,0583 0,05807 0,0575
M2 0,1255 0,12520 0,1242
Mz 0,0836 0,08362 0,0824
M4 0,0551 0,05511 0,0542 PL
M5 0,0358 0,03520 0,0345
Me 0,0208 0,02080 0,0203
M7 0,00965 0,00965 0,0095

pr

1 2 3 4 5 6 7

L

M I I M^" Pr) Fig. 14. Beispiel zur Berechnung der Zugbiegung.

6.3.2. Durchlaufträger mit gleichen Spannweiten und konstantem Trägheitsmoment.

Mit cx — ß hat man gemäß Gl. (50) die einfache Differenzengleichung

Mn + 4 Mn+1 + Mn+2 - Ln+1 - Rn+1. (68)

Wählt man, beispielsweise, eine konstante gleichmäßig verteilte Last p, dann
lauten die Belastungsglieder, s. Gl. (50a):

L2
-^w+l + ^n+l ~ ^n+1 ~ P~2^>

wenn L die Spannweite bedeutet.
Mit Gl. (62), (62a) und (62b) erhält man die Operatorenform

^ AM-M0 M-Mr.-M.hM + 4 ^ + ° x K-Kn
h h2 h (69)

Die rechte Seite dieser Gleichung ergibt sich aus Fig. 8 c

vL2 L2co L2 h
K-K0=^(h + h2 + h*+...)=p±p- p-1-^,

Die Lösung nimmt die Gestalt an, wenn Jf0 0 ist:

h U- h2

oder

11+4Ä + Ä2 e 2 (l+4:h +h*)(l-h)
00 7" 2 OO 00

M M,Z Un(z)h"-p^-Zh"Z Un(z)h».
0 L 1 0

(70)

(70a)
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Nach Gl. (64) können die Tschebyscheffschen Polynome auch geschrieben werden,

vgl. a. [26]:
h °°

l-2hz + h2 "t

-3(l-^2)+...mit un{z) yl)zn-1- U
oder *70 0: U2(z) 2z;

^x i; Us(z) ±z*--i;
Ut(z) 8 23-4z;
U5(z) I6z±-l2z2 + l.

Den Nachweis, daß diese Koeffizienten stimmen, gibt die Kegel für die
Multiplikation zweier Potenzreihen, vgl. Gl. (78). Zum Beispiel wird U5(z) aus der
Relation ermittelt

0=U5(z)-2zU,(z) + U3(z)

oder Ub(z) 2z(Sz^-4,z)-4=z2 + 1.

Für z — 2 hat man nun

U0 0; ^=1; C72 -4; US 15; ü\ -56; U5 209.

Der erste Ausdruck der rechten Seite der Gl. (70 a) lautet demnach

l + ±h + h2 =2^n*w-

Der zweite Ausdruck stellt ein Produkt zwischen dieser Reihe und der Potenz-
reihe

J) oo

l-h t
dar, d.h.

00

(0 + Ä + A2 + Ä3+ • ••)(#<> + U1h+U2h2+Uzh*+ • • Z?>n-
o

Demnach ist ^ 2 ^
oder g0 0; g1 0; g2=l; g3 -3; g4=l2; g5 -4:4:; Gl. (70a) kann auch
geschrieben werden:

M M1f1Unh--p~Zgn. (70b)
0 ^ 0

Durch Koeffizientenvergleich mit Gl. (62) bekommt man das allgemeine Glied
des Stützmomentes

Mn M1Un-p—gn. (71)

Hat der Durchlaufträger n m gleiche Öffnungen und ist er über der End-
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stütze m frei gelagert, dann wird der endliche Bereich 0 bis m durch die
Gleichung abgegrenzt

oo oo m
M ZMnhn-ZMnhn ZMnhn. (72)

0 m 0

Für n ^ m verschwinden alle Werte für Mn, und aus der Bedingung

Mm 0 M1Um-pYgm

hat man die Bestimmungsgleichung für M1

M^p^p-. (73)

Beispiel: m 5;

Nach Gl. (73): M1 p~ -g£ - ~p L* -0,10521^;

(20Q\ ^-4+ir) ~iYspL2 -°-0789 pl*:

M* Mi{l5-öMWz) -°'0789 pL2]

M^M^-56 +^^j =- 0,10521 pL\

Beispiel: m 4;

Ml PT^lä -^pL2 ~Q,107UpL*;

M2 pL*^*-^ -^gpL* -0,07143pL2;

Ms pL2{-Jsl5 + l) -^^^2 -0,10714p^;

M4 2> L21 ^- 56 — 6 1 =0, wie es sein muß.

