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A Contribution to the Bending Theory of Elliptic Paraboloid shells

Contribution a la théorie de la fléxion des voiles minces en forme de
paraboloide elliptique

Bettrag zur Biegetheorie der elliptischen Paraboloidschalen

ASBJORN AASS, JR.
Dipl. Ing., Southampton

1. Introduction

a) In recent years shells of double curvature have been of great interest to
engineers and architects. Although the hyperbolic paraboloid is the most
popular type, due to its attractive form and simple construction, investigations
have also been carried out in the field of paraboloid shells of positive Gaussian
curvature. These shells, also very attractive from an architectural point of
view, have the important advantage that the bending stresses are confined to
narrow zones along the boundaries and are very small. Thus the membrane
theory provides already a good approximation for the stress condition of the
surface. For proper design, it is nevertheless necessary to calculate bending
stresses due to edge conditions incompatible with the membrane theory. For
the calculation of shear forces IV, at the corners it is also necessary to take
bending stresses into consideration!).

b) Numerous authors have dealt with the analysis of E P-shells, but very
few consider bending stresses. A general bending theory for shallow shells was
first presented by K. MARGUERRE [2]in 1938. In 1944 V.Z. Vvasov [3] published
his basic theory, and based upon this S. A. AMBARTSUMYAN [4] presented a
solution for shallow shells, rectangular in plan and simply supported along the
edges in 1947. This solution, of the Navier-type using double trigonometric
series is, however, of little practical importance as the series are very slowly
convergent.

1) The shear forces Ny are singular at the corners. (See for instance TiMOosHENKO [1],
p. 464.)
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An approximate solution to the bending theory was given by K. HRUBAN
[5]in 1953. From the general theory of VLAsov he obtained, by approximation,
a fourth order differential equation identical to the one for cylindrical con-
tainers. A better approximation was obtained by W. ZERNA [6] also in 1953.
Here the solution again lcads to the fourth order differential equation for
cylindrical containers, only in this case the coefficient k£ is no more a constant.
In 1957 V. Z. VLasov [7] proposed a Levy-type solution where two opposite
edges are simply supported and the two remaining edges may have arbitrary
boundary conditions. A solution for the case of clamped boundaries is given
by W. A. NasH and P. L. SHENG [8] also in 1957.

For the special case where k;=k,=1/R (sphere!) B. B. DikovicH [9] pre-
sented a very useful contribution in 1960. The shells, having the base propor-
tions 1:1 or 1:2, are assumed to be simply supported along the edges. With
these limitations DikovicH established graphs for the distribution of the
stress resultants depending on one parameter only.

A very extensive study of paraboloid shells with elastic edge members has
been carried out by H. C. SHAH [10] (1960). The solution is obtained by using
double trigonometric series, for which the convergence is so hopeless that a
practicable application seems almost impossible.

Levy-type solutions, similar to the one treated by V. Z. VLasov [7], are
presented by A. L. Bouma [11] (1959), K. ApELAND [12] (1961) and 1. DogA-
NOFF [13] (1961). DoOGANOFF gives also a simplified solution for simply supported
edges suitable for pre-dimensioning. K. APELAND and E. P. Poprov [14] have
established tables for paraboloidal shells of positive and negative Gaussian
curvature, similar to those for circular cylindrical shells compiled by D.
RupicER and J. UrRBAN.

¢) The papers mentioned above have two features in common 2):

1. The solutions consist of infinite series.
2. The solutions satisfy the basic equations exactly and satisfy the boundary
conditions approximately.

In most cases the shell is assumed to be simply supported on shear dia-
phragms perpendicular to the shell surface, at least on two opposite edges.
The boundary conditions were therefore:

v=0, w=0, Ny=0, M,=0. (a)

In practice the diaphragms are, however, always made vertical and the more
realistic boundary conditions should therefore be

v=0, wcospy—using, =0, N;ycosg,+@;sing, =0, M,=0, (b)

as was mentioned by Bouma [11]. It is readily seen that sin ¢, is not negligible;
2) This does not apply to the approximate solutions given by Prof. HruBAN [5] and
by Prof. ZErRNA [6].
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a square spherical shell with a total rise to span ratio of 1/5 has the slope
po=22.5° at the edges. Thus cos ¢, =0.92 and sin ¢, = 0,38. How the boundary
conditions (b) can be considered will be shown in § 6.

d) In this paper the writer proposes another way in which the solutions
satisfy the boundary conditions exactly but the basic equations only approxi-
mately. To obtain such a solution a variational technique has been used in
connection with the matrix progression method and numerial computation
with the aid of digital computers3).

The procedure is applied to shallow elliptic paraboloids, rectangular in
plan, for the following boundary conditions:

1. Edges rigidly clamped.

2. Edges simply supported on shear diaphragms perpendicular to the shell
surface (Navier, equation (a)).

3. Edges simply supported on vertical shear diaphragms (equation (b))*).

subjected to uniformly distributed loads.

2. Geometry

The equation for a surface in the form of an elliptic paraboloid is given by

(see Fig. 1):
)

/ ihe
P 7 ,
ha WA +h
| // / | 2 |
/ / M ;V"/
/ hal/ Flg 1.

