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Lateral and Torsional Buckling of Thin-Walled Beams
Déversement et flambage par torsion des poutres & parois minces

Kippen und Biegedrillknicken dimnwandiger Trdger

JOHN E. GOLDBERG JOHN L. BOGDANOFF WILLIAM D. GLAUZ
Ph. D. Ph. D. Ph. D.
Purdue University, Lafayette, Indiana, USA k

Introduction

A problem of occasional, and perhaps increasing, interest is that of deter-
mining the buckling strength of thin-walled members when subjected to
longitudinal compression, to longitudinal bending, or to combinations of these.
In the usual formulation of these problems [1]1), it is assumed that the cross
sections do not deform in their own planes during buckling and, therefore,
that the buckling mode is characterized by lateral bending of the entire member
or by a combination of lateral bending and torsion. Even with this simplifying
assumption, the determination of the loading at which the member will fail
often is an inordinately tedious task for unusual or irregular sections. The use
of a computer in making this determination is therefore justified, and it is
also true that a more comprehensive theory may, with a computer, be employed.

The purpose of the present paper is to report on a method for determining
critical loads which, in addition to general bending and torsion during buckling,
includes the effect of deformation of the cross sections in their own planes.
The method has been developed primarily for use with an electronic digital
computer.

Members must be prismatic and are considered as comprising a sequence
of longitudinal strips or elements, each of which extends the entire length of
the member (Fig. 1). There may be as many elements as necessary to represent
or to approximate the cross section. Thickness and material properties may
vary from strip to strip as well as within strips. Thus, certain composite con-

1} Numbers in brackets refer to items in the List of References.



92 JOHN E. GOLDBERG - JOHN L. BOGDANOFF - WILLIAM D. GLAUZ

structions may be treated. Likewise, buckling which occurs when all or a por-
tion of the cross section is stressed above the proportional limit may be handled
if a suitable stress-strain law (e.g., the tangent modulus law) is postulated.
The cross section may be open or closed and need not have an axis of symmetry.
For clarity, the member and its elements are assumed to be simply-supported
at the two ends. However, the procedure may be extended to certain other
end conditions.

If the initial curvature of the member before buckling may be neglected,
each of the elements may be treated as a flat plate. On the other hand, if
initial curvature cannot be neglected, each strip may be treated either as a
segment of a conical shell, a segment of a cylinder, or a sector of a circular
plate, depending upon its inclination to the plane of the neutral axis. Because
of limitations of space, equations are presented only for the case in which
initial curvature may be neglected.
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Fig. 1. Typical thin-walled section. Fig. 2. Differential element showing tractions.

Theory

The member is assumed to be subjected to a combination of axial load and
pure bending moments in a specified ratio. These produce longitudinal mem-
brane forces, N, (average stress times thickness), which may vary over the
cross section. .-

For a flat plate element subjected to initial longitudinal membrane forces,
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N,, due to axial load and primary bending, the differential equations of equi-
librium in the buckled state may be taken as [1]

N A 25 277
3Nx+3Nm/_NO(8v 8u): ,

ox oy dxdy oy
ONy, , dN,y 2Q, 00Q, 2w
oy t5 0 oz T dy 03—y§_0’ (1)
aﬂwy 8My N _ aﬂa‘y aﬂzt N
ox oy T =0, oy oz +6, =0
The relations between the stress resultants and displacements are given
by [1]
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It is convenient to introduce two new dependent variables; namely, tlxe
slope in the z-direction denoted by S, and the effective or Kirchhoff shear, V, :
= 0w — oM,

ox’

. (3)

Since we have assumed a member simply-supported at its ends, we may
now assume the dependent variables to vary harmonically with y; thus,
Y

u(x,y) = u(x) sin—L—

and similarly for w, S, va, szy, Mx, My, @w, and in while

v(x,y) =v(x) cos 7Y

L

and similarly for N,,, M,, and @,,.

It is readily seen that
V.=@Q,+ % M,,.

Substitution of the assumed form of the dependent variables into (1) and
(2) reduces these equations to
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From (5) we obtain
2
Ny=VNx—B%(1—V2)v; M,=vM,+D(1-? (-E-) w. (6)

Eliminating ¢, between the third and fourth of (4) yields

de w dey T 2 T 2 .
iz VT da "(T) My_NO(T) w=0. (7)
The last of (4) may be written as
aM, w r _
P (Qx+mey) +QTMW =0. (8)

From the foregoing we obtain the following system of eight first-order
simultaneous differential equations:
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It may be noticed that no derivatives of properties appear in (9). Never-
theless, these equations are valid for strips in which the thickness and material
properties may vary with . '

In addition to (9), we require transformations at the common edge or joint
between two successive strips as shown in Fig. 3. It is easily seen that these
transformations are

_ Q- + _ AN —
S+ =8 s ny“ny’
ut =u~ cosa+w sina, wr =w cosa—u" sina,
e A . e AT i
N} =Njcosa+ V;sine, Vi =V, cosa—N;sino.

