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Simplified Method of Analysis for Elliptical Paraboloidal Shallow Shells
under the Action of Concentrated Loads

Méthode simplifiée de calcul des voiles minces en forme de paraboloide elliptique,
soumis & des charges concentrées

Vereinfachtes Berechnungsverfahren fir elliptisch-paraboloidférmige, schwach-
gekrivmmie Schalen unter Hinzellasten

HO KWANG-CHIEN CHEN FU
China

Many authors have studied the stress analysis of shallow shells under the
action of a concentrated load. In 1946, E. REIssNER [1] obtained solutions for
the case of shallow spherical shells, while V. Z. JicaNTU [2], in 1956, obtained
the solution for shallow parabolic shells of revolution. In 1949, V. Z. VLasov
[3] gave the solution for elliptical paraboloidal shallow shells in the form of
double trigonometrical series whose convergence has been proved to be rather
slow, thereby obscuring its practical value for engineering computations.
A. R. RzuantrzyN [4] and H. C. CHAWUSOV [5] attempted to obtain simplified
solutions based on the membrane theory of shells, but for regions close to the
concentrated load, the more exact theory, with consideration of bending
moments and twisting moments of thin shells, is to be preferred for the analysis
in order to obtain good results. In this paper simplified formulas, with accom-
panying tables, will be presented, which will be found to be quite convenient
in application for the design of elliptical paraboloidal shallow shells under the
action of concentrated loads.

I. Fundamental Equations of the Analysis

As could have been observed, the action of a concentrated load on the
vertical displacement and internal stresses of the shell damp out rapidly as
the distance from the point of application of the load increases. It will thus
be more convenient to confine our study of the problem to the case where
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this distance is grater than 6/‘;/? (K will be defined later) from the boundary.
As will be shown later, the effect of the latter will then be quite negligible
and we could, for simplicity, assume that the shell possesses a boundary which
is at an infinite distance from the load. As for the case where the concentrated
load is close to the boundary, we can easily make a correction by the method
of images, as has been done in the case of flat plates [6].

Fig. 1.

With the notations given in Fig. 11), the problem is reduced to the deter-
mination of the stress function ¢ and the vertical displacement w of the shell
that satisfy the following differential equations:

DA?w—A4,¢ = P5(0,0), Ao+ Edsd,w=0, (1)
: : 0 0* 02 o2
in which 4 —%—2-{-—6—?, Ak_k2ﬁ+k1@§,

d is the thickness of the shell, P is the concentrated load and § (0,0) is the Dirac
delta function. In order to avoid some divergent definite integrals that would
appear in the process of derivation, we make use of the relations

*e P
ap . b

(2)

to transform the set of Eqs. (1) into the following:

DA w—(y T+ ey Ty) = P8(0,0),  A(T+T)+E8A,w=0,
2T, 2T,
ox?  oy?’

(3)

As we have assumed for the present case that the boundary is at an infinite
distance from the load and as we know that all internal forces and all dis-
placements of the shell damp out as the distance from the load increases, then

1) As @1 and @2 are not important, we omit them from the figure.
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the boundary conditions would be such that w, T}, T, as well as all their
derivatives of whatsoever order, could be regarded as zero at infinity.
If we make the following double Fourier cosine integral transformations:

W(E) = | [wlay)eos(Ex)cos (ny)dedy = 4] [ woos (€w)cos (1y) dwdy.