The principal curvatures are thus

@z _ 2y, BL_ 2y, _ PZ
ox2 ' a*’ P oyr B2 B

kl =
Introducing the slopes of the surface at the edges

3) The technique was first introduced by S. M. K. CEETTY [15] for hyperbolic para-
boloid shells. The mathematical foundation for variational methods may be found in
[16] and their applications for shell problems are discussed by H. TorrENHAM [17] and
CHETTY [15]. The matrix progression method, first introduced for analysis of shells by
H. TortExHAM [18], has been elementarily by the writer [19].

4) In this case the shell must be square in plan and ki1 =k2.
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e 2,
oc————;- and B__—?)— (3)

the expressions for the principal curvature take the forms

[o»)

k1=— ’ kzz_’ ’ k12=0. (23})

|

o
a

3. Basic Equations

a) From the shallow shell theory of V. Z. VLasov [20] the following equi-
librium equations are obtained:

2
Li(u,v,w) =u"+31-v)u" +3Q+v)0" +(k+vk)w = —IE; X,

. " . . 1—2
Ly(u,v,w) =v"+3Q1-v)0"+3Q+v)u' +(ky+vk)w = — o Y, @)
Ly (u,v,w) = (by+vky)u' + (ke+vk)v + (k3 +2vk ky+k3)w

12 Pl = 1——v2Z

+E w =+ I .

Here u, v and w are the displacements, X, Y and Z the external loads, positive
in the positive direction of the co-ordinate axes. L; denotes a linear differential

operator.
The stress resultants, as functions of the displacements, are given by:
Et _, . &
Ny =+1—v2[u +v o'+ (kg +vky) w],
N B vt ey tvk
2 =+TV2['U +vu' + (ky+v k) w],
Et .,
S = +m[u +?J],
E# ' ..
M, =+mf:v_2)[w +rvw'],
Ep ,.
Mo =~y
Et3 e reo
Q = —m[w +w'],
Eta e 17X
9 =-—paoy el

The sign conventions for the stress resultants are as shown in Fig. 2.
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For convenience the non-dimensional co-ordinates

Y g =7
z=_ and ¥ b (6a)
and the dimensionless unknown displacements
_ _ . w
’u“—_a/‘“, /U”"”b_’ w_; (Gb)

are introduced.

Fig. 2.

Introducing the expressions (2a) for the curvatures and the non-dimensional
co-ordinates and displacements (6) in the basic Eqs. (4) and (5), we obtain
the non-dimensional basic equations:

Ll(u,v,w)=u"—{—%(l—v)rzu"—l—%(l-i-v)v"—(a+vrﬁ)w’=—-(l—vz)%%,
Ly (u,v,w) =v"+l(1——v)l'v"+1(+v)u"——(r,3+voc)w' =—(1—v2)éz
PR : r2o TR t B (7)
Ly(u,v,w) = —(x+vrB)u —(rB+ve)v + (a®+2vraf+r2p2)w
+1(w"”+272w”"+r4w"")=+(1—v2)g£.
y t K
Et _, )
Nl =+m[u +V'U —~(06+V7‘/8)w],
t oo /
Ny = +1_V2[v +vu' —(rf+va)w],
Et .1,
S =+2(1—+V)[ru +;'U:|,
Ee 1, -
Ml —+ma[w +vréw ],
M Et?’ ]. 2, 17 (8)
9 =+ﬁ—(-1—_——v—z)c—t[7’ w +vw ],
Ee 1 .
Mo =~y s
Et3 ]' 1244 2 P
Y=y e e
B3
— s 3 s 1t
O =—1gag gl el
2h, 2h, 2 a

where o =——, g=——"°, 7212% and r = . (9)
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In Eqgs. (7) and (8) the bars introduced in (6) have been omitted for con-
venience. The three partial differential equations for the three non-dimensional
quantities », v and w have now to be solved in order to obtain the stress
resultants (8) at any point P (x,y) of the surface.

b) Assuming a solution in the form

u=c/1(®)g(y), v=0¢f2(2)9:(y), w = c3f3(x) g5 (), (10)

where f; (x) and g, (y) are functions of one variable only and ¢; are unknown
constants, we like to determine c¢; such that the energy of the system is a

.. . o . . .
minimum, i.e. z—=0. This provides three equations for the three unknowns
. )

c;%):

IITL; (w,v,w)~ @Q;1f;9;dxdy = 0 (# =1,2 and 3), (11)
S

where L, is the differential operator and ; denotes the loading term in (7).
The equation (11) is the well-known Galerkin equation.
¢) Assuming a solution in the form

u=Ff@g@, v=(®9g@), w=h)g®H), (12)
where g, are known, we obtain three equations for the three unknowns f, ()

=0. These are

S

. oK
puttlng m

4. Solution for Rigidly Clamped Edges

a) Boundary conditions

At the edges x=+1 and y= +1 there shall be no movement and the
rotation of the normal must vanish. Thus

Atz=+1 =0, v=0, w=0, w' =0. (14)

Aty=4+1 u=0, v=0, w=0, w =0. (15)

b) Kantorovich method. (Reduction to ordinary differential equations.)

The solution is sought in the form

u=[@)g (), v=[®)09 (), w=[fx)g;y), (16)

where f, (x) and g, (y) are functions of only one variable, x or y respectively.
As a first approximation we assume the distributions g, (y) in the y-direc-
tion, such that the boundary conditions at the edges y = + 1 are satisfied.

