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Numerical Analysis of Conoidal Shells
Calcul des voiles conoides

Numerische Berechnung von Konoidschalen

SANTI P. BANERJEE
F. Am. Soc. C. E., M. 1. Struct. E., Consulting Engineer, Calcutta

1. Introduction

A “Conoid”’ is a surface generated by the locus of a variable straight line
that moves parallel to a plane, known as the “Director Plane’’, with one end
on a Curve and the other on a Straight Line, termed the “Directrices’’, Fig. 1.
A thin shell assuming the form of this surface, and having the directrices at
right angles to the director plane, represents a doubly curved shell of anti-
clastic type, and has been dealt with in detail by M. SoArE [1]1). The treat-
ment has been further extended by other authors to include the use of a ‘‘stress
function’’ for the solution of the basic equations. It should be noted that all

Curved
> (directrix
o,

Fig. 1..

1) The figures in parentheses refer to the numbers in the Bibliography, section 11.
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the authors take into consideration two boundary conditions to satisfy the
general equation.

The solution of the differential equations of equilibrium of a shell element
having a double curvature by direct methods is difficult. It is therefore usual
to have recourse to iterative or other methods. The paper presents an alter-
native method of approach for the direct solution of Conoidal Shells. In addi-
tion, the present concept of selecting the number of boundary conditions for
such shells is discussed.

2. Equations of Equilibrium of a Shell Element

As has been shown earlier [2], for loading along the z-axis per unit area of
projected plane x —y, Fig. 2, the following equations satisfy the equilibrium
conditions of a shell element when n,, n, and # are the components on the z —y
plane of the stress resultants, i.e., forces per unit length of shell section.

on, Ot

— =0 2.
Ep +8y , (2.1)
ony, 0t
2V T =0 2.2
2z 02z %z
it . = 2.
”waxﬁ"?’ayz”taxay”z 0. (2.3)

Fig. 2.

For a load g, varying as the weight of the shell, the equivalent load g, per
unit area of projected plane in Eq. (2.3) would be

q,=q,m, (2.4)
Sin w (1 —Sin2¢ Sin? 41)1/2

where ™ = Cos ¢ Cosyfs - Cos ¢ Cos s

(2.5)
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and w = angle of obliquity between two adjacent sides of the element
= Cos™1(Sin ¢ Sin ). (2.6)

The stress resultants and the components are related by the following
equations

N,=n,y; N,=n,)y and N, =N, =t¢, (2.7)
Cos
where y = Tosg” (2.8)

3. Solution of the Equations

To solve the above partial differential Eqs. (2.1) to (2.3) simultaneously
for n,, n, and ¢, it is customary in most cases, to reduce the three equations
to a single equation by introducing an auxiliary variable. Using this variable,
termed the Stress Function, F, the force terms in Eqgs. (2.1) and (2.2) are
eliminated and Eq. (2.3) reduces to

PF &z PF Pz, PF 2z
dy* 0x®  ox? oy® Ox oy 0x 0y

+q,=0. (3.1)

The conditions at the boundaries of the shell structure must, however, be
taken into account in its solution for F. In the present treatment the intro-
duction of any auxiliary function is eliminated and most of the computational
work becomes numerical.

4. Geometry of a Parabolic Conoidal Shell

Assuming the curvature of the curved directrix to be a parabola, Fig. 1,
with the origin at its crown, the equation for the shell surface is

Z = f(x,y) =§y2+%x——§%x,’y2, (4.1)
where C =§Y—Ij (4.2)
CR 1O Y,
af:azy = _)%” (*3)
0z

2y

0%z xz
&7 =o(-%)
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5. Boundary Conditions Influencing the Shell Stresses

In order to ensure the number of boundary or edge conditions required in
a particular problem, observation of Eq. (3.1) is necessary. The number would
correspond to the number of differentiations of F that have becen introduced
in the above equation, since the same number of arbitrary integrational
constants (or functions) should arise in the expression of .

In the case of a ““conoidal’’ shell, the General Equation (3.1) takes the form

2K 2F
Garh @+ 5a g h®) = . (5.1)

Hence the number of integrational constants or functions would be three, as
the expression for F has been differentiated three times before introduction
into the equation. This number would thus correspond to the number of
boundary conditions.

6. Boundary Conditions to be Taken Into Consideration

If the shell is supported on traverses along the two directrices, then because
of symmetry about the z-axis, Fig. 1, the three following conditions may be
considered

(1) At y=0, t=0.
2) Aty=Y/2, n,=0.
and 3) At x=0, n, =0.

