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Verfahren zur Stabilitätsuntersuchung von ecksteifen
Stahlbetontragwerken

Method for Calculating the Stability of Reinforced Concrete Structures with
Stiff Angles

Etüde de la stabilite d'ossatures en beton arme ä nceuds rigides

LÄSZLÖ PALOTÄS
Dr. Ing. Dr. techn., Professor an der Universität für Bau- und

Verkehrswesen in Budapest

1. Allgemeines

In der vorliegenden Arbeit wird ein Näherungsverfahren für die
Stabilitätsberechnung ecksteif verbundener Stahlbetonkonstruktionen entwickelt.

Das Verfahren beruht auf der für praktische Fälle sehr geeigneten Theorie
von Engesser-Shanley, die den unteren Grenzwert der Stabilitätsgrundfälle
liefert. Die Stabilitätsuntersuchung der Stabkonstruktionen selbst erfolgt
nach dem Energie-Verfahren von Timoshenko. Außerdem werden im folgenden

noch das Momentenausgleichsverfahren von Lundquist und Slavin
sowie das sog. Durchbiegungsverfahren von Sattler verwendet.

In Anwendung des Energieprinzips wird in den folgenden Berechnungen
die Gleichheit der äußeren und inneren fremden Energien eingeführt (Fig. 1):

-Ljcq — -Lbq (i)

Lha Lk PkA, l(Q l)ri0. (la)

Die innere Energie Lb kann als die durch die äußere fremde Hilfsbelastung
Q l zustande gekommene innere fremde Energie bestimmt werden:

Für die kritische Last erhalten wir somit die Formel
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Pk ^ i (2)
J ^7^ J ~WT~az

Darin ist der Ausdruck rj rj0f(z) eine Funktion der elastischen Linie.
Zur Vorbereitung der Berechnung befassen wir uns zunächst mit den

Voraussetzungen des Prinzips der elastischen Knotenpunktfigur, das im
folgenden zur Anwendung gelangt. Ziehen wir vorläufig nur lotrechte Lasten,
die in den Knotenpunkten angreifen, und Stabwerke aus lotrechten und
waagrechten Stäben in Betracht, dann wirkt diese Belastung ausschließlich in
den an die Knotenpunkte anschließenden Stützen. Da sich unsere
Untersuchungen auf die dem Moment des Ausknickens folgenden Grenzlagen
beziehen, nehmen wir an, daß der Elastizitätsmodul — auf Abschnitten mit
gleichem Querschnitt und gleichem Trägheitsmoment — konstant sei. Für
die zentrisch belasteten Stäbe können wir auf Grund der Theorie Engesser-
Shanley den sog. Tangentialmodul E' Ea und für Stäbe, die im Augenblick
des Knickens nur eine sekundäre Biegung, bzw. einen sekundären Zug erfahren,

den Entlastungsmodul E0 einführen. Es wird vorausgesetzt, daß die auf
die Stabwerke wirkenden Belastungen P1,P2... stufenweise, jedoch gleichseitig

und mit derselben Stärke zunehmen, bis eine oder mehrere unter ihnen
den Wert der für die Stabilität des Systems charakteristischen kritischen
Belastung erreichen. Das heißt: die aktiven Belastungen lassen sich mit den

Beziehungen

Pl ßl P> P2 ß<2> P> • • • Pi= ßiP>

ausdrücken. ß1,ß2, ßi} bedeuten konstante Verhältniszahlen.
Weiter wird vorausgesetzt, daß die Stäbe des Stabwerkes auf ihrer ganzen

Länge den gleichen Querschnitt und das gleiche Trägheitsmoment aufweisen
und daß das Stabwerk selbst eben ist. Die durch den Schub verursachten
Deformationen werden vernachlässigt. Das System kann sich im Moment des

Knickens entweder im elastischen oder im plastischen Bereich befinden.
Die elastische Knotenpunktfigur des Stabwerkes erhält man, indem die

ecksteifen Knotenpunkte und die starren Einspannungen durch Gelenke, die bei
Biegung elastischsteif sind, ersetzt werden. Handelt es sich um Rahmentragwerke

mit festen Knotenpunkten, werden außerdem in den ausbiegenden,
zentrisch gedrückten Stützen an den Stellen, wo die größte Auslenkung zu
erwarten ist, «elastische Gelenke» angebracht. (Fig. 1—4, 6—7; die elastischen
Gelenke sind in den Abbildungen mit schwarzen Kreisen bezeichnet.) Dieser
Zustand wird «elastischer Gelenkzustand» genannt. (Fig. lb—4b, 6—7b.)

