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A General Analysis of Prestressed Nets

Etude generale des reseaux de cables precontraints

Eine allgemeine Untersuchung vorgespannter Netzwerke

AVINADAV SIEV
Senior Lecturer, Technion — Israel Institute of Technology, Haifa

Introduction

Several studies [1,2] have recently been published on the analysis of two-
directional prestressed networks of cables, based on the following assumptions:

a) The cables in each direction lie in vertical parallel planes, with the two
sets of planes usually perpendicular to each other.

b) Horizontal displacements are small and may, at least tentatively, be

neglected.
c) The behaviour of the net may, also tentatively, be assumed linear.

The first assumption imposes a serious limitation on the applicability of the
theory, but the error introduced by the other two assumptions may
subsequently be corrected by iteration.

It should be stressed, however, that the effects of assumptions (b) and (c)

may be separated from each other. Linear behaviour may, as a matter of fact,
occur in practice even in non-linear Systems, under infinitesimal load. There
is, however, a difference between conventional trusses and prestressed nets.
In conventional Systems, linear behaviour is defined as the case where the
ehange in geometry is so small as to have a negligible effect on the stresses.

In prestressed nets the Situation is different: prestress forces and shape are
interdependent so as to satisfy the equilibrium conditions. Any displacement
upsets the equilibrium and thus affects the bearing capacity of the net. Moreover,

two-directional nets cannot be solved without considering the effect of
the change in geometry, while in three-directional nets the effect of deformation
on stresses depends on a dimensionless ratio between the rigidity of the net
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and the prestress forces [3]. The effect of deformation already sets in under
infinitesimal load [3], i.e. in the linear state.

Separation of the effects of displacements on stresses and non-linearity
makes possible the analysis presented in this paper. The only assumption made

in the following is that of linear behaviour, with the error involved subsequently
corrected by iteration. The net may be of any shape (some types of nets are
shown in Figs. 1—5), and may even contain compression members (Fig. 5)

using frictionless ball joints. The analysis is based on the "strain method",
with the three components of displacements ut in the xi directions considered
as unknowns, and the stresses expressed as a function of the displacements.
This approach necessitates Solution of a large number of simultaneous
equations, which calls for the use of electronic Computers. Recourse to matrix
algebra facilitates the task of programming.

Rigid Frame

Fig. 1. An irregulär-shaped net.

Fig. 2. A net bounded by
main prestressed cables.

Fig. 4. A three-directional net.

Fig. 3. A net of cables forming
geodesic lines of the surface.
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Fig. 5. A net including com¬
pression members.
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The Unloaded Net

Let the pretension in a section a — b be denoted by Tab (compression assumed
as negative), and the direction angle between the bar and the xi axis by ocif(lb.
The force component acting through section ab on Joint a is:

Tabcosoci;ab. (1)

Assuming a weightless net, the conditions of equilibrium at Joint a are:

22^008^^ 0, (2)
b

where 2 signifies inclusion of all joints b connected to Joint a. Eqs. (2) refer
b

to all except the anchoring joints. The ordinates of the anchoring joints are
known and determined by architectural or other considerations. Thus, in Fig. 1

all inner joints are included, while in Fig. 2 all except the four anchoring joints
are considered. (In the following, the number of considered joints will be
denoted by J.)

It is seen from Eq. (2) that the prestress forces and geometry of the net
are interdependent. Normally the shape of the net is not random as in Fig. 1,

but shows a certain regularity.
The case of cables lying in two sets of vertical parallel planes was discussed

in [1,2,3,4]. In this case Eq. (2) is automatically satisfied in two directions
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by the condition of constant horizontal component of pretension in each cable,

equilibrium being required in the third direction only. In other words, there
are only J unknowns and J equations in this case.

Another case is of cables forming geodesics of the surface. This case was
mentioned in [3] and a more detailed paper on the subject is in preparation.

In general, geodesic cables are obtained by assuming the tension T as
constant along each cable. A particular case is when the tension T is equal throughout

all the cables. This case is of extreme importance for roofs formed of
strips of cloth.

However, the following discussion refers to the general case.

