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Out-of-Plane Buckling of I-Section Rings
Flambage latéral des anneaux a section en double-té

Uber das Kippen von Kreisringen mit I-Querschnitt

JOHN E. GOLDBERG JOHN L. BOGDANOFF

Ph.D., Professor of Structural Engineering Ph. D., Professor of Aeronautical and
Engineering Sciences

Purdue University, Lafayette, Indiana, USA

Introduction

The creative and imaginative trend displayed by contemporary architec-
ture has brought to the attention of structural engineers a number of problems
which have not been common in the earlier context of structural engineering.
This situation has been especially true in the design of roofs to enclose such
large spaces as arenas, exhibition halls, gymnasia and fieldhouses.

When the plan of a building of this type is circular, a suspended roof may
be found to be a particularly effective solution to the problem of providing a
cover for the large area, and several such roofs have been constructed for cir-
cular buildings of these types. In these buildings, the suspended roof is sup-
ported by a system of radial cables which are attached to an outer boundary
member. This member, in turn, may be supported by a set of columns equally
spaced around the circumference of the buildings.

This ring must be designed to resist the inward pull of the cables as well
as the circumferentially distributed gravity load of the roof, including possible
snow load. The requirement that the working stresses do not exceed safe and
acceptable values provides certain criteria for the choice of material of the
ring, for its cross sectional area, for its section modulus with respect to bending
in the vertical direction, and for an analogous torsional strength property.
Under possibly extreme circumstances, such rings may buckle in one of several
ways, and, when these circumstances prevail, the design criteria may be more
closely related to the choice of suitable rigidities in the appropriate directions
than to the properties mentioned above. It may be important, consequently,
to determine the adequacy of the ring with regard to its ability to resist
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buckling in each of the several possible modes of collapse when subjected to
the anticipated loads from the roof system.

When a ring is under radial compressive loads which produce a sufficiently
large hoop compressive force, the possibility that the ring may buckle is
obvious. It is somewhat less obvious that, under certain circumstances, the
ring may buckle if subjected to outward-acting and suitably placed distributed
loads of sufficiently large magnitude. Thus, if the roof is convex and is sup-
ported by arch ribs instead of cables so that the outer ring becomes a thrust
ring and the hoop force is tensile, a critical magnitude of the tensile hoop
force may also exist.

Aside from the possibility of local element buckling or crippling, a circular
ring when subjected to hoop compression may buckle in its own plane or may
buckle out of its plane. In the former case, the mode of buckling is charac-
terized by the ring going out-of-round. The phenomenon of buckling of a ring
in its own plane is fairly well understood and a generally adequate theory is
available [1]!) for the treatment of, at least, the basic problem of this kind.
Application of the available theory for inplane buckling determines the moment
of inertia of the cross section of the ring, about the centroidal axis normal to
the plane of the ring, which is required to preclude buckling in this mode.

The present paper is concerned with the development of stability criteria
for out-of-plane buckling of circular rings. In particular, uniform rings of
I-section are considered and formulas are presented which give the critical
magnitudes of hoop forces for rings forming a complete circle and supported
at a number of equally spaced points. The cross sections to which the formulas
apply directly should be symmetrical about the web but need not be sym-
metrical about an axis normal to the web. Thus, I-sections which are sym-
metrical about the web but have unequal flanges are included. The theory
may be readily extended, however, to more general shapes. For simplicity, the
present treatment emphasizes rings which are curved in the plane of the web.
The equations and resulting formulas may be modified to fit the case of rings
of unsymmetrical or symmetrical I-section which are curved in the planes of
the flanges.

The problem of lateral buckling of initially straight beams of I-section was
discussed by TimosHENKO [2]. TIMOSHENKO’S results were extended to the
case of a straight I-beam with unequal flanges by WEBER [3]. Subsequently,
WAGNER [4] presented a more general theory for thin-walled open sections
which was further improved by Kappus [5] and GooDIER [6].

The topic of out-of-plane buckling of arches having thin-walled open cross
sections was discussed by FEDERHOFER [7], who used the energy method to
determine the critical loads for segments of rings subjected to circumferential
compression.