Wir nehmen an, daß die Stäbe, bzw. Stababschnitte im Moment des Knik-
kens zwischen den Gelenken eine gerade Achse haben, d. h. daß sie eine unendlich

große Biegesteifigkeit aufwiesen. Bei den Knotenpunkten besteht also die

Knickformänderung aus lotrecht zu den Achsen der Stäbe gerichteten,
relativen Verschiebungen, der Drehung der Stabachsen, bzw. deren Abschnitte.
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Wir stellen uns nun vor, daß das Stabwerk in diesem bewegten Zustand durch
gedachte Stäbe gegen die Verschiebung festgehalten und daß danach die
elastischen Knotenpunkte unendlich steif und die Stababschnitte zwischen
den Gelenken elastisch-biegesteif gemacht werden.

Nun bestimmen wir in dem auf diese Weise zustande gekommenen «Anfangszustand»

oder «Starrzustand» die anfänglichen Einspannmomente, wie das
bei der Momentenausgleichmethode und bei der Deformationsmethode allgemein

üblich ist. In den Abbildungen werden die im Anfangszustand starr
eingespannten Knotenpunkte mit schwarzen Vierecken bezeichnet. (Fig. 1—4,
6, 7c,d.)

Mit dem Momentenausgleichverfahren (Cross-Morris) oder mit der Defor-
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Fig. 4.

mationsmethode erhält man aus den anfänglichen Einspannmomenten, die
sich aus der kritischen Last und der dazugehörigen Auslenkung ergaben, die

endgültigen Einspannmomente des Stabwerkes in der Form:

M„ Z°Cimpir)0Pk

(Fig. 1—4, 6, 7e.)
Um die äußere und die innere Formänderungsenergie zu bestimmen, lassen

wir in den elastisch beweglichen Gelenken einzeln je eine Hilfslast Qt= l wirken

und bestimmen die dazugehörigen Momentenwerte mqi des Stabwerkes.
Um die kritische Last bestimmen zu können, berechnen wir auf Grund der

Formel (2) die äußere und innere Energie. Da wir bei den ausgebogenen Stäben
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bisher nur geradlinige Ausbiegungen und dementsprechend geradlinig
begrenzte Momentenflächen annahmen, kann der so gewonnene Wert von Pk

nur eine Näherung sein. Dieser Näherungswert ist größer als der tatsächliche.
Die innere Energie muß daher korrigiert werden, und zwar entweder
entsprechend der Differenz zwischen der auf Grund der M^-Momente gewonnenen
krummlinigen Deformationsfigur und der im elastisch gelenkigen Zustande

angenommenen geradlinigen Deformationsfigur (schraffierte Flächen in den

Fig. 1—4 c) oder entsprechend der Differenz der zu erwartenden endgültigen
Ausbiegung — die allgemein als Parabel zweiten Grades oder noch
zweckmäßiger als Sinuskurve angenommen werden kann — und der geradlinigen
Deformationsfigur. Diese Näherung genügt bei einer Fehlertoleranz von
einigen Prozenten.

Die rechte Seite der Gleichung (2) entspricht der durch die Last Qi l
gewonnenen äußeren Energie. Der Ausdruck enthält die unbekannten
Auslenkungen 7]Q, bzw. 2 ai Vo • ^e inneren Energien treten als Funktionen der
unbekannten Auslenkungen 2 <** Vo sowie des Wertes Pk auf. Es können soviel
Energiegleichungen der äußeren und inneren fremden Energie aufgestellt
werden, wie elastische Gelenke vorhanden sind. Die Gleichungen weisen keine
absoluten Werte auf; es sind homogene, lineare Gleichungen, und es ergeben
sich somit nur dann für Pk von Null verschiedene Lösungen, wenn die Koeffi-
zientendeterminante Null gesetzt wird.