The Loaded Net

After loading, the net undergoes deformation and the stresses in the cables

vary. Let the component of displacements be denoted by ui. The squared
length (1 + A l) of section ab after deformation is:

[l + Al)2ab X{%i;b + ui;b-xi;a-ui;a)2 (3)
i

while before loading, the squared length of ab was:

^ZferÜ2. (4)
i

Expanding Eq. (3), subtracting Eq. (4) from it and rearranging, we obtain,
after omitting second-order terms (linearity assumption) the known formula:

Al X K;ö ~ Ui;a) COS *i;ab • (5)
i

A Tl
However, AI =-=-r +pilAt, (6)

where: T change in tension,
A cross section of cable or bar,
E Young's modulus of elasticity,
pu coefficient of thermal expansion,
t change in temperature.

Substituting Eq. (5) in Eq. (6), the change in tension is expressed in terms
of displacements.

The equilibrium condition under load is, instead of Eq. (2):

%(T + A T)cos(a + Ja), + P, 0. (7)
b

Pi being the load component in the xi direction. The new direction cosine will
now be expressed in terms of the displacements:

coS(a + J«), *** + »**-***-"«* Ls^ +^Ä] : [l+^l • (»)
Lab^~nhLab L lab J L lab J



cos (a + A cc)i:ab cos «t + -^- ** j-±^ 2 (ur,b ~ %;«) cos ajiab. (10)
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This equation is simplified by using the approximation:

^±^-=(C +D)(l-e) C + D-Ce, (9)

where D and e are small numbers, which is the case for small loads (linearity
assumption). Eq. (8) thus becomes (after substituting Eq. (5)):

Uj.h — ui;a cos a^

^ab ^ab 1

Expanding Eq. (7), subtracting from it Eq. (2), and omitting second-order

terms, we obtain:

2[^ ?Tcosai + T{cos(a-l-Ja)^-cosaJ] + Pi 0 (11)
b

and substituting T from Eqs. (5, 6) and the new direction cosines from Eq. (10),
with no temperature change assumed for simplicity.

y Hr^ cos a*a& ^ (Uj>b ~Uj;a^cos ^'A
b l{ * *

(12)

+ T^ K;ö - Ui;a ~ C°S 0ii;ab 2 (Uj;b - Uj;a) COS 0Cj;ab}] + Pt 0
Lab J

This equation should, of course, be expanded so as to adapt it for use with
an electronic Computer.

Eq. (12) comprises 3 J linear equations, with J counted as defined earlier;
when the frame (e.g. Fig. 1) undergoes considerable deformation, additional
equations for these joints are written [3]. In matrix form we have:

AU=-P (13)

or, after inversion:
Ut -A-*Pt. (14)

The matrix A~x represents the influence coefficients for the displacements
ut at any Joint as a function of the load components Pt in the xi directions.

Correction for Non-linearity

As explained earlier, Eq. (14) describes the true state under infinitesimal
load. The exact behaviour under higher load is determined by iteration, as

will be described later. This procedure calls for a vast amount of computational
work, especially if several states of loading are considered. Yet, when an
electronic Computer is used programming is easy due to the repetitive character

of the procedure.
For the iterative process, only a real state of loading should be considered,

not influence coefficients.
The displacement vector ut is computed tentatively according to the

linearity assumption (Eq. 14).
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The computed displacements ui are not exact and the errors A ui depend
on the loads and on specific conditions. It should be borne in mind that the
correction of the vector ui is valid only for the specific combination of load on
all joints. The correction is computed as follows:

First the residuals E are computed by using the values of a[ obtained by
Eq. (14):

Ri Z(T + AT)coa(aL + AaL)i + Pi. (15)
b

The residuals are considered as unbalanced load R. Whenever the effect of
non-linearity is small, which is the general case, the matrix A~x may be
assumed valid, and the change A ui of u\ is:

AU{ -A ^R (16)

and the new displacements are ui u'i + Aui.
These values may be used again to calculate R, the iteration being dis-

continued when R becomes negligible. The rate of convergence depends on
the error introduced by assuming the matrix A~~x for higher loads.

Alternatively, a different procedure may be followed, using corrected
coordinates each time. The corrected coordinate x'i%a equals the previous one

xi;a plus its displacement found by solving Eq. (12), i.e.:

3^=^ +iV (17)

These coordinates serve for Computing the new section lengths, and hence
their elongations, the new tension forces T'ab and the new direction cosines
cosa'. Eq. (15) in the new notation becomes:

Ri ZT'cos oc'i + R;. (18)
b

Evidently, if the exact values of ui are used, the residual R is zero.