B o (4)

T, = 4fofooTlcos (éx)cos (ny)dxdy, T, = ff cos (Ex) cos (ny)dxdy.
0 0

and note that

fm fwPB (0, 0) cos (£ x) cos (ny)dxdy = P

we obtain, after substituting them in (3):

D& 4+22%— (b, Ty + ko T}) = P
(§2+n)(71+7’2)+E5(7€z§2+k1n)W=0> (5)
en =1,
Solving %, 7, and 7}, simultaneously from Eqs. (5) and making the corre-
sponding inverse transformation, we readily obtain expressions for w, 7} and

T, in the form of definite integrals which, by a further transformation of
coordinate represented by

& =pcost, n =psind,
take the following form:
w2 ©
p COS pxcosﬂ) cos(pysmé’)dpdﬁ
w= - D (6)
k cos? 0 + k, sin26)?
(2 ©

_ IQPf fpsm20 (kycos?0 +k, sm20)cos(pxcos0)cos (pysmﬁ)dpdf)
1~ 52 2

(7)
pt + (k cos? 0 + k, sin? )2

(2 ©
IZPJ fpcoszﬁ (kycos? 0+ k, sm20)cos(pxcos0)cos( ysin 0) dp db

T, = — $2 72

(8)
pt + (k cos? 0 + k, sin20)?2

Neglecting the effect of Poisson’s ratio, we make use of the known relations

Pw 2w Pw
Mlz-—DW’ Mz—'—Da—?—/—z‘, M12="— -a—xTy,

to obtain immediately

72 ©

Ef J‘p coszﬂcos(pxcosﬁ)cos(pysm@)dpd@
i : 2 7(102 cos? 0 + k, sin2 0)?

; (9)
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P e sin2 6 cos (p  cos 8) cos sin 6)d dB
M, - _pr (p ) cos (pysin §) dp (10)
5 P +——(k cos? 0 + k, sin? 0)?2
/2 o©
M, =-L “ "p schosﬁsm(pxcosﬁ)sm(pysmﬂ)dpdﬁ- (11)
m J pt +82 (kycos?0 + k; sin2 6)?

If we put S;, in the form:

7|2 o

Kag == f [f (0, p)sin (pz cos 0) sin (p y sin 0) dp d6

and make use of the relation

O _ S, 0T S,
ox 0y oy ox ’

we obtain

/2 0
12Pf fpcosﬁsmt’? (ks 00529+k sinZ ) sin (p 2 cos ) sin (p y sin 8) dp dO

S1p = — S22

2 2
pt + (lc cos 20 + k, sin? 0)2 (12)

In the case where k, =k,=k, we further transform «, v into polar coordinates

r, w and if we take into account the fact that we have here an axis-symmetrical
case, then it is not difficult to obtain

w2 ©
cos (p7cosB)dpdb
w = 2fop (p Jdpds (13)
4+“—k2
w/2 ©
2
o= 12Pkf psm GOOS(pTCOSH)dde, (14)
g 4+8—2k2
/2 ©
12PFk cos2fcos(prcosf)dpdb
T, =-——s= 52 72 J fP 4(P ) )dp ; (15)
0 +§é“k
7 B c0s20 0)dp 48
M, = éjf cos? 0 cos prcos Ydpd (16)
w
& A 4 k2
72
2
M, - _P;f fp sin 0003(p7”0080)dpd9 (17)
3 4+ k2
Mrw: > rwzo' (18)

Thus we succeed in expressing the vertical displacement and internal stresses
of the shell under the action of a concentrated load in the form of definite
integrals and the solution of the problem is thus reduced to the evaluation of
these definite integrals.
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II. Formulas of the Analysis

A. For the Case ky=ky=Fk

We take advantage of the mathematical formulas

[eo]

/2 T pdo(pr) .
Of cos (prcosf)di = §J0 (pr), f?q_{-_rdp = —kei (r)
0

to obtain readily from Eq. (13) that

Vsp . . _
Ttk ke )
4
in which r = gkzr.
From the relationships
d*w 1 dw
M, ==Dom  Mo=-Doo-
we obtain M, = Ed [ker (r)— lc_ezT(_r_)] ,
27
P kei' (7)

@ 27 F

Furthermore, it can be proved mathematically that

/2 >
6[ sin?@ cos (pr cos ) df = %Jl (p7), ﬁ,((_':i)dp = %—Hcer’(r),

0

With these relationships we obtain from Eqs. (14) that
T = _V3P _l_l_ker_(?) .
wd |73 7

