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Creep Failure of Reinforced-Concrete Columns

Influence du fluage sur la rupture des colonnes en beton arme

Einfluß des Betonkriechens auf das Versagen von Stahlbetonsäulen

R. F. WARNER B. THÜRLIMANN
Swiss Federal Institute of Technology, Zürich

1. Introduction

1.1. Creep Failure of Concrete Columns

Although experimental [1] and theoretical [2] studies of creep failure in
reinforced concrete columns have been made, no general analytic treatment
of the phenomenon is yet available. Difficulties involved in a general analytic
approach arise from two main sources:

a) Creep behavior of piain concrete has been investigated for low stresses

(Dischinger Creep) but little is known of inelastic behavior in the load ränge
and time span immediately preceding failure.

b) Theoretical treatment of a real cross-section becomes extraordinarily
complicated when the neutral axis varies not only with load but also — as a
result of creep effects — with time.

In the present paper, a simplified model of plain-concrete behavior is
assumed, taking into account the important qualitative findings of Rüsch [3].
The creep failure of reinforced concrete columns is then investigated. A simplified

I section of zero web thickness is considered which simplifies the problem
considerably. Numerical evaluation of the equations is nevertheless quite
tedious and lends itself to Computer programming.

1.2. Approach to Problem

Creep deflection and creep failure in concrete columns occur as a result of
the time-dependent deformation and strength properties of piain concrete.
The following phenomena are of prime importance:
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a) Variation of concrete strength with duration of load application. Strength under
sustained load is considerably less than under instantly applied failure
load [3].

b) Stress-strain relationship of concrete in bending compression under short-time

loading. This consists of a loading stage to the maximum stress ß0, followed

by an unloading stage in which the strain increases to an ultimate value eu

while the stress decreases to some fraction of ß0 [6].

c) Creep behavior of piain concrete. For small and intermediate stresses, creep
strains follow approximately an exponential Variation with time, tending
to a limiting value at time infinity. At higher load levels, however, the rate
of creep strain is dependent on load magnitude, and the strains tend more
to increase uniformly with time until failure occurs.

Because of the change in concrete creep behavior with increasing load,

creep of reinforced concrete columns follows a different pattern to that of a

steel column at high temperature. Thus, whereas the latter has a finite life for
all load values and all eccentricities greater than zero [4], reinforced concrete
column behavior ean be broken into two distinct phases. This is most
conveniently carried out by defining for a given column with a given loading P,
an initial critical eccentricity ecr such that for e ^ ecr the column life is infinite
and for e > ecr failure occurs after a finite time interval r.

Another initial eccentricity eu may be associated with load P which
corresponds to failure of the column under short-time loading (r -> 0). This type
of failure occurs when load P together with the moment M induced by the
initial eccentricity eu plus the elastic column deflection w0 cause immediate
static failure in the central column section. The static strength of a column
section has been investigated experimentally and analytically by Hognestad
[5] and others. It will be assumed here that the strength properties of a section

can be predicted with reasonable accuracy.
In general, 0<ecr<eu, and the creep behavior of a column with eccentric

load P can be broken into the following phases:

a) e 0 : Strength is independent of creep effects: If the column is slender,
the critical buckling load can be determined from the Solution
of the Eigenvalue problem; if the column is short, the static
strength of the section alone governs.

b) 0 < e < ecr: Creep effects increase the initial deflection and hence the bending
moments in the column. This leads to further deflection and

creep. However the combined effect of P, e and deflection is not
sufficient to cause failure, even after infinite time. The central
deflection of the column, w, will approach a limiting value wn.

c) e ecr: Increase in column deflection, hence in bending moment in the
center section, is just sufficient to bring the internal stresses to
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a state of imminent failure after infinite time (t -> oo). Central
deflection of the column again approaches a limiting value.

d) ecr < e < eu: Creep induced deflections increase the internal stresses to a state
of failure after a finite time interval t. Column deflection increases
until failure takes place.

e) e eu: Instantaneous (t -> 0) static failure of the central column section
occurs due to load P and moment (eu + w0) P.

Of prime importance in the study of creep behavior is the evaluation of the
critical eccentricity ecr. The major portion of this paper deals with the
determination of ecr as a function of the load P, the slenderness ratio A, the cross
sectional properties of the column and the parameters defining the strength
and deformation characteristics of piain concrete.

2. Strength and Deformation Characteristics of Piain Concrete

2.1. Concrete Strength as a Function of Time of Loading

The experimental work of Rüsch has shown that the strength of axially
loaded concrete specimens is dependent on the rate at which the loading is

applied and on the time r over which the loading is maintained. This phenomenon

is indicated qualitatively in Fig. 1 where ßT represents the concrete

ßr
i

ßo

ß„

Fig. 1.

strength corresponding to sustained loading time r. Values given by Rüsch
indicate that concrete strength under long sustained (r -> oo) loading, ß^, can

vary between seventy-five and eighty-five percent of the concrete strength
under short-time (r -> 0) loading, ß0:

K^ ~^- 0.75 ; fast initial loading rate (one hour),
Po

0.85; very gradually applied load (time of load application ^r).
Since the decrease in strength with increasing t is approximately exponential,
the relation can be expressed approximately as

ßr ß„ + (ß0-ß„)e-^ (2.1)
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where K„

or non-dimensionally as KT K^ + (1 — K^) e~aiT, (2.2)

h
ßo

and ax is a parameter defining the appropriate time units. Since ax becomes

important only in the case of finite life problems, it will not be evaluated here.