7. Equations of Equilibrium for Vertical Loading Due to the Actual
Weight of the Shell

Eqgs. (2.1) and (2.2) remain unchanged whereas Eq. (2.3) becomes

ny(X—x)—Qty—l—qzCsz 0. (7.1)

8. Direct Solution for the Stresses

Egs. (2.1), (2.2) and (7.1) have to be solved simultaneously for the unknowns
n,, n, and ¢.
Now, differentiating Eq. (7.1) partially with respect to ¥,

ony Y 7.X ém
Bl 3 )= 22T
(&=2) oy (Hy@y) ¢ oy
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1

From Eq. (2.2),

oz  0z]0ot g, Xom
[(X-x)%—+2y5§]%+2t— C oy (A)
Now, from Eq. (4.3),
0z H 4 9?2
o0z x 16 H 42
9yt — 12y = 22 Y (x
and | Hygy 2Cy (1 X) Yy (X —2).
Introducing these values in Eq. (A) above,
_8_t+ 2XY? /- q,X2Y? om
gz |X—a)H(Y2+12¢?) |~ |CHX —2)(Y2+12¢2) by
or g+ Pt=R. . (B)
Using an integrating factor
°w = edez’
the solution of the equation gives
— qu ?_ﬁ —Pz
t = 20 7y + K e P%, (C)
Now, from boundary condition 1 (Section 6), y=0, t=0, Z—Z:O.
.". K must be zero.
Hence, the solution of ¢ is given by
_ 5 X ém
‘=30 5y (8.1)
om
=D—. (8.1a)
Y
ot *m
Thus, 5? =D R
*m
From Eq. (2.1), n, =—2D i dx+f(y).
From boundary condition-3, x =0, n, = 0.
>m
fy) =D [_—-W BZ]H,: DSk,
ocm
where K, = [a—?/z']#o. (8.2)

X

2 T e
Hence, nx=_ng—y238x+1)8x1{w=_pax[z Zy’f_lgx] (8.3)
0 0
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Similarly, from Eqgs. (8.1a) and (2.2), and boundary condition —2,

Y .
2m
ny=—D8y[;axay——Ky], (8.4)
v 2m
where : K, = . (8.5)
v Zoa dwdy
9. Example

A shell with the following dimensions, Fig. 3, is considered with loading
due to its own weight of 25 1b./sqr. ft. along the shell surface including finishes.

H =671/,
X =31'—81/,"
Y =20 -0"

L =25 -0"

h (shell thickness) = 11/,”
g, = 25 1b.[sft.

Fig. 3.

Thus, from Egs. (4.2), (4.3) and (8.1a),

C=01325ft.-1;, D =30001Ib.;
tan ¢ = 0.209 [1 __?/i] ;
100/’
tang = 0.1325y [1 ——x—]. _
317

Whence the values of sing, cos¢, sings and cosy at various nodal points in
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Table 1a
¢ Y y2 tan ¢=0.209 (1-.01y2) | Value of ¢ Sin ¢ Cos ¢
da 10 100 0 0° 0.000 1.000
B 5 25 0.209 % 0.75 = 0.1570 8° 557 0.158 0.98792
dc 0 0 0.209 11° 48’ 0.20450 0.97887
Table 1b
- tan ¢ = .
P Y x 577 0.1325y (1_ T ) Value of Sin Cos ¢
31-7
ha1 10 25 |0.788| 0.1325x10x0.212 15° 42/ 0.27060 0.96269
= 0.2809
haz 10 118.7510.591 0.1325 x 10 x 0.409 28° 277 0.47639 0.87923
= 0.541925
a3 10 [12.50]0.394| 0.1325x%10x0.606 38° 47 0.62638 0.77952
= 0.803556
fraa 10 6.25 | 0.197 0.1325x 10 x 0.803 46° 467 0.72857 0.68498
= 1.063975
has 10 0 0 =1.325 52° 58’ 0.79829 0.60229
bB1 5 25 |0.788| 0.1325x5x%0.212 8° 0’ 0.13917 0.99027
= 0.14045
B 5 |18.75]0.591 = 0.2709625 15° 10’ 0.26162 0.96517
YB3 5 |12.5010.394 = 0.401778 21° 54’ 0.37299 0.92784
Ypa 5 6.25 | 0.197 = 0.5319875 28° 1’ 0.46973 0.88281
s 5 0 0 = 0.6625 33° 30’ 0.55194 0.86163
e 0 25 0 0 0.000 1.000
dea 0 |18.75 0 0 0.000 1.000
Yes 0 (12.50 0 0 0.000 1.000
bog 0 6.25 0 0 0.000 1.000
Yes 0 0 0 0 0.000 1.000

the grid are obtained from Tables 1 (a) and (b). Table 2 then gives values of
m, y and 1/y.