From the known relations

_ 1 d(p _ d2<p
T=va  Te=gm
we have T —fl—(rT)
@ gyt T
Thus we obtain T, = @ _i+kei (F)+ker_ ©) .
@ 7é |72 r

129

(19)

(20)

(21)

(1)

(22)

(23)

We find that Eqs. (18)—(23) are exactly the same as those given by E. REISSNER
[1] for shallow spherical shells. That is to say, the same set of equations can
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be used for elliptical paraboloidal shallow shells of equal radii of curvature in
both directions as well as for shallow spherical shells.

As formulas (18)—(23) are quite simple, they will be suggested for design
work and tables have been prepared to facilitate the computation. Thus we
have

r--LPe, w =L,

V3P , _
”mfs(”y

" (24)
r,--LLhe, w-Lhe.

in which f, (7) — f; (¥) can be found in Table 1.

B. For the Case k,+k,

It is somewhat difficult to perform the integrations of Egs. (6)—(12)
directly, but for the point immediately beneath the concentrated load (i.e.
for the point =0, y=0), the integrations can be easily performed so that
we obtain

. V3P V3 P
w0,0 = T 0,0 =T 0,0 = — =<
0.0 = e 10,0) = T4(0,0) = =5

2
M,(0,0) = M,(0,0) = o0, Mi5(0,0) = S;,(0,0) = 0. e

For any other point on the shell, the integrations can be performed in the
following manner.

Expand the denominator within the double integrations of (6)—(12) into
series:

1 1
12 . = 12 ) =
p*+ 5z (ky 00820+ kysin?6)*  (p*+ K) + [8—2 (ky cos2 0 + k, sin2 0)2—]{]
(26)
1
R o T 2_ T8 ...
p4+K [1 L+ L 13+ ],
—13—3— (kycos?f+k,sin20)2— K
in which L = ATE

and K is a constant so chosen as to ensure the condition of convergence of
the series i.e. we must make |L|<1.

Here we choose K =56§(k%+k§) so that whatever the ratio of k,/k, may be,

the series will converge. When k, =k,, we have L =0 so that the series (26) is
reduced to its first term only, and Eqgs. (6)—(12) are reduced to (13)—(18).

Let 5=, A:%&
2
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1 1
then = [1—-L+L2—---], (27)
p4+%;2(k2 cos20 +k,sin2g)z K (P +1)
N 2(=1) 1 14X L., -
in which L= N1 ﬁ4+1[— 5 +2sin26+ (A—1)sin0].

If we substitute (27) in (6)—(12) and attempt to integrate first with respect
to 6, we shall meet the following two types of integration:

7|2

H,, = [ cos(pzcosB)cos(pysinf)sin2”0d0, (28)
0
/2

D,, = [ sin(pZ cos ) sin (pysin f) cos §sin2"+1 640, (29)
0

4,— 4,
in which z=VKux, ?zl/Ky, n=0,12,.

These can be evaluated without difficulty if we differentiate a certain number
of times, with respect to Z or 7, the following mathematical identity:

Jy (57), (I1D)

fm~cos (px cosf)cos (pysinf)di = %
0
4,
in which 7 = VK r.
Thus we obtain
_ _77_ J (ﬁ_) 2nn—1 Jn—l (ﬁ?) ) 210 - =
H,, = 5 [T G +7r *(’?7—,)7_1‘4‘ +72n0J, (p7)|, (30)
(n=0,1,2... altogether n+1 terms)
zf_ 2n _‘_1Jn+1(P7‘) Snn Jn(ﬁTﬂ) 270 -
and D,, 3 [s & G +s e + +s270J (p7)|, (31)

(n =0,1,2... altogether n+2 terms),

in which r2nn—i g2nn—i gre definite numerical coefficients 2).