Eq. (2.1) applies only to the case of sustained loading of constant magnitude.
No test data has yet been published for the Situation in which the concrete
stress o- varies in the ränge ß^ < o~ < ß0. A simple linear damage assumption
might however be made, similar to the Palmgren-Miner hypothesis for fatigue
failure. With the failure time interval corresponding to oi denoted as ri and
the actual loading time of o{ as Ari, the linear damage assumption leads to
the failure criterion

Such an expression is also required only in the treatment of finite-life problems.

2.2. Concrete Stress-strain Relation, 0

The actual stress-strain relation for concrete under short-time loading can
be approximated [6] quite well by a cubic parabola for the loading curve and
a second order parabola for the unloading curve, as shown in Fig. 2 a. In the
present work, however, the relation will be simplified to the three straight
lines shown in Fig. 2 b. The value e' corresponding to the stress v ßOD must of
course be chosen to give best fit to the experimental curve.

2.3. Creep Behavior

For relatively small stresses, creep behavior is represented with reasonable

accuracy by the Eqs. [7]

ßo"

Second order
parabolaCubic

parabola
(2a)

(2b)

Fig. 2.

SpiCreep strain (Dischinger)

£ i elastic strainj
(3a)

(3 b)
£ additional creep strain

_i ^t

Fig. 3.
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$ 0w(l-e-«2<). (2.5)

The parameter a2 and the value of the creep function at time infinity, &n,
must be obtained from tests. Although these equations were originally derived
for creep behavior in the lower load levels, their ränge of applicability will be
assumed here to extend up to the stress ß^. This extrapolation should not
lead to serious error provided the experimental value of 0n is obtained as a

mean from tests conducted over the füll ränge 0<cr<ßao.
For high stresses, however, creep strains no longer tend to a limiting value

but increase with time until failure. This behavior can be treated by
introducing a second creep term in addition to the Dischinger function as shown
in Fig. 3. This term is expressed as

ei tot3t&n<p.

Assuming a linear relation between the extreme values

° ßou; <p 0,

and ct ß0; <p -,
we have €t £a3tan^—o"ö"* (2-6)

Q--/3qo TT

ß0-ßoo 2

Thus for constant stress ct > ß^

c eel{l+0n{l-e-^)} + toc3Un(Z-^ |) (2.7)

and for variable stress ßa,<cr<ß0,

Again, Eqs. (2.7) and (2.8) are required only in the study of finite life problems.

3. Static Strength of Section

3.1. Instantaneous Loading, r -> 0

The strength of a reinforced concrete section subjected to moment M and
thrust P can be conveniently represented by an interaction diagram [5] similar
to Fig. 4. For the simplified section of Fig. 6 a which will be treated in the
present study, this diagram consists of two intersecting straight lines, one
representing compression failure, the other tension failure, as shown in Fig. 5.

Compression failure under short-time loading occurs when the steel stress
in the compression flange is at yield, vsl oy, and the concrete stress in the
same flange is stressed to ß0, al ßQ. Equilibrium of forces leads to the equation
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P 2\ß,Ac + ayAs-^.
In the extreme case of zero moment,

Pl 2{ß0An + ovAs}.

-Compression Foi Iure

Fig. 4.Tension Failure

-M

P/P2
1.0

Compression Failure

0.8

OXN°

0.6

0.4

0.2

LO 2.0 3.0 4.0

Flg. 5.

\^
•\>^

Tension Failure; t-»-0jt—-•

— m/m;

For tension failure, we may write immediately

M° hayAs + \Ph
with the extreme value for zero axial force

Ml =hayAs.

(3.1)

(3.2)

(3.3)

(3.4)

Eqs. (3.1) and (3.3) may be non-dimensionalized to yield the more convenient
forms:

Compression Failure, t ->• 0:

\P°J- lx\M«J- (3.5)



CREEP FAILURE OF REINFORCED-CONCRETE COLUMNS

Tension Failure, r -> 0:

in which

(|[)-1+<i(£)'
£1=1+-

P.<jy

341

(3.6)

(3.7)

and /x is the proportion of steel area in one flange, AsjAc.

3.2. Sustained Loading r -> oo

When the loading is sustained over the time interval t -> oo the failure
condition in the compression flange becomes al ß(X, and crsl ay. Tension
failure is however unchanged. The equations are thus:

Compression Failure,

Tension Failure, t -> oo

in which

oo

fe) 1 + Ci(po),

r _ ß^+lxav
b2 — ~ö ; •

(3.8)

(3.6a)

(3.9)

4. Creep Behavior of Concrete Column

4.1. Introduction

Equations will now be derived to describe the creep behavior of a pin-
ended concrete column with a sustained load P applied at an initial
eccentricity e. The column cross section is shown in Fig. 6a, the loading arrangement
in Fig. 6 c. The prime purpose of the analysis is to determine the critical

As 'j
Ac-

- -k
[-As k/h_0

-Ac

icl i r
-f DH6"

'i

#r"M
—y

a) b)

Fig. 6.

c)
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eccentricity ecr which induces a state of failure after an infinite time interval
r -> oo. Since the concrete stresses will not exceed ß^, concrete creep behavior
will be defined by Eqs. (2.4) and (2.5).