6.3.3. Durchlaufträger mit beliebigen Spannweiten und feldweise veränderlichem

Trägheitsmoment. Die maßgebende Rekursionsformel ist die Dreimomenten -

gleichung (50). Die Schreibweise in Operatoren lautet:

M + 2M-M, L-Lo
* * _ßzh -K. (74)M-Mo-Mih „AT-Mo R-Ro
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Die Auflösung nach M ergibt, wenn Jf0 0 gewählt wird:

h °°

Setzt man A -——-y-——=—^ Y An hn
K(l + 2h) + 2h + h2 V

und B — kA,

(74a)

(75)

(75a)

dann hat man bereits die Entwicklung für M nach den Verschiebungsoperatoren

00 00 00

M M1ZBnh«-(L-L0)2Anh»-(R-B0)2Bnh». (™)
0 0 0

Die Belastungsglieder (L — L0) und (R — R0) sind vorgeschrieben und als
Potenzreihen von h leicht darstellbar.

Aus dem Produkt zweier Potenzreihen

ab ZanhnZbnh™ c Z<>nhn
0 0 0

(77)

mit c0 a^ o0,

cx a^bx + axb^\

c2 =aQb2 + a1b1 + a2b0;

cn — a0bn + ax bn_1 + • • • + an_1 b0;

erhält man das allgemeine Stützmoment von Gl. (76)

Mn M1Bn-Cn-Dn.

(78)

(79)

Diese Gleichung gilt für n 0 bis oo.
Hat der Durchlaufträger n m Öffnungen, so kann der beschränkte Bereich

von 0 bis m durch eine zweite Potenzreihe von rechts nach links abgesteckt
werden.

Ist ilfm 0, dann ist diese Endstütze der Anfangswert M0 0 für die
Potenzreihe von rechts nach links und ihr erster Wert M1 Mm_x, vgl. dazu
Fig. 15. Für die Lösung dieser zweiten Reihe hat man analog

MH M1Bn-Cn-Dn (79a)

r> * 0 bis oo

1—prr
" W> rechts

' +

m-1 m
7<

Mm-i~M-,

/ V

*0 bis oo n*0 bisoo
<

TT
"r TW-

Fig. 15. Zur Berechnung des Durch-
lauftragers mit Endgelenk.

Fig. 16. Zur Berechnung des Durch -

lauftragers mit Endeinspannung.
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Aus den Relationen nach Fig. 15

^1 ^-1 ^d M1 Mm_1

folgt die Bestimmungsgleichung für M1:

Mx Jm—l ^ m—l

^m "m-1 *¦

(80)

Ist die Endstütze eingespannt, dann hat man gem. Fig. 16 eine
spiegelbildliche Anordnung für die zweite Potenzreihe von rechts nach links, und
aus der Relation M1 M1 erhält man die Bestimmungsgleichung für Mx aus
der Randbedingung

M M
d.h.

oder

M1 Bm - (Cm + DJ M1Bm- (Cm + DJ
(Cm + DJ~(Cm + DJMx -

B^ — B„
(81)

Beispiel: In Fig. 17 ist ein Durchlaufträger über fünf Felder aufgetragen.
Die Berechnung wird zweimal, d. h. von links nach rechts mit den Operatoren
(a, ß, L, R, M) und von rechts nach links mit (ä, ß, L, R, M) aufgestellt.
Gemäß Gl. (74) hat man für den Quotienten k, s. Fig. 17,

ß~ßo h + 0,S15h2 + hs + 0,15h* 1 + 0,875 Ä + A2 +0,75 A3

h + h2 + 0,875 h* + h* + 0,75 h5 l+h + 0,815h2 + h3 + 0,15h*'

Die Werte für ß und a werden aus Gl. (47) mit r0 4m und I0 20dm* ermittelt.

