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Energy Method for Analyzing All Stresses in Rigid Trusses

Une méthode énergétique pour la détermination de toutes les contraintes dans les
treillis a noeuds rigides

Energiemethode fiir die Analyse aller Beanspruchungen in Fachwerken mit
starren Knotenverbindungen

SHU-T'IEN LI ING-CHANG JONG
Ph. D., F. ASCE, M. IABSE, Professor of M. S., M. TABSE, A. M. ASCE
Civil Engineering
South Dakota School of Mines and Technology, Rapid City, S. Dak.

Introduction

Methods of analyzing pin-connected trusses have inappropriately remained
in use though the latter have long become obsolete. They were first superseded
by riveted trusses about half a century ago. Since World War II, welded trusses
have gained increasing acceptance. All these modern rigidly-connected trusses,
whether with or without internal or external redundancy, are, by their inherent
nature, highly statically-indeterminate rigid frames. The rigidity of the joints
constitutes the main cause for end moments and transverse shear in each
member.

Including MANDERLA s 1) first enunciation of a method 85 years ago, at least
nine independent methods have been developed, for the solution of the so-called
“secondary stresses’’ — stresses caused by conditions ignored in the conven-
tional analysis of “‘primary stresses’’. The problem of secondary stress has, in
reality, arisen from inappropriate solution of rigidly-connected truss, rather
than from it being truly secondary in nature. By analyzing a rigidly-connected
truss under a given loading as an assemblage or chain of rigid frames, only one

1) MANDERLA, HEINRICH: « Welche Spannungen entstehen in den Streben eines Fach-
werks dadurch, daB die Winkel der Fachwerkdreiecke durch die Belastung eine Anderung
erleiden ?» Preisarbeit, Jahresbericht der Technischen Hochschule Miinchen, 1878—1879,
P. 18.
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set of perfectly normal genuine stresses will be found existing in such a truss,
thus dispelling the heretofore misnomer of ‘“‘secondary stresses’’.

To achieve this elegant ideal of solving all genuine stresses including
secondary stresses in each member of a rigidly-connected truss of any con-
figuration with any redundancy under any externally applied loading, a matrix-
energy formulation for executing the solution is proposed herein. The method
enables the determination of all genuine stresses in a unified single set-up; it
adapts to programmed electronic computation; and it provides both exact
and approximate solutions.

Basic Concepts

A rigidly-connected truss, under a given loading, is equivalent to an other-
wise ideal, pin-connected version not only identically loaded but also acted
by couples on the bar ends, equal to the internal resisting moments thereat.

In the most general case, if (1) the internal resisting moments at the ends
of the members, (2) the axial stresses in the redundant members, and (3) the
redundant reactions at the supports were all known, a rigidly-connected
indeterminate truss of any redundancy would be completely determined by
statics. These three types of quantities are treated as unknowns in the proposed
method. To ensure that all unknowns are statically independent, equations of
static equilibrium must be fully applied to eliminate dependent unknowns.
Consequently, the number of statically independent unknowns is just equal
to the degree of statical indeterminateness of the truss viewed as an assemblage
of rigid frames. All stresses (internal forces and moments) therein, and hence
the total strain energy of the truss, can be expressed in terms of the externally
applied panel loads and the said unknowns. By appropriate partial differentia-
tions, all the necessary simultaneous equations will be evolved. The following
development in its operative sequence is founded on the above basic concepts.

Constituent Strain-Energy Matrix

The laterally exaggerated elastic curve of any truss member 7 —J is repre-
sented in Fig. 1.

Notations for any truss member I —J are defined as follows: M; and M,
are respectively the unknown internal resisting end moment in kip-in at the
I- and J-end; N, the total axial force in kip; @,;, the transverse shear in kip;

i

Lij J Fig. 1.

ij
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A,;, the cross-sectional area in sq.in.; /,;, the moment of inertia in in*; L,;,
the length in in.; s, the distance from /-end in in.; & , the displacement in in.
at a distance s from the [/-end, normal to the original centroidal axis; Z,
modulus of elasticity of the material in ksi; @, modulus of rigidity of the
material in ksi; u, Poisson’s ratio of the material which may be taken as
equal to 0.3 for structural steel; U,;, V;;, and W;;, the strain energy in in-kip
respectively due to bending moment, transverse shear, and axial force.

