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Creep Failure of Reinforced-Concrete Columns
Influence du fluage sur la rupture des colonnes en béton armé

Einfluf3 des Betonkriechens auf das Versagen von Stahlbetonsdulen

R. F. WARNER B. THURLIMANN
Swiss Federal Institute of Technology, Zurich

1. Introduction

1.1. Creep Failure of Concrete Columns

Although experimental [1] and theoretical [2] studies of creep failure in
reinforced concrete columns have been made, no general analytic treatment
of the phenomenon is yet available. Difficulties involved in a general analytic
approach arise from two main sources:

a) Creep behavior of plain concrete has been investigated for low stresses
(Dischinger Creep) but little is known of inelastic behavior in the load range
and time span immediately preceding failure.

b) Theoretical treatment of a real cross-section becomes extraordinarily com-
plicated when the neutral axis varies not only with load but also — as a
result of creep effects — with time.

In the present paper, a simplified model of plain-concrete behavior is
assumed, taking into account the important qualitative findings of Rtrscu [3].
The creep failure of reinforced concrete columns is then investigated. A simpli-
fied I section of zero web thickness is considered which simplifies the problem
considerably. Numerical evaluation of the equations is nevertheless quite
tedious and lends itself to computer programming.

1.2. Approach to Problem

Creep deflection and creep failure in concrete columns occur as a result of
the time-dependent deformation and strength properties of plain concrete.
The following phenomena are of prime importance:
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a) Variation of concrete strength with duration of load application. Strength under
sustained load is considerably less than under instantly applied failure
load [3].

b) Stress-strain relationship of concrete in bending compression under short-time
loading. This consists of a loading stage to the maximum stress §,, followed
by an unloading stage in which the strain increases to an ultimate value ¢,
while the stress decreases to some fraction of 8, [6].

c) Creep behavior of plain concrete. For small and intermediate stresses, creep
strains follow approximately an exponential variation with time, tending
to a limiting value at time infinity. At higher load levels, however, the rate
of creep strain is dependent on load magnitude, and the strains tend more
to increase uniformly with time until failure occurs.

Because of the change in concrete creep behavior with increasing load,
creep of reinforced concrete columns follows a different pattern to that of a
steel column at high temperature. Thus, whereas the latter has a finite life for
all load values and all eccentricities greater than zero [4], reinforced concrete
column behavior can be broken into two distinet phases. This is most con-
veniently carried out by defining for a given column with a given loading P,
an initial critical eccentricity e, such that for e < e, the column life is infinite
and for e >e¢,, failure occurs after a finite time interval r.

Another initial eccentricity e, may be associated with load P which cor-
responds to failure of the column under short-time loading (= — 0). This type
of failure occurs when load P together with the moment M induced by the
initial eccentricity e, plus the elastic column deflection %, cause immediate
static failure in the central column section. The static strength of a column
section has been investigated experimentally and analytically by HoaNESTAD
[5] and others. It will be assumed here that the strength properties of a section
can be predicted with reasonable accuracy.

In general, 0 <e, <e,, and the creep behavior of a column with eccentric
load P can be broken into the following phases:

a) e=0: Strength is independent of creep effects: If the column is slender,
the critical buckling load can be determined from the solution
of the Eigenvalue problem; if the column is short, the static
strength of the section alone governs.

b) 0 <e<e,: Creep effects increase the initial deflection and hence the bending
moments in the column. This leads to further deflection and
creep. However the combined effect of P, e and deflection is not
sufficient to cause failure, even after infinite time. The central
deflection of the column, w, will approach a limiting value w,, .

c) e=e,: Increase in column deflection, hence in bending moment in the
center section, is just sufficient to bring the internal stresses to
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a state of imminent failure after infinite time (r — o0). Central
deflection of the column again approaches a limiting value.

d) e, <e<e,: Creep induced deflections increase the internal stresses to a state
of failure after a finite time interval 7. Column deflection increases
until failure takes place.

e) e=e,: Instantaneous (7 — 0) static failure of the central column section
occurs due to load P and moment (e, +w,) P.

Of prime importance in the study of creep behavior is the evaluation of the
critical eccentricity e,.. The major portion of this paper deals with the deter-
mination of e, as a function of the load P, the slenderness ratio A, the cross
sectional properties of the column and the parameters defining the strength
and deformation characteristics of plain concrete.

2. Strength and Deformation Characteristics of Plain Concrete

2.1. Concrete Strength as a Function of Tvme of Loading

The experimental work of Rt'scH has shown that the strength of axially
loaded concrete specimens is dependent on the rate at which the loading is
applied and on the time = over which the loading is maintained. This pheno-
menon is indicated qualitatively in Fig. 1 where B, represents the concrete

B

Bo\

By

Fig. 1.

strength corresponding to sustained loading time 7. Values given by Riscn
indicate that concrete strength under long sustained (r — o0) loading, 8., can
vary between seventy-five and eighty-five percent of the concrete strength
under short-time (r — 0) loading, B,:

K, = ’% = 0.75; fast initial loading rate (one hour),
0
= 0.85; very gradually applied load (time of load application ~ 7).

