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Generalised Approximate Method of Assessing the Effect of
Deformations on Failure Loads

Methodes d'approximation generalisees pour Vevaluation de l'effet des deforma¬
tions sur les charges de rupture

Allgemeine Näherungsmethoden zur Bestimmung des Einflusses von
Verformungen auf die Bruchlasten

M. R. HÖRNE
M. A., Sc. D., M.I.C.E., A.M.I. Struct. E. Professor of Civil Engineering.

University of Manchester

Introduction

Among the many requirements of an engineering structure in relation to
strength and stability, three prineipal items may be distinguished.

1. The stiffness shall be adequate under normal working loads.
2. There shall exist a reserve of strength such that catastrophic collapse would

not take place under some degree of overload.
3. The structure shall remain safe under any foreseeable repetition or sequence

of loads.

To follow with any accuracy the behaviour of the structure under all
conditions of loading is usually impracticable, particularly when local yielding is
involved at points of stress concentration. It is therefore common to assess
the adequaey of a structure by reference, on the one hand to idealised load
conditions, and on the other to idealised coneeptions of structural behaviour.

Load conditions are specified by a working load (load factor A=l), an
ultimate load (equal to the working load multiplied by a load factor Xjj) and a
load frequency, giving the load repetitions to be expected, usually at working
load level, but possibly at a spectrum of load levels.

Structural behaviour may conveniently be idealised into elastic behaviour and
rigid-plastic behaviour. Elastic behaviour (implying the straight stress-strain
relation in Fig. 1 a), is used to impose the required deflexion limits at working
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load level (A=l), thus establishing the stiffness requirement. Rigid-plastic
behaviour (Fig. lb) gives the plastic mechanism load factor AP, which is an
estimate of the failure load, and thus measures the reserve of strength against
overloading. Finally, repeated loads are dealt with by using elastic theory to
calculate stresses, which are then limited according to the fatigue endurance
of the material.
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Fig. 1.

In civil engineering structures, the prime factor in design is most frequently
the strength criterion, and this has led to the wide acceptance of plastic theory
as a valid basis for design, despite the accompanying idealisation of structural
behaviour. This has the great advantage of simplicity, since rigid-plastic
analysis is easier than elastic analysis, and direct design rather than trial and
error procedures may be used. There are however some dangers in using
plastic theory in that phenomena associated with elastic and plastic deformations

may be ignored. Apart from the question of allowable deflexions at
working load level (A= 1), deformations affect the load-carrying capacity, and
the failure load (defined by load factor A^) may fall appreciably below the
rigid-plastic collapse load (load factor AP). To deal with this, it has been found
convenient to introduce a second idealisation of structural behaviour defined
by the elastic critical load factor Xc. This is the theoretical level of axial loads,
induced by external loads, at which the structure would, if it continued to
behave elastically, become unstable. On the Suggestion of Merchant [2], an
almost invariably conservative and frequently close estimate of the failure
load factor XF is then given by the Rankine formula

XF XP Xc (i)

Some theoretical justification of the Rankine load has been given by Hörne [3].
Unfortunately, Ac is appreciably more difficult to estimate than is AP, and

the attractive simplicity of the plastic theory is in danger of being lost. Since

^f —nr" an(l since for most civil structures Ac >? AP, only an approximate

estimate of Ac is required. It has been found that a rigid-link mechanism
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containing pseudo-plastic hinges may be used to derive an approximation to
Xc, this procedure being no more difficult to apply than rigid-plastic theory
itself. The idea has arisen from earlier work on the effect of strain-hardening
[4], which limits the plastic deformation capacity of a structure (Fig. lc). The

resulting tendency for moments of resistanee at plastic hinges to increase with
increasing hinge rotations is sufficient in many structures to overcome the
reduetion of capacity due to change of geometry, and it has been foundjthat
this may be assessed by the assumption of "rigid-plastic-rigid" behaviour
(Fig. Id). It is assumed that "strain-locking" occurs at some strain Je'ey> key,
where ey is the strain at yield and k €y is the strain at the beginning of strain-
hardening (Fig. lc).

