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Analysis of Structural Nets

Etude des reseaux de cables

Untersuchung von Netzwerken

DONALD L. DEAN CELINA P. UGARTE
Prof., Chrm. Civil Engineering Instr., Resh. Fellow Civil Engr.

University of Delaware, Newark, Delaware, U.S.A.

Introduction

A network of high strength cables, if properly utilized, can offer an excep-
tionally efficient Solution to many problems confronting the structural engineer
now and in the future. A prime example is that of covering large areas such
as urban sections or even cities for protection from atmospheric conditions.
A more common Situation is the need for an economical roof system for large
structures such as Stadiums, arenas and Shopping centers. The structural net
is a system which allows the ingenious designer to achieve aesthetically pleasing
Solutions to problems of large space enclosure. As a discrete system, the net is

easily modified in design to control the behavior of its elements, e.g., by
inserting a heavier cable for the thread which must sustain the larger forces.
When used for relatively small roofs, more care is required lest wind flutter
create difficulties.

The series of complete analyses of a structural net, required for a general
design, may suggest the Solution of a number of discrete field problems in the
subject areas of statics, mechanics of materials and dynamics. This study is
devoted to a closed form treatment of some of the basic second order field
problems in the first area, statics. Specifically, the equilibrium displacement
field will be determined for a general node loading on a number of different
net configurations. This is the two dimensional analogue of the classical string
polygon problem. In all cases, the node loads will have only components
perpendicular to the net's reference plane and the configuration will be such
that the in-plane equilibrium equations are satisfied identically. The prineipal
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function to be determined, with no restrictions as to magnitude, will be the
out-of-plane displacement consistent with equilibrium conditions for a given
final field of cable tensions. The Solutions will serve a number of useful
purposes, including use: 1. as a valid elasticity Solution if deflections are small so

that changes in cable tensions are negligible • 2 to determine load intensitvO O O ~ ' ~ ' %J

for simultaneous yielding of all cables for small deflections; 3. as the key
relations, from statics, for an iterative Solution to the mechanics of materials
problem of large deflections under large load changes; 4. to establish design
shape for rigid lattices subject to the same load shape; and 5. as Solutions to
other mechanics problems with same or similar mathematical modeis.

String Polygon Equation

A discrete field problem of one dimension, useful as an intermediate step
in dealing with the net problem, is that of finding the equilibrium position of
a string polygon for parallel forces. An element of such a polygon is shown in
Fig. 1.
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ax-l AW Fig. 1. Polygon element.
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The governing equation for W (x) results from summing forces normal to
the reference line and utilizing the fact that the string has no shear component.
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(1)

(2)

where R is the constant reference line component of string tension; W (x) and
P (x) are the deflection and load, respectively, at node x perpendicular to
reference line in the sense shown; and E, A, V are, respectively, the displacement,

forward difference, and backward difference Operators; and a(x) is the
distance along the reference line between nodes x and x+l. For a constant,
equally spaced loads, Eq. (2) becomes

— £7W{x)
a P{x), (3)

where ___7 denotes the product of the forward and backward differences or the
second central difference Operator, i.e., £7=E — 2 + E~1.
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Doubly Threaded nets

Consider the doubly threaded net shown in Fig. 2. The projections of the
two sets of cables on the reference plane intersect at a constant angle, cu.

These traces are selected as the coordinate reference lines. The plane components

of cable tensions in the x and y cables are R (y) and 8 (x) respectively
and the elemental lengths are a(x) and b (y). Then, for an out-of-plane node
load function, P(x,y), one can write the general governing partial difference
equation by summing normal forces as in the case of the string polygon.

R {y) v* \z(Z)A*w {x' y)]+ 8 (x) v« [w)Ay w (x' y)]=~p {x>y)' (4)

where A and V are the forward and backward difference Operators, e.g.,
AxF(x,y) F(x+l,y)-F(x,y) or Vy F (x,y) F (x,y) -F(x,y- 1). The
indicated limitations, on variables with which the parameters may vary, are
necessary for in-plane equilibrium. For the net with regulär geometry, a and b

constant, the equation becomes:

W(x,y) -P(x,y), (5)

where the symbol, debla (a contraction of delta and nabla), denotes second
central difference with respect to the variable shown as an index, e.g.,
£7xF(x,y) F(x+l,y)-2 F(x,y) + F(x-l,y). The case of interest here is
the net with uniform cable tensions, for which the model is:

[/Vr + e*&y]W(x,y) -^P(x,y), (6)

er nwhere e2=D-r- As the mathematical model is linear, one would hope that a

Solution could be found for the arbitrarily placed single load, i.e., a Green's
function (see Appendix B), K (x,y,a,v), expressing the displacement at node

x, y due to a unit load at node a, v.