The internal actions M and P in the central cross section may be
superimposed on the interaction diagram defining the strength of the section as
shown in Fig. 7a. The line OZ represents the application of axial force P at

l

(7o)

z ^\_F
>B'/. j

0 c M0*

M

Phase I

(7c)

(7b)

- steel m L H flange yields at time tg

Phase I Fig. 7.

eccentricity e. The horizontal line Z F with P constant represents the increase
in lateral deflection. The initial eccentricity is equal to ecr if the point F
representing conditions at infinite time lies on the failure envelope A' B' C.

Considering the state of stress in the flanges of the member, we see that a
number of different possibilities can arise for the loading arrangement of
Fig. 6 c. The possible states of stress in the central column cross section are
summarized in Table 1.

The equilibrium conditions and hence the creep analysis are different for
each of the phases shown. Furthermore, the creep effect in a given column will
usually begin in one phase but pass into a second and, possibly, a third as the

process continues. This is illustrated qualitatively in Figs. 7 b and 7 c, where

Table 1. Stress Phases in Central Section of Column
(Compression positive)

Left Hand Flange Right Hand Flange
Phase

Strain Steel Stress. Strain Steel Stress

I + €l Osl < Oy + €r 0Sr < Gy

II + €l Osl oy + €r oSr < Oy

III + €* osl oy + er oSr Oy

IV + €l Ogl < Oy — €r oSr > — Oy

V + CI Osl Oy — €r osr> —Oy
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the changes indicated in Fig. 7 a are shown in terms of the time parameter.
The point G represents a change of phase occurring at time tg.

Equilibrium of internal forces in the center section of the column, for all
phases and at any time t, is expressed by the equations

Ci + Cr=*P, \{Gl-Cr) {e + w)P,

in which w is the lateral deflection of the center section. Furthermore, P is
held constant in the present analysis, so that

cl+ör P o, \{6t-cr) pw.

Introducing non-dimensional terms for initial eccentricity and central deflection,

K e/h, (4.1)
S wjh, (4.2)

we may re-write the equilibrium equations as

Cx =P(0.5 + k + S), (4.3)

Cr p (0.5-ic-8), (4.4)

Cl=Ph, (4.5)

Cr -PS. (4.6)

The force Cx consists of a concrete force and a steel force, i.e.

ci criAe + cr8lA8.

The concrete stress in the left hand flange for all phases is therefore

crl -j-{0.5 + K + S}-fiGa (4.7)

and its derivative is
P

ctz -j-S-/zctsZ. (4.8)

For phases I, II, and III, the concrete stress in the right hand flange is

ar £{0.5-ic-3}-^CTsr (4.9)

P •
and &r — -j-S —fJL<isr. (4.10)

In phases IV and V the right hand flange is in tension, the concrete stress is

zero,
ct. 0
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Pthe steel stress is asr —r- (0.5 — k — 8) (4.11)
As

and &sr -JL§. (4.12)

Considering now the deformation of the column, and using the cosine approximation

for the column curve, we write

_,,. 7TX
w(x,t) w(£)cos-p.

The curvature at the mid section is therefore

±=-£w(t). (4.13)

The internal strains are assumed to be positive when compressive, as in Fig. 6b,
so that we also have

__l 5Z^r. (4.14)
p h

Combination of (4.13) and (4.14) yields

(ez-€r) ^2^S.

Introduction of the slenderness-ratio A, which for the section under consideration

is equal to 2 Ijh, results in

4 TT2

A2

4 TT2
and S=—(e,-<y. (4.16)

It will be convenient now to evaluate the initial column deflection at time
zero, §0. This value will depend upon the starting phase, which, in practice,
will almost certainly be either I or IV, depending upon the magnitude of P.

For phase I, equilibrium of internal forces, together with the elastic stress-
strain relations, yield „ /r. - <> xJ

_ P(0.5 + /c + ö0)

AcEc(l+nfM)
P(0.5-/c-o0)
AcEc(l+nfM)

Substitution of these values into (4.15) gives

and *ro=VT„KZ°°'- (4-18)

80(^Ä<Ef+n^-2)=2K.

With the definitions lc ^M^0, (4.19)
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the expression for 80 in phase I becomes

\ J" o- (4-21)

The initial concrete strain in the left hand flange is then found to be

'"~Ä^^{^ZZr-A ^
A similar treatment for phase IV provides the equations

(l + 2n/i)fc-0.5
n fju (1 + n/jl) rjc — (l + 2 n/jl)§o=¦..¦,r.T..:r/ „tl.., (^

and 6jo=_^_{(,8_i)80 + 0.5-k}. (4.24)

The creep behavior in each of the five possible phases will now be treated
in turn.