Since the decrease in strength with increasing 7 is approximately exponential,
the relation can be expressed approximately as

B'r = Boo‘*'(ﬁo—ﬁco)e_a” (2.1)
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or non-dimensionally as K, =K +(1—-K,)e ™7, (2.2)
where K, = B
Bo

and «; is a parameter defining the appropriate time units. Since «, becomes
important only in the case of finite life problems, it will not be evaluated here.
Eq. (2.1) applies only to the case of sustained loading of constant magnitude.
No test data has yet been published for the situation in which the concrete
stress o varies in the range B, <o <f,. A simple linear damage assumption
might however be made, similar to the Palmgren-Miner hypothesis for fatigue
failure. With the failure time interval corresponding to o; denoted as ; and
the actual loading time of o, as 4 7;, the linear damage assumption leads to

the failure criterion
Y Am _ . (2.3)

Ti

Such an expression is also required only in the treatment of finite-life problems.

2.2. Concrete Stress-strain Relation, + — 0

The actual stress-strain relation for concrete under short-time loading can
be approximated [6] quite well by a cubic parabola for the loading curve and
a second order parabola for the unloading curve, as shown in Fig. 2a. In the
present work, however, the relation will be simplified to the three straight
lines shown in Fig. 2b. The value €’ corresponding to the stress o=, must of
course be chosen to give best fit to the experimental curve.

2.3. Creep Behavior

For relatively small stresses, creep behavior is represented with reasonable
accuracy by the Eqs. [7]

o €
|
Bo T
Second order
Cubic parabola €piCreep strain (Dischinger)
parabola
(2a) ———*— ) ) (3a)
€ ;elastic strain
%u ! ~¢€ i =t
o 3 &y 5;
Bo T
B,,J"
(3b)
(2b) ‘€ additional creep strain
— * € ) -t
€ € &y

Fig. 2. Fig. 3.
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. c ;: O
D =P, (1—el), (2.5)

The parameter «, and the value of the creep function at time infinity, @, ,
must be obtained from tests. Although these equations were originally derived
for creep behavior in the lower load levels, their range of applicability will be
assumed here to extend up to the stress B,. This extrapolation should not
lead to serious error provided the experimental value of @, is obtained as a
mean from tests conducted over the full range 0 <o <f,.

For high stresses, however, creep strains no longer tend to a limiting value
but increase with time until failure. This behavior can be treated by intro-
ducing a second creep term in addition to the DiscHINGER function as shown
in Fig. 3. This term is expressed as

€; = togtan g.

Assuming a linear relation between the extreme values

o=/3w; ‘P=O:

and g = PBy; q)-——g,

we have t ag tan 0B 7 (2.6)
€, = oL —_— .
LT BB 2

Thus for constant stress o> 8,

€ = e;{1+D, (1 —e*!)} 4 taztan (;_gw g) (2.7)
0~ Mw
and for variable stress B, <o <f,,
. 6 o 0—Bo
€e=—++-—-DP+a tan( . —). 2.8
Ec c 3 ﬂO—BOO 2 ( )

Again, Eqs. (2.7) and (2.8) are required only in the study of finite life problems.

3. Static Strength of Section

3.1. Instantaneous Loading, 7 — 0

The strength of a reinforced concrete section subjected to moment M and
thrust P can be conveniently represented by an interaction diagram [5] similar
to Fig. 4. For the simplified section of Fig. 6a which will be treated in the
present study, this diagram consists of two intersecting straight lines, one
representing compression failure, the other tension failure, as shown in Fig. 5.

Compression failure under short-time loading occurs when the steel stress
in the compression flange is at yield, oy=0,, and the concrete stress in the
same flange is stressed to B,, o,=p,. Equilibrium of forces leads to the equation



340 R. F. WARNER - B. THURLIMANN

MO
P = 2{BOAC+GUAS_—}L-}' (3.1)
In the extreme case of zero moment,
Pg = 2{BOA0+U;1/AS}' (32)
P
3
o
<+——Compression Failure
/
/
\\
~N
<«—— Tension Failure Fig. 4.
° —= M
My
10 P/PS

Compression Failure

s\

-
S ~ ?‘\050
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9
\\ =Gt
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04 ' X >

= >
]
- /
~ Tension Failure; T=0; 7=~ ®
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T

02

[+]
30 20 T MM

Fig. 5.

For tension failure, we may write immediately
M°=ho,A;+% Ph (3.3)
with the extreme value for zero axial force
M) =ho, A,. (3.4)

Eqgs. (3.1) and (3.3) may be non-dimensionalized to yield the more convenient
forms:

Compression Failure, + — 0:

(F)-1-48)
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Tension Failure, + — 0:

()= +5()
in which &y = 1+;B;— (3.7)

and p is the proportion of steel area in one flange, 4,/4,.

3.2. Sustained Loading T — o0

When the loading is sustained over the time interval 7 — oo the failure
condition in the compression flange becomes o;=f, and oy=o,. Tension
failure is however unchanged. The equations are thus:

Compression Failure, + — o0

P 1 (M
(7g) = -7, (3ag)} (3:8)
Tension Failure, + — oo
M= P
(Mg) =1+, (P’g") (3.6a)
. : Bo+po
in which =20 ¥ 3.9
. Cz B0+F’0y ( )

4. Creep Behavior of Concrete Column

4.1. Introduction

Equations will now be derived to describe the creep behavior of a pin-
ended concrete column with a sustained load P applied at an initial eccen-
tricity e. The column cross section is shown in Fig. 6a, the loading arrangement
in Fig. 6c. The prime purpose of the analysis is to determine the critical

e\g wix,t)

-y
As —-'l As k.o

Ac —t

Ac
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eccentricity e, which induces a state of failure after an infinite time interval
T — 00. Since the concrete stresses will not exceed B,,, concrete creep behavior
will be defined by Eqgs. (2.4) and (2.5). ;

The internal actions M and P in the central cross section may be super-
imposed on the interaction diagram defining the strength of the section as
shown in Fig. 7a. The line 0Z represents the application of axial force P at

A (7a)
F
P B'
0 5 M M
\M
m® F

(7b)

steel in L.H. flange yields at time tg

Phase I - Fig. 7.

eccentricity e. The horizontal line Z F' with P constant represents the increase
in lateral deflection. The initial eccentricity is equal to e, if the point F
representing conditions at infinite time lies on the failure envelope A’ B’ .