Rigid-Plastic-Rigid Theory of Strain-Hardening

Consider a cantilever of length h (Fig. 2a), the member being of uniform
I-section of depth 2 r in which the area of the web is negligible compared with
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Fig. 2.

that of the flanges, each of area Aj2. Then the moment-curvature relation,
assuming rigid-plastic-rigid behaviour (Fig. Id), will be as shown in Fig. 2 c,

the section "locking" at a curvature of—- when the applied moment reaches

the füll plastic value MP Ar oy. This locking enables the moment of resistanee
of the member to rise above MP, but this is aecompanied by a spread of
plasticity along the member. Suppose that, under a load P, plasticity has

spread a distance x from the fixed end, (Fig. 2b). Then the hinge rotation is
k' e

cf> ——-x and the maximum moment is

M MT
h

h — x Mi+i)'^(i+z,i\
Hence the moment-rotation relationship for the rigid-plastic-rigid cantilever
is as shown in Fig. 2d.

In the case of a cantilever under a uniformly distributed load (Fig. 3 a),
the length h in the relation
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M M,hz,t)
becomes the intercept A C of the tangent A'C to the bending moment diagram
at the hinge (Fig. 3b). When plasticity can spread from a hinge in two directions

(Fig. 4a), the dimension h is replaced by (h1+h2) (Fig. 4b), the sum of
the tangent intercepts either side of the hinge.

1—i
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Fig. 3.
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Fig. 5.

The above strain-hardening characteristics of plastic hinges may be applied
to rigid-plastic mechanisms to derive a stability criterion (Fig. 5). Let cj>

represent a typical hinge rotation and A the rigid-plastic deflexion corresponding

to a typical applied load A W. Let any typical rigid link, such as the left-
hand half BC oi the beam BD, be of length l, carry an axial thrust XR, and
undergo a rotation ß. The bending moment diagram, Fig. 5b, establishes the
tangent intercepts hx and h2 either side of the plastic hinge at D. If the
deformations increase from cf>, A, ß to <$> + dj>, A+dA, ß + dß, the external work is

XfäWdA+ZBßldß}
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and the internal work is

W'+I^J-TsK
both these expressions being correct up to terms of order AdA, <f>dcf> and
ßdß (see Hörne [5]). Since for small deformations,

dcf>
_

dA
_ dß

c/>
~ A ~ ß'

it follows that

X{ZWA+ZEßH}^ZMPcP + li^1^h. (2)

The load factor at failure according to rigid-plastic theory is obtained as A AP

by taking the limiting case as <f>, A, ß -> 0, whence

Xr%WA=2MPcf>. (3)

For small finite values of cf>, A and ß the load factor will rise above AP if

and will fall if

*™>Efe^k'ey hx + h2

A condition of neutral stability will arise if

«:*<»-Et? j&- <«>

Examples of the application of this equation to assess the compensating
effect of strain-hardening on frame instability at the plastic-collapse load,
together with experimental evidence, have been given elsewhere [4, 6]. As it
Stands, the equation is applicable only to I-sections with negligible web area.
For any section bent about an axis of symmetry, the dimension r is replaced
by rs, the distance from the neutral axis to the "strain centre" of the fibres
to one side of the neutral axis. The strain centre is such that the moment of
strain to one side of the neutral axis is equal to the moment of the average
strain acting at the strain centre, i.e.

where I is the second moment of area and S is the plastic modulus MPjay
where oy is the yield stress. Substituting this value of rs in Eq. (4) in place of
r, and inserting ey oJE where E is the elastic modulus, it follows that
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Rigid-Plastic-Rigid Theory as an Approximate Assessment of Elastic Stability

The pure plastic strain, of magnitude k' ey, controls the degree of stability
introduced by strain-hardening when a structure is deforming as a rigid-plastic
mechanism. It is interesting to see whether, by introducing a spurious plastic
strain kE ey in an otherwise completely rigid material, it is possible to measure
elastic stability. This is an entirely artificial device, to be judged entirely by
its success in predicting elastic critical loads.