5) The functions f; and g; are here assumed to be known.
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Under uniformly distributed loads it is seen that

g, (y) = even function, ¢, (y) = odd function, g¢,(y) = even function. (17)
We assume thus polynomials of the simplest possible forms:
u=fHE)(1-y?), v=L)F-y), w=/f)0-y?~ (18)

Differentiating and substituting in the basic Eqs. (7), we obtain three ordinary
differential equations with variable coefficients for the three unknown func-
tions f;

1A=y +3 A=) (=2f)+ 5 +v) (1 =3y —(a+vrf) fs(1 —y?)* =

610y +E (=) g [l —9?) + F 0 i (—25) — (B4 v fo(—4) (1 —3?) =

bY
(1—p) 2
(1) 7 7
o B (L =y~ (rBtva) o (1= By + (a2 + 207w B+ 12 B2) [, (1 — )
1 4
U =) 2025 (= 4) (1 =3y 24 ] =+ (1 =)

The error made by using the assumed functions (18) will now be minimized
using Eq. (13). Integrating over the area bounded by y= + 1 we thus obtain
minimum potential energy and in the same time the equations will be trans-
formed to equations with constant coefficients. These are:

1.0667 /7 — 1.3333 (1 —») r2f, +0.2667 (1 +v) f,—0.9143 (a +v7B) f; = 0,
1

5 0.0762 (1 =) f§ — 1.6 f,— 0.2667 (1 4+) /{ +0.6095 (r B+v ) fy = 0, 20)
—0.9173 (x +vrB) f; —0.6095 (r B+va)fy+0.8127 (a2 +2vra B+12B2%)f,
a
t ?

1
+ =[0.8127 fi —4.8768 72 f1 +25.6r4f,] = 4+ 1.0667 (1 —12) %
Y

if we assume normal loading only, i.e.

X=Y=0 and Z = constant.

c) Tottenham’s method for solving the equations

For the solution of the KEqgs. (20), it is convenient to use the matrix pro-
gression method due to TorTENHAM [14, 19]. With this method the equations
are integrated directly without using the laborious traditional way in finding
the roots of the auxiliary and the particular integral.

Introducing the new functions:

f4=f{7 f5=fé3 f6=f:;> f7=ff,3,:f(;9 f8= glz (,i,zf';s (21)
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we have from (20) and (21) the following eight first order differential equations,

with constant coefficients, for the eight unknown functions f;,f,,... fs:
f{=f4s
fé=f5,
fé:fe,
f;=f"=+l.25( —v)r2f, —0.25 (1 4+v) f; —0.8572 (a +v7f) fe,
1
fs = Iz —+210 fz 35—+— 2?‘4"‘80(764_1}0c %[5,
f(;=f7a
f.;=f8,
fo =+0.75y(rB+va)fs—[y(a?+2vraB+r2p2)+31.5r]f,
Z
F1.125 (atvrB) fy+6.072f, + 1.3125 (1 — 2 )a =7
or in matrix form:
J](IT . . .o+1 . . . . i
(fz : ; . .o+ 1 - . . fo
f3 . . . . - +1 - . ]‘3
_d_f4= Qg+ 0 Qg Qyg - - f4+ '
dx| fs © Qg Q53 Qg - =t /5 '
fs . . . . . - +1 - fs
]‘7 . . . . . . . +1§ f7
/s | Qgy Ogg @gy - - Qg - | | fs| | Dbg

which may be written as

jl—Z=:AZ+B.
dzx

Here Z is a column matrix containing the unknown functions f;,f,. .

A is a 8 X 8 square matrix and B a column matrix with the coefficients

a25=+17
Agg = +1,

g5 = —0.25 (1 +v),
a4 = —0.8572 (+vrf),

7'2
1

as3 = +3.5 +V 2,
1-— V

(22)

(22)

fs5

(22)
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asy = + 8.0 rllgi:“ﬂ,

Qg7 = +1,

g = +1,

ago = +0.75y (rB+va),

Qgs = —y (2 +2vraB+1r2B2) —31L.57, (22)
agy, = + 1.125 (e +v7r )y,

ag; = +6.072,

by = +1.3125(1 —2)

~| K

Z
T
the remaining coefficients being zero.

The Eq. (21) is the same as the one for a simple beam ¢) and the solution
will readily be found to be

Z(x) = e Zy—[1 —e1*| A1 B,

where Z, are the values of Z (x) at x=0 and I is the unit matrix.
Introducing

2 .2
G(x)zeAx:]_l_iaE_‘_A x 4+ ... =]+Ax[j+f4_g_v(]+é_a_c(]+...))]7)
1! 21 2 3
and Z(x) = —[I—e4*]A' B

we have thus the matrix progression equation 8)

Z(x) = G () Zy+ 7 (x) (23)

In (23) Z (x) are the unknown functions f;

G (x) = e4% is called the distribution matrix,
Z, are the eight unknown values of Z (x) for x=0,
Z (x) = —[I —e4%] A1 B is called the loading solution matrix.

Having solved the equations, it remains to determine Z, according to the
boundary conditions.

d) Determination of Z, from the boundary conditions

If the shell is symmetrically loaded about the z and y axes, the stressed
state of the shell must also be symmetric about the x and y axes. Therefore

6) See (19).

7) In this quickly convergent matrix series 12 terms will be more than sufficient for
the accuracy required.

8) See for example (19).
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it will be seen that % is an odd function of =z,
v is an even function of x,
w is an even function of x.