Let the sign convention be defined such that (1) positive end moments
produce clockwise rotation of the ends; (2) positive axial forces are in tension;
and (3) a positive pair of end shears forms a counterclockwise couple.

The matrix of constituent strain-energy expressions may now be formulated.
In Fig. 1, recognizing that the moment due to axial force and deviation from
original centroidal axis is usually negligibly small, the true moment about any
point at a distance s from the /-end, that is

M= M;;— Q55— Nyd (1)

may take the simplified form of
Ms =Mij—QijS= (2)
where Qi = ,,,Jj;_,_, ji (3)

Hence, the constituent strain-energy matrix of any member I —.J may be
written according to MENABREA 2) as

— - - Ly _

Niz'.v' 1 Lii 2

0

Li;
1 M2 1 Ly; " 5
Uy | = PY 1, ds| = I é'ji;_(Mij-Miiji_*-Mji) (4)

0

Ly %j 1+p, .
L _0 1 i (3 ()

in the last of which G = /2 (1 + p).
Summing up {W U V},; for all members of the truss, the total strain energy,
U, of any truss is then

Tt
~—

U=;[1 L 1{Wy; Uy Vi (

where m is the number of members in the truss.

2) MENABREA, L. F.: A memoir presented to the Academy of Sciences in Turin, 1857.
(Containing the earliest suggestion in the use of the expression for the strain energy of
the truss.)
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The Matrix Equation of Unknowns and Their Solution

Under the usual conditions of truss analysis, taking all joints as infinitely
rigid, all components as ideally fit, and all supports as unyielding, the applica-
tion of CASTIGLIANO’s second theorem®), or the theorem of least work, to the
present problem, involving trusses with any degree of redundancy, will give
the following relations:

U oU oU
{aaM SN 2R}= {000}, (6)

where M is the statically independent unknown end moment; N, the unknown
axial force in the redundant member, if any; R, the unknown redundant
reaction, if any. While Eqs. (6) represent minimization of strain energy or zero
“relative’’ displacements, the last of Eqgs. (6) also denotes the condition of
zero settlement of support. In case of non-zero, then according to CASTIGLIANO’s

first theorem 3), :—J‘Z— would be equal to the rotation; 2—1(\]7, an over-run or under-

run; and z—, the support settlement.

The unknowns M’s, N’s, and R’s of any loaded plane truss of any configura-
tion may be generalized as the unknown column vector {X,}. Repeated appli-

cation of ;XU— =0 will yield a set of » non-homogeneous simultaneous algebraic

linear equations of the type
|l { X5} = {C5} (7)

as the ith equation, in which both ¢ and £=1,2,...,4,...,5,...,n, and the
constant term C; has been transposed to the right-hand side.

It follows directly from MAXWELL’s theorem of reciprocity 4) that the
coefficient a;; of X, in the jth equation is identical both in sign and magnitude
as the coefficient a; of X; in the ith equation, and by virtue of this well-
known fact,

= > (8)
where ¢ %74, giving a symmetric coefficient matrix, analogous to the “flexi-
bility matrix’’%). Hence, in abbreviated matrix form, the set of equations

becomes

[ay;] {X@} = {0y}, (9)

3) CASTIGLIANO, ALBERTO: «Nuova teoria interno dell’equilibrio dei sistemi elastici».
Atti delle Academia delle Scienze, Torino, 1875.

4) MAXWELL, JAMES CLERK: ““‘On the Calculation of the Equilibrium and the Stiffness
of Frames’’. Phil. Mag., Series 4, Vol. 27, 1864, P. 294.

5) AreYris, J. H.: A series of articles in Aircraft Engineering (London) between
October 1954 and May 1955.
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which always has a general solution by inverting [a;;] unless the matrix [a,;]
is singular. That is to say, if |a;;|=0, the solution is

{X;} = [a;]™! {C:}. (10)

Since [a,;]7! is uniquely satisfying [a;;]7![a;;]=U (unit matrix), the vector of
solutions given by [a;;]7 {C} constitutes the only solutions. In Eqgs. (9), because
of symmetry, only 17 (n+ 1) coefficients are to be evaluated and consequently
the computer time for inverting the matrix will be correspondingly reduced.
In inverting large matrices, an efficient and fast method such as L1’s algorisms®)
is recommended.