Die Theorie kann bei beliebigen Rahmen-Berechnungsmethoden angewendet
werden. Sie hat die Bedeutung eines Ausbiegungsmodelles, mit dessen Hilfe

die Ausbiegeform mit guter Genauigkeit beschrieben werden kann. Der Vorzug
dieser Methode besteht darin, daß sie die kritische Last nicht in Form von
Kreis- oder hyperbolischen Funktionen, sondern in einer mit einfachen
algebraischen Methoden leicht lösbaren Form enthält.

Als Beispiel wird im folgenden der an beiden Enden gelenkig gelagerte
Stab, der erste Grundfall von Euler (Fig. 1), untersucht. Die Biegesteifigkeit
EJ soll konstant sein. Der Knickzustand wird in Fig. la veranschaulicht. Die
größte Ausbiegung beträgt 7]0 und befindet sich bei l\2. Wir führen in der Mitte
das elastische Gelenk «1» ein und bringen die kleine Auslenkung rj0 an, die
dem indifferenten Gleichgewichtszustand des gekrümmten Stabes entspricht.
(Fig. Ib.) Die Momentenfläche bei gerade Achse ist in Fig. lc dargestellt. Das
Moment beträgt an der Stelle der größten Ausbiegung

Mp Prj0mp rj0P, mp 1; a=l.
Im Anfangszustand (Fig. ld und le) nehmen wir das elastische Gelenk als

unendlich steif, den Stab als elastischsteif an und bringen an der Stelle «1»

das ursprüngliche Achsenkreuz (Fig. 1 d) und die diesem entsprechende anfängliche

Momentenfläche der Fig. le an. Letztere stimmt in diesem besonderen
Fall — beide Enden sind frei beweglich und weisen an der Stelle «1» eine
lotrechte Tangente auf — mit der Fig. 1 c überein.
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Die durch die Hilfslast Q 1 hervorgerufene Momentenfläche wird in
Fig. 1 f veranschaulicht. Die äußere fremde Energie beträgt

Lk iJ(0 1)^o i^o-
Der allgemeine Ausdruck für die innere fremde Energie lautet

^-iJ^t**-!#/'<•>".*¦
Bei Stabwerken haben die Momentenflächen für die 1. Näherung des Wertes

Pk bei Anwendung der vorliegenden Methode entweder eine Dreieck- oder
Trapezform. Die Korrektur ergibt entweder einen Ausschnitt aus einer Sinuskurve

oder einer Parabel. Mit den Bezeichnungen der Fig. ld ergibt sich an
der Stelle z

7h — -=- m^ ist eine Ordinate der dreieckförmigen Momentenfläche.
'X 7)0 t v °

r]2 — ist die Differenz zwischen der geraden und der ausgebogenen Linie.

Der zu integrierende Teil der fremden inneren Formänderungsenergie setzt
sich somit aus zwei Teilen zusammen

N \n^mndz \mrnmndz,* ' \ P a N NX + N2.
N2=jrj2mQdz, J

Nehmen wir im vorliegenden Falle an, daß die gekrümmte Kurve eine Sinuskurve

ist, so erhalten wir als Ergebnis die bekannte Formel von Euler.

N^\2'l\l2 5' ^2 2-°>07195!l 0,01799 P,

72

N (0,08333 + 0,01799) l2 0,1013212 —,

Pfc

7T*

EJ 9,87 EJ tt2EJ
0,1013212 l2 l2

Bei Vernachlässigung des Korrekturgliedes N2 würden wir für die kritische
Last den Wert

12J?Jpk

12
erhalten, was dem — 1,2159-fachen des genauen Werte entspricht.

Das einfachste Verfahren ist dennoch folgendes: Man berechnet den Wert
12

N1 und multipliziert diesen mit dem Reduktionsfaktor -^. So erhält man die

innere Energie des ausgeknickten Stabes, d.h. den genauen Wert des Nenners

N.
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Wo bei anderen EuLERschen Grundfällen die elastischen Gelenke anzunehmen
sind, zeigen die Fig. 2—4.

