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Verfahren zur Stabilitéitsuntersuchung von ecksteifen

Stahlbetontragwerken

Method for Calculating the Stability of Reinforced Concrete Structures with
Stiff Angles

Etude de la stabilité d’ossatures en béton armé & noeuds rigides

LASZLO PALOTAS

Dr. Ing. Dr. techn., Professor an der Universitat fiir Bau- und
Verkehrswesen in Budapest

1. Allgeméines

In der vorliegenden Arbeit wird ein Naherungsverfahren fiir die Stabilitéts-
berechnung ecksteif verbundener Stahlbetonkonstruktionen entwickelt.

Das Verfahren beruht auf der fiir praktische Fille sehr geeigneten Theorie
von ENGESSER-SHANLEY, die den unteren Grenzwert der Stabilitatsgrundfille
liefert. Die Stabilitdatsuntersuchung der Stabkonstruktionen selbst erfolgt
nach dem Energie-Verfahren von TiMmosHENKO. Aulerdem werden im folgen-
den noch das Momentenausgleichsverfahren von LunNpQuisT und SLAVIN
sowie das sog. Durchbiegungsverfahren von Sattler verwendet.

In Anwendung des Energieprinzips wird in den folgenden Berechnungen
die Gleichheit der dulleren und inneren fremden Energien eingefiihrt (Fig. 1):

qu = qu (1)

Ly, = Ly = B4, = (@ = 1) . (la)

Die innere Energie L, kann als die durch die duBlere fremde Hilfsbelastung
Q=1 zustande gekommene innere fremde Energie bestimmt werden:

meqd - P’“f”qu (1b)

Fir die kritische Last erhalten wir somit die Formel




144 LASZLO PALOTAS

(2)

“fnqu N ff(z)qu

Darin ist der Ausdruck n=17,f(2) eine Funktion der elastischen Linie.

Zur Vorbereitung der Berechnung befassen wir uns zunéchst mit den
Voraussetzungen des Prinzips der elastischen Knotenpunktfigur, das im fol-
genden zur Anwendung gelangt. Ziehen wir vorldaufig nur lotrechte Lasten,
die in den Knotenpunkten angreifen, und Stabwerke aus lotrechten und
waagrechten Stiben in Betracht, dann wirkt diese Belastung ausschlieBlich in
den an die Knotenpunkte anschlieBenden Stiitzen. Da sich unsere Unter-
suchungen auf die dem Moment des Ausknickens folgenden Grenzlagen be-
ziehen, nehmen wir an, daB3 der Elastizititsmodul — auf Abschnitten mit
gleichem Querschnitt und gleichem Trigheitsmoment — konstant sei. Fir
die zentrisch belasteten Stiabe konnen wir auf Grund der Theorie ENGESSER-
SHANLEY den sog. Tangentialmodul £’ = und fiir Stibe, die im Augenblick
des Knickens nur eine sekundire Biegung, bzw. einen sekundiren Zug erfah-
ren, den Entlastungsmodul Z einfithren. Es wird vorausgesetzt, dafl die auf
die Stabwerke wirkenden Belastungen P, P,... stufenweise, jedoch gleich-
seitig und mit derselben Stirke zunehmen, bis eine oder mehrere unter ihnen
den Wert der fiir die Stabilitéit des Systems charakteristischen kritischen
Belastung erreichen. Das heiflt: die aktiven Belastungen lassen sich mit den
Beziehungen

P1=B1P’ P2=B2P7 B=18@P

ausdriicken. B;,8,, ... fB;, ... bedeuten konstante Verhaltniszahlen.

Weiter wird vorausgesetzt, daBl die Stdabe des Stabwerkes auf ihrer ganzen
Lange den gleichen Querschnitt und das gleiche Trigheitsmoment aufweisen
und dafl das Stabwerk selbst eben ist. Die durch den Schub verursachten
Deformationen werden vernachléissigt. Das System kann sich im Moment des
Knickens entweder im elastischen oder im plastischen Bereich befinden.