Vy vt
N% *
w- ut x
wt

Fig. 3. Transformations at Joint.

Eqgs. (9) form a system of eighth order which, when specified values of N,
are inserted, and with arbitrary initial values, may be integrated numerically
from the edge x; =0 to the opposite edge. This may be done using any suitable
technique, such as the Runge-Kutta fourth-order process [2], applying the
transformations (10) where necessary. These differential equations are subject
to four boundary conditions at the edge x, =0 and four additional boundary
conditions at the opposite edge of the section, z, =b,. For unsupported sec-
tions such as shown in Fig. 1, the conditions at z; =0 clearly are

N,=N,, =V,=M,=0. (11)

No difficulty arises, however, if more complicated conditions exist at the
initial boundary such as, for example, an elastically built-in edge.

Assuming a section such as shown in Fig. 1, for which (11) apply, we observe
that the four components of displacement at the boundary x, = 0 are not known
a priori but, if N, has its critical values throughout, must be such as to satisfy
the correct boundary conditions at the opposite edge.

In order to investigate the question of satisfying the four terminal boundary
conditions, we transform our problem into a linear combination of initial
value problems. Taking, as an example, the section with a free edge at x, =0,
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we integrate (9) four times with four Jinearly independent sets of initial values
for the displacements, taking these, for convenience, according to Table 1 and
taking the initial values of the stress resultants according to (11) for each case.

Table 1

Initial Values
Case
u v w S
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Now, each of the four cases yields numerical values for the complete set of
eight dependent variables at the opposite edge as listed in Table 2.

Table 2
Values at x,=0b,
Case

1 u@) o) w) S NW NG Mw vw
2 w2 @ w®) S@) N@ NZ) M® Ve

3) 3) 3 @)
3 w3 p®) w3) S® NE NG M@ Vv,
4 u@ @) w4 S@® N@- N ;3,) M vy

If the values of N correspond exactly to a critical combination of loads, it
would be possible to find a linear combination of Cases 1 to 4 which would
satisfy the desired specified boundary conditions at the edge of the last strip,
x,=>b,. For example, if this edge is free, a linear combination of the above
solutions would be required such that

C,NDY +C,N® +CO;N® +CO, NP =0,
C1 NG, +Ca N2 +C3 NG, '!'C4N§212)/ =0,
CoLMP+C,MP+C,MP +C,MP =0,
CLVD +C VP +C VP +C, VP =0,

in which the (’s are relative constants.

Eqgs. (12) are a set of homogeneous algebraic equations in the C’s. A non-
trivial solution exists only if the determinant of the coefficients of the unknown
quantities vanishes. Hence, for a free edge, the stability criterion is the deter-
minantal equation,
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N®O N® N® NO®
NG NE NG NG
MO M® M® M®
SRS AR A

where the numerical values of the elements are taken from Table 2. Other
boundary conditions, such as a supported or elastically built-in edge would be
handled in a similar manner.

When the member is not short and comprises plate elements having large
width-to-thickness ratios, the mode of buckling associated with the critical
loading may have more than one half-wave in the longitudinal direction. In this
case, L in (9) should be replaced by L/m (m=2,3,...) and the loading which
satisfies (13) should be found for each m in the relevant range. The lowest of
these calculated loadings then is the critical loading, and the associated m
defines the mode of buckling.

One of the several possible procedures for determining the critical magni-
tudes of a combination of axial load and bending moments for a member with
free edges may be outlined as follows:

1. Select trial values of axial load and moments, and compute N, for all
points on the z;-axes.

2. Starting with initial values of the dependent variables according to (11)
and Table 1, integrate (9) four times using the transformations (10) as
necessary, and thus evaluate the relevant quantities listed in Table 2 at the
edge =, =0, .

3. Evaluate the determinant of (13). If zero, the trial values were correctly
chosen. If not zero, a new set of trial values should be selected and the
process repeated. If the value of the determinant is considered as a function
of a loading parameter, for example the axial load, the lowest non-zero
value of the loading parameter for which the determinant vanishes repre-
sents the critical loading condition. This point may be found by plotting,
by interpolation or by a Newton procedure.

4. When the width-to-thickness ratio of one or more of the plate elements is
such that the member may buckle in a mode having two or more half-
waves in the longitudinal direction, the preceding steps should be repeated
using a reduced length equal to L/2. If this calculation produces a buckling
load less than obtained in the previous calculation, a third calculation
should be made with a reduced length equal to L/3. This process should be
continued until it is found that the use of successively shorter reduced
lengths produces higher buckling loads.