Considering the state of stress in the flanges of the member, we see that a
number of different possibilities can arise for the loading arrangement of
Fig. 6c. The possible states of stress in the central column cross section are
summarized in Table 1.

The equilibrium conditions and hence the creep analysis are different for
each of the phases shown. Furthermore, the creep effect in a given column will
usually begin in one phase but pass into a second and, possibly, a third as the
process continues. This is illustrated qualitatively in Figs. 7b and 7c¢, where

Table 1. Stress Phases in Central Section of Column
(Compression positive)

Left Hand Flange Right Hand Flange
Phase

Strain | Steel Stress.| Strain | Steel Stress

I + € 051 < 0y + e Osr < Oy

II + € gs1 =0y + € asr < Gy

111 + € os1= 0oy + € asr = Oy
Iv + ¢ ogs1 <oy — € Osr> — Oy
A + € Osl = Oy — €r Osr > — Oy
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the changes indicated in Fig. 7a are shown in terms of the time parameter.
The point G represents a change of phase occurring at time ¢,.

Equilibrium of internal forces in the center section of the column, for all
phases and at any time ¢, is expressed by the equations

Ol+0r=P’ —(OZ—O,.)=(6+’L—0)P,

in which w is the lateral deflection of the center section. Furthermore, P is
held constant in the present analysis, so that

C;+0,=P=0, §(O,—Q)=Pw.
Introducing non-dimensional terms for initial eccentricity and central deflec-
tion,

k =elh, (4.1)

8 = wh, (4.2)

we may re-write the equilibrium equations as

C; = P(0.5+k+3), (4.3)
C,=P(0.5—k—35), (4.4)
¢, = PS$, (4.5)
C,.=—P§. (4.6)

The force C, consists of a concrete force and a steel force, i.e.
Ol = GlAC+GSZAS’

The concrete stress in the left hand flange for all phases is therefore

P
G,=;1——{0.5+K+3}—p,osl (4.7)
[4
and its derivative is
P . .
d'lz‘Z“S'—,lLosl. (4:.8)

c

For phases I, II, and III, the concrete stress in the right hand flange is
P

o, = 1 {0.5 -k —8} —p oy, (4.9)
and G, = —ZP:S%,L G (4.10)

In phases IV and V the right hand flange is in tension, the concrete stress is

Z.ero,
=0
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P

the steel stress is O = A—(O.5 —Kk—20) (4.11)
8
and Oy = —ZP—S (4.12)

8

Considering now the deformation of the column, and using the cosine approxi-
mation for the column curve, we write

w(x,t) = w(t) cosle—x.
The curvature at the mid section is therefore
1 2
= - w(t). (4.13)
p [

The internal strains are assumed to be positive when compressive, as in Fig. 6b,

so that we also have 1
€l — 67‘

) h
Combination of (4.13) and (4.14) yields

(4.14)
2
(¢—¢,) = 712%8.

Introduction of the slenderness-ratio A, which for the section under considera-
tion is equal to 21/h, results in

)\2
8 = m (€l —67.) (4‘15)
: Az
and o = e (6,—€,). (4.16)

It will be convenient now to evaluate the initial column deflection at time
zero, 8,. This value will depend upon the starting phase, which, in practice,
will almost certainly be either I or IV, depending upon the magnitude of P.

For phase I, equilibrium of internal forces, together with the elastic stress-

strain relations, yield P05+ k48, 1)
0 = A E.(1+np) .
_ P(0.5—-«k—3,)
and €0 = AE.(tnp) (4.18)
Substitution of these values into (4.15) gives
A E (1 +n/.1,)
30(4772 ¢ CPA2 ——2)=2K.
2
With the definitions N = 4—77)\2%”,&, (4.19)
47 AE,
=" p (4.20)
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the expression for §, in phase I becomes
2k

Qg =——. 4.21
° Net Ns— 2 ( )
The initial concrete strain in the left hand flange is then found to be
P e+ 7 )
= 0.5+——=—k]. 4.22
10 AcEc(l'l_nF')( +776+7]s"2K ( )
A similar treatment for phase IV provides the equations
(1+2nu)x—0.5
_ 4.23
0= wp (L) n—(1+2np) (4.23)
P
and 0 = 7775 (s = 1) 8+ 0.5 —«j. (4.24)

The creep behavior in each of the five possible phases will now be treated
in turn.

4.2. Phase 1

Since in phase I the entire section is in compression, creep effects will take
place in both flanges. Eq. (2.4) is therefore applied to each flange:

= TGy O

€ = Ec@-i—Ec, (2.4a)

¢ = %Lcﬂ%. (2.4D)
c c

The above equations are substituted into (4.16) to give
4728 o,—0, :+ Oj—

- b+
2 , YL

Gy

(4.25)

and the terms (0,—o0,) and (6,—¢6,) are rewritten using KEqs. (4.7), (4.8), (4.9)
and (4.10) together with the additional information that oy=E ¢ and o, =
=K e, to yield

4725 p 472 . (2P 472 .

which is equivalent to
2
{4 A B, + A B, 2}88 {2 4 ASES}8 9

AP Pl A2 P
or, with the notation of (4.19) and (4.20),
Mo+ Ns— 2 ?ﬁ _ 2k
A — a(p_8+*—2_ns. (4.26)

The initial condition for Eq. (4.26) is given at time {=0 as
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The solution to (4.26) may now be expressed in the form

2k+(2—m,)d [ 2—n, ]

=exp|——-® 4.27a
2k +(2—1,) 8 Plge+n,—2 ( )
provided M, * 2. (4.28a)

For the case when (4.28a) is not fulfilled, i.e.
Ng = 2 (4.28D)
the & term drops out of (4.26) and integration of the equation yields
5 = 8,4+~ (4.27b)
Ne

Eqgs. (4.27a) and (4.27b) allow 8 and hence the moment in the mid-length
section of the column to be determined at any time ¢ in phase /.