[/LVx + e^v]K(x,y,oc,v) -^8%8l. (7)

Solution for Quadrilateral Boundary Parallel to Cables

It is pertinent to the Solution of the problem to be aware of a useful
property of trigonometric functions as related to finite difference Operators;
namely, Operation on a sine or cosine function (valid also for sinh and cosh)
with a Symmetrie finite difference Operator (one which can be written using
only even differences), yields an expression containing that function as a
factor if the independent variable is linear in the argument, e.g.,

(/S/x + 2)$m(px 2 cos 99 sin 9? x. (8)
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0,0 m,o
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Fig. 2. The doubly threaded
net with basic boundary.

This property leads one to consider use of a series of such functions as a
closed from Solution for (7); however, two theoretical points need to be taken
into account before such a step is taken. First, does a unique Solution exist?
The answer is yes. In Standard treatments of partial difference Eqs. [1,3,4],
a study of the possibility of "Walking through" Solutions is used to demonstrate
that, for a class of incomplete second order difference equations including (7),
a unique Solution exists when values of the dependent variable are given on
a closed boundary. Second, can a trigonometric series be used to represent
such a Solution for a general loading? Again, the answer is yes, for a useful,
if restricted, class of boundary conditions. From a study of finite half ränge
Fourier Series (employing techniques closely paralleling those in the conti-
nuum [5]), it can be shown that one and two dimensional discrete fields,
arbitrary at the interior nodes, can be represented as follows:

m—1 /£
Fix) Y A4 sin iir—,

Hl— 1 71— 1 rjQ yF{x,y)=I1 S^aintff—sin?*—,
i=l j=\ rrt rt

where the Euler coefficients can be found from:

1 -^x^m— 1

1 ^x^m—1
lSy^n-1

(9)

(10)

2 m~~1 i 2 iA; =— y F (x) sin x tt— —A -1 F ix) sin x n —
m x=i mm m

^ij —
4. m—ln—l £ j

_E 5_ Fix,y)$mx7T — sinytt —
m n x=i £z\ m n

4 11A-^Azi1 F ix, y) sin x tt — sin y tt —
mn x v v yi m u n

or

m,n

1,1

(ii)

(12)

As a first case, consider the net shown in Fig. 2 subject to the boundary
condition, zero displacement, i.e.,

K (0, y,a,v K (m, y, oc, v) K (x, 0, a, v) K (x, n, a, v) 0. (13)

This problem is solved by writing the Solution and the loading in the double
series form (10), i.e., take

m—ln—l n» »,

i=l j=\ rri rt
(14)
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then, by use of (12), the coefficients are found to be

BH — sku'77—sin77r—, (15)J mn m n
m—ln—l /£ yK (x,y,oc,v) y V^4,,sin/77—sin777—, (16)
t=\ j=i

J m n

then, substituting (14) and (16) into (7) and matching completes the Solution
by yielding the coefficients in (16) as:

sm i tt — sm ] tta m J

Aii 1f- ~ A. (17)

2m 2n

Formulas (16) and (17) comprise a general Solution to the stated problem.
Solutions for specific loading conditions can be determined by either formal
or numerical superposition of quantities determined by using it. For example,
consider the case of the same net subject to a uniform node load of P0.

m—1n—l
W(x,y) P0 2 ZK(x,y,K,v) P0A-iA-iK(x,y,oc,v)\™>™. (18)

a=lv=l
The result of performing the indicated Operations formally is:

m-ln-l p0f(___!__ PO+i_!L

W(z,y)= ^-P0V Y .2m 2n. sin^sin^, (19)

2m zn

where the indices assume only odd values, i.e., i,/= 1, 3, 5,
While convergence of a finite series is not of formal interest, the subject is

of practical concern due to its effect on the volume of computations. By
comparing (15) and (17), it can be seen that, as contrasted with experience in the
continuum, the convergence of the Solution series is no more rapid than for
the load series. The authors' have found that, for a highly irregulär loading
such as the single impulse load, one might need all terms of the series to obtain
engineering accuracy. If the loading is "smooth", as in (19), there will be
useful convergence (due to cotangent shrinking as the argument approaches
77/2) so that terms with the higher indices can be discarded. Even so, many
terms may be needed to get the desired accuracy. This is of little consequence
if an automatic Computer is available, but is inconvenient when dealing with
fine nets by manual means. This diffieulty is overcome (at some sacrifice in
programming ease) by use of a single series Solution form.

As a second case, of a doubly threaded net with basic boundary, consider
the net with zero displacements along two parallel segments of the boundary
and unspeeified conditions elsewhere. A single series is indicated. Specifically,
the partial statement of boundary conditions is:
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K(0,y,x,v) K(m,y,oc,v) 0, (20)

2 m—l a r£
§? — y sini-rr — süu'77—, (21)x m x=i mm

m—l q>

K (ar, y, oc, v) Y Tt ly) sin i tt — - (22)
l=l ''fr

Eq. (21) is a result of using formula (11). Substitution of (21) and (22) into (7)
and matching coefficients yields the governing difference equation for the set
of discrete functions Yi (y).