After the critical loading has been established, the associated mode shape
or buckled form of the cross section may be readily found if desired. One may
assign an arbitrary value to, say, C; and then solve any three of (12) for the



98 JOHN E. GOLDBERG - JOHN L. BOGDANOFF - WILLIAM D. GLAUZ

remaining C’s. Now, with the starting values u=C,, v=C,, w=C; and S=C,,
and with the starting values of the edge tractions according to (11), a final
integration of (9) may be made. This calculation will yield the deformations
and will also serve as a check since the terminal values of the edge tractions
should vanish or approximately so.

If the initial curvature can not be neglected, equations for conical shells
may be substituted for (1) and (2) with consequent changes in (9). Limitations
on space prevent including these equations in the present paper.

Examples

1. Critical axial compressive stresses for several steel channel sections were
found using this method, the computations being done on an electronic digital
computer. A few of the results are shown in Table 3. Also listed are values of
the critical stress computed by the method of Reference 3 which neglects
deformation of the cross section. It may be noted that the critical stresses for
the sections of Examples 3 and 4 are associated with buckling modes having
respectively 6 and 5 half-waves in the longitudinal direction. The values cal-
culated for single longitudinal buckles are also shown for comparison. The
latter two examples show the marked reduction in critical stress due to defor-
mation of the cross section and to buckling in a higher longitudinal mode.

Table 3
Thickness Buckling Stress
Exam- Flange

ple Depth Width | Web | Flange Length Present Ref. 3 | Remarks

(in.) (in.) (in.) (in.) (in.) (psi) m (psi)

1 8 2 0.1 0.1 200 2469 1 2471 Euler

Buckling
2 2 5 0.1 0.1 200 1776 1 1772 Torsional
Buckling
3 8 2 10.025 | 0.025 50 1200 6 9884 See Fig. 4

3 8 2 0.025 | 0.025 50 8282 1 9884
4 2 5 0.025 | 0.025 50 688 5 7088 See Fig. 5
4 2 5 0.025 | 0.025 50 4421 1 7088 See Fig. 5

2. The section shown in Fig. 6 is of steel with a length of 60 inches. The
critical stress under axial compression was found, by the method described,
to be 9325 psi. The deformed cross section at the critical load is shown in
Fig. 7. The same section was checked for a bending condition in which the
neutral axis was horizontal and the circular flange was in compression. The
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critical elastic compressive stress at the extreme fiber was found to be 72,933
psi. The deformed cross section under the critical moment is shown in Fig. 8.
In both cases, it was found that the curved section was adequately approxi-
mated by twelve straight segments.

(a) 0 =4421 psi (b) o =688 psi
3 m= m=5
Fig. 4. Deformed cross section of Fig. 5. Deformed cross section of
buckled channel — example 3. buckled channel — example 4.

.05 in
S
%
<
05in
A0in ™
t
' 6in. _J
Fig. 6. Cross section for Fig. 7. Deformed cross sec- Fig. 8. Deformed cross sec-
illustrative example. tion under ecritical com- tion under critical bending
pressive load. moment.
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Summary

A general method is presented for determining critical magnitudes of
bending moments and axial loads which cause lateral and torsional buckling
of thin-walled beams having arbitrary cross sections. The theory upon which
the method is based includes the effect of deformation of the cross sections in
their own planes as well as warping out of their planes. This contrasts with
the commonly used theory which presupposes that the cross sections do not
deform in their own planes.

The method contemplates the use of a digital computer and is sufficiently
simple to permit its employment in routine analysis.

Résumé

Les auteurs proposent une méthode générale pour la détermination des
grandeurs critiques des moments de flexion et des charges axiales qui entrainent
un déversement ou un flambage par torsion des poutres & parois minces ayant
des sections droites quelconques. La théorie sur laquelle s’appuie cette méthode
comprend l'effet de la déformation des sections droites dans leurs plans et les
déplacements d’ensemble; elle différe ainsi de la théorie habituellement utilisée,
basée sur ’hypothése de I'indéformabilité du contour des sections droites.

La méthode proposée envisage 'utilisation d’une calculatrice numérique.
Elle est suffisamment simple pour pouvoir étre utilisée dans une analyse de
routine.

Zusammenfassung

Es wird eine allgemeine Methode zur Ermittlung der kritischen Biege-
momente und Léngskrifte dargestellt, die ein Kippen oder ein Biegedrill-
knicken diinnwandiger Trager mit beliebigem Querschnitt verursachen. Die
als Grundlage verwendete Theorie beriicksichtigt nicht nur die Gesamtver-
formungen, sondern auch die Verdnderungen der Querschnittsform, dies im
Gegensatz zu der allgemein gebriduchlichen Betrachtungsweise, welche die
Erhaltung der Querschnittsform voraussetzt.

Die Methode kann auf einem Digitalrechner programmiert werden und ihre
Einfachheit erlaubt die Anwendung bei routineméaBigen Berechnungen.
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