We thus have the following four conditions at # =0:
u=f=0, V=f(=0, w=f=0 W =f=0. (24)

We have hence only four unknowns in Z; and we write

fz +1 - . . B
fs S S ’ fa
o= | Bl T R ke
4
. . f7 2=0
f7 . g . +1
o amo - - . -

where Z, contains the four unknowns f, (0), f5 (0), f, (0) and f, (0).
At x= +1 we have, according to (14). (25) and (23)

o

Z(x=1)= ;:8; = G(1.0)ky Zy +

N

(1.0). (26)

f2 (1)
| fs (1)
The first, second, third and sixth equations provide four equations for the four
unknowns Z,. Using the “Isolation Matrix”’

+1
. +1 . . . . . )
ky = . A . . . P (27)
+1

we have thus kyZ (1.0) = ky G (1.0V &y Zoy+ Ky Z (1.0) = 0
and hence Zy = —[ky G (1.0) ky ]2 k2Z~(l.0).
From (25) the unknown functions Z; are thus

Zy = —lky[ky G (1.0) ky] ' ky Z (1.0). (28)

All matrices on the R. H.S. of Eq. (28) are known and with (23) the unknown
functions may readily be calculated with the aid of a digital computer.
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It is interesting to notice that also Eq. (28) coincides with the one for a
simple beam ?).

e) Improvements to the solution

1. Having found the functions f; from
Z(x) = G (%) Zy+ Z (2) (23)

we can compute the displacements from (18) and the stress resultants from (8).
It may be expected that the distribution in the z-direction will be reasonably
good; the distribution in the y-direction, however, may be very erroneous. In
order to obtain a better approximation we assume firstly that the shell is
almost square in plan (say 1b<a <2b). In this case it may be assumed that
the stress distributions in the two directions will have the same pattern if the
load is uniformly distributed over the surface. Therefore ¢, (y) will be equal
to 5 (x), g, () equal to f, (x) and ¢, (y) equal to f,(x), apart from some constant
factors. We have thus as a second approximation

u==ch@h(@y), v==ch@hly), w=qcfs)y) (29)

The constants ¢, may now be determined from the known conditions at the
lines x=0 and y=0. Comparing the values of « and w given by (29) and (18)
at these lines we find

from (18) w (2,0) =f,(¢),  from (29) w (x,0) =&,f, (2)/,(0),
w(0,0) = f3(x), w (0,0) = ¢33(0) f3(0),
it is readily seen that
c - and ¢ !
T h(0) >~ (0

Due to symmetry we can also put

I
<)l
o

and we have the second approximation

1 1 1
T @he),  v=rmh@he),  w=rGh@ @), (30)

2. By using the system (30) instead of (18), the energy will no longer be
a minimum. Assuming

. f ) fa(y ”:czg%fz(x)h(y)a w—-c3f31 f3()f5(y (31)

U =

=C177m

fa (

9) See for instance (19).
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and minimizing the energy w.r.t. ¢;, i.e. —0 we get the Galerkin Eq. (11):

dci
T - @@ dedy = o. (11)
Here L, denotes the L. H. S. of the basic differential Eq. (7) and ¢, the loading
terms of same.
Substituting (31) in (7) we find

[Ly— @il =cifafe+ 3 (X —v)rPei fifs+3 (L +v)cofsfu—(x+vrp) C3f6f3;§ 28;’
[Ly— Qo] = cafefu+3(1 02f5f1 F(L+v)eifyfs—(rB+va) C3f3f6f Eg;’
[Ly— Qy) = —(a+w,9)clf4f2_(r/3+m)czf2f4+(a2+2vmﬁ+r262)csf3f3f§—%

1 ’ 2 4 ! 2<0) s Z
+}—/C3[fsf3+27" Lt tr f3fs]m fz(o)t B’

where, for example, f, (x)f, (y) is abbreviated to f;f, etc. In these expressions
all functions f;. . . fs are known from the first approximation, and the functions
fa, fs and fg can be expressed as functions of f,. . .fg through the Eq ( 2).

We are now able to construct the integrands [L;(f;) — @;11; (x ) in the
Galerkin equation. In matrix form these may be expressed as

711 712 13 41 :
To1 "o Ta3 Col — | (32)
731 732 733 C3 q

or RC-Q, (32)
where ry = f4f1 (fafa) + (L =v)72(f1 ]1) f5f2
T2 =3 (1+v)(f5/1) f4f2
T3 = —(a+vrp) ;: (fef1) (f312) s
1

ror = (fofo) (faf) + 3 (1 —v) “E (fsf2) (f111) s

Tos = 5 (L +v) (f4]2) fsfl s

Tog = _(’"B'*‘V“)g’%(ﬁfz) (f611)

T3 = —(a+vrB)(fufs) (f21s)
r3e = — (rB+va)(fafs) (fafs),

rg3 = (“2‘*‘2"7'“3‘*'7"232);2 (0) (f313) (f313)

+ LG o)+ 272 (o) (o) 74 ) )

and q=+(1-v?)fa( 0);? 13) (f3)- (32)
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In the expressions (32) the abbreviations (f;f;)(f.fs) have been used for

fa(@) f1 () fo (¥) {2 (y), ete.
Using (32), the Galerkin Eq. (11) may now be written as

+1+1 +1 +1

[ | Rededy— [ | Qdaxdy =0,
~i-1i —i-1
+1 41 +1 41
whence we have c¢=+[ [ [ Rdzdy]™ | [ Qdxdy. (33)
-i-i —i-1i

In (33) ¢ will be a (3 x 1) matrix, providing the three wanted constants c,, ¢,
and ¢;. With (33) and (31) we have thus established a third approximation.