Bevor mit der Berechnung der Stabwerke begonnen wird, sollen nochmals
kurz die wichtigsten Grundlagen des Momentenausgleichverfahrens und der
Deformationsmethode dargestellt werden.

%s/// "3BMcsM2

F»ö Fig. 5.

Im Falle von Rahmen mit parallel verbundenen Stützen verteilt sich die
waagrechte Last H — im Anfangszustand — proportional dem Verschiebungs-
Widerstand, der sog. «Stützensteifigkeit ,k'». Mit den Bezeichnungen der Fig. 5

erhält man

Ti piH,

h

2>< i.
y~p Mcs — Tl,

Mb =\Tl.
ki bedeutet hier die Stützensteifigkeit. Allgemein beträgt sie bei einem Stab

TP T

mit einem eingespannten und einem gelenkig ausgebildeten Ende kcs -^w '>

bei einem beidseitig eingespannten Stab kb —^-.
Das gesamte aufgenommene Moment, das wir «Rahmenmoment» nennen

und mit Mk bezeichnen, beträgt

Mk ZTcslcs + ^Tbl-^= ZMcs + 2^Mb TJcs + ^Tblb

und das Moment, das durch eine Last H~l hervorgerufen wird
M:
H~ mk ~II (I>PcsHlcs + ZpbHlb),

das heißt ItPcshs + ZPbh mk-

Bei der Stabilitätsuntersuchung der Rahmen mit verschieblichen Knotenpunkten

sind die sogenannten Rahmenmomente Mk, die in den einzelnen
Rahmengliedern wirken, im Starrzustande bekannt. Mit diesen und mit Hilfe
des Wertes mk können wir die für das Rahmenstockwerk gültige Verschiebungs-
kraft H, bzw. die Schubkraft der Stütze T, bestimmen und daraus die Momente
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Mx in den Stützen berechnen. Nach Durchführung der notwendigen Berechnungen

(z.B. mit Hilfe des MomentenausgleichVerfahrens oder der
Deformationsmethode) erhalten wir die Momente Mp, bzw. mp.

2. Stabwerke mit festen (unverschieblichen) Knotenpunkten

Das Verfahren wird an dem in Fig. 6 dargestellten Rahmen mit festen
Knotenpunkten erläutert. Wir treffen die Annahme, daß das Trägheitsmoment
und die Querschnittsfläche längs eines Stabes konstant, von Stab zu Stab
jedoch im allgemeinen verschieden sei. Maßgebend für gedrückte Stäbe ist der

\pr-ßtp
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Modul Ea — der im allgemeinen zum voraus geschätzt wird — und für die
Balken und Zugstäbe E0. Es ist zweckmäßig, die Berechnungen auf den
Modul Eq und auf das beliebige Trägheitsmoment J0 reduziert durchzuführen.
Ist eine vorgegebene Last vorhanden, so kann der Modul Ea sofort bestimmt
werden; im allgemeinen Fall gewinnen wir den richtigen Wert aus einer

I terationsberechnung.
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Mit Eo ^E0 und J tJ0

ist in der Formel für Pk der Wert E0J0 im Zähler bekannt. Für Biegebalken
und Zugstäbe ist 8 1.

Der Gang der Lösung

1. Wir führen die elastischen Gelenke bei den Knotenpunkten und in der
Nähe der zu erwartenden größten Ausbiegungen ein. Der Modellcharakter
ermöglicht — mit einer einfachen Betrachtung — die Konstruktion der
entsprechenden «elastischen Knotenpunktfigur», die die größte Formänderungs-
energie aufweist, bzw. die größte Ausbiegung zur Folge hat. Existieren mehrere