ST'cosoJ + P, 0. (19)
b

Substituting the new values T' and a' in Eq. (7):

2(?7, + Zincos(a'+Zla'); + Pi 0. (20)
b

Rewriting in analogy to Eq. (11), we obtain:

2[^27,cosa; + ?7,{cos(a' + Zla,)i-cosa;.}] + (P^ + 2 27'cosa;) 0. (21)
b b

Using the same considerations as before, an equation similar to Eq. (12) is
obtained. In matrix form:

A U+ (Pi + 2 T' cos aQ 0 (22)
b

or A U - (Pi + 2 T' cos «J). (23)
b

Substituting Eq. (18):
A U=-R, (24)
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where A' is the matrix formed by the corrected coordinates.
For the exact Solution

AU=0. (25)

Eq. (25) is analogous to Eq. (12) and represents a linear Solution in the
vicinity of the load vector P.

Had the exact values ui been used to calculate A', Solution of Eq. (24) would
have yielded the exact incremental displacements A u^. As this is not the
case, iteration is continued until R has become negligible.

The similarity beween Eq. (25) and Eq. (13) permits generalisation of the
procedure and the use of the same Computer programme both for the linear
Solution and the iteration. In all cases, the Solution is carried out for residual
loads Ri [Eq. (25)] and obviously, because of Eq. (2), Ri=Pi in the first step.
Moreover, the same programme may be used to check the initial shape of the
unloaded net, by substituting P^ 0 in Eq. (18). Alternatively, if the initial
section lengths and rigidity parameters are known, the exact shape may be
obtained by assuming approximate coordinates, again substituting Pi 0 in
Eq. (18) and solving by iteration until R approaches zero.

In certain cases, e.g. when non-linearity is considerable or when buckling
is expected, the Solution may be obtained through raising the loads by
increments, as explained below.

Buckling Phenomena

The possibility of drawing the non-linearity curve of deflection permits the
study of buckling phenomena. The buckling process in this case refers to the
structure as a whole, not to single members which can be analysed by known
formulas for column buckling.

The system shown in Fig. 5 may serve as an example of a structure with
buckling tendency. This system may be subjected to any mode of loading,
using given constant increments. In other words, the load ratio remains
constant throughout the process.

Fig. 6 shows, to a distorted scale, the displacement ui;a versus the load
vector P. The tangent curve at zero load corresponds to the linear Solution
[Eq. (14)].

For infinitesimal load, the linear Solution coincides with the true one. For
the load vector Pl the linear Solution yields displacements u[ of r'. The correction

rr' is computed by iteration and the true values ui;I are determined.
The load is now increased to Pn. Rt of Eq. (24) will equal the correct

incremental load. Using the corrected ordinates for P7, a Solution is obtained
for points on the tangents to the curves through r. Thus point s' will be
obtained instead of the true Solution s, while point s" would have been obtained
had the matrix A (zero load) been used. By the iteration process explained
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Fig. 6. Displacement curve Ui,a versus load vector P.

above, point s is computed, and the matrix A corrected. Increasing the load
to PUi yields point t', ete. When the slope of the curve approaches zero (i.e.
infinite displacements for small increments of load), buckling has set in. This
Situation is arrived at when the determinant of A' is zero. At the present stage
of knowledge it is not certain whether the determinant changes sign for loads
above the buckling limit. A check should therefore be provided in the Computer
for such a change, along with the other possibilities. In that case, the [load
should be reduced in steps equal to half the increments, until the sign is changed
again. The load is then again increased in squared halves of the initial increments,
etc., until the desired accuracy has been obtained.

Remarks

a) At the stage of buckling, infinite displacements will occur simultaneously
at most joints of the system.

b) For the study of buckling, combinations of loads yielding large displacements
should be assumed.

c) Systems without tendency to buckling will have a convex curve of dis¬

placements, i. e. the non-linearity effect represents "strengthening" of the
structure and reduetion of its deflections.

Summary and Conclusions

The theory presented is general and Covers all types of nets and trusses.
Two-directional nets or un-prestressed trusses (determinate or indeterminate)
may be considered as special cases.
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Note that for T 0 Eq. (12) is same as in reference 5.

The number of equations to be solved is 3 J, irrespective of the degree of
indeterminacy. It should be borne in mind, however, that only Systems with
a limited number of joints, about 35 (100 equations), are capable of convenient
Solution with the largest modern Computers. This is less than the number of
joints in actual roofs; still, a good insight into the behaviour of any system can
be obtained by analysing a sparser net instead of the real one.