1) Numbers in brackets refer to corresponding items in the Bibliography.
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In the present paper, the matter of stability is approached through the
derivation of a pertinent set of differential equations and emphasis is on the
case of a complete ring. The equations are valid for both compressive and
tensile hoop forces. The major formula, having been derived from a quadratic
form and therefore yielding a pair of roots or solutions, normally will, in fact,
provide critical values for both compression and tension for the same number
of waves in the buckled mode.

Displacement-Moment Relations

The cross section of a typical ring is shown in Fig. 1. The point O is the
centroid of the section. The distances from O to the centroids of the two
flanges are b; and b;. The distance from O to the centroid of the web, not
shown in Fig. 1, is b,. These distances, in subsequent equations, will be taken
as positive if the centroid of the element lies inside of the centroid of the sec-
tion, and negative if the centroid of the element lies outside of the centroid
of the section. The distributed radial loads, p, are applied at a distance b,
from O, and it should be noted that the point of application of this loading
in the cross section need not lie within the section itself. Thus, the loads may
be introduced through brackets or lugs which are not a part of the actual
section. The sign convention mentioned above for b,, b, and b, applies also to
b,. The loads, p, are taken as positive when acting inwardly along or parallel
to the respective radii.

A differential element of the ring is shown in Fig. 2. The central angle
subtended by the undeformed element is d 6. Points O and O’ are the centroids
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Fig. 1. Cross Section of Ring.
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of the two end cross sections. In discussing the displacements and deformations
of the ring, the assumption is made that the cross sections are not deformed
in their own planes but may be deformed or warped in the directions normal
to their planes. The displacement of O normal to the original plane of the ring
is denoted by v=w () and the rotation of the cross section about the tangential
axis is denoted by ¢=¢ (0). Positive v is taken downward, and ¢ is positive
when the upper part of the section moves toward the center of the ring.

Fig. 2. Differential Element of Ring.

The section is considered as comprising three elements, namely, the two
flanges and the web. The changes in curvature and twist of each of the elements
are readily determined by vector methods. For clarity, the inner flange is
considered.

If the circular axis passing through the centroid of the flange is given
vertical displacements, v;, varying in general along the circular axis, the slope
of this axis in the tangential direction may be taken as

= &

ignoring the slight difference between the radius of this flange and the radius
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of the centroid of the entire section. The tangential slope at a neighboring
point will be

, _ duy d d v,
=i T Rdo (Rd@

)Rde. (2)

These slopes or rotations may be represented as vectors along the axes about
which they take place, i. e., directed along the respective radial lines, and they
may be added or subtracted as ordinary vectors. They are shown in Fig. 3

Fig. 3. Vector Analysis of Tangential Slopes of Inner Flange.

using the right hand screw sign convention. As may be seen in the figure, the
difference between ," and i, for small d 8 may be resolved into a radial com-
ponent which, to first order in the differential is

d (dv _dPoy
RdH(RdG)RdH_RZdﬁszH ()
and a tangential component which, to the same order, is
d v,

The first of these corresponds to a change in curvature such as would be
associated with vertical bending of the element. Since the distance between
the two sections is taken to be Rd 0 the change in curvature is

d? v,

K= g ()

The second or tangential component corresponds to a twist and the rate of
twist due to the vertical displacement becomes

1 dvy
Fi=TR Rag (6)
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The angular displacement of the flange at ¢ in the plane of the cross sec-
tion is

X1=¢ (7)
and at a neighboring point,
r_ g, 3¢
X1—¢+R—(Z—5‘Rd0. (8)

These rotations may be represented as vectors directed along the tangential
axes as shown in Fig. 4, again using the right hand rule.

5
7
Fig. 4. Vector Analysis of Twisting Displacements of Inner Flange.

As in the previous case, the difference between the two vectors may be
resolved into components parallel and normal to the tangential axis at 6. The
tangential component of this difference represents an additional twist and,
since the distance between the two sections is Rd0, the associated rate of
twist, to a first order in the differential, is

dé
/31 =W- (9)

The radial component of the difference in the vectors represents a contri-
bution to vertical bending and, as may be seen from Fig. 4, has a magnitude

X1d9=—%Rd6‘. ‘ (10)
The associated curvature is
Kl = —%’ (11)

where the negative sign indicates that the curvature is in a sense opposite to
that of the curvature given by Eq. (5).