Die elastische Knotenpunktfigur des Stabwerkes erhilt man, indem die eck-
steifen Knotenpunkte und die starren Einspannungen durch Gelenke, die bei
Biegung elastischsteif sind, ersetzt werden. Handelt es sich um Rahmentrag-
werke mit festen Knotenpunkten, werden auBlerdem in den ausbiegenden,
zentrisch gedriickten Stiitzen an den Stellen, wo die groBte Auslenkung zu
erwarten ist, «elastische Gelenke» angebracht. (Fig. 1—4, 6—7; die elastischen
Gelenke sind in den Abbildungen mit schwarzen Kreisen bezeichnet.) Dieser
Zustand wird «elastischer Gelenkzustand» genannt. (Fig. 1b—4b, 6—7b.)

Wir nehmen an, dal die Stibe, bzw. Stababschnitte im Moment des Knik-
kens zwischen den Gelenken eine gerade Achse haben, d.h. daB sie eine unend-
lich grofle Biegesteifigkeit aufwiesen. Bei den Knotenpunkten besteht also die
Knickforménderung aus lotrecht zu den Achsen der Stidbe gerichteten, rela-
tiven Verschiebungen, der Drehung der Stabachsen, bzw. deren Abschnitte.
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Fig. 2.

Wir stellen uns nun vor, dall das Stabwerk in diesem bewegten Zustand durch
gedachte Stabe gegen die Verschiebung festgehalten und dall danach die
elastischen Knotenpunkte unendlich steif und die Stababschnitte zwischen
den Gelenken elastisch-biegesteif gemacht werden.

Nun bestimmen wir in dem auf diese Weise zustande gekommenen « Anfangs-
zustand» oder «Starrzustand» die anfinglichen Einspannmomente, wie das
bei der Momentenausgleichmethode und bei der Deformationsmethode allge-
mein iiblich ist. In den Abbildungen werden die im Anfangszustand starr ein-
gespannten Knotenpunkte mit schwarzen Vierecken bezeichnet. (Fig. 1—4,
6, 7c,d.)

Mit dem Momentenausgleichverfahren (Cross-Morris) oder mit der Defor-
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Fig. 3.

mationsmethode erhilt man aus den anfinglichen Einspannmomenten, die
sich aus der kritischen Last und der dazugehorigen Auslenkung ergaben, die
endgiiltigen Einspannmomente des Stabwerkes in der Form:

Mm' = Z“z’mpi")opk-

(Fig. 1—4, 6, Te.)

Um die duBere und die innere Formadnderungsenergie zu bestimmen, lassen
wir in den elastisch beweglichen Gelenken einzeln je eine Hilfslast @;=1 wir-
ken und bestimmen die dazugehoérigen Momentenwerte m,; des Stabwerkes.

Um die kritische Last bestimmen zu kénnen, berechnen wir auf Grund der
Formel (2) die 4uBere und innere Energie. Da wir bei den ausgebogenen Stiben
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bisher nur geradlinige Ausbiegungen und dementsprechend geradlinig be-
grenzte Momentenflaichen annahmen, kann der so gewonnene Wert von P,
nur eine Niherung sein. Dieser Naherungswert ist groBer als der tatséchliche.
Die innere Energie mull daher korrigiert werden, und zwar entweder ent-
sprechend der Differenz zwischen der auf Grund der M ,,-Momente gewonnenen
krummlinigen Deformationsfigur und der im elastlsch gelenkigen Zustande
angenommenen geradlinigen Deformationsfigur (schraffierte Flichen in den
Fig. 1-—4c) oder entsprechend der Differenz der zu erwartenden endgiiltigen
Ausbiegung — die allgemein als Parabel zweiten Grades oder noch zweck-
mifiger als Sinuskurve angenommen werden kann — und der geradlinigen
Deformationsfigur. Diese Niaherung geniigt bei einer Fehlertoleranz von
einigen Prozenten.

Die rechte Seite der Gleichung (2) entspricht der durch die Last ¢,=1
gewonnenen duBleren Energie. Der Ausdruck enthilt die unbekannten Aus-
lenkungen %,, bzw. > «;n,. Die inneren Energien treten als Funktionen der
unbekannten Auslenkungen >’ «; 7, sowie des Wertes P, auf. Es konnen soviel
Energiegleichungen der #dulleren und inneren fremden Energie aufgestellt
werden, wie elastische Gelenke vorhanden sind. Die Gleichungen weisen keine
absoluten Werte auf; es sind homogene, lineare Gleichungen, und es ergeben
sich somit nur dann fiir £, von Null verschiedene Lésungen, wenn die Koeffi-
zientendeterminante Null gesetzt wird.