Take first a pin-ended, axially loaded member of length l and flexural
rigidity EI (Fig. 6a). This will buckle elastically at the Euler load

P=zPc —-—. Consider a rigid-plastic-rigid model of the strut, in which

a hinge, füll plastic moment MP, forms at mid-height at the load Pc. It is
assumed that a lateral load just sufficient to produce the plastic collapse
condition exists, but the axial load is just sufficient to give a state of neutral

M

i \«*fte

Fig. 6.

Solution for pin-ended strut.

flA T-
0—0«

£t0\

hf o-«> /
>?/?m>j B

Q-3*

Fig. 7.

Solution for strut pinned at A, fixed
at B.

equilibrium under increasing deformation. The bending moment diagram is

shown in Fig. 6 c, whence in Eq. (5), hx h2 l\2. Hence, substituting XPR= n
/2

in place of APi? and kE in place of k', Eq. (5) becomes

EI cf>2¦¦mm fCjßj l

givmg kE- w2.

This same value of kE will now be used to estimate the elastic critical load
Pc of a strut, again of length l, direction fixed at one end and pinned at the
other (Fig. 7 a). Taking an arbitrary position for the hinge within the length
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of the member (Fig. 7 b), substituting Pc in place of XPR in Eq. (5) and putting
kr kE 4/7T2, it is found that

(l-a)2<£2
¦ + •

'EI (l-a)l + ~l V

i.e. Pn

4 (occpf^-ccjl + Kl-^cp^xl'
tt2EI q + (l-q)2(2-«)

2P a2(l-a)(2-a) " (6)

Eq. (6) gives a minimum Pc when a 0.6253, the minimum Pc being
2.032 —p—. This compares with the correct value, obtained in the normal way,

of 2.046-^.

- EXACT SOLUTION LOCKING HINGE APPROXIMATION
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Fig. 8. Comparison of exact and approximate Solutions for elastic critical loads of portal
frames.

The critical loads obtained by this method (kE 4/772) for rectangular portal
frames with both hinged and fixed bases are shown in Fig. 8, where they are
compared with the accurately calculated values. There is quite a good correlation

except at large span to height ratios for the fixed base frames.
Since the aim is to derive a means of obtaining safe (low) estimates of

elastic critical loads, it is desirable to adopt a somewhat higher value for kE
than 4/7T2 for general use. Empirically, as a result of investigating quite a
number of frames, it is found that a suitable value for kE is 6/7i2. Hence,
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replacing AP by Ac in Eq. (5), the approximate expression for the elastic critical
load factor becomes

y EI^
tt2 Ljfn + h* /f7N

6 ?.Rß2l '

where the axial loads R are those corresponding to unit load factor. Alter-
nately, if RP XPR are the axial loads corresponding to rigid-plastic failure,

y Eip
tt2 L^hi + h2

(8)

It may be noted that Eq. (8) leads to estimates of critical loads of rectangular

portal frames (Fig. 8) that are conservative for span to height ratios less

than about 8, and the equation is therefore satisfactory for practical frames
of this type.

The Estimation of Failure Loads

Comparisons will now be made between the estimates of failure loads
obtained from the Rankine formula (using elastic critical loads derived from
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Eq. (8)) and accurately calculated failure loads (using elastic-plastic analysis)
for a number of plane frames.

Wood [1] gives accurate analyses for two four-storey frames, one in which
the I-section columns are bent about their major axes and one in which they
are bent about their minor axes. The stress-strain relation assumed is elastic-
plastic with no strain-hardening. The dimensions and working loads (A 1) of the
strong-ways frame are shown in Fig. 9 a. Rigid-plastic collapse occurs at
AP 2.15 (Fig. 9b), the accurately calculated elastic critical load factor is