[£/y-2ßi]Yi(y) -Coi8*v, (23)

where ßt 2e-2sin2|^, ßt>0, and Coi -^sini^Z..
for Yt (y), as shown in Appendix B, is:

Yi iV) Ooi [C„sinhyty + C2icosh Vty-""^^~"V (y- v)j (24)

where coshy^ ß^+ 1 (or sin-— €sinh|% for above ^1.

The Solution (22), (24) is the form one gets via the Separation of variables
approach and more "natural" than the double series Solution, (16), (17). In
addition to having far fewer terms than the double series, it "converges" so

that higher index terms can be discarded consistent with engineering accuracy.
It is a convenient form for manual computation.

The sets of constants Cxi and C2i can be determined from the conditions
along y 0 and y n. For example, if boundary conditions (13) are imposed
on the Solution (22), (24), the result is:

K(x,y,oc,v)
m-i (25)

/ .°* r+~ sinh y7. y — sinh y, iy — v) £f iy — v)\ sini7r-

As in case one, the general Solution, (25), was summed to get the single
series Solution for a uniform node loading. The result is given below and may
be compared with (19).

Wl 2 Dycotj^-r, cosh>^-l)i x ,9_.w^=YR^p°Lz^iz[l r—sH8"1*"^ (*odd)- (26)
i sm2^— L coshy,.^ J

2m r% 2

Formulas (25) and (26) are numerically illustrated at the end of the theoretical

development.

Solution for Quadrilateral Boundary with Nodes

A useful doubly threaded net, with a configuration which apparently differs
from the one shown in Fig. 2, is that shown in Fig. 3. Actually, only the slopes

x
m
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of the boundary lines are different. In this case, the boundary lines are in the
direction of the diagonals of the elemental parallelograms rather than the
sides as in the first case. For simple boundary equations, a transformation of
coordinates is indicated. The first illustrative transformation in Appendix A
permits the new boundary to be described by constant values of the coordinates.

For a unit load at r oc, s v, and e2=l, use of (65a, 65b) transforms
the governing equation for the Green's function, (7), into the following form
referred to the new coordinates:

[£7r£7s + 2(/S7r + £7s)]K(r,s,ac,v) -^8?8*. (27)

Eq. (27) is second order in r and s, but not all mathematical nodes have
corresponding physical nodes. Real nodes exist only at the coordinates, r + s

even. The number of interior physical nodes is | [(m— 1) (n— 1) +1]. The
Solution at the Virtual nodes, r + s odd, may be disregarded.

As in case one, a Solution is sought for the zero displacement boundary
condition. This condition and the fact that the governing equation, (27), is

composed of even differences suggest a double series Solution form:
m—ln—l y s

K(r,s,<x,v) 2 Z^siniff— emjir —. (28)
1=1 7 1 Ul 'L

/ 4,0 m,o

m,n

Fig. 3. The doubly threaded
net with nodes on boundary. 0,n

As in the first case, the loading term is expressed in the same form and both
series are substituted into (27) to determine the coefficients as:

sin i tt — sin jn —

£.. — m n (29)lj Rmn i in jtt ' v '
1—cos — cos—

m n

Solution for Triangulär Boundary

In this section, the two basic types of triangulär boundaries for doubly
threaded nets are considered. The first type, Fig. 4 a, has two basic and one
node type boundary segments. For the zero displacement boundary condition,
the Solution is easily written by use of the Solution for zero displacement on
the basic quadrilateral boundary. The principle of images is employed to
create zero displacement along the node boundary segment (y x or s 0) by
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Fig. 4b.

The doubly threaded net with triangulär boundaries.

making it a line of anti-symmetry in the mxm basic boundary case. Solution
(16), (17) or (25), Fig. 2, can be anti-symmetrically superimposed to give a
Green's function for the case shown in Fig. 4a, i.e.,

K±a (x, y, oc, v) K2 (x, y, oc, v) - K2 (x, y, v, cc). (28)

The second type, Fig. 4b, has two node and one basic type boundary segments.
For the zero displacement boundary condition, one can write the general
Solution by anti-symmetrically superimposing the Solution for the node

boundary case, shown in Fig. 3, so as to make the displacements zero along
the thread serving as a basic type boundary segment. This will not be shown
in detail here. Instead, the Solution for zero displacement on the boundary,
shown in Fig. 4b, will be written in terms of the Solution, for zero displacement
on the basic boundary shown in Fig. 2, K2(x,y,oc,v). A single series Solution,
(25), is available for this purpose which does not require 1. e=l, or 2. added
terms resulting from Virtual nodes (as did the alternative Solution (28), (29)).
The desired general Solution, denoted K4b(x,y,oc,v), is obtained by repeated
use of anti-symmetric superposition: once to obtain zero displacement along
y x or s 0; and once to obtain zero displacement along y m — x or r m.