4.2. Phase I
Since in phase I the entire section is in compression, creep effects will take

place in both flanges. Eq. (2.4) is therefore applied to each flange:

kl=lt/+ltz (2'4a)

^ ;j^P + Jr- (2-4b)

The above equations are substituted into (4.16) to give

- l -& + - r (4.25)
A2 En E.

and the terms (ctj-ct,.) and (ctj-öv) are rewritten using Eqs. (4.7), (4.8), (4.9)
and (4.10) together with the additional Information that osl Es€l and asr

Es er to yield
4^2S f P /0 ofiv 4tt2 J, \2P 4t72 K

A2 ^c^c
which is equivalent to

tAKEK + AREK
X2P

or, with the notation of (4.19) and (4.20)

^--{^Zkzy^
Vc + Vs-2 88 2k

8 + -=^—. (4.26)
2—q, 80 2-n

The initial condition for Eq. (4.26) is given at time 1 0 as

0 0; 8 80.
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The Solution to (4.26) may now be expressed in the form

exp [ 2"7]"A (4.27a)
2k + (2-^)8 __J 2-Vs
2k + (2-Vs)o0

provided Vs*2- (4,28 a)

For the case when (4.28a) is not fulfilled, i.e.

Vs 2 (4.28b)

the 8 term drops out of (4.26) and integration of the equation yields

8 S0 +—0 (4.27b)
Vc

Eqs. (4.27 a) and (4.27 b) allow 8 and hence the moment in the mid-length
section of the column to be determined at any time t in phase I.

In order later to couple phase I with phase II, it will be necessary to obtain
a Solution also for ez. Substituting for 07 and ox in (2.4a) we first obtain

[ P • P •

*l \Ä~W (°'5 + K+8)-n^€i)(p+j-ß~8-n^€i

^-ir^^wz^(°-5+^8+ä)- <4-29>

From Eq. (4.27 a) we then obtain

8+**=J_? 2-3» exp[ 2-^ «Ell

Substitution of the above expression into (4.29) yields the first order linear
differential equation

d e7 nix
or 7— + ^ €j

dex n(ju
J®+ 1+WjLt

P

A^ + A^, H^-s^^H^M]}- <"0)

which may be solved using the initial condition

0 0] €j €I0

to give

*z *zoexP \ 1+^jLC /

^(ZZrftM-uZz)}
^^(2-^)^ + ^-2)
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The above equation does not hold when Vs~2- For this condition, Substitution
of (4.27b) and its derivative into (4.29) yields the differential equation

8ex nfi
30 + l+nlJL€l=AcEl

the Solution of which is

ot[°-6+"+8°+^(1H

€t €™+ÄTE~0 (4'31b)
P 2k.

Vc

for condition (4.28b).
The value of 0 at which the steel reinforcement in the left hand flange

reaches yield can be evaluated from Eq. (4.31) by replacing ex by ey and making
a trial and error Solution for 0.

The ränge of application of the above equations is determined by the
requirements that the force in the right hand flange is compressive and that
all steel stresses are elastic; hence by the relations

PhM £ — 0<orsX<+cry, 0<asr<+ay.

4.3. Phase II
In phase II the entire section is again in compression and Eqs. (2.4a),

(2.4b), (4.7), (4.8), (4.9) and (4.10) may again be substituted into (4.16), this
time with orsl ay and asr Eser, to give

4t72S P
A2 ACEC

[1 - 0.5 — k — 81 * f oa nu 1 • P 2 + na^- + K + S \0- U^f —€r<P+ -:—=- ~S.
2 l+nfx J \^EC l+nu rj AcEcl+nfju

Changing the derivative from t to 0 and solving for er we obtain

_ ["4t72(1+^/x) _
P 2 + nul ^8 l+nn

€r~[ Ä2^ Ä^FC nu \d0+ nu P

P
[(1+wjh)(0.5 + ic + 8)-(0.5-ic-8)]

(4.32)

ASE,

and hence

06, _ [4772(1
80 ~ [ X2i

+ nix) P 2+nZ\ 8*8 P 88^

n/u, ACEC nu _|0<Z>2~ ASES( +nN80(2+t^) — (4.33)

From (2.4a), however,

H- '(M + + »)-^+ ' " (4.34,
Jc -"c

Differentiation of (4.15) with respect to 0 gives

dex 8er _
4tt2 88

80 30 " A2 30



348 R. F. WARNER - B. THÜRLIMANN

and Substitution of (4.33) and (4.34) yields the second order equation

^2§
- VcVs-2Vc-2Vs d8 Vs

; + -

802 V%+VcVs-2Vc-Vs d® Vc+VcVs~2Vc-V^

*- (ü.5 + ,-ip).
Vc Vs ~ 2 Vc - Vs \ P I

8

(4.35)

The first initial condition for the above equation is of the form

0 0g; 8 8g.