Die Theorie kann bei beliebigen Rahmen-Berechnungsmethoden angewen-
det werden. Sie hat die Bedeutung eines Ausbiegungsmodelles, mit dessen Hilfe
die Ausbiegeform mit guter Genauigkeit beschrieben werden kann. Der Vorzug
dieser Methode besteht darin, dal3 sie die kritische Last nicht in Form von
Kreis- oder hyperbolischen Funktionen, sondern in einer mit einfachen alge-
braischen Methoden leicht 16sbaren Form enthélt.

Als Beispiel wird im folgenden der an beiden Enden gelenkig gelagerte
Stab, der erste Grundfall von EurLEr (Fig. 1), untersucht. Die Biegesteifigkeit
EJ soll konstant sein. Der Knickzustand wird in Fig. 1a veranschaulicht. Die
grofite Ausbiegung betrégt n, und befindet sich bei //2. Wir fiithren in der Mitte
das elastische Gelenk «1» ein und bringen die kleine Auslenkung 7z, an, die
dem indifferenten Gleichgewichtszustand des gekriimmten Stabes entspricht.
(Fig. 1b.) Die Momentenfliche bei gerade Achse ist in Fig. 1¢ dargestellt. Das
Moment betriagt an der Stelle der grof3ten Ausbiegung

Im Anfangszustand (Fig. 1d und le) nehmen wir das elastische Gelenk als
unendlich steif, den Stab als elastischsteif an und bringen an der Stelle «1»
das urspriingliche Achsenkreuz (Fig. 1d) und die diesem entsprechende anfing-
liche Momentenfliche der Fig. 1e an. Letztere stimmt in diesem besonderen
Fall — beide Enden sind frei beweglich und weisen an der Stelle «1» eine
lotrechte Tangente auf — mit der Fig. 1¢ iiberein.
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Die durch die Hilfslast @ =1 hervorgerufene Momentenfliche wird in
Fig. 1f veranschaulicht. Die duBlere fremde Energie betrigt
Ly = 3J(@ = 1) no = % m0-

Der allgemeine Ausdruck fiir die innere fremde Energie lautet

fMpqu _7)0 kffZ)de

2EJ

Bei Stabwerken haben die Momentenflichen fiir die 1. Naherung des Wertes
P, bei Anwendung der vorliegenden Methode entweder eine Dreieck- oder
Trapezform. Die Korrektur ergibt entweder einen Ausschnitt aus einer Sinus-
kurve oder einer Parabel. Mit den Bezeichnungen der Fig. 1d ergibt sich an
der Stelle z

Ny = Mol (2) = Mo+ 72 = 1o (N1 +72) -

M = ;77;1 = Elf = m,, ist eine Ordinate der dreieckférmigen Momentenflidche.
Ny = ™ ist die Differenz zwischen der geraden und der ausgebogenen Linie.

no
Der zu integrierende Teil der fremden inneren Forménderungsenergie setzt

sich somit aus zwei Teilen zusammen
= m,dz = [m,m, dz,
Smmade=fmyme | o N N,
N2 = f772 mq dZ )
Nehmen wir im vorliegenden Falle an, da3 die gekriimmte Kurve eine Sinus-
kurve ist, so erhalten wir als Ergebnis die bekannte Formel von EULER.

N, =19 1££—l—2 N, = 2007195Zi 0,01799 72,
17387 "42 12’ - 24
2
N = (0,08333+0,01799)72 = 0,1013212 = 12—
o
p__ EJ _981EJ _w*EJ
k70,1013272 ~ P2 e

Bei Vernachlassigung des Korrekturgliedes N, wiirden wir fiir die kritische

Last den Wert

12EJ
Bc=—-l—2—

erhalten, was dem 717—22 = 1,2159-fachen des genauen Werte entspricht.