Ac= 12.90 (Fig. 9c), and Wood obtains a theoretical failure load factor of 1.90.
The Rankine formula (Eq. (1)) gives Ap 1.84, representing an underestimate
of 3.2%. The mechanism used for an approximate estimation of the elastic
critical load from Eq. (8) is shown in Fig. 9d, and is a sidesway mode, chosen

to conform as closely as possible to the rigid-plastic failure mechanism (Fig. 9b).
The bending moment diagram for this pseudo-critical load mechanism is shown
in Fig. 9e. The axial loads indicated (Fig. 9d) are those corresponding to
rigid-plastic failure, and are thus the RP values in Eq. (8). The füll plastic
moments allow for the effect of axial loads of this magnitude, this procedure
being adopted because the failure load of the frame is not far removed from the
rigid-plastic failure load. It may be noted that the beam moments in the second

storey are distributed to the column lengths above and below in such a way

230230
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as to make the shear forces in these column lengths proportional to the axial
loads they carry. Applying Eq. (8), Ac 13.62, leading to a Rankine estimate
of the load factor at failure of XF 1.86, an underestimate of 2.1 %.

The weak-ways frame analysed by Wood consists of a four-storey multi-
bay frame, and gives a load factor for rigid-plastic failure of AP 2.12 and an
elastic critical load factor of A6 3.47. This results in a Rankine load factor
of 1.32, compared with Wood's estimated failure load factor of about 1.73.
Hence in this case the Rankine load is highly conservative, underestimating
the failure load by about 24%. The pseudo-critical load mechanism leads to
an estimated critical load factor of 3.80, and hence a Rankine load factor of
1.36, an under-estimate of 21%.

The concept of critical load factors as applied to pitched roof portal frames
is ambiguous in that the axial loads in the sloping members are highly
sensitive to the state of deformation, and are not simply derivable from the
applied loads by inspection, as in the case for multi-storey rectangular frames.

It has been argued [3] that, when the elastic critical loads are required for
use in the Rankine formula, the appropriate axial loads are those proportional
to the axial loads which would be present at rigid-plastic failure. A further
ambiguity arises when applying the Rankine formula to frames subjected to
vertical loading only, since some frames fail symmetrically while others fail
unsymmetrically, and there is a resultant diffieulty in deeiding which critical
elastic mode is applicable. This has been discussed by Majid [7]. It is found,
however, that if the pseudo-mechanism method is used for calculating the

u*
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elastic critical load, excellent correlation with theoretically calculated failure
loads is obtained if attention is confined throughout to symmetrical modes.

Table 1 gives the results for five pitched roof frames tested experimentally
and then subjected to accurate analysis by Majid [7]. The dimensions of the
frames are shown in Fig. 10a. the span being in each case 48 ins. and the roof
pitch 221°. The height to eaves h was varied from frame to frame, as shown in
column 2 of Table 1. The cross-section of each frame was uniform and approximately

|in. square, the values of füll plastic moment and flexural rigidity being
given in columns 3 and 4 of Table 1. The frames were loaded equally at four
points on each rafter, and the experimental failure loads are shown in column 5.

The loads are the total vertical loads acting. Theoretical failure loads obtained
with the aid of an automatic Computer are given in column 6. These theoretical
failure loads are "exact" in that they allow for the finite sizes of the joints,
and follow step-by-step the formation of plastic hinges with füll allowance for
change of geometry and reduced member stiffness due to axial load. Agreement

is excellent except for the frame with the shortest columns, the higher
experimental load in the latter case being attributable to the effects of strain-
hardening. A complete discussion of these results is given by Majid.

Rigid-plastic failure, if assumed to be symmetrical, occurs as shown in
Fig. 10b, the resulting rigid-plastic loads being given in column 7 of Table 1.

The rigid-plastic failure loads make no allowance for the finite sizes of the
joints. The mechanism assumed for the calculation of the elastic critical load
is shown in Fig. 10 c, the bending moment distribution is given in Fig. lOd,
and the resulting estimates of elastic critical loads are given in column 8. The
axial loads assumed in the calculation (Eq. (8)) are those obtained at rigid-
plastic collapse. The Rankine loads, calculated from columns 7 and 8, are given in
column 9, while column 10 shows the percentage error compared with the
theoretical failure loads in column 6. The percentage errors are in all cases

small, and certainly acceptable for all practical purposes. The percentage
differences between the estimated failure loads in column 9 and the
experimental failure loads in column 5 are given in column 11. Probably fortuitously,
the agreement between the approximate treatment and the experimental
failure loads is even better than between the approximate treatment and the
accurate theoretical loads.