In view of Eqgs. (5), (6), (9) and (11), the rate of twist and the normal
curvature due to vertical and angular displacements are
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Y /(dv,  d¢

Aa “73‘(1240 +Zi§)’ (12)
_ d?y ¢

L=pie- ® (13)

The bending moment in the inner flange about the radial axis, that is, the
vertical bending moment, is

and, by substitution of Eq. (13), this becomes
d?v ¢
M1=—EII(R2dég_—R—)7 (15)

where I, is the moment of inertia of the cross section of the inner flange about
the radial axis.
According to the theory of Saint Venant [2], the torsional moment in the

inner flange may be taken as
=06y (16)

where () is the torsional rigidity of the flange, and becomes, through substitu-
tion of Eq. (12),

_Cyfdv, dé
Tl_ﬁ(A*RdB'FZlTi)' (17)
If the flange is rectangular, its torsional rigidity may be taken as [2],
3
C, = ¢hi 1-0.631 , (18)
3 ly

in which @ is the modulus of rigidity or shearing modulus.
The bending and twisting moments in the web and in the outer flange are
obtained by substituting the appropriate subscripts into Eqgs. (15), (17) and (18).
An expression for the normal shear in each element will be required. This
may be obtained through consideration of the equilibrium of a differential
length of the element. The relevant tractions acting on the inner flange are
shown in Fig. 5.

Fig. 5. Internal Tractions Acting on Inner Flange.
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Summing moments about a radial axis leads to

_dMl_l_Ti

5= Rae TR (19)

Similar expressions for the normal shear in the web and in the outer flange
are obtained by substituting the appropriate subscripts into Eq. (19).

Equilibrivm Equations

Before proceeding to the writing of the pertinent equilibrium equations,
it is desirable to evaluate the additional loading due to the combination of
circumferential stress and deformation. Taking N to be the resultant hoop
force, and assuming that, before buckling occurs, the circumferential stresses
are uniformly distributed, these stresses are found to be

I\Y

= 2
= (20)

(o}
where A is the cross sectional area, and both N and o are taken as positive
when the ring is in compression.

Before the ring is deformed from a perfectly circular shape, the hoop
stresses do not exert loads in a direction normal to the plane of the ring since
there is no curvature in this direction. Furthermore, since the section is sym-
metrical about the plane of the web, the uniformly distributed hoop stresses
combined with only the initial or natural curvature in the plane of the ring
result in a balanced resultant radial force which produces no moment about
the centroid.

When the ring is deformed, the hoop stresses acting along the additionally
curved fibers will produce equivalent loads in the directions of curvature.
With an origin at the centroid of the cross section and coordinate axes as
shown in Fig. 1, the vertical and radial displacements, respectively, of any
point may be written as

w=v+xd,

U =ye,
where, as stated previously, v is the vertical displacement at the centroid. The

curvature of a deformed fibre, measured in the tangential plane normal to the
web, may be obtained by substituting w for v; in Eq. (13), and becomes

(21)

d?>w ¢
Ku=foae &
_ dw ¢ ¢
or K=fie " mie " R (22
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The change in curvature in the horizontal plane is

dz¢
= —py—t. 2
Kh Yy d 22 ( 3)
As a consequence of these curvatures, the hoop stresses have the effect of
producing equivalent loads distributed in the circumferential direction and
varying in intensity over the cross section. The intensity of the upward-
acting load per unit area of cross section (and per unit length of beam) is

In =0 K,,
B d?v d?¢ é
or q"”"(deezJ“””deez_E) (24)
and the additional inward-acting load per unit area of cross section is
9 = —o Ky,
d2
or gy, = oY T{Z—d—ﬂ—i’ (25)

in which o is related to the hoop force through Eq. (20).
The upward component of the resultant load per unit length of beam is

Qn =J2.24, (26)

where the integration is over the entire cross section. Since the origin is taken
at the centroid of the section, substitution of Eq. (24) leads to

Q=¥ (gar5 — %) (27)

The radial component of the resultant load, in excess of the load in the
unbuckled state, clearly vanishes since the loading varies linearly with the
distance from the centroid.