— im allgemeinen identische Figuren —, ist es normalerweise sehr einfach,
diejenige auszuwählen, die die größte Formänderungsenergie hat, bzw. die
kleinste kritische Last zulässt. Bei Figuren mit einer Stütze ist im allgemeinen
die symmetrische Knickfigur nicht maßgebend, denn sie ergibt nicht den
kleinsten Wert Pk. Eine Ausnahme bilden diejenigen Fälle, wo die Knickfigur

durch äußere Einwirkung ermöglicht oder erzwungen wird. Im Beispiel
der Fig. 6 a erhalten wir den kleinsten Wert Pk auf Grund der antimetrischen
Figur der Fig. 6b. Im Laufe der Berechnung kann übrigens — nebst den

möglichen Kombinationen — auch das symmetrische Knicken mit denselben
Gleichungen behandelt werden. Die Stellen der elastischen Gelenke wurden —
beim Stab «7» — entsprechend dem Eulersehen Fall «2» — in der Mitte, beim
Stab «2» — entsprechend dem Eulersehen Fall «4» in einer mit 0,41421 berechneten

Entfernung vom tatsächlichen Gelenk angenommen. (Bei einer Annahme
von Z/2 würde das Ergebnis nur unwesentlich abweichen.)

2. Wir bestimmen die Ausbiegungen entsprechend der Momentenfläche mit
geradliniger Achse, wie sie in Fig. 6 c dargestellt wurde.

3. Wir bestimmen die deformierte Form und die Momentenfläche des

Anfangszustandes entsprechend den Fig. 6d und 6e. Die Rahmenmomente für
den Stab 1, bzw. 2 betragen nach Fig. 6 c

^ki ^ißir]oP bzw. Mk2 a2(ß1+ß2)rjoP,

ßl ~p> P2 "p"'

Diese Werte sind als Verhältniszahlen angegeben. In den Formeln treten r)0,

a± und a2 als Unbekannte auf. rj0 fällt jedoch heraus, da rj0 auf beiden Seiten
der Formänderungsgleichung vorkommt. Der Einfachheit halber könnte man
TjQ 1 annehmen.

4. Nun berechnen wir mit einer geeigneten Methode die endgültigen Momente

Mpl, Mp2, Mp. Es ist zweckmäßig, den Übergang vom Anfangszustand zum
Endzustand bei den auf Stab 1, bzw. Stab 2 wirkenden Momenten gesondert



152 LASZLÖ PALOTAS

durchzuführen. (Fig. 6f und 6g). Mp=Mpl + Mp2; Mpl a1mpl7]Qp; Mp2
ot2mp27]0p. Die Momente mpl und mp2 ergeben sich aus den Verschiebungen
yj01= 1, rj02 1 und der Last P— 1.

5. Mit dem folgenden Schritt erhalten wir die endgültigen Hilfsmomente
(mql,mq2), die die an der Stelle des Gelenkes 1, bzw. 2 wirkenden Belastungen
Qt=l und Q2=l hervorrufen. (Fig. 6h und 6i.) Diese Momentenflächen
entsprechen ihrer Form nach denjenigen der Momente mpl und mp2, bzw. sie sind
mit ihnen im Maßstab mql>0 1 und mq20 1 identisch.

Es ist somit zweckmäßig, zuerst die durch Qx 1 und Q2 1 zustande
gekommenen Momente mql und mq2 zu bestimmen und aus diesen die
Momentenflächen mp 1 und mp 2.

6. Es sind nun die durch die Lasten Q± 1 und Q2 1 dem System
zugeführten äußeren und inneren fremden oder eigenen Energien zu berechnen, die
die Knickbedingung für den Wert Pk ergeben.

oc) Die durch Q± I gewonnene Formänderungsenergie ist

(Lk) (Öl 1)«!^ "i^o*

(Lb)=f^(N1 +N2)=^N,
12 r [mplmql Cmp2mql ] [" Cmplmql [mp2mql 1

N ^2 L0:lJ §T & + g2j gT &J + [«lj ^dz + 0C2j Cfej

(-) (-) + +

Bei der Berechnung von N erstreckt sich das Integral in den beiden ersten
Gliedern über alle Druckstäbe. Bei den ausgebogenen Druckstäben, für die
der Modul Ea maßgebend ist, steht im Nenner das Produkt 8 t, bei den Biege-
und Zugstäben kommt nur t vor, da S 1 ist. In den beiden letzten Gliedern
ist nur über die Biege- und Zugstäbe zu integrieren.