Usually 0g will refer to the instant when the steel in the left hand flange
reaches yield, i.e. when €X ey. The value of 0g will therefore be obtained as

the value of phase I.
The second initial condition is obtained from Eq. (4.32) by solving for the

first derivative of 8 :

88 1 ^% + (lc + 8)(2 + nA,)+^-(l+n/,)^]. (4.36)W Vc + Vs~(2 + nu)l P

The initial value (^~\ is then obtained by substituting the initial value (er)g

which can be determined from the end condition of phase I:

_
1

' g
°° ^(-) =-W„ vc¦lc + Vs-(2+n^)

Eq. (4.35) is of the form

[^(er)ä + (K + 8g)(2 + n^ + ^-(l+nri^p].
(4.37)

028 88
8 0* + ai80 + a*8=aa

its Solution is thus

8 Cxeri0 + C2er*®+\o.5 +K-^pi\, (4.38)

in which C1 and C2 are integration constants, and r1 and r2 are the two Solutions
of the quadratic equation

r2 + a1r + a2 0.

The constants C± and C2 are evaluated using the initital conditions;

Aso„

rxeri00 r2er*0e

0!

C,

(8,-0.5-. +^)'

The region of phase II is defined by the relations

M ^ \Ph, 0<asr< +ay.
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In order to determine the limit asr ay, the expression for 8, i.e. Eq. (4.38),
together with its derivative, may be substituted into (4.32) to give

[(2 + ^)(k + S-) +^].
(4.39)

AQE<

This expression allows the value 0U to be determined at which a phase change
from II to III occurs.

4.4. Phase III
A treatment of phase III similar to that of phase I, but with the values

°si= asr= ay >
leads to the first order equation

\A2 ACEJ80~ AcEc(d + K)

{^-1}I£=8+*- (4-40)or

With the initial condition

0=0- 8=8

obtained as the end condition of phase II, the Solution of (4.40) may be

written as

ZZl e,V{^(0-0g)}. (4.41)

The ränge of application of this equation is governed by the conditions

M PA/2, asX +ay, crsr +ory.

4.5. Phase IV

Since in phase IV the right hand flange is in tension, ar 0 and the creep
effect takes place only in the left flange. From (4.11)

er ^;(0.5-«-8)

and kr -*%. (4.42)

The derivative kx may be evaluated from Eqs. (4.16) and (4.42) as
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The concrete stress in the left hand flange is obtained from Eq. (4.7),

p
<j1 j-[0.5 + k + 8]-ijlEs€1,

P
so that ax -j~8—jjlEs€x.

Substituting for kx, ot and ax into the creep function (2.4a) we obtain

r47T2 P 1 • P • 4tt2

\2P 4t72 ],+ [ÄZEc-^n8'
which simplifies to

/ 1 + 2nu\ 88 /CI rt ia aa\('•+^ ^T^jä* (2-^)8 + 2«. (4-44)

With the initial condition
0=0- 8=8

the Solution of (4.43) is

,c ls n fj,

Eq. (4.45a) does not hold when rjs 2.

In this particular case, direct integration of (4.44) gives

(8-8g) 2nuK(0-0g). (4.45b)

The region of phase IV is defined as

M ^ PA/2, 0 < asX < + ay, -cry<crsr<0.

4.6. Phase V

The analysis for phase V is most easily obtained by eliminating kx from the
two basic Eqs. (2.4a) and (4.16) to give

A2 Ec Ec r'

Substitution of the quantities
P *

e*. :

ASES

P
and crx =-r-(0.5 + K + 8)—fjLGy

Ac
results in the equation
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With initial condition 0 0g; 8 8^

we thus obtain
8 + 0.5 +*-^ 'L -i+zA'*M rrtrl- (4-47)

8 +0.5 +k-^ x-rjcg p ic n/JL

The region of phase V is

M^Ph/2, crsX +uy, -cjy<asr<0.

4.7. Critical Eccentricity

The creep behavior of a column with the load applied at the critical
eccentricity ecr will usually involve two — and possibly three — of the phases
treated above. Although the condition separating phases I, II and III from
IV and V is simple, k + 8 \, it is not known before the calculations are made
at which stage the two further conditions, €X ey, and er ey, will occur. Thus
it will not always be known in advance which phases will be encounted.
Because also of the large number of possible phase combinations and the relative

complexity of stating the coupling conditions in general terms, Solution
for ecr in closed form is hardly feasible.

A trial and error method is more suitable, in which an initial value for k
(i.e., initial eccentricity) is first chosen, the initial phase is determined from
the conditions of Table 1, and the initial creep behavior is treated using the
appropriate equations. Either phase I or phase II will govern initially. The
value 0g will then be determined for which either

or ^ €y,

i.e., for which a change of phase occurs. Further creep behavior is then
determined in the new phase, either up to the value 0~ at a second change of phase
or to the end value 0n. The final deflection h 8n which corresponds to 0 0n,
i.e. t oo, is thus obtained.

However, the total eccentricity e'^ which will cause static failure in the
column section after time infinity can be obtained for load P from the M — P
interaction diagram of Fig. 5, as

^oo p •

The correct initial value for k has therefore been chosen when the following
equality is fulfilled:

e'
K + 8n T,

i.e. when
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All of the equations required for this trial and error procedure are contained
above. The application of the analysis will be demonstrated in the following
section with a numerical example which will provide actual data on the effect
on column strength of creep deflections.