3. Note on computation. The formulae (23) and (28) may easily be pro-
grammed for a digital computer, thus providing numerical values for the func-
tions f;...fs for, say, 11 points (z=0,0.1,0.2...1.0). These values may be
stored in the machine as a (11 X 8) matrix. Denoting this matrix as (F, 11 X 8),
we have for instance f, as a column matrix denoted by (f,, 11 X 1). The inte-
grations in expression (33) can now be performed numerically with, for example,
Simpson’s formula with step A=0.1 (here). The coefficients of this formula
are to be considered as a diagonal matrix. This is, if we omit the common

0.1
factor -, (S,11/) = Diag (1424242424 1).
The integration of, for instance, r, in (31) is thus as follows:
radady = +3 (14v) (f5, 1X 11) (8,11)) (f;, 11X 1) (fy, 1 11) (8, 11/) (f5, 11X 1)

where (f,,1x11) is simply the transpose of (f;,11x1).

5. Edges Simply Supported on Diaphragms Perpendicular to the Surfase

The procedure for this case will be exactly as for the clamped edges described
in § 4. By examination of the solution established in the previous paragraph,
it will be seen that the only differences between the two cases are the coeffi-
cients of the matrices 4, B and k, (Eqgs. (22) and (27)). Therefore the same
computer programme may be used for the two cases provided the appropriate
data matrices are used.

a) Boundary conditions

According to Eq. (a) we have at x= +1

v =0,
w =0,
Et
Ny =7 —slw +vv' —(atvrBuw] = 0,
E 1
M, =———— —[w' 2w’} =0.
1 12(1-—V2)a[w +vr2w] =0
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Assuming that the shear diaphragms are rigid in their plane, we may put
v = w =0
and the boundary conditions take the form

Atz =+1
v=0, w=0, ' =0, w' =0 (and v =w" =0). (34)

At y = + 1, similarly
u=0, w=0, v=0, w =0 (and % =w"=0). (35)

b) Solution

1. Similarly to (19) we assume
= fi@) (1 -y, =f@)3By—y?), w=/[f@)A-12y2+0.2y%. (36)

These functions satisfy the boundary conditions at ¥y = + 1, as may easily be
checked. Substituting these expressions in the basic differential Eqgs. (7) and
integrating over the area bounded by y = + 1, using (15), we obtain:

+0.8127 f7 —1.2191 (1 —v) 72 f, +0.6857 (1 +v) [, — 0.8940 (a +vrB) f5 = 0,
1

+0.4857 (1 —v) 5 f3 — 2.4/, — 0.6857 (14+v) [{ + 1.5543 (rB+v ) f5 = 0,

—0.8940 (a +v7 B) f1 — 1.5543 (rB+v o) fo+ 1.0077 (a2 + 2vra B +122) f,

4= [1 0077 f3 —4.973872 2 + 6.1440 74 f,] = 1. 28(1—v2)—a—£

The coefficients of the 4 and B matrix are thus

ay =+1,
Ay5 = +1,
e =+1,

a/46=+1.1 (OC+V7'B),

2
5y = +4.9416 17’ (37)

—V

r
Ay = —3.2(rB+va) T

1
- +1.41191:’r2,

g, = +1,
Ay = +1,
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ag, = +0.8872 (x+vrp)y,

g, = +4.9360 72, (37)

_ .2z

by =+1.2703(1—v%)y~ 2.

2. The first solution is as before
Z(x) = G(x) Zo+ Z () |, (23)
where Zy = —ky[ky G (1.0) k]2 o Z (1.0). (28)
Here G (z) = ed®,
Z(x)=—(I—e4*)A1 B
+1
+1 -

and by = +.1 (25)

+1

as for the clamped case. The k, matrix takes now the form

+1
b | .o+1 - S ! . (38)
2 . . .o+ 1 - . . 0"
. +1
3. The improvements to this first approximation may be obtained as
described in § 4e.

6. Edges Simply Supported on Vertical Diaphragms

a) Boundary conditions

In this case we use the boundary conditions (b) which may be written in
the form:
Atx=+1 v=0,
w—utge, =0,
3
i?% é[w”+vrzw"] =0,
E

! Ei
_ 1y 9, 1 ’ . —
12 (1 —12) gL trtw ]tg%'*‘—‘——l__vz[u +vv —(a+vrB)w] = 0.
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Introducing tge, = —a from expression (3) and remembering that again
w''=w""=v =0 at the boundaries x = + 1, the boundary conditions may be
written as:
Atz =+1

v=0, w+au=0, w' =0, aw' " +yu' —y(e+vrf)w=0. (39)
At y = + 1, similarly
u=0, w+rBv=0, w' =0, BPw +yv'—yrB+ve)w =0. (40)

b) Functions g (y) satisfying the boundary conditions at y = + 1

Similarly to Eq. (36) we assume
w=f@1-gP v=L@)Eay—y?), w=[3@)(—1.2y°+0.2y%), (41)

where ¢, and ¢, are constants1?) to be determined such that the boundary
conditions (40) are satisfied. Introducing (41) in (40) we find

o — 14 2 _ 9.6738 1/5(x)
VT 14 rB(rBrva) 1+rB(rB4va)y fy (@)