The radial and normal loads have a resultant moment about the tangential
axis at the centroid equal to

My =[(rq,+yq)dA

per unit length of beam. Upon substitution of Eqs. (24) and [25), this becomes

~ d2v 2 b\, d*d
My = "f [x(R2d92+”R2d92“E)+y T

d2
ot s

and therefore may be written as

My= 7T ts (28)
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in which J is the polar moment of inertia of the cross section about its centroid.
A positive value of M indicates that the moment acts in a clockwise direction
about the tangential axis at the centroid of the section shown in Fig. 1.

In addition to the radial loading, p, and to the hoop force, which produces
the resultant normal load and torsion given by Eqgs. (27) and (28), a differential
element of the complete section is subjected to three sets of tractions similar
to those shown in Fig. 5 as acting on the inner flange.

7+ 2L R

75T

- 5+ %‘{509 RJE
O

%
55+ 32 RO

9%
$* Bdo =L Rd8

Fig. 6. Loads Acting on Differential Element.

Assuming that the direction of the radial loads is unchanged during
buckling, and summing forces in the direction normal to the web yields

@5 Rd@) (S o 45, Rd@)

— 8, 8,— S+(S+Rd9 2o

d s,
Rd0

G )
R2d 62 R

+(S3+ Rd@) N( )Rd@—pgdeO:O,
in which the last term is due to the component of the radial loads normal to
the web.

This reduces to

d

Rdﬁ(

d?v ¢ N

and finally to

d a2
s7g (S1+8a+8;) — NR2d02=0. (29)
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Summing moments about the tangential axis at the centr01d yields, upon
simplifying,
d

1
W(T1+Tz+773)———(M1+M2+M3)

J a4 (30)

Rdt‘)

Substitution of Eq. (19) together with similar expressions for S, and S; into
Eqgs. (29) and (30) gives

_dE _d d?v

C T T+ T — (M, + M+ M)+ (b, M, by M
_Ed—e—( 1+t 3)"@( 1+ Ma+ M)+ deeg(b +by M, + 3)
(32)
d J d*¢ by ,
deﬂ(b T +b, Ty +b,T7)— NAR2d92 —-N-—= g{)—O.
It is convenient to introduce the abbreviations,
B,=EIl,+EI,+EI,,
By =EIbj+EI,b,+EI;b,,
By=FHEI,02+E1,b3+ E 1,562, 28
By =C1+C,+0Ch, (33)
B5=01b1+02bz+03bg,
By = C 63+ 0,03+ C,03.
Observing, also, that
01=v+bl¢?
Ve =V+bydb, (34)
Vg = v+03¢

and substituting the expressions for the internal moments and shears trans-
forms Eqgs. (31) and (32) into

dto A2 dt¢ B, d*v  d*¢
_Bl(R4de4—R3d02)‘3234d94+“ﬁ(md02+R2d92)
B Be B o
B RdeE RdE
B,( d*v  d*¢\ B, d&*¢ B[ &v ¢
and Te(deez +Rd62) TR B4 +f(R2d02 ~R
B, &*¢ div a2 i
* R Bae BZ<R4d94‘R3492)"B3R4d94 (36)
By dv | ¢\ B, &4 (T ¢ _by,\
+“R‘(de492 +de92)+ R Bd6® N(A maE T R?) O
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This pair of equations together with expressions for the internal tractions
in terms of the displacements govern the process of out-of-plane buckling of
ideal circular rings of I-section for the assumed loading condition.

Solution of Equations

For an ideal complete ring with appropriate support conditions, namely,
equally spaced simple supports, a solution of the governing equations may be
taken with sufficient generality in the form,

v =Vcosnd,

37
¢ =Pcosnd, (37)

in which V and @ are the amplitudes, undetermined as yet, and » is an integer
representing number of circumferential waves in the buckled ring.