Values of m at various points are now inserted in the Operational Grid 1,
whence 272, Z™ ang [Zm
oy’ 0y? oxdy

These differentiations are carried out numerically, with the equations in
“finite difference’’ form. Thus, referring to the grid portion in Fig. 4, for

panel point 0,

values are also found.
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Table 2
Points Sin ¢ Sin ¢ = Cos w ® Sin @
Ay | Sinds Singa1 = 0.000x 0.27060 = 0.000 90° 1.000
Ao Sin ifga = 0.000 % 0.47632 = 0.0060 90° 1.000
As Sin 4 43 = 0.000 X 0.62638 = 0.000 90° 1.000
Aa Sin ¢ 44 = 0.000 x 0.72857 = 0.000 90° 1.000
As Sin 45 = 0.000 X 0.79829 = 0.000 90° 1.000
B; | Sinég Sin$r1=0.158x0.13917=0.02199 88° 44’ 0.99976
By Sin ¢p2=0.158 X 0.26162=0.041333 87° 38’ 0.99915
Bs Sin yp3=0.158 X 0.37299 = 0.058935 86° 37’ 0.99826
B, Sin ¢p4=0.158 X 0.46973 = 0.07422 85° 44/ 0.99721
Bs Sin p5=0.158 X 0.55194 = 0.087206 85° 0’ 0.99619
C1 Sin¢¢ Sin ¢e1 = 0.2045 X 0.000 = 0.000 90° 1.000
C» Sin o2 = 0.2045 X 0.000 = 0.000 90° 1.000
Cs Sin ¢¢3 = 0.2045 x 0.000 = 0.000 90° 1.000
Cy Sin $eq = 0.2045 X 0.000 = 0.000 90° 1.000
Cs Sin s = 0.2045 X 0.000 = 0.000 90° 1.000
m =
Points Cos ¢ Cos Sin w y= gos id =
Cos ¢ Cos ¢ 0s ¢ 4
A; | Cosda Cospa1=1.000x%0.96269=0.96269 1.03917 0.96269 1.03875
A Cos 42=1.000 x 0.87923 =0.87923 1.13735 0.87923 1.13735
As Cos y43=1.000x 0.77952=10.77952 1.28284 0.77952 1.28284
Aas Cos ¢ 44=1.000 x 0.68498 = 0.68498 1.45989 0.68498 1.45999
As Cos 45=1.000 x 0.60229 = 0.60229 1.66032 0.60229 1.66043
By | Coség
Cos 51 =0.98792 x 0.99027 = 0.97838 1.02185 1.11473 0.99769
B Cos yp2=0.98792 X 0.96517 =0.95356 1.04781 0.96599 1.02460
B3 Cos p3=0.98792 X 0.92784 =0.91666 1.08901 0.93918 1.06475
By Cos ypa=0.98792 x 0.88281=0.87116 1.14469 0.89461 1.11906
Bs Cos yp5=0.98792 x 0.86163 = 0.85124 1.17028 0.87216 1.14657
C1 | Cosde Cosc1=0.97887 x 1.000=0.97887 1.02158 1.02162 0.97887
Cs Cos $¢2=10.97887 x 1.000=0.97887 1.02158 1.02162 0.97887
Cs Cos c3=10.97887 x 1.000 = 0.97887 1.02158 1.02162 0.97887
Cy Cos c2=10.97887 x 1.000 =0.97887 1.02158 1.02162 0.97887
Cs Cos c5=10.97887 x 1.000=0.97887 1.02158 1.02162 0.87887
oy 28y
q
0*m or  ry—r,
& = =38 D
2 o4 | oy? oy 28y (D)
3
?2m 0 —
Fig. 4. 2 N
oxdy o 20z
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except for the edge panels of the grid, where

gm._ M=y _
oy Sy ’
Pm 98 83—8,
dy? oy oy
o2m 08  8,—S8,

8x8y=8_9; dx

—_~
~—

With the value of D=3,0001b., values of ¢ at various points are thus
obtained from Eq. (8.1a) in Grid 1. Operational Grids 2 and 3 thus follow
progressively and by similar operations the values of ¢, n, and n, on the x —y

plane are finally obtained in ‘““lb./ft. run’’ units.