K^b(x,y,oc,v)
K2 (x, y, oc, v) — K2 (x, y, v, oc) + K2 (x, y,m — oc,m — v)— K2 (x, y,m — v,m — oc).

(29)

An interesting single term Solution is available for a special case of the net
shown in Fig. 4b. The zero boundary condition is expressed as:

W (x,0) W(x y) W(x + y m) 0. (30)

This leads one to suspect that, for a uniform loading, i.e., P (x,y)=P0 in (6),
one might find a Solution of the form,

W(x,y) C0y(x-y)(m-x-y), (31)

which satisfies the boundary condition. Substitution into (6) shows that (31)
satisfies that equation if

1)6 -L and 2)C0= 2-^P0.
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Triply Threaded Nets

The object of this portion of the paper is to determine the equilibrium
displacement field for the triply threaded net, Fig. 5. As for the doubly threaded
net, there are geometrical constraints and conditions on the Variation of cable

Fig. 5. The triply threaded net with various boundaries.

forces necessary for the identical satisfaction of the in-plane equilibrium
equations:

aj +cu(x,y); a(x)+a(y); b (y) +b{x); c(r')+c(s'); (32)

R{y) + R{x); S(x) + S{y); T(sf) + T(/); c2 a2 + 62 + 2a6cosco,

where r' \r \{x + y) and s' \s \{x — y) and r,s are as shown in Appendix

A and in the preceding section.
The variable coefficient form of the governing difference equation is similar

to (2) and (4) and can be written by inspection.

ÄF.^zl^j+S^^^+T^^J,.^] =-P{x,y), (33)

where, it should be remembered, Er, ExEy.
Eq. (33) is still an incomplete second order difference equation and, as in

the case of the doubly threaded net, three functions, or a specified closed

boundary, are sufficient (and necessary) for a unique Solution to exist. For the
net with regulär geometry, i.e., a, b and c constant, the equation is:

[^Z^ +I^ + ^ZV,,] W(x,y) -P(x,y). (34)

Note that, even with R, S and T constant, the Operator, in terms of the
independent variables x and y, can not be written with even differences. Also,
the Separation of variables technique is not applicable.
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For this net, there are three directions in which a straight boundary segment
may run parallel to the cables and, therefore, qualify as a basic boundary
segment. These three directions are also node boundary directions. A basic
triangulär boundary is shown in Fig. 5. For zero displacement on this boundary
and a constant node loading, P0, one is again tempted to seek a bingle term
algebraic Solution in a form which satisfies the boundary condition, i.e.,

W(x,y) C0y(m-x)(x-y). (35)

Substitution into (34) shows that for 1. Tjc Sjb^Rja and 2. Co j§^P0,
(35) is a Solution for the uniformly loaded triply threaded net with zero
displacement on the basic triangulär boundary.

Solution for Quadrilateral Boundary with Nodes and Threads

Consider, now, the triply threaded net with the quadrilateral boundary
shown in Fig. 5. The second coordinate transformation illustrated in Appendix

A enables one to express this boundary by, (0,v), (m,v), (u,0), (u,n). Of
greater significance is the fact that this change of coordinates transforms the
governing equation, (34), to a form with only even differences in the Operator
for the special case, Tlc S/b. Here again the transformation gives a
mathematical model with nearly twice as many node points, corresponding to integer
values of u and v, as exist in the physical model. The indicated transformation
and Substitution of an impulse load function yield:

[A7„ (Ä7„ + 4) + e* (A7M ZVt. + 2 ZVM + 2/S7v)] K («, v, oc, v) - -|3« 85, (36)

where e2 ^r, an equation of fourth order in u and second order in v. The

higher order is a result of the Virtual nodes which, here, are such that an
additional boundary condition must be specified along (0,v) and (m,v), namely,
the displacement of the threads cut by those boundary segments or, actually,
conditions at the two real nodes it connects, For example, consider the suit-
ability of a double sine series, i.e.,

ra—lm—1 y yK (u,v,oc,v) y y A^sinin— SÜ1777— (37)
1=1 y=l 3 m'n

for the conditions 1. displacement zero at boundary nodes and 2. displacement
zero at mid-points of cables "cut" by (0, v), (m,v). As (37) gives zero displacement

for all boundary nodes, real and Virtual, it satisfies the first condition.
Due to anti-symmetry with respect to the boundary segments, displacement
is zero at mid-points of threads "cut" by boundary; therefore, the second
condition is also satisfied by (37). Furthermore, it is apparent, as Operator has

even differences only, that it will satisfy (36). Repeating the procedure used
in the first case, one finds:
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smin— sin 7T—

A.. — m n (38)lj Rmn - oi™ o/i in j*\sm2 he2 1 — cos—cos —
m \ m n)

thus, completing the Green's function Solution for the subject problem of
this section.