Notation

a Joint for which an equilibrium equation is written.
A Cross section of cable or bar.
b All joints connected to Joint a.
E Young's modulus of elasticity.
J Number of considered joints for equilibrium equations.
I Length of section.
P Load.
Pi Component of load in xi direction.
Pi; Pn ; Pm Vector loads of same mode.

Ri Residual load.

xi Coordinates.
A t Change of temperature.
T Tension in cable.

ut Displacement component in i direction.

ai;ab Angle between section ab and axis xi.
H Coefficient of thermal expansion.

Acknowledgment

The author wishes to express his thanks to Mr. Yair Tene and Mr. Yehuda
Partom for careful study of the paper, and some very helpful suggestions.

References

1. F. K. Schleyer: «Über die Berechnung von Seilnetzen». Dr. Ing. Dissertation.
Technische Universität, Berlin.

2. F. K. Schleyer: «Die Berechnung von Seilnetzen». Colloquium on Hanging Roofs,
Continuous Metallic Shell Roofs and Superficial Lattice Roofs, Paris, 9—11 July 1962.

3. A. Siev: "Stability of Prestressed Suspended Roofs". D. Sc. Thesis. Technion — Israel
Institute of Technology, Haifa.

4. A. Siev: "Shapes of Suspended Roofs". Colloquium on Hanging Roofs, Continuous
Metallic Shell Roofs and Superficial Lattice Roofs. Paris, 9—11 July 1962.

5. D. N. De G. Allen: "Relaxation Methods". McGraw Hill, 1954. Formulas on page 31.



292 AVINADAV SIEV

Summary

A general analysis of prestressed spatial nets, based on the strain (or rather
displacement) method is presented. The method is general and applies to any
net, such as three- or multi-directional nets, nets in which the cables form
geodesic lines of the surface, etc. Conventional space trusses or plane trusses

may be considered as a particular case of nets with zero prestress. The theory
is tentatively based on the assumption of linearity, with the error involved
subsequently corrected by iteration.

Matrix algebra and simultaneous linear equations are used, so that the
programming for an electronic Computer is not too cumbersome and the
manipulation and Solution of a large number of equations do not present any
diffieulty.

Resume

L'auteur presente une etude generale des reseaux spatiaux de cables pre-
contraints, basee sur la methode des deformations (ou plutot des deplacements).
La methode est generale et s'applique ä n'importe quel type de reseau tels

que, par exemple, des reseaux ä trois ou plusieurs directions ou des reseaux
dans lesquels les cables forment les lignes geodesiques d'une surface, etc. Les
fermes ä treillis classiques planes ou dans l'espace peuvent etre considerees

comme des cas particuhers de ces reseaux, avec une precontrainte nulle. La
theorie est etablie dans l'hypothese d'un comportement lineaire, les erreurs
qui en resultent etant ensuite corrigees par approximations successives.

Le calcul matriciel et les systemes d'equations lineaires simultanees sont
traites de teile sorte que la programmation pour des calculatrices electroniques
puisse s'effectuer sans de trop grandes difficultes et que la transformation et
la resolution d'un grand nombre d'equations puissent s'effectuer facilement.

Zusammenfassung

Auf Grund der Deformationsmethode (oder eher einer Verschiebungs-
methode) wird eine allgemeine Untersuchung vorgespannter, räumlicher
Netzwerke dargelegt. Die Methode ist allgemein und auf irgendwelche Netzwerke
anwendbar, wie z.B. Netze, welche auf 3 oder mehreren Richtungen aufgebaut
sind oder in welchen die Kabel geodätischen Linien der Fläche folgen usw.
Die klassischen räumlichen oder ebenen Fachwerke können als Spezialfälle
von Netzwerken ohne Vorspannung betrachtet werden. Die Theorie basiert
auf der Annahme der Linearität, wobei der daraus resultierende Fehler
nachträglich iterativ verbessert wird.

Die Matrizenrechnung und lineare Gleichungssysteme werden so

angewandt, daß die Programmierung für elektronische Rechengeräte nicht zu
umständlich wird und daß die Umformung und Lösung einer großen Zahl
von Gleichungen keine Schwierigkeiten mit sich bringt.
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