5. Numerical Example

The following computations are made for a simplified I section with the
following properties:

Ac 300 in2

As 3 in2 (/x 0.01)
h 30 in
ß0 3400 psi

ß^ 3000 psi (7^ 0.883)

oy 50,000 psi

Es 30 106psi

Ec 3 106psi

0=3
The Equations of Section 3 yield the following static strength values:

P„° 2.34 106lb,
P™ 2.10106lb,
r>oo

-^ 0.897,

M%= Ml= 4.5106inlb.

For balanced (simultaneous) tension and compression failure under short-
time loading, r -> 0,

(|) 0.436; (-*)= 4.400,

and for long sustained loading, t -> oo,

The above values have been used to obtain the interaction diagram of Fig. 5

and the line A 0 in Fig. 8.

Creep calculations have been made for four different slenderness ratios;
A 20, 40, 60 and 80. A trial and error procedure was used in which an initial
value of k was chosen, and the calculations made to determine the final value
of the deflection term 8n. The calculations were repeated until the Kcr value
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was obtained which gave a final (Kcr + 8n) value, and hence moment, equal to
that indicated by the interaction diagram for r -> oo.

The results of the calculations are summarized in Table 2 and have been
used to plot Figs. 8 and 9. A sample calculation, No. 15, is given in detail in
the Appendix.

p/p;
Euler Buckling

r—» 0—i ac 0-i—1.0

k:=0r—oo

0.8

06
**

0.4

0.2

I0020 40 60 80

Fig. 9

In Fig. 8 the value Kcr ecr/h is plotted against load for the four A-values.

In the higher load ränge, P/i^0^0.5, it is seen that the critical eccentricity
ecr is less than 0.05 h for a slenderness ratio of 80 or more. Since "aceidental"
eccentricities of this order must always be anticipated in practice, creep
failure after a finite time interval should be reckoned with in such columns.

For slenderness ratios of 60 the eccentricity must be reduced to nearly
half of the section failure eccentricity, e^, in order to prevent creep failure.
Only for very short columns, A < 20, is the effect negligible.

The portions of the lines A 60 and 80 not plotted in Fig. 8 represent a

region in which the analysis does not hold. In this region the accuracy of the
cosine approximation to the column curve falls off and, over a small ränge of
values, cannot be made at all. The reason is that the state of stress here passes
through phase IV, for which a minimum value of rjs must be stated. Eq. (4.43)

may be rearranged to the form

** (Vs~l)
ASES

8,

which indicates that rjs must be greater than unity in order that ex and 8 be
both positive. This means that for ^-values less than unity, the left hand
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flange would be required to unload as the column deflection increases. This
physically impossible Situation derives from the inapplicability of Eq. (4.43),
hence from the inapplicability here of the cosine assumption. A more accurate
column curve would have to be used to obtain accurate results in this region.

In Fig. 9 the load required to produce failure for r -> oo is plotted against
slenderness ratio for two initial eccentricities of e 0.017*, and 0.1 h. For
purposes of comparison a portion of the Euler buckling curve is also shown in the
figure. It lies high above the two failure lines, and, in fact, does not even apply
to the present ränge of interest, since PE\Pu < 1.0 for A < 80.

6. Summary and Conelusion

The present study has been limited to the case of a column with an idealized
section consisting of thin flanges and a web of zero thickness. Choice of this
section simplifies the analysis enormously and allows an overall view of the
creep effect to be obtained. The behavior of an actual column of rectangular
section with steel in both faces should parallel, at least qualitatively, that of
this ideal section.

In the present approach, creep failure is treated as a second order deflection
problem with a time-dependent static failure criterion of the central section
subjected to combined bending and thrust.

The critical initial eccentricity ecr, which is used to divide creep behavior
into the cases of finite life (e>ecr), and no-failure (e^ecr), is of prime
significance. Although the design of columns for specified finite life might, with
further research, be feasible, errors in predicted "life" are likely to be very
large, owing to the form of the creep function and to the variations to be

expected in the concrete creep properties. Finite life analysis may therefore
prove to be similar to the analysis of fatigue life, requiring Statistical treatment.
Furthermore, due to the exponential form of the creep function, the difference
between the infinite life load P™ and, say, the fifty-year life load P£° should
not be great and it would seem advisable, at least until further, more detailed
studies are made, to limit column eccentricities (or, alternatively, column
loadings) to ensure infinite life, i.e. e^ecr.

The creep behavior of a reinforced-concrete column has been seen to depend
on the state of stress in the steel, and, depending upon that state of stress, passes
through a number of different phases as the column deflection increases. Creep
deflections can to some extent be controlled by an increase in the steel area As.
The effect of As is represented in the equations of Section 4 by the term

Vs -^j—W^« Far more effective, however, is a decrease in the slenderness

ratio A which occurs squared in both the steel term rjs and the concrete term

r}c -rg °p-^. The prime parameters affecting the value of ecr have been found

to be rjc, rjs and the limiting creep value 0n.
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The results of the numerical example provide interesting information on

creep failure. In the higher load ränge (P/P®) ^0.5, the critical eccentricity
for slender columns (A^80) becomes exceedingly small, ecr< 0.05 h. Since
"accidental" eccentricities of this order must always be reckoned with, the
calculations would indicate that creep failure in such columns is extremely
likely.