The Illustrative Example

To exemplify the numerical process and compare the results with those
obtained by using recognized methods, let the example given by SUTHERLAND
and BowMAN 7) be solved by the proposed matrix-energy method.

Statement of the Problem

It is desired to find all genuine stresses at the ends of each member of the
rigidly-connected truss shown in Fig. 2 due to vertical loads of 166 kips at

]
[
28
I
1 2t 4y 2y I'7%
249“T‘ 1665 166%  I66k 249k
4@ 25'='100' N Fig. 2.
-

each lower panel point except at supports. The makeup of the members is
given in Table 1. For simplicity, assume centroidal axes of members intersect
at theoretical panel points, thus eliminating eccentric moments. Poisson’s
ratio, u, is taken as 0.3.

8) L1, SHU-T’1EN: ‘“‘Converging Matric Algorisms for Solving Systems of Linear Equa-
tions’’. Trans. of the November 1962 Convention of the Chinese Association for the
Advancement of Science, Taipei, China, Vol. 1, November 1962, PP. 16—22.

7) SUTHERLAND, HALE and BowMaN, HaArryY LakE: “Structural Theory”. 4th Edition,
1950, Seventh Printing, 1961; John Wiley & Sons, Inc., New York; PP. 351—357.
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Table 1. Makeup of Members

Bar Section Areain.?2| Iin# L in. I/cin.3 Sketch
2-[ 15%33.9 ” 167.5
1-3 1 Drig e 27.68 961.0 450,44
1—FPi 18X 75, 99.1
) 2—[ 15x33.9 e - 300.0 156.0
3—5 1— PU18 % 3/s 26.55 922.8 0.00 97.6
1-2 ,
9_4 4—]s6xX33x1/e 18.00 175.3 300.00 27.5
2—3 | 4—]56x31/2x715| 15.88 153.8 | 336.00 24.1
3—-4 4—[s6xX31/ax3/s 13.68 131.8 450.44 20.7
4-—-5 4— 185X 3x3/g 11.44 79.1 336.00 14.7
Solution

In general, for an asymmetrical rigidly-connected truss of m members under
asymmetrical loading, there will be 2m unknown end moments. In a sym-
metrical rigidly-connected truss and under symmetrical loading, if = is the
number of joints, the number (V) of statically independent unknown end
moments is given by

N=1@22m-n)=m—1in. (11)

In the present case, m =13, n=38, therefore, N =13 —1(8)=9; that is, the
present truss is determinate when pin-connected, but becomes indeterminate
to the 9th degree when rigidly connected.

Let the nine statically independent unknown end moments be represented,
element for element, by the matrix:

X, Xy X Mz My Moy | Myy Moy My,
Xy Xy Xg| = | My Mgy My | = — | Mgy Mgy My |, (12)
X; Xg Xy My Myg My  Myy Myg Mgy |

Then, by > M =0 at joints, 1,2,3 and 1’,2’, 3’, six of the remaining dependent
unknown end moments can be expressed, thus

My, My X,
My | = — | Myy | = — | Xp+ X, . (13)
M, | My, X+ X5+ X

And by symmetry, we have
{My Msy Qus; = {0 0 0}. (14)

The total axial stress in each member is readily determined by the “‘extended
method of moments, shears, or joints’’, which are illustrated for members
1—2, 1—3, and 2—3 as follows: '
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A. Extended Method of Moments

Passing a section just to the left of member 2—3 and considering the
equilibrium of the free body to the left, as shown in Fig. 3, we have,

N23
Q
Q“‘l f24-
/
Ni2 ) > }—*Nm
Q, 166
Fig. 4.
by > M,=0, |- Ny, X, 249 X,]{336 1 300 1} = 0.
Hence, N, =X, X, 1]{0.002976 0.002976 222.321}.
B. Extended Method of Shears
Taking the same free body as shown in Fig. 3, we have
-X+X, X;+X
f _ 1t Ay A3+ 4y
(@12 Q) { 300.00 450.44}
and by > Y =0,
28 25 1
Nip Xyt Xy — X, 44, 249 {37.53 450.44 (37.53) 300 1}20

Therefore
Ny=|X, —X, —X, —1]{0.002486 0.004469 0.001982 333.808}.