In order later to couple phase I with phase 11, it will be necessary to obtain
a solution also for ¢,. Substituting for o, and ¢, in (2.4a) we first obtain

‘ P . P .
€ = {Z:E;(O.5+K+5)—npel}@+———8—n,uel

AC EC
r@_el nu P (

or 00 " Tinp T A E,+A,E,

08
0.5+K+8+ﬁ). (4.29)

From KEq. (4.27a) we then obtain

00 2 27)2 2—n
5422 { _ c ex [———-— @]}.
60~ 12—, (15— 2) (e + 15— 2)2 P Ne+ Mg — 2

Substitution of the above expression into (4.29) yields the first order linear
differential equation

99, mp
0D l4npu

P 1 s 2 g ( 2 — 7 )]}
—+ -~ ex * _dy)l:, (4.30
AcEc+AsEs{2 KI:"]s_2 (15— 2) (e + 15— 2) 4 N+ Ms— 2 ( )

which may be solved using the initial condition

€ =

to give
n
€ = e,oexp(— 1‘*"";#@)
P (1 N K "W
- — — 4.
+ASES(2 2_%)[1 eXp( 1+nu(p)] el

+ ¢ exp|—5—@) —exp| — D).
AcEc (2—773)(770+773_2) P 77¢+”f)s—2 p 14+np
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The above equation does not hold when n,= 2. For this condition, substitution
of (4.27b) and its derivative into (4.29) yields the differential equation

g nu P 2k
00 Tanp ™ AcEc+AsEs[O'5+K+8°+f(1+q})]

the solution of which is
P 2k

GZ—GZO+AE 7
S C

(4.31b)

for condition (4.28Db).

The value of @ at which the steel reinforcement in the left hand flange
reaches yield can be evaluated from Eq. (4.31) by replacing ¢, by ¢, and making
a trial and error solution for @.

The range of application of the above equations is determined by the
requirements that the force in the right hand flange is compressive and that
all steel stresses are elastic; hence by the relations

Ph
M<-—2-— 0<og< +oay,, 0<og < +oy,.

4.3. Phase 11

In phase II the entire section is again in compression and Egs. (2.4a),
(2.4Db), (4.7), (4.8), (4.9) and (4.10) may again be substituted into (4.16), this
time with oy =0, and oy, = Ee,, to give
4725 P |1 5 05—k=8]s [ o mp 5, P 2+nug

N T A B, 27" T+np T4 B, T+np

”Ec 1+’ny,€
Changing the derivative from ¢ to @ and solving for ¢, we obtain
_[47*(A+np) P 24np 96  l4+np o,

L Nnp  AE, np |00 nap "E

c

B (4.32)
— g (A +np) (054 +8)—(0.5—k )]
S s
and hence
o _ [47*(L+np) P 24np 323_ P 0o
aqb“[ g AE np |60 AECT"Wge  (4:33)
From (2.4a), however,
0 P 05
a—;—AE(05+K+8) ; R (4.34)
c c

Differentiation of (4.15) with respect to @ gives
o de, 47w 00

od  od X2 o
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and substitution of (4.33) and (4.34) yields the second order equation

%8 NeNs— 2N —2 7 8_8__ Ns § =
0D MEAmens—2m,—1ms 0P M2+ NN — 2~ 1
7:73 A‘G'y\

N2 + g 15— 2

(4.35)

{
Ne = s \0.5+K_ P )

The first initial condition for the above equation is of the form
=90, d=29,.

Usually @, will refer to the instant when the steel in the left hand flange
reaches yield, i.e. when ¢=¢,. The value of @, will therefore be obtained as
the value of phase I.

The second initial condition is obtained from Eq. (4.32) by solving for the
first derivative of & :
06 1 A E,
0P 7)c+7)s—(2+nl‘b)[ P

€.+ (x+90) (2+n,u,)+%—(l+n‘u)£fp&’] . (4.36)

is then obtained by substituting the initial value (e,)

The initial value (3‘E .

aqs)g
which can be determined from the end condition of phase I:

08\ 1 A H, nu Ao,
(%)g T et — (24 p) [ P (€t ek dy) (2bmp) b mym = (L mp) =5
(4.37)
Eq. (4.35) is of the form
0% 00 5
FTZRAPT AR
its solution is thus
§=0C,en?P4(0yen?4 [0.5+K—i4—;70i’], (4.38)

in which € and C, are integration constants, and r, and r, are the two solutions
of the quadratic equation

r’+a,r+a, =0.

The constants C; and O, are evaluated using the initital conditions;

en® 2Py c, (8_0 —0.5—k+ A;J%)
B 08
roen P p or2 Py C ( )
1 2 2 0P/,

The region of phase II is defined by the relations
M < 1Ph, og = +0y,, 0<o4< +o0,.
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In order to determine the limit o, =0,, the expression for 9, i.e. Eq. (4.38),
together with its derivative, may be substituted into (4.32) to give
P (08
(), =€, =[m,+71,—(2+mn ——(——) +(14+nu)e
g =€ = et~ ”)]ASESWP;( ) €y
(4.39)

[(2+n,1,)(x+8!;)+£’—‘].