- rB fs (x)+ 4.8 r4p2 1
- 1+7rB(rB+va) fa(x) 1+rB(rB+va)y’

and €y = 1

Substituting these expressions in (41) we find

u = f; (%) (1 -y?)3,
v =fo @) [(1+D)y—-y®l—f3(x) Fy,

w = fy @) [(1 4+ F)=1.252+0.291 —f, (=) 'L D,
(42)
2
where D=1+7';3(7'/3+V0c)
4.873 1
and

T14rBrBtva)y

The expressions (42) satisfy the boundary conditions (40) as may easily be
2

checked. The factor F, however, is very small since it contains %=1—2%§
In the expression for w it is readily seen that » 8 F may be neglected against 1;
in the expression for v it is not so obvious that F can be put equal to zero.
We may, however, predict that f, (x) will not be much more than 10—20 times
greater than f,(x). In such cases, and if B=a=1/5, v=0, y=2.105, say, it is
seen that here also the influence of F will be negligible.

We have thus the following functions satisfying the boundary conditions

at y = + 1 with reasonable accuracy:

10) T. e. constants w. r. t. y.
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w = fy () (1—g2),
v =@ 3(+D)y 4],
w = [, (@) [1-1.2024 0244~ () ' D,

2

D= 1+7B(rB+va)

¢) Solution

17

(43)

Substituting the expressions (43) in the basic differential Eq. (7) and
integrating (13) using the approximate functions

g:=(1—=9%%  g.=30By—9%), gs=(1-12y2+0.29%),

as weighting functions, we get as before the matrix equation

where

bl

Z=AZ+B,
ox .

Q14
A5
Q3g
a . . . a a - .
A 41 45 “an and B =
© Ogg O3 A5 -+ =

|

Qgg gz Qgq Qg

The coefficients of 4 and B are:

Ay =+1,
ays = +1,
Az = +1,

Gy = +1.5(1—v)r2,

(g5 = — (0.1876 4 0.3281 D) (1 +v) — 0.65627 B D (x+v7 ),
Oy =+ 1.1 (x+vrp),

Qg = +2.472 N,

as3 = —1.5643 72 (rB+va) N,

s, = +0.685772 (1L +v) N,

ag; = +1,

Upg = + 1,

(44)

(44)
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gy = +(0.2722+0.6351 D) (rB+va)y
+ (24 2vraB+r2f2) My+Mas, S,
gy = — (2 +2vrafB+r2f2)y—6.0973r4+ Mag, S,

(]/84 — -l—() RR72 (ﬂ—l—v’l‘g)'}l_!— Ma54(s+a41),
Ag; = +4.9360 72+ M (a5 + A5y Ayg)
a Z
and by = +1.2703(1 %)y~ %
Here 2a = Base length in z direction,
r =alb,

t = thickness,
Z = external, uniformly distributed normal load,

E = Young’s modulus,

v = Poisson’s ratio,
2h
€ = ——2
a
f=—"
12 a2
Y =@
2
D = ,
1+rB(rf+va)
M = 0.635178D,
1
N =

(0.08571 +0.2D) (1 —v)’
S = a52+a54 (,Z45.
Putting the slope at the edges « =8=01), we obtain the 4 matrix for the case

where the diaphragms are perpendicular to the shell surface (37). The solution
of (44) is as before

Z(x) = G(x) Zy+ Z (x), (23)
where Zy = —ky[kyGy(1.0) k] ko Z (1.0),

. (28)
G(x)=e4* and Z(x) = —(I[—e4*)A-1B.

11) The terms («+vrf) and (r B+va) due to the curvatures must not be put equal
to zero!
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Here k, is the same as in previous cases:

I
+1o
. ) 1 -
kl = . . + . . (25)

+1

k, has to be determined according to the four conditions (39) at x = +1.
Substituting (43) in (39) it is readily seen that the boundary conditions only
can be satisfied at given points y = constant. Choosing the point y =0 as the
most significant, we get:

Atex=+1,y=0
v=20 (i.e. f, = 0 at all points (1,y)),

au+w=ocf1+f3—7%3l)f2=0, (45)

n n T n
w = 3_7/8Df2= s

%w’”+u'——(o¢+vrﬁ)w :g g’—g12§ng/+]¢4_(“+V7”,8)f3+(°‘+'”/3)t2§‘0f2 = 0.

Here f; =f; and f; = f; are given by (44). The k, matrix is hence:

klz :
k‘ — 21 22 23 , 46
? o« kgg kgg kyy -+ kap - (46)
| kg kgo kyg Kay ko5 Fogg kg
where kig=+1,
kyy = +o,
r
B
kos = +1,
r
ko = ——2§Da52,
r
kg3 = “‘EBD%:&:
r
kg = _?BD%M
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(46)

k43 = —((X+V7'B),
ky =+1,

oarf
kys = _; ?D(a52+a54 Ay5) 5

ar
kyg = ‘; ’Q_D(%.’s + a5y Ayg) s
Foug = +—.
48 "

Putting « =8 =0 we obtain the k, matrix for the case where the diaphragms
are perpendicular to the shell surface (38).

d) Improvements to the solution

1. Having found the functions f,. . .fs, we assume similar to (29):

u=c [ (@) fa(y), v=cyfa@)f1(y), w=c3f3(x)f3(v)+c,f2(x)fs(y) (47)