Quadruply Threaded Nets

In this section, a brief study is made of the net with four cables inter-
secting at each node, Fig. 6. (The two-thread intersections are unloaded and
not regarded as nodes.)

m,o
0,0

o,n m,n

Fig. 6. The quadruply threaded
net with basic boundary.

Triply threaded nets can be viewed as the result of adding a set of cables

across one diagonal of the basic element of corresponding doubly threaded nets;
then, for a quadruply threaded net, one adds two sets of cables, one for each

diagonal of the basic element. The governing equation, expressing node
equilibrium in terms of its displacement and that of neighboring nodes directly
linked to it, can be written by inspection. For the case with regulär geometry,
the governing equation, for a displacement Green's function, is:

[^* + l^+T^' +^^ (39)

where r' and s' are coordinate coefficients of basis vectors which are parallel,
and equal in magnitude, to the diagonals of the basic parallelogram of the
corresponding doubly threaded net. As in the preceding case, it should be
remembered in (39) that Er, ExEy and ES, EXE~1', then, it is seen that
the equation is a complete second order difference equation, i.e., it contains
all nine possible Operators for an equation of order two. It can be shown that
four independent functions must be given before a Solution can be determined.
For the net, this means that four boundary segments must be specified or
that one can not find a Solution for a triangulär boundary which has only
node displacements given. This is as would be expected on physical grounds.
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Any triangulär boundary would "cut" at least one set of threads; thus,
boundary Information, in addition to node displacements, would be required
to uniquely determine a Solution, i.e. the "fourth" function.

For a special condition within the constant coefficient case, i.e., Tjc= T'je'',
(39) can be written in terms of even differences with respect to x and y and,
thus, becomes tractable by the Separation of variables technique. For this
condition, the equation is:

{/S7y[\*{£7x + 2) + ei-\ + {\ + 2\*)£7x}K{x,y,*,v) --|8«8;, (40)

where e2 ^-p and A2 ^—. Consider the quadrilateral basic boundary shown

in Fig. 6 with K(0, y, oc, v) K(m, y, oc, v) 0 as a partial statement of the
boundary conditions. Then, as for the doubly threaded net, one can use a

single series Solution, i.e.,
1?1—1 rjß

K(x,y,oc,v)= ^Yi(y)smin--. (41)
i=i rn

By the procedure used for (21), (22) and (23), the governing difference equation
for the coefficient functions is determined:

(&y-2ßt)Yt(y) -CoisminZ-8*, (42)
rrt

2(1+A2)sin2^- 2a
where ßi : and Coi : (43)

2A2cos — + e2 i?m(2A2cos —+ €2|
m \ m I

Scand ßt> 0 if *-^> 2. For general conditions at y 0,m, the functions are:

C0i8mnr—r sinhyi(y-v)T/r/ /lY>=
sinhy, [giiBmhy.y + ^coBhy.y ^—tjfiy-^ (44)

where coshyi=ßi+l.
For zero displacement at y 0,m, the sets of constants are determined,

resulting in the same Solution found for the doubly threaded net, (25), except,
(43) is used to evaluate the parameters here. For a uniform node loading, the
analogous Solution for the doubly threaded net is not applicable as special
properties of the formula for ßt were used. The Solution for a uniform node

loading on the quadruply threaded net with the basic boundary of zero
displacement, includes (26) as a special case and is:

w^y) ±p<>LiMswi[l—ÄbT-Jsm^m (*odd)- (45)
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Illustrative Example

In order to illustrate use of the formulas and to facilitate an understanding
of their application for preliminary design computations, some results are
shown for the diamond shaped net shelter shown in Figs. 7, 8 and 9. The
displacement fields where computed for a uniform node loading and for an impulse

Doubly threaded structural net with center pole.

Fig. 7. Plan.

Fig. 8. Elevation.

Fig. 9. Sketch.

c3.