4, E, 2

This expression allows the value @; to be determined at which a phase change
from IT to III occurs.

4.4, Phase 111

A treatment of phase III similar to that of phase I, but with the values
0q=0g4=0,, leads to the first order equation

4772_ 2P 3_8___ 2P 5+ k)
N T AE ed - 4,80~
1 00
or {Enc— 1} Er d+k. (4.40)

With the initial condition
D=9, S =295

g

obtained as the end condition of phase 1I, the solution of (4.40) may be
written as

X¥0 _ exp {7,0%5@ —cbg)}. (4.41)

The range of application of this equation is governed by the conditions
M = Ph/2, og = +o0,, Oy = +0,.
4.5. Phase IV

Since in phase IV the right hand flange is in tension, o, =0 and the creep
effect takes place only in the left flange. From (4.11)

¢, = ASI)ES(O.E)—K—B)
. P .
a;nd €, = —ms. (4.42)

The derivative ¢, may be evaluated from Eqs. (4.16) and (4.42) as

. 472 P 7.
€ = [—A—Z = Z:_E_S] 8. (4:.4:3)
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The concrete stress in the left hand flange is obtained from Eq. (4.7),

P

C'l =Z[O.5+K+B]—l¢b Esel,
c
P . .

c

Substituting for ¢, o; and ¢; into the creep function (2.4a) we obtain

4 72

2 . . s
[4)\—72’ - ﬁ] 5= Z§E—c(2x+28)¢— T sund
IWELA P
A E, X ’
which simplifies to
(nc+ns— ! “ﬁ"“)% — (2—7,)8+2k. (4.44)

With the initial condition

b=, 60 =29

the solution of (4.43) is
2r+(2=1:) O = exp [~J—2;n—s—-— (@—(Dg)]. (4.45a)

Eq. (4.45a) does not hold when 7,=2.
In this particular case, direct integration of (4.44) gives

(6—8,) =2npux(®-9D,). (4.45b)
The region of phase 1V is defined as

M = Ph/2, 0<og< +o,, —0,<0,<0.

4.6. Phase V

The analysis for phase V is most easily obtained by eliminating ¢, from the
two basic Eqgs. (2.4a) and (4.16) to give

4728 o2 O .
)\2 = E;—@ + E‘; — €,.
Substitution of the quantities
P .
4.5

€ =

and o =£(O.5+K+8)- o
4 A Koy

[
results in the equation

1+nu) 08 _ 40,
(770_' - )8¢—8+(0.5+K 271). (4.46)
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With initial condition D=0D,; 3 =39,
we thus obtain
6+0.5+ Aoy d_p
4,0, = ©XP [—-T_Hgb—”] . (4.47)
8,4+ 0.5 +xk— 2 Te™ pa
The region of phase V is
M= Ph/2, og = +o,, ~0,<0,<0.

4.7. Critical Eccentricity

The creep behavior of a column with the load applied at the critical eccen-
tricity e, will usually involve two — and possibly three — of the phases
treated above. Although the condition separating phases I, II and III from
IV and V is simple, xk+8 =1, it is not known before the calculations are made
at which stage the two further conditions, ¢=¢,, and ¢,=¢,, will occur. Thus
it will not always be known in advance which phases will be encounted.
Because also of the large number of possible phase combinations and the rela-
tive complexity of stating the coupling conditions in general terms, solution
for e, in closed form is hardly feasible.

A trial and error method is more suitable, in which an initial value for «
(i.e., initial eccentricity) is first chosen, the initial phase is determined from
the conditions of Table 1, and the initial creep behavior is treated using the
appropriate equations. Either phase I or phase II will govern initially. The
value @, will then be determined for which either

8+K=%

or el = 6y7

i.e., for which a change of phase occurs. Further creep behavior is then deter-
mined in the new phase, either up to the value @, at a second change of phase
or to the end value @, . The final deflection %48, which corresponds to ®=®
i.e. t=00, is thus obtained.

However, the total eccentricity e,, which will cause static failure in the
column section after time infinity can be obtained for load P from the M — P
interaction diagram of Fig. 5, as

n?

The correct initial value for « has therefore been chosen when the following
equality is fulfilled:

€
K+8n=7,

i.e. when €=y = €H—W,.
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All of the equations required for this trial and error procedure are contained
above. The application of the analysis will be demonstrated in the following
section with a numerical example which will provide actual data on the effect
on column strength of creep deflections.

5. Numerical Example

The following computations are made for a simplified I section with the
following properties:

A, = 300 in?
A, = 3in? (x=0.01)
h = 30in

Bo = 3400 psi
B, = 3000 psi (K., =0.883)
g, = 50,000 psi
E, = 30-108 psi
E, = 3-10° psi
b, =3
The Equations of Section 3 yield the following static strength values:
PO =2.34-108 1b,
P® = 2.10-108 1b,
Py
Tuo = 0.897,
MP= MY =4.5-10%in lb.

For balanced (simultaneous) tension and compression failure under short-

time loading, 7 — 0,
(_11) — 0.436;

5o —JE) = 4.400,

(o

and for long sustained loading, = — o0,

P M
(——) = 0.384; (Mg) = 4.000.

u

The above values have been used to obtain the interaction diagram of Fig. 5
and the line A=0 in Fig. 8.