Ordnen wir den Ausdruck der äußeren und inneren Formänderungsenergie
und führen wir den Wert o> ^ T und die Bezeichnungen

(-) (±)

A21^^m^dz+\m^dz
(-) (±)

ein, gewinnen wir die folgende homogene Lineargleichung

oc1(o)A11-l) + oc2(a)A21) 0.

ß) Die durch Q2 I gewonnene Formänderungsenergie

(Lk) oc2rj0,
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hier beträgt

(-) (-) (±) (±)

Die Gleichung der äußeren und inneren fremden angenommenen Energie
ist:

hier ist

^(oj A12) + ot2(a) A22- 1) 0;

Ai2 l^jm^dz+j^i^dZ!
(-) (dz)

12 [mp2mq2 [mp2mqA™ -^)—8^dz+)—r- dz

(-) (±)

und das homogene lineare Gleichungssystem, das die Knickbedingung
ausdrückt

^(co A1±- l) + cc2(co A21) 0,

ax (a> A12) + oc2 (co A22 — 1) 0.

Die nicht triviale Lösung dieses Systems gewinnen wir, wenn die Beiwert-
Determinante verschwindet:

D (jüA^-1
<*>A22 — l

0

und Pk ^^o^o

Die in den einzelnen Stäben auftretenden Druckbelastungen betragen:

P% — 2 ßi Pk •

In bezug auf co ist die Determinante quadratisch. Wir erhalten aus diesem
Grunde für

E0J0

zwei Werte. Von diesen Werten ergibt der kleinere die maßgebende kritische
Last, die dem skizzierten antimetrischen Knickfall entspricht. Der andere
Wert gilt für das symmetrische Knicken. Für die kritische Last ist tomin
maßgebend.

Fjcmin ~ ^min-^0^0
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3. Stabwerke mit verschieblichen Knotenpunkten

Weist das Stabwerk verschiebliche Knotenpunkte auf, müssen bei den

Knotenpunkten und bei den starren Einspannungen elastische Gelenke eingeführt

werden. Im Anfangszustand ist somit für die einzelnen Stäbe der Euler-
sehe Fall «5» gültig. Wenn die elastische Gelenkfigur bestimmt ist, kann die

Knickfigur so angenommen werden, daß die einzelnen Balken und die
Stabenden längs der Balkenachsen relative Verschiebungen rj01 ,r]02... erfahren.
Das Knicken tritt bei einem bestimmten, vorläufig noch unbekannten System
von Verschiebungen ein, das eine Funktion der Geometrie und der Steifigkeits-
verhältnisse des StabWerkes ist. Auf Grund der in unseren Untersuchungen
angenommenen Voraussetzungen entspricht eine auf diesem Wege bestimmte
Ausbiegungslinie — als verwandte (affine) Form — einer bestimmten zu ihr
gehörenden kritischen Belastung.

Wir wenden nun das Verfahren bei dem in Fig. 7 gezeigten, zweifach
beweglichen Rahmentragwerk an.

Bei der Belastungsanordnung der Fig. 7 a kann die Form Pi=ßiP
angewendet werden. In Fig. 7 b ist der wahrscheinliche Verschiebungszustand der

WJ w, £\7a &Pp ß3 ßiP

M (7) rxvo®
lr\*WW WrW ®\w ® %ßfP ß3Pw

sm ißo® ®
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Fig. 7.
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elastischen Knotenpunktfigur im Moment des Knickens dargestellt; es handelt
sich um diejenige Lage des indifferenten Gleichgewichtszustandes, die dem
stabilen Gleichgewichtszustand am nächsten liegt.

Die im Augenblick des Knickens im ursprünglichen Rahmentragwerk
entstehende gekrümmte Figur und die dazugehörige Momentenfläche sind formtreu

in Fig. 7 c und als Anfangszustand in Fig. 7d nochmals dargestellt.
Die gesamte, in der Ebene des mit «/» bezeichneten Balkens auftretende

Verschiebung beträgt

das heißt a1 + a2= 1.