Conclusions

It has been demonstrated that the apparently crude device of postulating
a rigid-plastic-rigid mechanism leads to an acceptable estimate of elastic
critical loads for use in the Rankine formula. The analysis of a number of
other frames for which accurate calculations of theoretical failure loads have
been made [3, 8, 9], confirms the trend revealed by the results quoted in detail
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above. In view of the experimental and theoretical evidence that the Rankine
Load is an approximate lower bound to the failure load, it is suggested that
the procedure described in this paper may be used to estimate failure loads
in those cases where the frame is too slender for the unrestricted application
of simple plastic theory.
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Summary

Rigid-plastic theory provides an estimate of the failure loads of structures
of elastic-plastic material, but this estimate ignores the effect on the collapse
load of finite deformations. The use of the elastic critical load in combination
with the rigid-plastic collapse load as a parameter in obtaining a corrected
failure load has been suggested by Merchant, using a generalised Rankine
formula. While the rigid-plastic load is easily calculated, the elastic critical
load is more difficult. It is here shown that the elastic critical load may be
estimated with sufficient accuracy by means of a pseudo-elastic energy equation
derived from a rigid-plastic mechanism. The application of this procedure to
the derivation of elastic-plastic failure loads of various rigid-jointed frames is
discussed. Results are compared both with experimental values and with
values obtained by exact theoretical analysis, and the agreement is shown
to be satisfactory.
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Resume

La theorie rigide-plastique permet d'estimer les charges de rupture d'ossa-
tures constituees de materiaux elastico-plastiques, mais cette estimation ne
tient pas compte de l'effet sur la charge de ruine des deformations finies.
Merchant, utilisant une generalisation de la formule de Rankine, a propose
de considerer la charge elastique critique conjointement avec la charge rigide-
plastique de ruine prise comme parametre, pour apporter une correction ä la
charge de rupture. S'il est facile de calculer la charge rigide-plastique, le calcul
de la charge elastique critique est plus difficile. II est montre qu'on peut estimer,
avec une precision süffisante, la charge elastique critique en utilisant une
equation d'energie pseudo-elastique, en partant d'un mecanisme rigide-
plastique. On traite l'application de cette methode au calcul des charges
elastico-plastiques de rupture de divers types de portiques ä joints rigides. On

compare les resultats obtenus avec les valeurs experimentales ainsi qu'avec
celles fournies par le calcul exact, et l'on constate que la concordance est
satisfaisante.

Zusammenfassung

Die ideal-plastische Theorie erlaubt die Abschätzung der Bruchlast von
Tragwerken aus elastisch-plastischem Material, aber sie vernachlässigt den
Einfluß endlicher Verformungen auf die Traglast. Die Benützung der
elastischen, kritischen Last im Zusammenhang mit der ideal-plastischen Traglast
als einen Parameter für die Bestimmung einer korrigierten Bruchlast wurde
von Merchant vorgeschlagen, unter Benützung der allgemeinen Rankine-
schen Formel. Während die ideal-plastische Last einfach zu berechnen ist,
so ist dies für die elastische, kritische Last bedeutend schwieriger. Hier wird
gezeigt, daß die elastische, kritische Last genügend genau abgeschätzt werden
kann bei Anwendung einer pseudo-elastischen Energiegleichung, die von
einem ideal-plastischen Mechanismus abgeleitet wird. Die Anwendung dieses

Verfahrens für die Ableitung elastisch-plastischer Bruchlasten verschiedener
Rahmenformen wird diskutiert. Ein Vergleich dieser Resultate mit Versuchswerten

und Werten aus einer genauen theoretischen Berechnung ergab eine
zufriedenstellende Übereinstimmung.
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