Creep calculations have been made for four different slenderness ratios;
A=20, 40, 60 and 80. A trial and error procedure was used in which an initial
value of « was chosen, and the calculations made to determine the final value
of the deflection term §,. The calculations were repeated until the «, value
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Fig. 8.
Table 2. Numerical Example
No A ﬁ M* dn + *) K **) So ﬁ
. PZ Mg n cr Ne cr 30
1| 20 0.086 1.667 1.250 444.0 1.222 v 0.020 1.40
2 | 40 0.086 1.667 1.250 111.0 1.136 v 0.078 1.46
3 | 60 0.086 1.667 1.250 49.3 0.990 1V 0.163 1.59
4 | 80 0.086 1.667 1.250 27.8 0.794 Iv 0.244 1.87
5| 20 0.158 2.220 0.906 240.0 0.873 v 0.022 1.50
6 | 40 0.158 2.220 0.906 60.0 0.768 v 0.078 1.77
7 | 60 0.158 2.220 0.906 26.7 0.598 IV 0.125 2.46
8 | 80 0.158 2.220 0.906 15.0 0.388 I 0.027 19.16
9 | 20 0.315 3.455 0.703 120.0 0.654 Iv 0.024 2.04
10 | 40 0.315 3.455 0.703 30.0 0.516 IV 0.057 3.28
11 | 60 0.315 3.455 0.703 13.4 0.320 I 0.025 15.30
12 | 80 0.315 3.455 0.703 7.5 — — — —
13 | 20 0.450 3.500 0.500 84.6 0.465 I 0.005 7.00
14 | 40 0.450 3.500 0.500 21.2 0.350 I 0.016 9.37
15 | 60 0.450 3.500 0.500 9.4 0.220 I 0.027 10.02
16 | 80 0.450 3.500 0.500 5.3 0.083 I 0.022 19.00
17 | 20 0.630 2.085 0.212 60.2 0.190 I 0.003 7.33
18 | 40 0.630 2.085 0.212 15.1 0.134 I 0.009 8.66
19 | 60 0.630 2.085 0.212 6.7 0.060 I 0.011 13.83
20 | 80 0.630 2.085 0.212 3.8 0.011 I 0.005 40.02
21 | 60 0.211 2.660 0.810 20.0 0.450 Iv 0.040 9.00
22 | 60 0.735 1.270 0.112 5.7 0.023 I 0.005 17.80

*) 15 = 0.10 5. in present example.
**) Initial Phase.
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was obtained which gave a final (k. +3§,) value, and hence moment, equal to
that indicated by the interaction diagram for » — co.

The results of the calculations are summarized in Table 2 and have been
used to plot Figs. 8 and 9. A sample calculation, No. 15, is given in detail in
the Appendix.

P/Py
Euler Buckling—=)
1.0 -0 k=0
T O0———K=0 .—A
N
08 \
e
4
N
06
N
s
L o ,\ \
04
0.2
I
S — A
20 40 60 80 100

Fig. 9.

In Fig. 8 the value k. =e,/h is plotted against load for the four A-values.
In the higher load range, P/P?=0.5, it is seen that the critical eccentricity
e, 18 less than 0.05 A for a slenderness ratio of 80 or more. Since “accidental’’
eccentricities of this order must always be anticipated in practice, creep
failure after a finite time interval should be reckoned with in such columns.

For slenderness ratios of 60 the eccentricity must be reduced to nearly
half of the section failure eccentricity, e, , in order to prevent creep failure.
Only for very short columns, A < 20, is the effect negligible.

The portions of the lines A=60 and 80 not plotted in Fig. 8 represent a
region in which the analysis does not hold. In this region the accuracy of the
cosine approximation to the column curve falls off and, over a small range of
values, cannot be made at all. The reason is that the state of stress here passes
through phase IV, for which a minimum value of 7, must be stated. Eq. (4.43)
may be rearranged to the form

. P .
€ = (Us—l)Z—E—S,
8 S

which indicates that n, must be greater than unity in order that ¢ and $ be
both positive. This means that for »,-values less than unity, the left hand
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flange would be required to unload as the column deflection increases. This
physically impossible situation derives from the inapplicability of Eq. (4.43),
hence from the inapplicability here of the cosine assumption. A more accurate
column curve would have to be used to obtain accurate results in this region.

In Fig. 9 the load required to produce failure for + — oo is plotted against
slenderness ratio for two initial eccentricities of e=0.01% and 0.1A. For pur-
poses of comparison a portion of the Euler buckling curve is also shown in the
figure. It lies high above the two failure lines, and, in fact, does not even apply
to the present range of interest, since P,/P? < 1.0 for A < 80.

6. Summary and Conclusion

The present study has been limited to the case of a column with an idealized
section consisting of thin flanges and a web of zero thickness. Choice of this
section simplifies the analysis enormously and allows an overall view of the
creep effect to be obtained. The behavior of an actual column of rectangular
section with steel in both faces should parallel, at least qualitatively, that of
this ideal section.

In the present approach, creep failure is treated as a second order deflection
problem with a time-dependent static failure criterion of the central section
subjected to combined bending and thrust.

The critical initial eccentricity e,., which is used to divide creep behavior
into the cases of finite life (e>e,), and no-failure (e=<e,), is of prime signi-
ficance. Although the design of columns for specified finite life might, with
further research, be feasible, errors in predicted ‘life’’ are likely to be very
large, owing to the form of the creep function and to the variations to be
expected in the concrete creep properties. Finite life analysis may therefore
prove to be similar to the analysis of fatigue life, requiring statistical treatment.
Furthermore, due to the exponential form of the creep function, the difference
between the infinite life load P and, say, the fifty-year life load P}° should
not be great and it would seem advisable, at least until further, more detailed
studies are made, to limit column eccentricities (or, alternatively, column
loadings) to ensure infinite life, i.e. e<e,,.