In the lower load ranges and for less slender columns, the considerable
reduetion in eccentricity required by time dependent lateral deflection is shown
in Fig. 8. For columns with slenderness ratios in the ränge 40<A<60 the
reduetion in moment can be more than 50 percent when the load P is in the
order of 0.4PM°. Thus, a column designed for a sustained loading producing
a thrust P 0.4P^° and a maximum moment M 0.5MU(P£) may well
have a finite life.

The calculations have also indicated limitations to the equations derived
in Section 4. In particular, the use of the cosine function for the column curve
has already limited the applicability of the equations of phases IV and V for
slenderness ratios A ^ 60. An improvement may however be made without
essentially altering the approach developed here. Use of a numerical integration

procedure to eliminate the cosine curve approximation should not present
any inherent diffieulty, but will complicate the calculations and will almost
certainly necessitate the use of a Computer for numerical evaluation.

A second major assumption limiting the applicability of this work is of
course the use of a simplified I section. A closer approximation to an actual
column section may be obtained by dividing the section not into two, but
three or more layers spaced uniformly over the width h, as shown in Fig. 10.

With the total concrete area A 2Mi equal to the actual section area, and the
steel spaced as in the actual section, the approximation should be adequate.
In such an analysis the two simultaneous differential Eqs. (2.4a) and (2.4b)

Area Concrete 2 Ac

Area Steel 2 As k-*LJ*-

-1—
l*i—

Ac

As k/h—0

a)

* } r

AM

2/3Ac

- As \-~o

c)

b)

ü ü 1 Z/5AC

-As Vh— 0

d)

Fig. 10.
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would be replaced by a series of simultaneous equations equal in number to
the number of layers chosen.

In the present study, concrete creep behavior has been linearized by
applying Eq. (2.4) throughout the region 0<ct<j8°°. A more accurate analysis
can be made by choosing two (or more) regions, for example 0 <or<0.5ß°°,
0.5/300 < er <j8°°, and using a different linear creep function in each region. Such
a refinement is hardly warrented until more experimental data is obtained on
concrete behavior in the higher stress ranges and on strength characteristics
under sustained loadings.
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Nomenclature

Ac concrete area in one flange.

As steel area in one flange.

Cl total force in left hand flange, center section.

Cr total force in right hand flange, center section.

Kr IT'T ßo

TT __
ßcO

po

M moment in center section.

M° — moment causing instantaneous (r -> 0) failure in section subjected to
axial thrust P.

M00 moment causing failure after infinite time (r -> oo) in section sub¬

jected to axial thrust P.

M^ flexural capacity of section under short-time loading (P 0; r -> 0).

M™ flexural capacity of section under sustained loading (P 0; r -> oo).

P applied load.
Pz? ultimate carrying capacity of section under short-time loading (M 0;

t-»0).
P™ ultimate carrying capacity of section under sustained loading (M 0;

T -> OO).

e eccentricity of column load.
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ecr critical initial eccentricity of load P which causes creep failure after
infinite time (r -> oo).

eu eccentricity of load P which causes immediate static failure of column.
e'u eccentricity of load P which causes immediate static failure of column

section.

e^ eccentricity of load P which causes failure of column section after
infinite time.

h distance between flanges in idealized column section.

I length of column.

n -=^; modular ratio.
jjjc

t time co-ordinate.

w column deflection.

w central column deflection.

w0 initial central column deflection.

wn final central column deflection at time infinity.
a1?a2,a3 dimensionless parameters defining concrete strength and creep pro¬

perties.

ßr stress causing failure in concrete when sustained for time interval r.
ß0 static concrete strength, r -> 0.

ßoo concrete strength under long sustained loading, t -> oo.

8 -V-; non dimensionalized column deflection.h

8g value of 8 at which a change of phase occurs in the column.

8» x"-
£ Wq

€ strain.

ex strain in left hand flange.

ezo initial strain in left hand flange.

€r strain in right hand flange.

€ yield strain of steel reinforcement.

_ 4±tt*AcEc
Vc - \2p '

_ 4:7t2ASES
Vs - A2P '

e
K h*

— ^r
Kcr - h-
A slenderness ratio; for idealized section considered, =-r-.



CREEP FAILURE OF REINFORCED-CONCRETE COLUMNS 359

H-
As
Ac

Oy

l.
ßoO + HOy

2 ß0 + H>Oy

g stress.

gx — concrete stress in left-hand flange.

gt concrete stress in right-hand flange.

gsX steel stress in left-hand flange.

gst steel stress in right-hand flange.

Gy yield stress of steel reinforcement.

t duration of load application.
0 0n(l — e-*2*); creep function.

0g value of 0 at which a change of phase occurs in the column.

0n — value of 0 at time infinity.