(20,20)

25T ^ --"1^

load at the center. The results were combined so as to match the given
displacement due to a pole at the center, Wt (10,10) — 75.0. (Both fields contain
the cable tension as a linear factor; therefore, it is not necessary to duplicate
their evaluation in order to study effect changes in that parameter.) The
double series, (16,17) and (19) where used primarily, with "spot" checks
performed by use of the single series, (25) and (26). The results were identical.

l ^o
Data were: R/a S/b=-jf= lOkpf; m w 20; P0= 11.25 (due to 0.05ksf

loading on horizontal projection).
The combined deflection field is given by:

Wt(x,y) Wu(x,y) + PcK(x,y,10,10), (46)

where Wt and Wu are, respectively, the total or combined displacement field
and the field due to load of P0 on each node, and Pc is the net load due to the
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center pole. The latter was determined from:

Wt(10,10) 0^(10,10) + PCK(10,10,10,10) or

-75.0 33.087+ PC (0.06357) or Pc - 1700.3k, i.e.,

the pole must sustain 41.87 per cent of the total load. Due to symmetry about
both center axes and the diagonals, the displacement field in (46) can be

completely shown by listing the values for one-eighth of the nodes. The coordinates
of the distinct points and their displacements, as computed by (16,17), (19)
and (46), are given in table 1.

Table 1. Coordinates and Displacements for Net in Fig. 9.

(1,1) 1.478 (1,2) 2.393 (1,3) 2.970 (1,4) 3.316 (1,5) 3.499

(1, 6) 3.566 (1, 7) 3.556 (1, 8) 3.520 (1, 9) 3.480 (1, 10) 3.463

(2, 2) 4.000 (2, 3) 5.044 (2, 4) 5.672 (2, 5) 5.988 (2, 6) 6.080
(2, 7) 6.029 (2, 8) 5.915 (2, 9) 5.810 (2, 10) 5.769 (3, 3) 6.410

(3,4) 7.214 (3,5) 7.576 (3,6) 7.611 (3,7) 7.436 (3,8) 7.176

(3, 9) 6.953 (3, 10) 6.866 (4, 4) 8.072 (4, 5) 8.367 (4, 6) 8.228

(4, 7) 7.804 (4, 8) 7.274 (4, 9) 6.835 (4, 10) 6.663 (5, 5) 8.467

(5, 6) 8.046 (5, 7) 7.153 (5, 8) 6.155 (5, 9) 5.325 (5, 10) 4.992

(6.6) 7.046 (6,7) 5.524 (6,8) 3.743 (6,9) 2.195 (6,10) 1.528

(7.7) 3.029 (7,8) - 0.028 (7,9)- 2.942 (7,10)- 4.394 (8,8) - 7.599

(8, 9)-10.667 (8, 10)-14.344 (9, 9)-22.280 (9, 10)-32.775 (10, 10)-75.00

The manner in which the static formulas are used to deal with the associated
mechanics of materials problem is illustrated by considering the following
problem: What should be the field of initial tensions, i.e., when net is plane,
for this static Solution with its assumption of a uniform final tension field of
150K (horizontal components) to be valid? For example, consider cable (5,y).
Its final length is given by:

n-l
Lt (5, y) Z {b2 + \Ay W, (5, y)f}^ (47)

V=l

*»<•¦•»-"»[,+?_$ir] • (48)

where Ks is the modulus of "stretch", product of area and elastic modulus,
for the cable under study. For a given Ks, (47) and (48) can easily be solved
for the initial tension S0(5,y). If the deflections are relatively small, one can
use two terms of the binominal expansion for the expression giving length of
deformed cable element in (47). This leads to the following expression:

S-S0(5;y) ^0lj^[AyWt(5,y)]^. (49)
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Appendix A

Transformation of Coordinates in Discrete Field Mechanics

As in continuum mechanics, one frequently must transform the governing
difference equation for a discrete field problem to a form which serves as the
mathematical model referred to a new coordinate system. For example, the
equation may be intractable as derived in terms of the first coordinate system,
or the boundary equations may not be sufficiently convenient. The chain rule,
as used to express the derivative with respect to a new variable in terms of
derivatives with respect to the original independent variables, is the basic
relation required to perform a transformation of variables in the continuum.
Analogously, one requires an expression for the displacement Operation with
respect to the new variables in terms of the same Operation with respect to
the original variables for transformations in the discrete case.

Consider the regulär plane two-dimensional lattice shown in Fig. 10. The
position vector of a general node, in terms of the original independent variables
x and y, referred to the smallest pair of basis vectors, is:

R(x,y) =xi + yj, (50)

where i and j, as shown, are usually neither orthogonal nor of unit lengths.
Assume that it is desired to transform a governing difference equation associated

with the lattice,

F(Ex,Ey)W(x,y) P(x,y) to Ff (Er, Es) W(r,s) P' (r,s), (51)

where r and s are new independent variables which locate the general node
through

R(r,s) r^+ srj, (52)

where the new basis vectors £ and rj are given by

U [cd\\jr (53a, 53b)

The coefficients a,b,c and d are often integers so as to cover the discrete field,
but may be other rational numbers, e.g., \ or — J.
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The displacement Operators, with respect to the new variables, in terms of
Operations, with respect to x and y, and the original variables in terms of r
and s are:

Er E%E%\ Es E%E*9 (54a, 54b)

xzxzm- (55a, 55b)

In the process of performing a complete transformation, one usually requires
the corresponding inverse Operations.