With the substitution of Eq. (37) and cancellation of certain common
factors, Egs. (35) and (36) become

(A, —N)V+ 4,9 =0,

J Rb (38)
4,7+ |4 (- T2) ¥ ] @ =0,
in which
n2 1
A, iz B R2B
1 n? 1
A2=—EB1+FB2+RB4+R2B (39)
1
A, B+R32+R2B+B4+RB5+R2B

Eqgs. (38) constitute a pair of linear homogeneous equations in the ampli-
tudes of the displacements. These equations have a non-trivial solution if the
determinant, the elements of which are the coefficients of the amplitudes,
vanishes. Expansion of this determinant yields the characteristic equation

(-2 [ )] et =,

which is a quadratic equation in N. The two roots of this equation are readily
found by means of the quadratic formula and are

b+ Vb2—4dac

N = 2a ’

(41)
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in which
_J_R

A " mz?

>

a b=A,a+4;, c =A,A4;—A2. (42)

One may note that Eq. (41) provides two values for the hoop force, N,
which will maintain equilibrium of the buckled ring. Ordinarily one of these
values will be positive, corresponding to hoop compression, and one will be
negative, corresponding to hoop tension. The two values are associated with
different combinations of V and @ and the relative magnitudes of these ampli-
tudes may be determined by substituting the appropriate value of N into
either of Egs. (38).

The case of n=0, corresponding to an axisymmetric mode of buckling, is
singular and warrants special consideration. In this case the displacements
and the bending moment become independent of the angular coordinate, 0,
and the internal torsional moment vanishes. Only the second of Eqs. (38) is
relevant. Upon multiplying through by n? and setting » equal to zero, this
equation reduces to
B,

N:—R%.

(43)

This equation shows that, insofar as axisymmetric buckling is involved, a
tensile critical hoop force can exist only if the denominator is positive, i.e., if
the radial loads are applied on a circle lying within the circle defined by the
centroids of the sections; and that a compressive critical hoop force can exist
only if the radial loads are applied on a circle lying outside of the centroids.

Determination of Critical Load

In the case of a complete ring which is simply supported at equally spaced
points and subjected only to radial loads, the critical magnitude of the hoop
force may be determined through the use of Egs. (41) and (43). For a given
ring only n, the number of full cosine (or sine) waves in the buckled form of
the ring, is not known a priori. The proper number of waves is the number,
among the admissible numbers, which is associated with the lowest of the
values given by Kqgs. (41) and (43).

The proper value of n is most easily obtained by the following procedure.
One determines the set of geometrically admissible values for n, substitutes
each of these into Eqs. (39) and (41), and thus computes a set of corresponding
values for N. One also computes the value for the symmetrical mode by means
of Eqgs. (43). The smallest value of the set of computed N’s is the critical
hoop force at which the ring will buckle.

The admissible values of n in a given case depend upon the number of
supports and especially whether this number is odd or even. Clearly, n must
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be an integer since any non-integral number would imply a discontinuity
which is untenable in a complete ring.

If m is the number of equal spaces and is odd, it is easily seen that the
minimum admissible non-zero number of full waves is also m. Other admis-
sible values of n are integral multiples of m. The nodes may be located at
support points or at equally spaced positions located arbitrarily with respect
to the supports.

If m is even, it is easily seen that the minimum non-zero number of full
waves is m/[2. Other admissible values are m, 3m/2, 2m and so on. In the
cases of fractional multiples, the support locations must be at nodes of the
buckled configuration. In the cases of integral multiples, the nodes need not
be located at the supports but may be located arbitrarily with respect to the
supports.

An interesting and possibly significant exception to the foregoing is the
case of a ring on three supports. With appropriate tilts about two diameters,
any buckled ring may retain contact with any three arbitrarily specified
support points. It follows that a ring supported at three points may buckle
into any number of waves, for example, two, and this possibility exists whether
the supports are spaced equally or not.

The case of a ring on four supports also deserves special consideration. In
this case the ring may buckle in a sinusoidal mode having any number of
nodes. This possibility exists when the supports are located symmetrically
about at least one diameter, but do not lie on an axis of symmetry. Further-
more, it is easily seen that the supports need not be equally spaced so long
as the axis of symmetry coincides with the diameter about which the buckled
ring is symmetrical.