Die Belastungsglieder sind in der Figur als monotone Folgen aufgezeichnet.
Unter Beachtung der Regel (78) hat man

g=1 Mp/m

1 2 3 4 5

ln+1srr

yti ± Ä. A

" v,o
h r0

s,o 3,5
h*r2

5,0 3,0

20 2S 20 25 20

flo-1

R r

M £_

«ro*0 oc,*f

6,25

-2,220

~l roc,-1 0,875

"i r

6,25 3,0625

~l
3,0625 6,25

-1,366 - 1,56*

_J L_

0,75

2,25

-1,853

M
[dm*]

1 I ß
1 0,75

-\ x
6,25 2,25

P

Fig. 17. Beispiel eines Durch-
_o -pi laufträgers mit fünf Feldern.
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k 1 - 0,125 h + 0,250 h2- 0,390625 A3+...

Die Potenzreihe für A nach Gl. (75) nimmt die Gestalt an

h h
A =-K(l + 2h) + 2h + h2 1 + 3,875 h + h2 + 0,109375 A3

oder A h- 3,875 h2+ 14,015625 hs- 50,544921 h3+ •• •

Entsprechend lautet B nach Gl. (75a):

B kA A-4A2 + 14,75Ä3-53,65625A4+.-.

Gem. Fig. 17 erhält man für das linke Belastungsglied L die Potenzreihe:

L - L0 4 h + 6,25 A2 + 3,0625 A3 + 6,25 A4 + 2,25 h5.

Die Reihe C (L-L0)A
bekommt man nach der Regel (78)

C 4 Ä2 - 9,25 hs + 34,90625 A4

Für das rechte Belastungsglied R hat man analog, s. Fig. 17,

R-R0 6,25A + 3,0625A2 + 6,25A3 + 2,25 7*4.

Die Potenzreihe D (R-R0)B
lautet demnach

D 6,25 A2-21,9385A3 +86,1875 A4

Führt man dieselbe Operatorenrechnung von rechts nach links mit den Folgen
gem. Fig. 17 durch, d.h.

ä-ä0 0,75 h + h2 + 0,875 A3 + A4;

ß-ß0 h + 0,875h2 + h* + h*;

L-L0 2,25 h + 6,25 h2 + 3,0625 A3 + 6,25 A4 + 4 A5;

R-R0= 6,25& + 3,0625A2 + 6,25A3 + 4A4;

dann hat man

k 1,33333-0,61111Ä + 0,59259Ä2-0,521604A3+

£ h - 3,5 A2 + 10,812499 Ä8- 32,804695 A4 + • • -

J 0,75A-2,28125Ä2 + 6,730472A3-20,211444A4+ • • •

(7 1,6875 h2- 0,445312 h3 + 3,182625 A4

D 6,25Ä2- 18,8125 A3 +63,109368 A4

Mit m 5 liefert Gl. (80) das erste Stützmoment

-32,804695-121,09375 + 66,291993
_ 2(mM1 53,65625-32,804695-1 ^
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und gemäß Gl. (79) entsprechend:

M2 -2,22044 (-4)-4-6,25 - 1,36824 Mpm;
Ms -2,22044-17,45 + 9,25 + 21,9375 -1,56369 Mpm;
M± -2,22044 (-53,65624)-121,09375 -1,85237 Mpm.

Dasselbe Beispiel in [27] liefert die Werte:

Mt -2,191 Mpm; M3 -1,567 Mpm;
M2 -1,430 Mpm; M4 - 1,820 Mpm.