\j\ [c'a'\\rj)' (56a, 56b)

The coefficients d', b', c' and a' of the inverse transformation are given in
terms of the coefficients of the direct transformation by the classical matrix
inversion formula.

d' ~l b' -^> c'=~^ a' lö> D ad-cb + 0, (57)

Ex Ef Eh;; Ey Ec; E«', (58 a, 58 b)

ö-MO- (59a, 59b)

Fig. 10. Lattice coordinates.

For example, consider the transformation to coordinates referred to basis

vectors k and J which are parallel to the diagonals of the i and j parallelograms.

R(r,s) rk + sl, (60)

* !(< + /); l *(*—/), (61a, 61b)

x =i(r + s); y =±(r-s), (62a, 62b)

i =k + T; j =k-l, (63a, 63b)

Ef ExEy- El Ex E-i, (64u, 64b)

Ex =ErEs; Ey ErEj*, (65a, 65b)
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For a second example, consider the transformation to coordinates referred
to basis vectors ir and m which are parallel to i and a diagonal of the j and
2 k parallelogram.

R(u,v) ui'+vm, (66)

V =$i + 0j', m **+?> (67a, 67b)
E E112 • Ev E112 E (68a, 68b)

x \ (u + v); y V, (69a, 69b)

i =2i'\ i —i' + m, (70a, 70b)

Ex 2 Eu; Ey ^EV. (71a, 71b)

Appendix B

Solutions for Difference Equations with Symmetrie Operators

A recurring problem in the mechanics of regulär structural lattices is that
of solving a constant coefficient ordinary difference equation with a Symmetrie
Operator, i. e., one which can be written in terms of even difference. The
homogeneous Solution can be determined routinely, so that only the second

order case need be reviewed here. Consider the difference equation (72).

(£7-2ß)W(x) 0, (72)

where the second central difference Operator £7=E — 2 + E~1. The Solution

may be written:
W (x) C1 cosh y x + C2 sinh y x, (73)

where coshy= |()8+ 1)|. If ß is negative, y is not real so the Solution (73) is
modified for computation, according to complex variable theory, as follows:
2. if j8< — 2, multiply Solution by — l)x; 3. if -2<ß<0, replace the hyperbolic

functions in the Solution and the definition of y by trigonometric
functions; 4. if/3 0 or ß= —2, case is degenerate with repeated roots and the
respective Solutions are W (x) C1 + C2x and W (x) — 1 )x (C1 + C2x).

Although some applicable techniques and formulas are available [1,2],
sufficient formulas are not available for solving the subject class of difference
equations with general inhomogeneous or loading terms, i. e.,

{57-2ß1){£7-2ß2). ..(£7-2ßn)W(x) P(x). (74)

The necessary and sufficient Solution, for generality as regards loading, is to
solve the linear equation for an arbitrarily placed unit load, i.e., P(x) 8x,
where the Kronecker delta loading function is defined in the usual manner,

fOforaAa) (7S)
\lfora; aj' v '
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The Solution for this loading, a Green's or Kernel function, is frequently
denoted K (x,oc). The "constants" of summation in the homogeneous part of
such a Solution are found as "functions" of a when the boundary conditions
are imposed. K (x, oc) is used to determine W (x) for a given load function, P,
as follows:

ra
W(x) ^K{x,a)P{a), (76)

a=0

where m is the terminal node in the field.
The particular part of K(x,oc), Kp(x,oc), will be derived in some detail for

the second order case. The fourth order and general cases can then be written
by induction.

K» (x>a) ^ sT°2ß [iTA + E^\^ • <77>

where r and r_1 are the roots of the characteristic equation,

r ß+l + iß{ß + 2) er, (78)

and the coefficients, b1 and b2, are determined from theory of partial fractions
[1] as: bi1= —b21 r — r~1. The Solution can now be determined by use of a
Standard formula from theory of finite calculus:

1
8«-1 ^-iJ-i[r-*8«-i] r*-«£f(x-a), (79)E-

where the finite step function is defined as:

0 for x < oc

tf(x -oc) 1 for x oc

1 for x > oc

(80)

The Substitution into (77) yields:

Kp (x, oc) _*_! [r^-a) - r(«-x)] Jß (x-a) (81)

sinhy(x-a) Aor K7}ix,oc)= +i -J/Jix-oc), (82)1 smh y

where, as above, coshy= |(j8+1)|. The modifications of (82) for computation
when ß is negative or assumes special values, leading to degenerate cases, are
as follows: 2. if ß<-2, multiply Solution by -(-1)*-»; 3. if -2<ß<0,
replace the hyperbolic functions in the Solution and definition of y by the
corresponding trigonometric functions. 4. if ß 0, Kp (x,oc) (x — oc) J^ (x — a)
and if ß= — 2, same except multiplied by — — l)^-".