C. Extended Method of Joints

Passing a horseshoe section around joint 2, as shown in Fig. 4, we have,

by 2Y =0, [NVo3 @y @y 166]{1 1 —1 —1} =0.
Substituting the values of @,, and @,,, we get
1 1
LN23 X3+X7 _X1+X2 166_' {1 %6 —§66 —1}=0

or
Ny =[—X, X, — X, — X, 1]{0.003333 0.003333 0.003333 0.003333 166.000}.
Similarly, other total axial stresses may be found as listed in Table 2. The

constant term in each N expression is exactly equal to the heretofore so-called
“primary stress’’ in the same bar if it were pin-jointed.
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Constants in the strain-energy expressions of Eqs. (4) are given in Table 3.
With the aid of Tables 2 and 3, Eqs. (4) give the strain energy multiplied
by £ in each member as shown in Table 4.

Table 2. Total Axial Stresses

Member Total Axial Stresses
1—2 0.002976 X5+ 0.002976 X4 + 222.321
1—3 0.002486 X1 — 0.004469 X, — 0.001982 X, — 333.808
2—3 —0.003333.X:+0.003333 X2 — 0.003333 X3 — 0.003333 X7+ 166.000
2—4 —0.002976 X3+ 0.002976 X4+ 0.002976 X5 + 222.321
3—4 0.004469 X3 —0.001982 X, —0.001982 X5 + 0.002486 X ¢+ 0.004469 X ; +
+0.001982 X5+ 0.004469 Xo + 111.269
3—5 —0.002976 X7 —0.002976 X5 — 0.002976 X9 — 296.429
4— —0.006667 Xs— 0.006667 X4
Table 3. Constants in the Strain-Energy Expressions
Member
Property
1—2 1—3 2—3 2—4 3—4 3—5 4—5
LjA 16.66667 |16.27311 |21.15869 |16.66667 |32.92689 (11.29944 129.37063
Lj6Il 0.285225 | 0.078120| 0.364109 | 0.285253 | 0.569600| 0.054183 | 0.707965
2(14pu)/AL| 0.000481 | 0.000209 | 0.000487 | 0.000481 | 0.000422| 0.000326 | 0.000676
Table 4. E Times Strain Energy
Member I Times Strain Energy in Member I —J =E (W + Ui+ Viy)
1—2 £(16.66667) (0.002976 X5+ 0.002976 X4+ 222.321)2+
+0.285225 (X2 + X1 Xo+ X32) + 1(0.000481) (— X1+ X5)2
1—3 3(16.27311) (0.002486 X1 — 0.004469 X2 — 0.001982 X4 — 333.808)2 +
+0.078120 (X2 — X X4+ X2) 4+ £(0.000209) (X; + X4)2
2—3 $(21.15869) (~0.003333 X1+ 0.003333 X3 — 0.003333 X35 — 0.003333 X+
+166.000)2 4 0.364109 [( — X2 — X3)2+ (X2 + X3) X5+ X2] +
+3(0.000487) (— Xo— X3+ X5)2
2—4 $(16.66667) (—0.002976 X3+ 0.002976 X4+ 0.002976 X5+ 222.321)2 +
+0.285253 (X5 — X3X7+ X32)+ 1(0.000481) (X5 + X7)?
3—4 $(32.92689) (0.004469 X3 —0.001982 X, — 0.001982 X5 4+ 0.002486 X +
+0.004469 X7+ 0.001982 X5 + 0.004469 X9+ 111.269)2 +
+0.569600 [( — X4 — X5 —X6)2+ (Xa+ X5+ Xe) Xs+ X%] +
+4(0.000422) (— X4 — X5 — X6+ X3)2
3—5 %(11.29944) (—0.002976 X7 — 0.002976 X s — 0.002976 X9 — 296.429)2 4
+0.054183 (X2 — X6Xo+ X3)+ 4(0.000326) (Xg+ X9)2
4—5 1(29.37063) (— 0.006667 X6 — 0.006667 X)2
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By repeated application of 1 K aa%=0, the following matrix equation is

obtained:

where

[aij]—l =

ai; below main diagonal
=ay; above it

L
(€3} =

{25.2144,-47.0097, 6.3636, —25.5609, —3.7656, —9.1098, —14.6329, —17.2309, —26.3407} .