The creep behavior of a reinforced-concrete column has been seen to depend
on the state of stress in the steel, and, depending upon that state of stress, passes
through a number of different phases as the column deflection increases. Creep
deflections can to some extent be controlled by an increase in the steel area A,.
The effect of A4, is represented in the equations of Section 4 by the term

2
’7s=% A—;ff Far more effective, however, is a decrease in the slenderness
ratio A which occurs squared in both the steel term 7, and the concrete term
2
Ne :4—/\:— 14-”P£5 The prime parameters affecting the value of ¢, have been found

to be 7,, n, and the limiting creep value @,,.
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The results of the numerical example provide interesting information on
creep failure. In the higher load range (P/P?)=0.5, the critical eccentricity
for slender columns (A=80) becomes exceedingly small, e, <0.05h. Since
“accidental’’ eccentricities of this order must always be reckoned with, the
calculations would indicate that creep failure in such columns is extremely
likely.

In the lower load ranges and for less slender columns, the considerable
reduction in eccentricity required by time dependent lateral deflection is shown
in Fig. 8. For columns with slenderness ratios in the range 40 <A <60 the
reduction in moment can be more than 50 percent when the load P is in the
order of 0.4 P?. Thus, a column designed for a sustained loading producing
a thrust P=0.4P? and a maximum moment M =0.5M, (PP may well
have a finite life.

The calculations have also indicated limitations to the equations derived
in Section 4. In particular, the use of the cosine function for the column curve
has already limited the applicability of the equations of phases IV and V for
slenderness ratios A>60. An improvement may however be made without
essentially altering the approach developed here. Use of a numerical integra-
tion procedure to eliminate the cosine curve approximation should not present
any inherent difficulty, but will complicate the calculations and will almost
certainly necessitate the use of a computer for numerical evaluation.

A second major assumption limiting the applicability of this work is of
course the use of a simplified I section. A closer approximation to an actual
column section may be obtained by dividing the section not into two, but
three or more layers spaced uniformly over the width A, as shown in Fig. 10.
With the total concrete area A =)’ 4, equal to the actual section area, and the
steel spaced as in the actual section, the approximation should be adequate.
In such an analysis the two simultaneous differential Eqs. (2.4a) and (2.4Db)

+— Ac

. « | Area Concrete = 2 Ac '"— & %—0
. .| Area Steel =2As k =k
. . l h ,

a) b)

' 2 Ac
— 2 Ac F¥ L4
As k/h*"o

As kt,—0
. .

c) d)

Fig. 10.
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would be replaced by a series of simultaneous equations equal in number to
the number of layers chosen.

In the present study, concrete creep behavior has been linearized by
applying Eq. (2.4) throughout the region 0 <o <. A more accurate analysis
can be made by choosing two (or more) regions, for example 0 <o <0.58%,
0.5 8% <o <, and using a different linear creep function in each region. Such
a refinement is hardly warrented until more experimental data is obtained on
concrete behavior in the higher stress ranges and on strength characteristics
under sustained loadings.
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Nomenclature
A, = concrete area in one flange.
A, = steel area in one flange.
C, = total force in left hand flange, center section.
C, = total force in right hand flange, center section.
~ b
K. = B
L
K, = B
M = moment in center section.
M°® = moment causing instantaneous (7 — 0) failure in section subjected to

axial thrust P.

M* = moment causing failure after infinite time (v — c0) in section sub-
jected to axial thrust P.

M? = flexural capacity of section under short-time loading (P =0; 7 — 0).
M = flexural capacity of section under sustained loading (P =0; r — o0).
P = applied load.

P9 = ultimate carrying capacity of section under short-time loading (M =0;
T — 0).

P> = ultimate carrying capacity of section under sustained loading (M =0;
T —> 00).

e = eccentricity of column load.
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e,, = critical initial eccentricity of load P which causes creep failure after
infinite time (7 — o0).

e, = eccentricity of load P which causes immediate static failure of column.

' = eccentricity of load P which causes immediate static failure of column
section.

e, = eccentricity of load P which causes failure of column section after
infinite time.

h = distance between flanges in idealized column section.

[ = length of column.

n = ]%; modular ratio.

time co-ordinate.

T
I

w = column deflection.
w = central column deflection.
w, = Iinitial central column deflection.
w, = final central column deflection at time infinity.
oy, o, g dimensionless parameters defining concrete strength and creep pro-
perties.
B, = stress causing failure in concrete when sustained for time interval +.
B, = static concrete strength, - — 0.
B. = concrete strength under long sustained loading, ¢ — 0.
o = %; non dimensionalized column deflection.
8, = value of 8 at which a change of phase occurs in the column.
5, = fZ—
8 = 3.
e = strain.
¢ = strain in left hand flange.
€o = initial strain in left hand flange.
e, = strain in right hand flange.
e, = Yyield strain of steel reinforcement.
4n2 A E,
e = TP
42 As Es
s = —wp
e ==
. =
cr h

. ; . . . 2
A = slenderness ratio; for idealized section considered, =7l.
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As
poo= g
L =1 +jf;o-
[, = Potroy

Bo+pay
o = stress.
o, = concrete stress in left-hand flange.
o, = concrete stress in right-hand flange.
oy = steel stress in left-hand flange.
o, = steel stress in right-hand flange.
o, = Yyield stress of steel reinforcement.
T = duration of load application.
® = @,(1—e*t); creep function.
@, = value of @ at which a change of phase occurs in the column.
@, = value of @ at time infinity.