Das einfachste Verfahren ist dennoch folgendes: Man berechnet den Wert
N, und multipliziert diesen mit dem Reduktionsfaktor ;152 So erhilt man die

innere Energie des ausgeknickten Stabes, d.h. den genauen Wert des Nen-
ners V.
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v =2n,

72

Wo bei anderen EvrLERschen Grundfillen die elastischen Gelenke anzunehmen
sind, zeigen die Fig. 2—4.

Bevor mit der Berechnung der Stabwerke begonnen wird, sollen nochmals
kurz die wichtigsten Grundlagen des Momentenausgleichverfahrens und der
Deformationsmethode dargestellt werden.

24 F4 -~ 4
£ / HEN T 1= 5]
A8 Mt 5E M B [M3=Mcs
I Z i
- 13 - 12. .
? Rl

Im Falle von Rahmen mit parallel verbundenen Stiitzen verteilt sich die
waagrechte Last H — im Anfangszustand — proportional dem Verschiebungs-
Widerstand, der sog. « Stiitzensteifigkeit ,k‘». Mit den Bezeichnungen der Fig. 5
erhilt man

k

1

ZJL:H’ pi=z—}c’
T, =pH, Xpi=1, M, =iT1L.

M, =TI,

k; bedeutet hier die Stiitzensteifigkeit. Allgemein betrigt sie bei einem Stab
EJ.

mit einem eingespannten und einem gelenkig ausgebildeten Ende k, = 7

EJ

B
Das gesamte aufgenommene Moment, das wir « Rahmenmoment» nennen
und mit M, bezeichnen, betrigt

bei einem beidseitig eingespannten Stab k, =

l
Mlc = ZTcslcs_FQZTbgb = ZMCS+22Mb = qvcslcs_l'ZTblb

und das Moment, das durch eine Last H =1 hervorgerufen wird

M 1
g =M =g (ZPes Hles+ X pp H1,),

das heillt D Peoslos+ 2. Po by = My,

Bei der Stabilitdtsuntersuchung der Rahmen mit verschieblichen Knoten-
punkten sind die sogenannten Rahmenmomente M, , die in den einzelnen
Rahmengliedern wirken, im Starrzustande bekannt. Mit diesen und mit Hilfe
des Wertes m;, konnen wir die fiir das Rahmenstockwerk giiltige Verschiebungs-
kraft H, bzw. die Schubkraft der Stiitze T; bestimmen und daraus die Momente
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M, in den Stiitzen berechnen. Nach Durchfithrung der notwendigen Berech-
nungen (z.B. mit Hilfe des Momentenausgleichverfahrens oder der Defor-
mationsmethode) erhalten wir die Momente M ,, bzw. m,,.

2. Stabwerke mit festen (unverschieblichen) Knotenpunkten

Das Verfahren wird an dem in Fig. 6 dargestellten Rahmen mit festen
Knotenpunkten erldutert. Wir treffen die Annahme, dal das Trigheitsmoment
und die Querschnittsfliche lings eines Stabes konstant, von Stab zu Stab
jedoch im allgemeinen verschieden sei. Magebend fiir gedriickte Stibe ist der

TSRS

7 VAﬁ,I,
o Aalby*s) P
P
Fig. 6
Modul E, — der im allgemeinen zum voraus geschéitzt wird — und fiir die

Balken und Zugstibe E,. Es ist zweckmifBig, die Berechnungen auf den
Modul Z, und auf das beliebige Tragheitsmoment J, reduziert durchzufiihren.
Ist eine vorgegebene Last vorhanden, so kann der Modul E, sofort bestimmt

werden; im allgemeinen Fall gewinnen wir den richtigen Wert aus einer
I terationsberechnung.
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Mit E,=8E,| und | J=r+J,

o

ist in der Formel fiir P, der Wert K,J, im Zahler bekannt. Fiir Biegebalken
und Zugstibe ist §=1.