Appendix — Sample Calculation; No. 15

The initial phase is I; the creep process involves the phase sequence I—II.
Substitution of known values into Eqs. (4.1), (4.2) and (4.3) yields the following:

Phase I
80 =0.238,
€X0 0.00116(0.5 + 1.238 k),

€j 6/0e-°-091^ + 0.116(0.5-0.895K)(l-e0-091^)

+ O.O116/c[e°-1260-e-°-0910],

2*+1.0588 eO.i260
2ac + 1.056S0

(€f)g 0.0017-0.01097 8^.

Phase II
8 C1eo'™950 + C2e-°>°™0 + (0.3563 + k),

(H)„ ^^20^r)g + 2^(K + 8g)-0.l0S].

A trial and error procedure is adopted to find the value of k which satisfies
the equation

— — -?3£ _£K — Kcr ~ -l °nm
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The value of -^ is found from Fig. 5 to be 0.500, hence

Kcr + 8n °-5-

An initial value of /c 0.19 is chosen, which yields the result

K + 8n 0.437.

From a second trial value, /c 0.25,

K + §n 0.571.

Interpolating, the third trial value, a: 0.22, is obtained which provides the
sufficiently accurate result

K + 8n 0.501.

The details of the three calculations are contained in Table 3.

Table 3. Sample Calculation

Trial 1 2 3

K 0.190 0.250 0.220
So 0.045 0.060 0.053
€10 0.00085 0.00094 0.00090

m. 1.00 0.99 0.99
«* 0.100 0.123 0.115

Mg 0.0006 0.0004 0.0005

(-) 0.0667 0.0863 0.0764

Ci + 0.125 + 0.181 + 0.151
c2 -0.636 -0.740 -0.686
on 0.247 0.321 0.281

on + K 0.437 0.571 0.501
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Summary

In an introductory study of creep failure in reinforced-concrete columns,
the case of a pin-ended member subjected to an eccentrically applied sustained
thrust P is considered. A critical initial eccentricity ecr is defined for which
the time of loading required to cause failure, r, is equal to infinity. If the
eccentricity of the load P is greater than ecr, creep effects cause column failure
after a finite time interval (Finite Life Problem); if however the initial
eccentricity is not greater than ecr, creep effects increase the column deflection, but
never to a sufficient extent to cause failure.

A theoretical analysis is made of the creep behavior of a reinforced concrete
column of idealized I section. Equations are obtained which allow the initial
critical eccentricity ecr to be determined by a trial and error procedure.
Although simplified strength, stress-strain and creep relations are used to
represent the concrete properties, the analysis indicates essential column
behavior and the prime variables of the problem. A numerical example shows
the considerable decrease in column load carrying capacity brought about by
concrete creep.

Resume

Dans cette etude preliminaire, les auteurs examinent rinfluence du fluage
sur la rupture des colonnes en beton arme. Ils examinent d'abord le cas d'une
colonne rectiligne bi-articulee, soumise a un effort excentre permanent P.
L'excentricite initiale critique pour laquelle la rupture se produit au bout
d'un temps infini est designee par ecr. Si l'excentricite initiale de la charge
depasse la valeur ecr, le fluage du beton entraine la rupture de la colonne au
bout d'un temps fini. Si l'excentricite est inferieure ä ecr, le fluage du beton
entraine bien une augmentation de la fleche, mais dans une mesure trop faible
pour entrainer la rupture.

Pour une colonne en beton arme de section en double-te idealise, les auteurs
etablissent des equations permettant de determiner l'excentricite initiale
critique ecr par la methode des approximations successives. Bien que les

proprietes du beton telles que la resistanee, le diagramme contrainte-deformation

et le fluage soient representees par des relations simplifiees, l'etude
fait ressortir les prineipaux parametres intervenant sur le comportement dans
le temps de colonnes en beton arme. Un exemple numerique montre la reduetion

considerable de la resistanee d'une colonne du fait du fluage du beton.
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Zusammenfassung

Die vorliegende Arbeit untersucht den Einfluß des Betonkriechens auf das

Versagen von Stahlbetonsäulen. Der Fall eines ursprünglich geraden und
beidseitig gelenkig gelagerten Stabes unter einer konstanten exzentrischen Last
P wird untersucht. Die kritische Exzentrizität, für die Versagen nach
unendlicher Zeit, t -> oo, eintritt, wird als ecr definiert. Überschreitet die
tatsächliche Anfangsexzentrizität der Last den Wert ecr, so erreicht der
Stab den Bruchzustand in der endlichen Zeit r. Ist aber die Exzentrizität
kleiner als ecr, dann wächst zwar die Ausbiegung infolge des Betonkriechens,
ohne jedoch zum Bruch zu führen.

Für eine Stahlbetonsäule mit idealem I-Querschnitt werden Beziehungen
hergeleitet, die eine iterative Bestimmung von ecr ermöglichen. Obgleich die
Betoneigenschaften durch vereinfachte Festigkeit-, Spannung-Dehnung- und
Kriechen-Beziehungen erfaßt werden, zeigt die Untersuchung die Hauptparameter

für das zeitabhängige Verhalten einer Stahlbetonsäule. Numerische
Beispiele zeigen die beträchtliche, vom Betonkriechen verursachte Verminderung

des StabWiderstandes.
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