Appendix — Sample Calculation; No. 15

359

The initial phase is I; the creep process involves the phase sequence I-—I11I.
Substitution of known values into Eqs. (4.1), (4.2) and (4.3) yields the following:

Phase I
o, = 0.238,
6o = 0.00116(0.5+1.238«),
¢ = €pe 01?1 0.116(0.5—0.895k) (1 — 091 P)
+0.0116 « [60.12645 — 009127
2x+1.0565 — (01260
2k +1.0565,

(¢,), = 0.0017 —0.010978,.

Phase 11

S = 01 60.2095(15_|_02 6_0’0575¢+(0.3563+K),

I

08 1
(ﬁ)g = 3954 56-20 (¢)y+2.10 (x +5,) — 0.108].

A trial and error procedure is adopted to find the value of « which satisfies

the equation
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The value of %{f is found from Fig. 5 to be 0.500, hence
| k15, = 0.5.
An initial value of «x=0.19 is chosen, which yields the result
k+06, = 0.437.

From a second trial value, k=0.25,

k+8, = 0.571.

Interpolating, the third trial value, «=0.22, is obtained which provides the
sufficiently accurate result

k+8, = 0.501.

The details of the three calculations are contained in Table 3.

Table 3. Sample Calculation

Trial 1 2 3
K 0.190 0.250 0.220
do 0.045 0.060 0.053
€10 0.00085 0.00094 0.00090
(B), 1.00 0.99 0.99
8y 0.100 0.123 0.115
(er)g 0.0006 0.0004 0.0005
(ﬁ) 0.0667 0.0863 0.0764
od),
C1 +0.125 +0.181 +0.151
Cs —0.636 —0.740 —0.686
on 0.247 0.321 0.281
On+x 0.437 0.571 0.501
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Summary

In an introductory study of creep failure in reinforced-concrete columns,
the case of a pin-ended member subjected to an eccentrically applied sustained
thrust P is considered. A critical initial eccentricity e, is defined for which
the time of loading required to cause failure, 7, is equal to infinity. If the
eccentricity of the load P is greater than e,,, creep effects cause column failure
after a finite time interval (Finite Life Problem); if however the initial eccen-
tricity is not greater than e, , creep effects increase the column deflection, but
never to a sufficient extent to cause failure.

A theoretical analysis is made of the creep behavior of a reinforced concrete
column of idealized I section. KEquations are obtained which allow the initial
critical eccentricity e, to be determined by a trial and error procedure.
Although simplified strength, stress-strain and creep relations are used to
represent the concrete properties, the analysis indicates essential column
behavior and the prime variables of the problem. A numerical example shows
the considerable decrease in column load carrying capacity brought about by
concrete creep.

Résumé

Dans cette étude préliminaire, les auteurs examinent I’influence du fluage
sur la rupture des colonnes en béton armé. Ils examinent d’abord le cas d’une
colonne rectiligne bi-articulée, soumise a un effort excentré permanent P.
L’excentricité initiale critique pour laquelle la rupture se produit au bout
d’un temps infini est désignée par e,. Si 1’excentricité initiale de la charge
dépasse la valeur e, le fluage du béton entraine la rupture de la colonne au
bout d’un temps fini. Si ’excentricité est inférieure a e,,, le fluage du béton
entraine bien une augmentation de la fleche, mais dans une mesure trop faible
pour entrainer la rupture.

Pour une colonne en béton armé de section en double-té idéalisé, les auteurs
établissent des équations permettant de déterminer 1’excentricité initiale
critique e, par la méthode des approximations successives. Bien que les
propriétés du béton telles que la résistance, le diagramme contrainte-défor-
mation et le fluage soient représentées par des relations simplifiées, 1’étude
fait ressortir les principaux parametres intervenant sur le comportement dans
le temps de colonnes en béton armé. Un exemple numérique montre la réduc-
tion considérable de la résistance d’une colonne du fait du fluage du béton.
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Zusammenfassung

Die vorliegende Arbeit untersucht den Einflul des Betonkriechens auf das
Versagen von Stahlbetonsidulen. Der Fall eines urspriinglich geraden und beid-
seitig gelenkig gelagerten Stabes unter einer konstanten exzentrischen Last
P wird untersucht. Die kritische Hxzentrizitat, fiir die Versagen nach un-
endlicher Zeit, =00, eintritt, wird als e, definiert. Uberschreitet die
tatsdchliche Anfangsexzentrizitit der Last den Wert e,, so erreicht der
Stab den Bruchzustand in der endlichen Zeit 7. Ist aber die Exzentrizitit
kleiner als e,, dann wichst zwar die Ausbiegung infolge des Betonkriechens,
ohne jedoch zum Bruch zu fiihren.

Fiir eine Stahlbetonsidule mit idealem I-Querschnitt werden Beziehungen
hergeleitet, die eine iterative Bestimmung von e, ermoglichen. Obgleich die
Betoneigenschaften durch vereinfachte Festigkeit-, Spannung-Dehnung- und
Kriechen-Beziehungen erfal3t werden, zeigt die Untersuchung die Hauptpara-
meter fiir das zeitabhingige Verhalten einer Stahlbetonsiule. Numerische
Beispiele zeigen die betrdchtliche, vom Betonkriechen verursachte Vermin-
derung des Stabwiderstandes.
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