Consider the fourth order case, n 2. Then:

^ / x sinhy, (x — a) T* sinhy2(x — a) TJt /rio.Kp(x,a) q\>J 0(x-*) + o/q a\ * U(x-a), 83pK 2(j81-j82)smhy1 2(j82-j81)sinhy2
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where coshyx= K^H-1)| and coshy2 |(/32+ 1)|. For real and distinct values of
ßx and ß2, modification of (83) for computations is as given for the second
order case. Another possibility, for which the form (83) requires modification
for numerical use, is that ß1 and ß2 are complex conjugates. Thus, r, as given
by formula (78), will be complex. One requires the real numbers ct and 99 which
are respectively the real and imaginary parts of loger or, in other words, ea

and 99, respectively, are the amplitude and argument of the complex quantity,
r. For this case, the working form for (83) becomes:

1 ["cosh ct (x — a) sin 99 (x — a)
p ' cosh 2 ct — cos 2 09 tan 99

• L / X / M (84)
smh ct lx — a) cos cp ix — a) \ T+

£_£_: ]#(*—)•
A second possibility, requiring special modification for the fourth order case,
is that ß1 ß2- By either a limiting process or the theory of partial fractions,
the working form should be:

„ 1 T
t sinhyte —a)l T+, ,ow.^(a;'a) 2dHhvL(a;"a_1) y(^~a)—t^r^r <*-«'•(8o)

The general case can now be written as follows:

tz 1 \ ?i a sinhy^ (x-a) T/tKp(x,a) ZA -Ar- LV(x-*), (86)
i=l biiiiiy^

where coshy^ |(ft+l)|, (87)

1 n

l- 2»-1II'(A-A), (88)

d
.__ \Pi~Pi)
i=i

(ßi -ßt) (ßt -ß2)... (ßt-ß^) (ßt~ßM) ¦ ¦ ¦ (ßi-ßn) ¦

d
U'(ßi-ßi)=JnU(ß-ßi)\ß^e

7 1 aR 1

(89)

Modifications for special values of the ß's are as indicated in the cases for
n= 1 and n — 2.
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Summary

The field approach, for analyzing two-dimensional structural lattices, was
emphasized. The governing second order partial difference equations were
derived for the three major categories of net configurations, that is, those
with two, three and four sets of cables. Various types of boundaries were
studied by transforming coordinates for the discrete field. In all three of the
net categories, closed form Solutions were obtained to the governing equations
for a single arbitrarily located node load. These net-displacement Green's
functions were written as double and/or single finite Fourier's series. Solutions
were also derived for the uniform loading, as a single algebraic term in some
cases. Formulas for the doubly threaded structural net were illustrated
numerically.

Resume

Les auteurs etudient les reseaux bidimensionnels ä l'aide de la theorie
des champs. Ils etablissent les equations aux differences partielles du second
ordre pour les trois principaux types de reseaux, c'est-ä-dire les reseaux ä

2, 3 et 4 familles de cables. Ils etudient diverses formes du contour en trans-
formant les coordonnees pour un champ limite. Pour les trois types de

reseaux, les auteurs ont obtenu une Solution exacte pour une charge isolee,

agissant en un noeud quelconque. Les fonctions de Green exprimant le
deplacement des noeuds sont exprimees sous forme de series de Fourier finies,
simples et/ou doubles. On a egalement etabli des Solutions pour une charge
uniforme, dans certains cas sous forme de relations algebriques simples. A
titre d'illustration, on applique dans un exemple numerique les formules
relatives aux reseaux ä 2 familles de cables.

Zusammenfassung

Die Beanspruchungen von zweidimensionalen Netzwerken wurden untersucht.

Partielle Differenzengleichungen zweiter Ordnung wurden für die drei
Hauptarten von Netzanordnungen mit zwei, drei und vier Gruppen
verschiedener Kabelrichtungen hergeleitet. Anschließend wurden verschiedene
Grundrißformen mittels Koordinatentransformation eingehender untersucht.
Für eine Einzellast an einem beliebig gelegenen Knoten wurden geschlossene

Lösungen in Form von Greens Funktionen für alle drei Hauptarten von
Netzanordnungen gefunden. Diese für Knotenverschiebungen geltenden
Greens-Funktionen wurden als doppelte oder einfache endliche Fouriersche
Reihen dargestellt. Lösungen für gleichmäßig verteilte Belastungen wurden
ebenfalls gezeigt. In einzelnen Fällen wurde dabei ein einzelner, nur aus
Faktoren bestehender Ausdruck erhalten. Formeln für Netzwerke mit zwei

Kabelrichtungen wurden für die praktische Anwendung zahlenmäßig
ausgewertet.
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