The stress resultants are then obtained from Egs. (2.7) and (2.8) through

Grid 3. These are summarised in Table 3.

Table 3
Points N, (Ib./ft.) N, (b./ft.) Nay  (Ib./ft.)

A1 —143.9125 0 + 10.335
Ao —125.8838 0 4+ 53.73
As — 93.0980 0 +116.298
Aa — 49.3442 0 +189.120
As 0 0 +294.000
By —~257.4134 — 34.6358 + 5.277
B —216.8261 — 43.4266 + 34.731
Bs —179.2763 — B57.6626 + 78.378
Ba —105.7429 — 79.5315 +131.493
Bs 0 — 96.2018 +191.622
C1 0 — 57.0465 0

Cs 0 — 70.1115 0

Cs 0 — 90.9105 0

Cy 0 —113.8012 0

Cs 0 —129.2411 0

10. Remarks

It should be observed that the solutions obtained in section 8 satisfy the
boundary conditions, three in number, and thus represent complete solutions
corresponding to the General Equation (5.1). Any lesser number of conditions,

if considered, would only offer incomplete solutions.

The present problem has been solved using two boundary conditions in
accordance with Soare’s theory and the results obtained are given in Table 4.



Table 4. Resulis by Soare’s Method
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Points N. (lb./ft.) N, (b./ft.) Ny (Ib./ft.)
Ay —322.8 —875.0 + 22.7
Ay —294.9 —408.2 + 80.8
As —231.4 —230.9 +166.3
Aq —~114.3 —131.2 +275.8
As 0 —101.4 +288.3
B —450.0 —900.2 + 1L.5
Bs —381.1 —454.2 1+ 423
Bs —343.5 —293.8 + 90.9
Bs —204.9 —205.9 +159.1
Bs 0 ~166.0 +166.8
C1 —550.8 ~907.6 0
Cs —518.1 —470.5 0
Cs —432.4 —317.4 0
Cs —268.3 —239.5 0
Cs 0 ~192.3 0

13

The N,-values in this table are higher, having values along the longitudinal
edges. The N, -values are also higher, while the NV, -values are reasonably
close to those obtained by the present method.

Having regard to the fact that the third boundary condition is not taken
into consideration, it may be stated that the solution in Soare’s paper [1] is
only one of several others which satisfy his general equation, and is therefore
not “complete’’.
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Summary

The solution of the differential equations of equilibrium for a shell element
having a double curvature by direct methods is difficult. It is therefore usual
to have recourse to iterative or other methods.



14 SANTI P. BANERJEE

The paper presents an alternative method of approach for the direct solu-
tion of Conoidal Shells. In addition, the present concept of selecting the number
of boundary conditions for such shells is criticized. The paper includes an
example in which the results arising out of these conditions are compared
with those obtained by Soare’s method.

Résumé

Avec les méthodes directes, il est difficile de résoudre les équations diffé-
rentielles traduisant 1’équilibre d’un élément de voile & double courbure. C’est
pour cette raison que l’on recourt généralement & des procédés itératifs ou
a d’autres méthodes.

Dans la présente communication, on expose un autre procédé permettant
le calcul direct des voiles conoides. De plus, on étudie de fagon critique la
méthode habituelle pour le choix du nombre des conditions au contour de ces
voiles. Un exemple est présenté, qui illustre la comparaison des résultats
correspondant & ces conditions & ceux donnés par la méthode de Soare.

Zusammenfassung

Eine direkte Losung der Differentialgleichungen fiir das Gleichgewicht einer
doppeltgekrimmten Schale ist schwierig. Aus diesem Grunde werden iiblicher-
weise iterative Verfahren oder andere Methoden herangezogen.

In dieser Veroffentlichung wird eine andere Methode dargestellt, die eine
direkte Losung bei Konoidschalen erlaubt. Es werden ebenfalls die aktuellen
Kriterien zur Wahl der Anzahl der Randbedingungen kritisch durchleuchtet.
Die Arbeit enthilt ferner ein Beispiel, welches erlaubt, die Ergebnisse, die sich
aus diesen Bedingungen ergeben, mit denen, die die Methode Soare liefert, zu
vergleichen.
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