On integration upon p, we shall obtain the following two types of integra-
tion:

mn __ 1 p I (PT) .-
o = 77%?( S T 152)
Kmn — _1_ i 133 ] Jm ()67) —
Fm - 7 f(pfl_'_ 1)1+n -m dp, (33)
0

in which m,n=0,1,2. ..

2) For detailed accounts of these coefficients see reference [7].
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After a series of mathematical operations upon (I) and (II), these can again
be integrated into the following:

Iy = —kei(F),
I__l(_) = i [:1+kerl (?)-I s
r r|r ]
I 11 2 / =
2 - alpor ke ),
T 17T 7 4 (2 '
7 =@ ﬂ‘%(?lw“l"“)“—l"“)]’
Lo _1[_ ™% 2@-1(20-2),
o TElEEeonr T (T T e
2(n—3
+ (“i“?———) Iy 50— In-40)] (nz4), (34)
i *%{(__ am )Lm*_4mJ““J mz1).
Ky = ker(7),
Ky o
— = (=Io)'5

..........

Kno i(Q(n—_1)172—10_'112—20) (an):

7 rr r
K 1 —(n—4 r o,
;ﬁm = 7_n I:(l_—(‘lﬂl———)) Knm—-l—mKnm—l] (m; 1)'

Thus the vertical displacement and internal forces of the shell can be finally
expressed in the form of series composed of certain combinations of Thompson
functions such as those given in (34). For instance, we have

P K 21 —1 K K K
M, = _ﬂ{(doo K oo+dyo 710) B )52+ 1 : (dm Ko tdn F11+d21 ?221+d31 73?1)

2(A—1)]" K Kypiin
+_,,+(_1)n[ A2+ 1 ] (dOnK0n+d1n ?1n+"'+d2n+1n 72%1—_; +”'}’

(35)
in which d;; are definite numerical coefficients 3).

The convergence of the series is quite good and only a few terms are neces-
sary for the ordinary scope of application i.e., for 0.5 <A < 2. For example, if
we take the case A=2 (the closer is the value of A to 1, the better will be the
convergence) and compute the value of w (0,0) and 7} (0,0), we obtain

3) For detailed accounts of these coefficients, see reference [7].
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V3P 1
4 E 8k, k, V1.25

w(0,0) = (1+0.025 + 0.0687 +0.00605 + 0.0138

_ V3P 1
4 B 8*Vk, k, V1.25

V3P 1114
4 B8Vk, k, 1.1197

+0.00081 + - - -) [(1+0.025) + (0.0687 -+ 0.00605)

+(0.0138 +0.00081) + - - -]

_V§P 8 _1/§P 0.2005

= — (0. —0.0324 4+ 0.0144 — . . . ) &y — 202 270
T, (0, 0) =% V2'5(O2185 0.0324 + 0.0 ) 85 0103

which deviate from the exact values given by formulas (25) by less than 0.59,
for w and by about 1.269, for 7j.

However, formulas like that given by (35) are still too complicated for
design work computations. As these formulas contain only one variable 7 and
one parametric constant A, empirical formulas could easily be derived from
them. Computations by means of these formulas show that all values damp
out insignificantly at 7=6. After a series of computations based upon these
formulas for various values of 7 and A, it is found that the variations are quite
regular and empirical formulas could be formulated. For ordinary design work
purposes, it is sufficient to know the values of the vertical displacement and
internal forces of the shell along the x-axis, the y-axis and the line equally
dividing the x- and y-axis before a design can be made. The empirical formulas

suggested for the design work will then be, with K =-8% (k34 k3) and A= %:
1. For 0<r=<4
a) Along the z-axis:
V3P, _
T, =-—5h), (36)
7 =__l/ili{fz(i)+()\—1)[(0.07—O.OZA)SinM—O.OOS]}, (37)
o 3.5
P _ . (T+0.8)7
iy = i)+ 008 - 1)sin T2, (38)
P o A=DT. (0.5-F)7
u, = AR+ [ BT T 60— 6], 39
B P _ 1 . (0.56—-7)7
w = m{fs(r)ﬂh—l)[“sm E +0.04A—0.01]}, (40)