Das auf dem Schnitt 1 der elastischen Knotenpunktfigur wirkende Rahmenmoment

beträgt mit den Bezeichnungen der Fig. 7e

Mki «iA%P + aift%P oc1(ß1 + ß2)r]oP a1mkIr]oP

und allgemein

Mki XiXßiVoP <XimkiyoP>

™ki Zßi-

ßT bedeutet hier den Lastanteil sämtlicher über dem Schnitt 1 angreifenden
Belastungen. Die Summe bezieht sich somit auf alle über dem Schnitt 1

wirkenden Lasten.
Das im Schnitt 2 wirkende Rahmenmoment beträgt nach der Fig. 7f

Mkii <*2 ißi + ßz) VoP + ^2 (ßs + ßi) VoP *2MkII VoP>

hier ist ™<kii Zßii'

2/3/j umfaßt diejenigen Belastungen, die oberhalb von Schnitt 2 angreifen.
Das ganze durch die Verschiebung des Systems hervorgerufene Rahmenmoment

beträgt somit

Mk MkI + MkII ^ZßzVoP + ^UßnVoP-
(Es ist zu beachten, daß die Belastungen P von den Balken auf die Stützen
übertragene aktive Belastungen sind und nicht lediglich auf die Stützen
wirkende Druckbelastungen.)

Die in den Formeln auftretenden ax, a2 und rj0 sind unbekannt. Im folgenden
Schritt bestimmen wir mit der im vorigen Abschnitt beschriebenen Methode
die aus den Rahmenmomenten stammenden anfänglichen Verschiebungskräfte
(Schubkräfte) Tt und aus diesen die anfänglichen Einspannmomente Mi. Es ist
zweckmäßig, die Momente Mi in zwei Schritten zu bestimmen: Zuerst den zur
Verschiebung a-^ gehörigen Wert Mpl für den ganzen Rahmen, wobei sich
die Verschiebung o^t^ auf das Rahmenfeld / bezieht; zweitens den zur
relativen Verschiebung oc2 rj0 gehörigen Wert Mp 2 für den ganzen Rahmen, wobei
sich die Verschiebung a2 77 0 auf das Rahmenfeld / bezieht.
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Die Momente Mp 1 oc1 mp 1rj0P erhält man aus den anfänglichen
Einspannmomenten Mpl, die nur auf jene Stäbe wirken, die eine relative Verschiebung
oc-^tjq erfahren haben, d.h. nur mit i\,P3 belastet werden.

Die zu berechnende Verschiebungskraft beträgt für das Rahmenfeld I auf
Grund der Fig. 7 g und 7 h

hier ist ^ßi ß1 + ß3]hI: die der Belastung P 1 entsprechende Verschiebungs-
kraft.

T1 p1hIotlVoP, Mx IT7!?! ^Pihj^^rjoP,
T3 p1hIoc1r]QP, Mz 1T3Z3 IPzhjlzct^P,

IC-t K"\
Pi

IC-t + K>2
Pz

IC-t ~\~ ICv
kx — E1J1, k3 — x£3J3, lx — 63

Auf Grund der anfänglichen Momente gewinnen wir nun die endgültigen
Momente, die die Ausbiegung a-^, bzw. das Rahmenmoment Mkl hervorrufen

(Fig. 7i)

Mpl oc1mplr]oP

Die Momente Mp 2 oc2 mp 2rj0P lassen sich auf Grund der anfänglichen
Einspannmomente bestimmen.

Nach den Fig. 7j,k beträgt die auf das Rahmenfeld // wirkende Schubkraft

Uu -—zr~ — a2Ä77770.r\
mh mi,

(Im Rahmenfeld / bei der relativen Verschiebung oc2rj0 ist die Schubkraft
null.)

Dabei ist 2ß/j ßi + ß2 +/?3 + ß&\ ^11 ^ die der Belastung P=l entsprechende

Schubkraft; mk p2l2 + p±Z4;

P2
/Co

tCo + rC/i
Vi

kA

f^2 * "^4

__
E2J2

T2 V2hn<x2r)0P,

T± p^hHoc2rj0P,

Die endgültigen Momente (Eig. 71):

h
M2 P2hII<X2VoP>

Mp2 a2mp2r]0P

Die durch die Hilfsbelastungen Qx 1 und Q2 1 hervorgerufenen Momente

mql und mq2 sind in den Fig. 7m und 7n dargestellt.
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Die äußere und innere aufgenommene Formanderungsenergie infolge der
Hilfsbelastungen Q1 und Q2 lassen sich folgendermaßen darstellen.