7. Zusammenfassung und Ausblick

Die Existenz von unstetigen und von nicht stetig differenzierbaren
Funktionen ist im Bauwesen unbestritten. Mit diesem Beitrag wird ein erster
Versuch unternommen, das Interesse des Bauingenieurs auf die Operatorenrechnung

zu lenken. Diese Operatorenrechnung kann man aus der Theorie der

Laplace-Transformation oder als abstrakte Algebra nach Mikusinski ableiten.
Mit Hilfe des Verschiebungsoperators h — e~s ist es möglich, eine Menge

von Operationen durchzuführen, so daß sich eine Fourier-Analyse erübrigt.
Die Lösung der Rekursionsformeln der Baustatik und der Elastizitätslehre

einerseits und die der Stabilitätstheorie und der Flächentragwerke andererseits,

ganz gleich, ob man dabei grobe gewöhnliche Differenzen, das

Seilpolygonverfahren nach Stüssi-Dubas, das Mehrstellenverfahren nach Collatz-
Zurmühl oder das hier verwendete Verfahren der Volterraschen Integralgleichungen

benützt, ergibt sich als einfaches Rechnen mit Potenzreihen besonderer

Art.
Das Produkt der Operator-Potenzreihen ist dem Produkt der Matrizen und

dem Faltungsprodukt äquivalent, da die Volterrasche Integralgleichung die

Grundlage der Stabstatik bildet.
Bei den Beispielen, in denen eine mehrmalige Multiplikation stattfindet,

ist der Gebrauch von Rechenmaschinen unentbehrlich.
Es ist abschließend darauf hinzuweisen, daß eine Umstellung auf den

Differentialoperator s als abstrakte Zahl, die alle anderen Zahlen umfaßt, und
das Rechnen mit dem Verschiebungsoperator rasch möglich ist. Mit dieser

Operatorenrechnung kann eine künftige Entwicklung folgen, die einfach und
deswegen wünschenswert ist.
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Zusammenfassung

Im Anschluß an allgemeine Betrachtungen über die Lösungsprobleme der
Baustatik wird der Operatorenkalkül nach Jan Mikusinski abgeleitet und für
die speziellen Belange der Baustatik eingeführt. Mit Hilfe der Volterraschen
Integralgleichungen vom Faltungstypus werden die Gleichgewichts- und
Kontinuitätsbedingungen neu definiert. Das Rechnen mit stetigen, unstetigen oder
nicht stetig differenzierbaren Funktionen wird mit algebraischen Operationen
ermöglicht. Die zahlreichen Tabellen der Laplace-Transformation können
ohne Kenntnis der Funktionentheorie verwendet werden. Die Rekursionsformeln

der numerischen baustatischen Methoden werden mit Hilfe des

Verschiebungsoperators hn e~ns in Potenzreihen dargestellt und sehr einfach
gelöst.

Summary

After some general considerations regarding the Solution problems of structural

statics the operational calculus aecording to Jan Mikusinski is derived
and presented for the problems that are of particular importance for structural
statics. By means of Volterra integral equations of the convolution type the
equilibrium and continuity conditions are redefined. Calculation with conti-
nuous, discontinuous or non-continuous differentiable functions is made possible
with algebraic Operations. The numerical tables of the Laplace transform can
be employed without a knowledge of the theory of functions. The recurrence
formulae of the numerical methods of structural statics are obtained as expo-
nential series by means of the displacement Operators hn e~ns and are very
easily solved.

Resume

Apres quelques considerations generales sur la resolution des problemes de

la statique, l'auteur expose le calcul operationnel de Jan Mikusinski et l'appli-
que au domaine particulier de la statique. On redefinit les conditions d'equi-
libre et de continuite ä Faide des equations integrales de Volterra. Le calcul a
effectuer avec des fonetions continues, discontinues ou pourvues de derivees

non continues revient alors ä des Operations algebriques. Sans connaitre la
theorie des fonetions, on peut utiliser les nombreux tableaux donnant les trans-
formees de Laplace. On exprime en series puissances, au moyen de l'operateur
hn e~ns, les formules de recurrence obtenues par les methodes numeriques
de la statique, et il est tres simple de les resoudre.
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