Here the constants c; are not arbitrary, but have to be determined such that
they satisfy the boundary conditions at x = +1, y=0and at =0, y= + 1.
Using the conditions (45) already imposed on the functions f,...f; (for the
argument + 1), we obtain by substituting (47) in (39):

rB
and Cqy = ——?DSC:,, (48)
13 (0)
where 0 = ;
{2 (0)

The first and the fourth conditions being identically satisfied. Substituting (47)
n (40), the first and the third conditions are identically satisfied. The second
gives

= — 500 (49)

and the fourth takes the form

Bty ) -ER DI )+ = By e (1) 4+ v ) D1y (1) = 0.
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Comparing this with the imposed condition (45d) it is seen that the fourth
boundary conditions in this case can be identically satisfied only if

and - lé , (50)

II

which means that the shell must have a square base and that the parabolae
in the « and y direction must be identical.
With these restrictions we obtain, by substituting (48) and (49) in (47)

u =308c3fy(x)f2(y),
v =d8czfy () f1(y),

w = Csfs(x)fs(?/)—aczsngz(x)fz (Y),

/5 (0)
where S =
12 (0)
Similar to (30) it will be readily seen that ¢; will have the approximate
value of —— 7 (0 (0) With this we have as a third approximation
1
“‘fum’ )
1

1 g1
w—cb3mf>mwr§DE@awmwﬂ,

where ¢ is a constant with the approximate value of + 1.

2. Instead of determining the best value of ¢ by considering the energy, we
will now determine ¢ such that the errors made by introducing (52) in the
basic Egs. (7) are minimum (method of least squares):

[fle} + €2+ e3ldxdy = minimum
S

i=3

. 0

i.e. %ffZeﬁdxdy=0
F1 4153

or ff Z ““dxdy—O (53)
—-1-1 7

Here, for instance,

o= -5 [ N B AU B E0 0 st 5 D40 .
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Proceeding as in §4e, we can integrate (53) numerically with a digital com-
puter and thus find the wanted constant ¢. Having found ¢ we can compute
all quantities of interest using the known values of f;. . .fs.

It must be remembered that the boundary conditions are satisfied only at
the points (+1,0) and (0, + 1) and that this solution only is valid for shells
with a square base and where the generatrix and the directrix have the same
rise (Eq. (50)).

7. Numerical Example

Since the solution for the case with diaphragms perpendicular to the surface
has been extensively treated by Dr. DikovicH [9], it will be of interest to test
the accuracy of our method by comparing the results obtained for a particular
example: ‘

Consider a spherical cap over a square base, simply supported on diaphragms
perpendicular to the surface, with the following dimensions and properties:

a =b =11",
hy = hy = 1.43m,
1 1
BT R B
1 2
Thickness = t = 8™,
v =0.
The results are as follows:
Defiections w at the line y=0
Moments M, at the line y =0
Kw Kwm,
+2.0 +80 a
L @3
TOOL My =iy S 10
+10+ W= -Ky 103 a % +40
+20
+ . : +——t—} 5 — £
02 0.4 06 0.8 09 10 e 02 04 706 08 o a
Difference ot & =0.9: ~2%
Shear forces S at the line y = +1 )
Shear forces Q at the line y = +1
Ks
K
+1.5 h
+1.0 +20 T T
P . 243
051 +1.04 Q=- &% Koy
———— ) . x ' " —— L
' 02 04 06 0.6 a 0.2 04 06 08 10 a

10
Difference of & =1.0: ~ 7.5%
' ° : ————  Aadss Difference at 5 =0.8: ~ 12%

~—-= Dikovich

The curve for w practically coincides with the one given by Dr. DikovicH.
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8. Conclusions

On the basis of the numerical example given in § 7, one may conclude that
the method will give sufficiently accurate results for practical purposes. Since
the actual computing time is very short 2), the procedure will provide a cheap
means for analysing E P shells.

For the special case where r=a/b=1 and «=f (i.e. k; =k,), it is also possible
to take the slope at the edges into consideration by formulating the boundary
conditions (vertical edge members!). By given values of Poisson’s ratio, the

wanted functions f;. . .fs and the unknown constant ¢ may easily be tabulated

2
for different values of the two parameters o = —ggl and y =—1%a—. In a forth-

coming publication a study of numerical values for this case will be presented.

Introducing given displacements along the boundaries, it will also be possible
to establish ‘‘edge load’ tables for calculation of E P shells supported on
elastic edge members. This will be the subject of a paper to be published
shortly.
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Notation
2a = Base length in z direction
2b = Base length in y direction
f; = Function of x
g; = Function of y
hy, = Maximum rise of the parabola in the z direction
h, = Maximum rise of the parabola in the y direction
2w

o=

2
k, = —%ég Curvatures

2w
ki = _5‘5@

12) The programme consisted of approximately 150 matrix instructions.
13) Reader in Structural Engineering at the University of Southampton, England.
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alb
shell thickness

displacements in the direction of the axes

co-ordinate axes

2h,
a
2hy
b

12 a?
t2

shell parameters

= FError

Poisson’s ratio
Matrix (8 x 8)
Matrix (8 x 1)
Arbitrary constant

= Young’s modulus

= e4% Distribution matrix

Unit matrix

Initial value matrix (at x=0)

= Boundary restraint matrix (at z= +1)

= Linear differential operator

External loads

= Action matrix (8 X 1), containing the unknown functions f, . .