Bei der Belastung Qz=l ergibt die äußere und innere aufgenommene
Formanderungsenergie

(<xx + oc2) r]0 co r)0 [>! A1X + oc2 A21]

0.

und wenn wir die Gleichung ordnen*

ai \<*> ^11 - 1] + a2 [o> ^421 - 1]

Bei der Belastung Q2 l finden wir:

oc2rj0 co rj0 [ax.412 + oc2A22]

bzw. ax [co A12] + oc2 [co A22 - 1] 0.

Auch in diesem Falle kann — als Knickbedingung — ein homogenes lineares
Gleichungssystem aufgestellt werden. Es können so viele Gleichungen
angeschrieben werden, wie der Rahmen Bewegungsgrade aufweist. In unserem
Beispiel haben wir zwei Gleichungen

cc1 [co A1± — 1] + a2 [co A21 — 1] 0,

cc± [co A12] + <x2 [co A22 - 1] 0.

Der zu comin gehörige Wert der Knicklast betragt

*kmm ~ ^min^O^O

Im plastischen Bereich ergibt sich die Losung — wie früher — durch
sukzessive Näherung.

Ein überaus einfaches Naherungsverfahren besteht darin, daß die zu den
verschiedenen /^.-Werten gehörigen Werte von Pk in einem Diagramm auf-

120
*4Hp |

wo
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®Pf=62fP QX
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getragen werden (Fig. 8). Der endgültige Pfc-Wert wird als Schnittpunkt der
Geraden unter 45° mit der Verbindungslinie der P^'-Werte gefunden.

Es ist noch zu erwähnen, daß das oben dargestellte Verfahren der «elastischen

Gelenke» in seinen Prinzipien in den Jahren 1954 und 1955 in meinen

Universitätsvortragen bereits behandelt wurde. Die Methode wurde auch bei

komplizierten Beispielen angewandt, und es wurden Vergleiche mit anderen,

genauen Verfahren (z.B. mit dem Verfahren von Chwalla) durchgeführt. Die
Abweichungen betrugen im allgemeinen weniger als 5%, und zwar ergab sich

mit dem hier skizzierten Näherungsverfahren im allgemeinen eine kleinere
kritische Last.

Zusammenfassung

Es wird ein Näherungsverfahren für die Stabilitätsberechnung ebener
Stahlbetonkonstruktionen entwickelt, das mit Hilfe der einfachen Methoden
der Baustatik praktisch befriedigende Ergebnisse liefert. Die Methode kann
bei Stabwerken mit festen und verschieblichen Knotenpunkten angewendet
werden und ist sowohl im elastischen wie auch im plastischen Bereich gültig.
Das Verfahren hat den Vorteil, daß sich die kritische Belastung nicht in Form
einer Kreis-, bzw. hyperbolischen Funktion, sondern als Lösung eines linearen,
homogenen Gleichungssystems ergibt.

Summary

A method by approximation is described for calculating the stability of
plane reinforced concrete structures which, although only making use of
simple static methods, provides satisfactory results for practical purposes.
This method can be applied to lattices with fixed or displaceable assembly
joints and is suitable for application in both the plastic and elastic fields. The

procedure has the advantage of determining the critical load, not in the form
of circular or hyperbolic functions, but as the Solution of a System of homo-

geneous linear equations.

Resume

L'auteur presente une methode par approximation permettant le calcul
de la stabilite d'ossatures planes en beton arme qui, en ne faisant appel qu'a
des methodes simples de la statique, fournit des resultats satisfaisants pour la

pratique. Cette methode peut etre appliquee aux ossatures ä noeuds fixes ou
deplagables et convient aussi bien dans le domaine plastique que dans le
domaine elastique. Le procede a l'avantage de faire apparaitre la charge
critique non pas sous la forme de fonetions circulaires ou hyperboliques mais

comme la Solution d'un Systeme d'equations lineaires homogenes.
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