M12= 812=0- (41)
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b) Along the y-axis:

M12

+0.0222— 0.013]},

REEINGY
BEE TN
Ti{f4 (7)+0.02(A—1) [()\— 1) sin(iL;fE+A]},
V‘Q—i{fg )+ [(10.4 ~3.60)sin T AT
2ﬁgwgbua+wA_n[1;5an”+39”7
Sy =0

c¢) Along the line equally dividing the x- and y-axis:

T
T

M,

V3P, _
- 27 f5(7')7

V3P

_ __{f5 () + (A\— 1) (0.036 — 0.008 X) sin {4 _;) 7T},

GRS
;—T{fﬁ M+A-1) [%sin(zza_;)ﬂ + %]}
5

2.

;;_{fﬁ (F)+(A—1)[0.035—0.018 (A —1)]

),

VjSP fS(/F)7

P 1 . (3.25—7)=

3.
7

2},

A—-1

+(l.2/\—2.8)]},

27D V]?{fS M+(A=1) [ﬁsm 5.5

2. For 4<7<6

a) Along the z-axis:

T

T,

RELINO)

V3P
mo
P

QWDVX

{}» () + (A —=1) (0.005 — 0.0037)},

{fs(7)+(A—1)[0.0117—0.107]}.

50

I}

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)
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b) Along the y-axis: -

Tl = VSsz (58)

Tz = V38P f1 ) (59)

w = L _{f (r)+( —1)(0.167—0.027‘)}. (60)
27TDV >

c¢) Along the line equally dividing the x- and y-axis:

3P
I = 1/2778 /5 (7 (61)
P
T, - Vgigfs (62)
P _
= mfs(”- (63)
CAE Ly (64)

As far as the values of M,, M, and M,, are concerned, it is sufficient to
take a linear variation within the interval 4 <7 <6 from the value at 7=4 to
that of zero at 7=6. S, is equal to zero along the x-axis as well as along the
y-axis.

It should be noted that the axes are so chosen that &, =%, and that the
scope of application is the‘n 1=Ag2.

The values of f, (F) — f5 (F) can be found for different values of 7 from Table 2.
They are defined by the following formulas:

fs (7) = ke;(f),
£ () = kez; (r) ke;(?)) (65)
f (F) = ;7_15 + lce;’ (7) + keiQ(?).

Formulas (24) and (36)—(64) are only applicable when the concentrated

load is at a distance greater than 6/4VK from the boundary (i.e. when 7 =26).
For the case where the concentrated load is close to the corner or to the
boundary of the shell, then the method of images should serve as a correction
to these formulas and it will be applied in a similar manner to that used for
flat plates in reference [6].
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I1I. Some Further Applications of the Formulas

A. Circular Line Load Formulas for Elliptical Paraboloidal Shallow Shells with
Equal Raduvi of Curvature in Both Directions

As the circular line load can be regarded as a ring of concentrated loads,
we obtain from Eq. (19) that

qaV3 [ I/—“
w=~w—Em (Vz Va2 +r2— 2arcosw)dw, (66)

in which ¢ is the intensity of the circular line load per unit length of the ring.
From the mathematical identity:

r<a: Ky(Va2+7r2—2arcosw) = I,(r) Ky (a)+2 io‘, I, (r)K,(a)cos (nw),
. (AT
rza: Ky(Va2+r2—2arcosw) = Iy(@)Ky(r)+2 > I, (a) K, (r)cos (rnw),
n=1
Eq. (66) can be integrated as:
) Vqua 2 e _
rsa: W=y [ber (T) kex (@) + beu (7) ker (a)],
) Vl?qa — - -
rza: W =—mar [ber (@) ket (F) + ber (a) ker (7)], (67)
_V12qa
r=0: w(0,0)= S kev (@),
4
in which @ = %kza Hence it follows that
rsa: M, = qalkei(a)ber” (7)+ ker (a)bes” (r)],
M, = qai1 [ber’ (F) ket (@) + bed” () ker (a)];
rza: M, = qalber(a)kei” (F)+ bei (a) ker” (7)], (68)

M, = qa-;— [ber (@) kei’ (7) + bei (a) ker' (7)];

r=0: M,(0,0) =M, (0,0) = %‘flm (@).