Der Gang der Lésung

1. Wir fihren die elastischen Gelenke bei den Knotenpunkten und in der
Néahe der zu erwartenden grolten Ausbiegungen ein. Der Modellcharakter
ermoglicht — mit einer einfachen Betrachtung — die Konstruktion der ent-
sprechenden «elastischen Knotenpunktfigur», die die gréo3te Forménderungs-
energie aufweist, bzw. die grolte Ausbiegung zur Folge hat. Existieren meh-
rere — im allgemeinen identische Figuren —, ist es normalerweise sehr einfach,
diejenige auszuwihlen, die die groBite Forméanderungsenergie hat, bzw. die
kleinste kritische Last zulédsst. Bei Figuren mit einer Stiitze ist im allgemeinen
die symmetrische Knickfigur nicht maBgebend, denn sie ergibt nicht den
kleinsten Wert P,. Eine Ausnahme bilden diejenigen Félle, wo die Knick-
figur durch duflere Einwirkung ermdéglicht oder erzwungen wird. Im Beispiel
der Fig. 6a erhalten wir den kleinsten Wert P, auf Grund der antimetrischen
Figur der Fig. 6b. Im Laufe der Berechnung kann iibrigens — nebst den
moglichen Kombinationen — auch das symmetrische Knicken mit denselben
Gleichungen behandelt werden. Die Stellen der elastischen Gelenke wurden —
beim Stab «1» — entsprechend dem Eulerschen Fall «2» — in der Mitte, beim
Stab «2» — entsprechend dem Hulerschen Fall «4» in einer mit 0,41427 berech-
neten Entfernung vom tatsidchlichen Gelenk angenommen. (Bei einer Annahme
von {/2 wiirde das Ergebnis nur unwesentlich abweichen.)

2. Wir bestimmen die Ausbiegungen entsprechend der Momentenfliche mat
geradliniger Achse, wie sie in Fig. 6c¢ dargestellt wurde.

3. Wir bestimmen die deformierte Form und die Momentenfliche des
Anfangszustandes entsprechend den Fig. 6d und 6e. Die Rahmenmomente fiir
den Stab 1, bzw. 2 betragen nach Fig. 6¢

My, = oy By P bzw. My = a5 (Br+Bs) no P,

P,
/81=?= 52:?2-

Diese Werte sind als Verhiiltniszahlen angegeben. In den Formeln treten 7,
a; und «, als Unbekannte auf. n, féllt jedoch heraus, da 7, auf beiden Seiten
der Forménderungsgleichung vorkommt. Der Einfachheit halber kénnte man
1o=1 annehmen.

4. Nun berechnen wir mit einer geeigneten Methode die endgiiltigen Momente
M,,, M,,, M,. Es ist zweckmiflig, den Ubergang vom Anfangszustand zum
Endzustand bei den auf Stab 1, bzw. Stab 2 wirkenden Momenten gesondert



152 LASZLO PALOTAS

durchzufithren. (Fig. 6f und 6g). M, =M+ M, ,; M,, My1Mops Mpa=
My o Nop- Die Momente m,, und m,, ergeben sich aus den Verschiebungen
nor=1, 7ge=1 und der Last P=1.

5. Mit dem folgenden Schritt erhalten wir die endgiiltigen Hilfsmomente
(my1,my,), die die an der Stelle des Gelenkes 1, bzw. 2 wirkenden Belastungen
@;=1 und ¢,=1 hervorrufen. (Fig. 6h und 6i.) Diese Momentenflichen ent-
sprechen ihrer Form nach denjenigen der Momente m,,, und m,,,, bzw. sie sind
mit ihnen im MaBstab m,, =1 und m,,,=1 identisch.

Es ist somit zweckmifBig, zuerst die durch @;=1 und @,=1 zustande
gekommenen Momente m,; und m,, zu bestimmen und aus diesen die Momen-
tenflichen m,,; und m,,

6. Es sind nun die durch die Lasten @, =1 und @,=1 dem System zuge-
fihrten duferen und inneren fremden oder eigenen Energien zu berechnen, die

die Knickbedingung fiir den Wert, P, ergeben.

o) Die durch €, =1 gewonnene Formdnderungsenergie ist

(Ly) = (@1 =1)oy Mo = %1 7o>

P P
12 Mpy1M Mpa M, Mp1M Mp2 M
N =7T—[f—8——d+f——8——d] T [f~—d+j~————d]
— (+) (+

Bei der Berechnung von N erstreckt sich das Integral in den beiden ersten
Gliedern iiber alle Druckstéabe. Bei den ausgebogenen Druckstidben, fir die
der Modul Z, maigebend ist, steht im Nenner das Produkt &7, bei den Biege-
und Zugstiaben kommt nur = vor, da =1 ist. In den beiden letzten Gliedern
ist nur iiber die Biege- und Zugstdbe zu integrieren.