- fs

= Z (x)ac=0

— (I —e4*) A1 B = Loading solution matrix

S, M, My, M5, Q,,Q, = Stress resultants according to Fig. 2
82

0 x?

82

oy®

0% 02

522 " oy

V2p2



DN =

BENDING THEORY OF ELLIPTIC PARABOLOID SHELLS 25

References

. S. TimosHENKO: “Theory of Plates and Shells’”’, 2nd Edition. Mc Graw-Hill, 1959.

. K. MARGUERRE: «Zur Theorie der gekriimmten Platte groBer Forménderung». Proc.
5th Int. Congr. Appl. Mech. 1938, p. 38.

. V. Z. Viasov: “Osnovye differential’'nye uravnienya obshchiey teori uprugich
obolochek”. Prikl. Mat. i Mech. 1947, Tom XI, 2.

S. A. AMBARTSUMYAN: “The Calculation of Shallow Shells””. English translation:
C. & C. A. 1952.

. K. HrRuBAN: «Biegetheorie der Translationsschalen und ihre Anwendung im Hallen-

bau». Acta Techn. Sci. Hung. Budapest, 7, 425 (1953).

6. W. ZERNA: « Berechnung von Translationsschalen». Osterr. Ing.-Archiv. 7, 181 (1953).

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

V. Z. Viasov: “Cylindrical shells and new ways of developing thin-walled spatial
systems in structural mechanics”. Proc. 2nd Symp. on Concr. Shell Roof Constr.,
Oslo, 1957. Published by Teknisk Ukeblad, Oslo 1958.

. W. A. NasH and P. L. SuENG: “Bending of thin shells in the form of an elliptic

paraboloid”. Proc. 2nd Symp. on Coner. Shell Roof Constr., Oslo 1957. Published by
Teknisk Ukeblad, Oslo 1958.

. B. B. DixovicH: “Pologie Priamygolnie B Plane Obolochki Vrashchenie” (shallow,

rectangular shells of revolution). Moscow 1960.

H. C. SHAH: ‘“‘Analysis of Shells with a paraboloidal surface’’. Indian Concrete Jour-
nal, Aug. 1960, Sept. 1960, Dec. 1960, Feb. 1961, March 1961.

A. Bouma: ‘“Some applications of the bending theory regarding doubly curved
shells’’. Proc. of Symposium on the Theory of Thin KElastic Shells, Delft, August
1959. Published by North-Holland Pub. Co., Amsterdam 1960.

K. APELAND: “Stress Analysis of Translational Shells”. Proc. ASCE — Mech. Div.,
February 1961. -

1. DocaNoFF: «Betrachtungen iiber Berechnungsverfahren rechteckiger Kugel-
kalotten». Proc. TASS Colloquium on Simplified Calculation Methods of Shell Struc-
tures. Bruxelles 1961. Published by North-Holland Pub. Co., 1962.

K. ApeEranD and E. P. Porov: “Design tables for translational shells”’. University
of California, Berkeley (to be published).

S.M. K. CHETTY: ‘“‘An investigation into the linear behaviour of hyperbolic paraboloid
shells”. Ph. D. Thesis Southampton University, 1961.

KaxtorovicH and KryLov: ‘“Approximate methods on higher analysis”.

H. TorTENHAM: ‘“‘Approximate solutions to shell problems”. Proc. 2nd Symp. on
Concr. Shell Roof Constr., Oslo 1957.

H. TorteNHAM: “A new method for the structural analysis of thin walled spatial
structures’’. Research Reports E/RR/6 and E/RR/8 T. D. A. London 1958.

A. Aass JR.: “Matrix Progression Method”. Der Bauingenieur. Heft 8, 1964.

V. Z. Viasov: «Allgemeine Schalentheorie und ihre Anwendung in der Techniky.
German Translation: Akademie-Verlag, 1958.



26 ASBJORN AASS
Summary

The writer presents a variational method for the analysis of elliptic para-
boloidal shells with the following boundary conditions:

1. KEdges rigidly clamped.
2. Edges simply supported on shear diaphragms perpendicular to the surface.
3. Edges simply supported on vertical shear diaphragms.

In an example the accuracy of the method is tested by comparing the
results with those given by B. B. DikovicH [9].

Résumé

L’auteur présente une méthode variationelle pour I’étude des voiles minces
en forme de paraboloide elliptique. Il considére les conditions au contour
suivantes:

1. Bords encastrés.
2. Bords simplement appuyés sur des tympans perpendiculaires & la surface.
3. Bords simplement appuyés sur des tympans verticaux.

Dans un exemple, il vérifie 1’exactitude de la méthode en comparant ses
résultats avec ceux donnés par B. B. DikovicH [9)].

Zusammenfassung

Der Autor beschreibt eine Variationsmethode zur Berechnung von ellip-
tischen Paraboloidschalen mit den folgenden Randbedingungen:

1. Die Rénder sind fest eingespannt.

2. Die Rénder sind frei drehbar auf Randscheiben gelagert, die senkrecht zur
Schalenfliche angeordnet sind.

3. Die Rinder sind frei drehbar auf vertikalen Randscheiben gelagert.

Die Genauigkeit der Methode wird an einem Beispiel, durch Vergleich mit
den Ergebnissen der Methode B. B. DikovicH [9], gepriift.



	A contribution to the bending theory of elliptic paraboloid shells