Fig. 2. Circular line loads. Fig. 3. Circular ring loads.
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As ¢ =[T,rdr, we therefore obtain from (22)

p = —% [In (7) + ker (F)]. (69)

Here we neglect the constant of integration of ¢ as it does not affect the inter-
nal stresses of the shell. For the case of circular line loads, we then have

2
19 [R K(V@ —lczl/az—l—r2 2arcos:u)

YT T onk
0 (70)
+ln(l/a2+7"2—2arcosw)] dw.
From the mathematical formula
7 9 0 (a>r)
Bl 2 2 _ _
e [(j)~ In (Va?+72—2arcos w)dw] = {27 (@<r) (V)
we obtain through Egs. (22) and (23)
rsa: 7 = V182qa[ber (F) ker (@) — bes” () kex (@)],
T, qu“[ ker (@) ber” (7) + kei (@) bes” (7)] ;
rza: | T = Vl;qa[ber(a)kw (7) —bet (a) ker’ (7‘)+%], (71)
T, = l/lzqa [-—ber (@) ker” () + bet (@) kex"” (F) +?l2] ;
r=0: T.(0,0) = T,(0,0) = V?’Sq“kei(a).

B. Circular Ring Load Formulas for Elliptical Paraboloidal Shallow Shells
with Equal Radiv of Curvature in Both Directions

These formulas may be readily obtained by integrating a from a to b as is
clear from Fig. 3. Thus we obtain

r>b: ” =——E—%c§[kei(i)3r+ker(7)li’i],
M, = ‘/ T [kes” (7) B, + ker” (¥) B,],
M, = L2 [kei’ (7) B,+ker' (7) B, (72)
V12k7
T =——q—[ker (7) B, — kei’ (r)B+ ! (b 52)],

k
_ g N " (= _1_ _2__—2 .
T, = ? I:B-kez (r)— B, ker (7')+2?2(b a )],
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a<r<b: w

T = —%{—a[bez (@) ker’ () + ber” (@) kes’ (F)]
+b [kei’ (b) ber’ (F)+ ker’ (b) bes’ (7)] +% (72— a2)},
T, = %{a[bei'(a)ker” (F) + ber’ (@) kei” (7)]
—b [kei’ (b) ber” (F) + ker’ (b) bei” (?)]—2—1?-2(?2—{—62)};
r<a: w = ESkz[ber()Ki—i-bei(F)K,],
M, = V—;—-[ber"( 7) K, +bei" F) K,],
M, = 1/12 T[ber (7) K; +bed’ (1) K, ],
T, =—ﬁ[ber’(?)KT—bei’(?)K,-],
T, = Eq[bei” (7) K, —ber" (7) K, ;
r=0:  w(0,0) =-L K,
B
M,(0,0)= M, (0,0) = 2VqI§k K,,
T.(0,0) = T, (0,0) = quK
in which B, = —bber’ (b) +aber (@), B, = bbei’ (b)—abei’ (a),
K, = —bker' (b)+aker (@), K, = bkei’ (b)—akei’ (a),
a= ] e, b= ] l%kzb, F= ] e,

_ 9
E b k?