Ordnen wir den Ausdruck der duleren und inneren Form#inderungsenergie

und fiithren wir den Wert w = E—I}— und die Bezeichnungen
12 Mp1Mg1 Mp1 Mg
4, =12 f 1’ Qd+f-———1’7 gz,
(£)
12 mpgmq1d - [mpzmqldz
T \
()

ein, gewinnen wir die folgende homogene Lineargleichung
oy (w Ay —1) +oy(wAy) = 0.
B) Die durch Q,=1 gewonnene Forminderungsenergie

(Lk) = X2 My,
(Ly) = now Ny +mgw Ny = nyw N;
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hier betragt
12
N =— oy m——**———plqudz-l-az ———mpzqudz + |y ——mplqudz+oc2 m——pzqudz ]
(—) (=) (d) (+)

Die Gleichung der dufleren und inneren fremden angenommenen Energie
ist:
oy (w Ayp) +og (wAgy—1) = 03

hier ist
12 (m 1Mge Mp1 My2
Ay == | 2—Lde+ | 2—Ldz
127 52 oT + T ’
(=) (%)
12 (myam My 2 M,
Agy = — | 72202 q2dz+f—“ 22 1z
o 8T T
=) (£)

und das homogene lineare Gleichungssystem, das die Knickbedingung aus-
driickt
o (@A —1)+op(wdy) =0,

oy (w0 Ayp) +op (w0 Ayy—1) = 0.

Die nicht triviale Losung dieses Systems gewinnen wir, wenn die Beiwert-
Determinante verschwindet:

D= wA;, wAly—1 -

und P, =wkE,J,

Die in den einzelnen Stdben auftretenden Druckbelastungen betragen:
F, =2 B by-
In bezug auf w ist die Determinante quadratisch. Wir erhalten aus diesem
Grunde fir

Pk:
EyJy

zwei Werte. Von diesen Werten ergibt der kleinere die mafigebende kritische
Last, die dem skizzierten antimetrischen Knickfall entspricht. Der andere
Wert gilt fiir das symmetrische Knicken. Fiur die kritische Last ist w,,;,
maligebend.

'Pkmin = Wy EOJO

mn
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3. Stabwerke mit verschieblichen Knotenpunkten

Weist das Stabwerk verschiebliche Knotenpunkte auf, miissen bei den
Knotenpunkten und bei den starren Einspannungen elastische Gelenke einge-
fiihrt werden. Im Anfangszustand ist somit fiir die einzelnen Stibe der Euler-
sche Fall «5» giilltig. Wenn die elastische Gelenkfigur bestimmt ist, kann die
Knickfigur so angenommen werden, daf3 die einzelnen Balken und die Stab-
enden lings der Balkenachsen relative Verschiebungen 7, 7s... erfahren.
Das Knicken tritt bei einem bestimmten, vorldufig noch unbekannten System
von Verschiebungen ein, das eine Funktion der Geometrie und der Steifigkeits-
verhéltnisse des Stabwerkes ist. Auf Grund der in unseren Untersuchungen
angenommenen Voraussetzungen entspricht eine auf diesem Wege bestimmte
Ausbiegungslinie — als verwandte (affine) Form — einer bestimmten zu ihr
gehorenden kritischen Belastung.

Wir wenden nun das Verfahren bei dem in Fig. 7 gezeigten, zweifach
beweglichen Rahmentragwerk an.

Bei der Belastungsanordnung der Fig. 7a kann die Form P, =8, P ange-
wendet werden. In Fig. 7b ist der wahrscheinliche Verschiebungszustand der
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elastischen Knotenpunktfigur im Moment des Knickens dargestellt; es handelt
sich um diejenige Lage des indifferenten Gleichgewichtszustandes, die dem
stabilen Gleichgewichtszustand am n#chsten liegt.

Die im Augenblick des Knickens im urspriinglichen Rahmentragwerk ent-
stehende gekriimmte Figur und die dazugehorige Momentenfliche sind form-
treu in Fig. 7c und als Anfangszustand in Fig. 7d nochmals dargestellt.