{Xi} = lay17H{C,

10.727716 0.284328 0.000235 —0.077992 0
1.300346 0.728471 0.000292 0.363622
1.300734 -0.000439 0.363183 0.000366 —0.283879 0.000292 0.000658

1.296559 1.139899 1.139460 -0.000292

0 0.000235
0 -0.000235

0.571981

Table 5. Bending Stresses at Member Ends

{Xz} = {Xl Xz Xa X4 Xs Xe X7 Xs X9}

0
0

0
0

0.569049 -0.000292
1.868605 1.139460 -0.000292 0.569049 -0.000292
1.249171 0.000366 0.569340 -0.052838
0.000392 0.000758
1.139852 0.000392

0.110103

241

End Moment (k-in.)
MeEmber I/c (in.3) Bending Stress (ksi)
ngl Cross Method Proposed Method
2 - 67 —66.20 27.5 2.262
1 5 66.9 167.5 0.395 (Top)
o 20 99.1 0.668 (Bottom)
1 -85 —84.47 27.5 3.072
2 45 45.28 24.1 1.879
4 40 39.19 27.5 1.425
1 11 13.41 167.5 0.080 (Top)
- — 1o 99.1 0.135 (Bottom)
43 42.50 24.1 1.763
3
4 12 11.45 20.7 0.553
156.0 0.260 (Top)
5 — 44 —40.64 97.6 0.415 (Bottom)
- — 5.803 27.5 0.211
4 3 — — 9.309 20.7 0.450
5 0 0 14.7 0
156.0 1.658 (Top)
g | @ — 263 pL 97.6 2.651 (Bottom)
4 0 0 14.7 0
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The solution of {X,} in kip-in by electronic digital computer or otherwise
is recorded, element for element, as

X, X, Xy| [ 6620 —84.47 39.19'| M, M, M,,
X, X, Xﬁl = ‘ —13.41 4250 —40.54 | = | My My My |. (A)
| X, Xg Xy | —5.803 —9.309 —258.8 | | M, M, M|

Dividing the end moments by their respective section moduli (//c) given in
Table 1, bending stresses in ksi at member ends are as recorded in Table 5.
These correspond to the so-called “secondary-stresses’’. The values of end
moments as found by SUTHERLAND and BowmAN by Cross’ method for the
same truss are reproduced in the first column of Table 5 for comparison.

Total axial stresses and transverse shears are obtained by substituting the
values of X respectively into Table 2 and Eq. (3). They are recorded in Table 6.
Unit axial stresses are also calculated.

Table 6. Values of Nij, Niyj/Ai;, and Qi

Member 1—2 1—3 2—3 2—4 3—4 3—5 4—5

Ny; (kips) 222.030 | -333.239 | 165.387 | 222.291 110.085 | -295.614 1.996
NyilAksi)] 12.335 | -12.039 10.415 12.350 8.047 | -11.134 0.174
Qi (kips) -0.502 0.118 0.261 0.111 0.005 -0.998 0

The Simplified Method

A study of the equation obtained from % = 0 suggests a simplified method

which saves much time in writing the energy expressions and in evaluating
the elements of the matrix [a,;]. Considering the process for obtaining the first
equation from

%E;TU = 0 = 0.285225 (2 X, + X,) +0.000481 (— 1) (= X, + X,)
1

+16.27311 (0.002486) (0.002486 X, — 0.004469 X, — 0.001982 X, — 333.808)
+0.078120 (2 X, — X,) + 0.000209 (X, + X,)
+21.15869 (0.003333)2 (X, — X, + X, + X, — 166.000/0.003333)

the values of the non-underlined terms are about thousand times of those of
the underlined. An approximate solution sufficient for engineering accuracy
can, therefore, be most expediently obtained by deleting each strain energy
term due to transverse shears in writing the energy expressions, and only
reteining constituents of axial stresses not dependent on end moments and
shears after partial differentiation. Thus, the simplified form of the first
equation becomes
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10.7262 0.2852 —0.0781] {X; X, X,} = 25.214

and the symmetric matrix equation reduces to:

"0.7262 0.2852 0 -0.0781 0 0 0 0 0 X, ] | 25.214]
1.2987 0.7282 0 0.3641 0 0 0 0 X -47.010
1.2988 0 0.3641 0 -0.2853 0 0 X3 6.364
1.2954 1.1392 1.1392 0 0.5696 0 X4 -25.561
1.8674 1.1392 0 0.5696 0 X5 | =| - 3.766
1.2476 0 0.5696-0.0542 X - 9.110
ai; below main diagonal 0.5705 0 0 X5 ~-14.633
=ay; above it 1.1392 0 Xs -17.231
) 0.1084 | | Xy | | -26.341
whose solution by electronic digital computer yields
X, X, X, 66.9 —84.9 39.0 M, My My,
Xy Xy Xg| = J —10.7 434 —445 | = | My M,y M,y (A)
| X, Xg Xy| | —6.15 —9.25 —265 My My, My, |

after which, any axial, bending, and shearing stress in each member of the
truss can be determined by statics. The accuracy of the simplified method can
be seen by comparing Eq. (A’) with Eq. (A).

Conclusion

The energy method proposed herein will yield the solution of axial, bending,
and shearing stresses in all members of a truss in one unified single set-up.
The rigidly-connected truss is treated as an assemblage of rigid frames. With
wide-spread use of electronic computer, the entire process can be programmed
from given data to end results. It provides both exact and approximate
methods to suit the needs of special investigations and ordinary purposes. The
mysterious category of ‘“‘secondary’’ stresses is henceforth dispelled.

Summary

An energy method is formulated for analyzing all genuine stresses, including
secondary stresses, in rigidly-connected trusses. Such trusses, by virtue of
having axial stresses coexisting with flexural and shearing stresses (heretofore
called “‘secondary stresses’’), constitute, in reality, an assemblage of a chain
of rigid frames. To unify their solution into one single system of strain energy
and matrix procedure, formulae expressing constituent strain energy for plane
trusses of any configuration with any redundancy are developed. A simple
illustrative example showing exact and approximate solutions is given. Con-
clusions are stated.
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Résumé

Les auteurs présentent une méthode énergétique permettant de déterminer
toutes les contraintes effectives, y compris les contraintes secondaires, dans
les treillis & noeuds rigides. Ces treillis, sollicités simultanément par des efforts
axiaux et par des moments de flexion et des efforts tranchants (sollicitations
appelées jusqu’ici «contraintes secondaires»), constituent en réalité une succes-
sion de portiques rigides. Pour obtenir la solution & ’aide d’un systéme unique
d’énergie de déformation et de calcul matriciel, les auteurs développent des
formules exprimant 1’énergie de déformation pour des poutres planes de con-
figuration et de degré d’hyperstaticité quelconque. Ils donnent un exemple
simple et illustratif, montrant la solution exacte et la solution approximative
et présentent des conclusions.

Zusammenfassung

Es wird eine Energiemethode fiir die Bestimmung aller auftretenden Span-
nungen, einschlieflich der Nebenspannungen, in steifknotigen Fachwerken
dargestellt. Solche Fachwerke, die sowohl Axial- als auch Biege- und Quer-
kraftebeanspruchung (die sogenannten Nebenspannungen) aufweisen, bilden
tatsidchlich eine kettenférmige Verbindung starrer Rahmen. Um die Losung
dieses Problems in ein einziges System von Forménderungsarbeit und Matrizen-
berechnung zu vereinigen, werden Formeln entwickelt, die die Forménderungs-
arbeit fiir ebene Fachwerktriger von beliebiger Form und beliebigem Grad
der statischen Unbestimmtheit ausdriicken. Ein einfaches anschauliches Bei-
spiel wird gegeben, das sowohl die genaue wie eine Annaherungslosung zeigt.
SchluBlfolgerungen sind angegeben.
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