52
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{a[ker () ber’ (@) — ker (7) ber’ (a)]

+b [bez' (7) kei’ (b) — ker’ (B) ber (7)]— 1},

{a [ber' (a) ker” (F) —bed' (@) ked” (T)]
V 12 k

+b[kei’ (b)bei” (F) — ker’ (b) ber” ()]},

9° _ alber (@) ker' (7) —bei’ (@) kei (7)]
r

+b [kei’ (b) bei’ (F) — ker’ (b) ber’ (F)]},

(73)

(74)
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Appendix
Table 1
fi (7)
7
f1 (%) fa (7) fs (7) fa (7) f5 ()
0.00 0.396 0.396 0 le'e) 0.782
0.25 0.382 0.364 0.510 1.004 0.746
0.50 0.360 0.311 0.190 0.666 0.672
0.75 0.334 0.251 0.027 0.478 0.584
1.00 0.305 0.190 —0.066 0.352 0.495
1.25 0.277 0.133 —0.118 0.263 0.410
1.50 0.248 0.083 —0.144 0.197 0.331
1.75 0.222 0.041 —0.156 0.150 0.262
2.00 0.197 0.006 —0.152 0.110 0.202
2.50 0.153 —0.043 —0.129 0.060 0.111
3.00 0.118 —0.067 —0.098 0.031 0.051
3.50 0.091 —0.075 —0.067 0.015 0.016
4.00 0.070 —0.073 —0.042 0.006 —0.002
5.00 0.043 —0.055 —0.012 —0.0002 —-0.011
6.00 0.029 —0.036 —0.002 —0.001 —0.007
Table 2
fi (7)
7

fe (7) f2 (7) fs ()

0.00 o'e) 0.000 0.000

0.25 0.757 0.247 0.009

0.50 0.427 0.239 0.025

0.75 0.252 0.225 0.041

1.00 0.143 0.209 0.058

1.25 0.073 0.190 0.072

1.50 0.026 0.171 0.083

1.75 —0.003 0.153 0.091

2.00 —0.021 0.131 0.096

2.50 —0.035 0.095 0.098

3.00 —0.034 0.064 0.093

3.50 —0.026 0.041 0.083

4.00 —0.018 0.024 0.071

5.00 —0.006 0.006 0.049

6.00 0.000 —0.001 0.032
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d

Summary

Simplified calculation formulas for determining the vertical displacement
and internal forces of elliptical paraboloidal shallow shells under the action
of a concentrated load are given in the paper. For the case of shallow shells
of unequal radii of curvature, the formulas finally presented are of the empiri-
cal type and, with the aid of tables, they are quite convenient for application
in design work. Formulas for circular line loads and circular ring loads are
also given in the paper for the case of equal radii of curvature in both direc-
tions of the shallow shell.

Résumé

Les auteurs présentent des formules simplifiées pour le calcul des déplace-
ments verticaux et des sollicitations des voiles minces en forme de paraboloide
elliptique, soumis & une charge concentrée. Lorsque les rayons de courbure sont
différents, les formules finalement données sont du type empirique et, a Iaide
de tables, elles peuvent étre utilisées pour des études. Pour les voiles présentant
des mémes rayons de courbure dans les deux directions, les auteurs donnent
également les formules relatives & des charges appliquées le long d’une circon-
férence ou sur un anneau circulaire.
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Zusammenfassung

Es wird ein vereinfachtes Berechnungsverfahren fiir die Bestimmung der
vertikalen Verschiebungen und der inneren Krifte von elliptisch-paraboloid-
formigen, schwachgekriimmten Schalen unter einer Einzellast behandelt. Fiir
den Fall der schwachgekriimmten Schalen mit ungleichen Kriimmungsradien
werden empirische Berechnungsformeln aufgestellt; sie kénnen mit Hilfe der
Tabellen in der Baupraxis sehr einfach verwendet werden. Die Formeln fiir
eine kreisférmige Linienlast und fiir eine Ringbelastung werden nur fiir
Schalen mit gleichen Kriimmungsradien in beiden Richtungen angegeben.



Leere Seite
Blank page
Page vide



	Simplified method of analysis for elliptical paraboloidal shallow shells under the action of concentrated loads