Die gesamte, in der Kbene des mit «/» bezeichneten Balkens auftretende
Verschiebung betragt

Mg = a1 Mo+ %My = (g + ) 7p;
das heil3t ooy =1.

Das auf dem Schnitt 1 der elastischen Knotenpunktfigur wirkende Rahmen-
moment betrdgt mit den Bezeichnungen der Fig. 7e

My = oy Bymo P+oyBang P = oy (By+Be) o P = oy myymo P
und allgemein
My =0y 2 Brne P = aymyymy P,
myr = 2. Pr-

B; bedeutet hier den Lastanteil simtlicher iiber dem Schnitt 1 angreifenden
Belastungen. Die Summe bezieht sich somit auf alle iiber dem Schnitt 1
wirkenden Lasten.

Das im Schnitt 2 wirkende Rahmenmoment betriagt nach der Fig. 7f

Myrr = oa (Br+B2) Mo P+ oo (Bs+B4) 1o P = agmyzrmo P,
hieI‘ iSt mkU - ZBII'

2B umfallt diejenigen Belastungen, die oberhalb von Schnitt 2 angreifen.
Das ganze durch die Verschiebung des Systems hervorgerufene Rahmen-
moment betrigt somit

My = Myz+ Mygr = oy 2 Brng P+og 2 Brrmo P

(Es ist zu beachten, dal die Belastungen P von den Balken auf die Stiitzen
iibertragene aktive Belastungen sind und nicht lediglich auf die Stiitzen wir-
kende Druckbelastungen.)

Die in den Formeln auftretenden «; , «, und 7, sind unbekannt. Im folgenden
Schritt bestimmen wir mit der im vorigen Abschnitt beschriebenen Methode
die aus den Rahmenmomenten stammenden anfinglichen Verschiebungskrifte
(Schubkrifte) 7 und aus diesen die anfinglichen Einspannmomente M ;. Es ist
zweckmiBig, die Momente M, in zwei Schritten zu bestimmen: Zuerst den zur
Verschiebung o, n, gehorigen Wert M, ; fiir den ganzen Rahmen, wobei sich
die Verschiebung «, 7, auf das Rahmenfeld I bezieht; zweitens den zur rela-
tiven Verschiebung o, 7, gehorigen Wert M, fiir den ganzen Rahmen, wobei
sich die Verschiebung «, 5, auf das Rahmenfeld I bezieht.
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Die Momente M ,, =«, m, o P erhilt man aus den anfianglichen Einspann-
momenten M, ,, die nur auf jene Stibe wirken, die eine relative Verschiebung
oy Mo erfahren haben, d. h. nur mit P,, P, belastet werden.

Die zu berechnende Verschiebungskraft betrégt fiir das Rahmenfeld I auf

Grund der Fig. 7g und 7h

H, = My _% 2 Brmo P
! b l

hier ist > 8; =B, +B5; k;: die der Belastung P =1 entsprechende Verschiebungs-
kraft.

= ayng P hy;

Ty = pihrogne P, M, =31l =Fpihglyogn P,
Ty = prhragne P, My = 3Tl = $p3hylya;ne P,
k kg

P mmpep h=BL b=Eh  L=b

Auf Grund der anfinglichen Momente gewinnen wir nun die endgiiltigen
Momente, die die Ausbiegung o, n,, bzw. das Rahmenmoment M, , hervor-
rufen (Fig. 7i)

Mpl = “1mp1770P

Die Momente M, , = aym,, 7, P lassen sich auf Grund der anfinglichen
Einspannmomente bestimmen.
Nach den Fig. 7j,k betragt die auf das Rahmenfeld 77 wirkende Schubkraft

H., — M1 — oy 2 Brrne P
o= iy
(Im Rahmenfeld I bei der relativen Verschiebung «,n, ist die Schubkraft
null.)
Dabei ist > B;r=PB1+Bs+Bs+By; hyr ist die der Belastung P =1 entspre-
chende Schubkraft; m,=p,l, +p,1,;

= oc27311”’)01)-

_ky Kk
Pe =1 ¥k, Pa= 5 3k
_H,J, _E,J,
B=Tm e

Ty = polyyoyme P, My = pyhrosne P,
Ty = pahgrasny P, My =3pyhlyocsne P

Die endgiiltigen Momente (Eig. 71):

M

D

2 = o‘277%02770P

Die durch die Hilfsbelastungen @, =1 und @,=1 hervorgerufenen Momente
M,y und m,, sind in den Fig. 7m und 7n dargestellt.
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Die #uBlere und innere aufgenommene Formidnderungsenergie infolge der
Hilfsbelastungen @; und @, lassen sich folgendermaflen darstellen.
Bei der Belastung Q; =1 ergibt die &ullere und innere aufgenommene Form-
anderungsenergie
(0 + o) M = w g [0 Ay +otp Ay],

und wenn wir die Gleichung ordnen:
o fwdy—1]+oy[wAy —1] = 0.
Bei der Belastung @,= 1 finden wir:
g Mo = w g [og Ayg+o0tg Ago],
bzw. oy [w Ayl F oy [w Ay —1] = 0.

Auch in diesem Falle kann — als Knickbedingung — ein homogenes lineares
Gleichungssystem aufgestellt werden. Es konnen so viele Gleichungen ange-
schrieben werden, wie der Rahmen Bewegungsgrade aufweist. In unserem
Beispiel haben wir zwei Gleichungen:

o wdAy—1]+ay[wAyy—1]1 =0,
o [wAyp] +ap[w Ay, —1] = 0.

Der zu w,,;, gehorige Wert der Knicklast betragt

chin = Wyin EOJO

Im plastischen Bereich ergibt sich die Losung — wie frither — durch
sukzessive Naherung.

Ein iiberaus einfaches Néaherungsverfahren besteht darin, dall die zu den
verschiedenen P,-Werten gehorigen Werte von P, in einem Diagramm auf-
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getragen werden (Fig. 8). Der endgiiltige P,-Wert wird als Schnittpunkt der
Geraden unter 45° mit der Verbindungslinie der P,’-Werte gefunden.

Es ist noch zu erwihnen, dall das oben dargestellte Verfahren der «elasti-
schen Gelenke» in seinen Prinzipien in den Jahren 1954 und 1955 in meinen
Universititsvortrigen bereits behandelt wurde. Die Methode wurde auch bei
komplizierten Beispielen angewandt, und es wurden Vergleiche mit anderen,
genauen Verfahren (z.B. mit dem Verfahren von Chwalla) durchgefiihrt. Die
Abweichungen betrugen im allgemeinen weniger als 59%,, und zwar ergab sich
mit dem hier skizzierten Naherungsverfahren im allgemeinen eine kleinere
kritische Last.

Zusammenfassung

Es wird ein Niherungsverfahren fiir die Stabilitdtsberechnung ebener
Stahlbetonkonstruktionen entwickelt, das mit Hilfe der einfachen Methoden
der Baustatik praktisch befriedigende Ergebnisse liefert. Die Methode kann
bei Stabwerken mit festen und verschieblichen Knotenpunkten angewendet
werden und ist sowohl im elastischen wie auch im plastischen Bereich giiltig.
Das Verfahren hat den Vorteil, da§ sich die kritische Belastung nicht in Form
einer Kreis-, bzw. hyperbolischen Funktion, sondern als Ldsung eines linearen,
homogenen Gleichungssystems ergibt.

Summary

A method by approximation is described for calculating the stability of
plane reinforced concrete structures which, although only making use of
simple static methods, provides satisfactory results for practical purposes.
This method can be applied to lattices with fixed or displaceable assembly
joints and is suitable for application in both the plastic and elastic fields. The
procedure has the advantage of determining the critical load, not in the form
of circular or hyperbolic functions, but as the solution of a system of homo-
geneous linear equations.

Résumé

L’auteur présente une méthode par approximation permettant le calcul
de la stabilité d’ossatures planes en béton armé qui, en ne faisant appel qu’a
des méthodes simples de la statique, fournit des résultats satisfaisants pour la
pratique. Cette méthode peut étre appliquée aux ossatures & nceuds fixes ou
déplacables et convient aussi bien dans le domaine plastique que dans le
domaine élastique. Le procédé a l'avantage de faire apparaitre la charge
critique non pas sous la forme de fonctions circulaires ou hyperboliques mais
comme la solution d’un systeme d’équations linéaires homogeénes.
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