Eqgs. (31) and (32) have been derived with the assumption that the direc-
tion of the radial loading, p, remains parallel to the plane of the undeformed
ring. In some technically important cases the direction of the loads will change
during the buckling process. For example, in the case of a suspended roof and
with n greater than zero, all loads, p, may be required to pass through a point
defined vertically in space at the center of the circle. In this case, the relative
angle between the web axis of the cross section and the load p becomes approxi-
mately ¢+ (v+b, ¢)/R. As a result, the coefficient of N in Eq. (31) should be

replaced by
[ d*v LY +bpd
R2d 6> R?

and the coefficient of N in Eq. (32) should be replaced by
| J _d*¢ v+b é
- e 7 ()|

with corresponding changes in Eqs. (40) and (41). It should be noticed that
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Eq. (43), which gives the critical load for axisymmetrical buckling, ordinarily
will not require similar modification. This follows from the fact that the entire
suspended structure is free to move up and down as an undeformed body
unless an actual support is provided, say, in the form of a post at the center
of the structure.

While the basic differential equations, Eqgs. (35) and (36), are quite general,
the solution culminating in Eq. (41) does not apply to the general case of
elastic and unequally spaced supports, or to the case of initial in addition to
those in the plane of the ring. The extension of the theory to include these
cases will be considered in a future paper.

Ilustrative Example

As an illustrative example, critical magnitudes of hoop force of the ring
shown in Fig. 7 are calculated for several sinusoidal buckling modes. Inward

I i
-
2

e _é". '-T
A |

T

S— '

P -
_-_————\/—720"‘/\——J e —————— 74"

Axis _oF Ring

L

Fig. 7. Cross Section of Ring for Illustrative Example.

acting radial loads are applied at the middle line of the inner surface and it is
assumed that the direction of these loads does not change during buckling.
Relevant properties of the section are,

A = 19.4 sq.in. R = 727.7 in.
ITyy = 779.87 in.4 b, = 7.699 in.

J = 886.15 in.t E = 30 106 psi
J/A = 45.6778 in.2 G = 11.5x 106 psi

Additional necessary quantities are calculated below.
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Table I. Properties of Ring

Ble- I ¢ b Ib Ibe O C b
ment Q 3 Q@
1 72.000 | 0.4868 7.499 536.33 | 3995.1 | 3.6262 | 27.012
2 0.146 | 0.5625 0.199 0.03 0.0 | 0.1119 0.022
3 34.133 | 1.3023 | -7.201 | —245.79 | 1769.9 | -9.3779 | 65.530
Total| 106.279 | 2.3516 200.67 | 5765.0 | —5.6398 | 94.564
By = E (106.279)= 3.1884 x 109 By = G (2.3516) = 27.043 % 108
Bs = E (290.67) = 8.7201 X 109 Bs = G (-5.6398) =—64.858 X 106
Bs = B (5765.0) = 172.95 % 109 Be = ( (94.564) = 1087.5x 106

One now computes the quantities, 4,, 4,, 45, a, b and ¢ by means of
Eqgs. (39) and (42), and finally, computes the value of NV by means of Eq. (41).
The results are summarized in Table II.

Table I11. Critical Hoop Forces for Various Modes

. Admissible No. N, Critical Load, lbs.
of Supports Compressive Tensile
0 Any — 571 200
1 2, 3 340 576 900
2 2, 3, 4 606 603 200
3 2, 3, 4, 6 3 663 656 800
4 2, 3, 4, 8 12 200 754 400
5 2, 3, 4, 5, 10 31 230 924 400
6 2, 3, 4, 6, 12 58 180 1 218 500
7 2, 3,4, 7, 14 99 150 1725 200
8 2,3, 4, 8 16 157 340 2 670 500
9 2, 3, 4, 6, 9, 18 217 110 4 695 400
10 2, 3, 4, 5, 10, 20 292 700 10 840 500

The second column of the table lists the number of equally spaced simple
supports which are compatible with the indicated modes of buckling. It
appears reasonably clear that the use of larger values of n will give corres-
pondingly larger computed values for NV in both tension and compression.

The magnitudes of the critical load for out-of-plane buckling may be
compared with the magnitude for buckling in the plane of the ring. For the
latter case, the critical hoop force is given by the formula [1],

3EI,,

N =t

(44)
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Since /,,, the moment of inertia about the axis normal to the web, is 779.87 in.4,
Eq. (44) yields approximately 135,000 pounds for the magnitude of the com-
pressive hoop force for buckling in the plane of the ring. Reference to Table I1
shows that this value falls between the values for out-of-plane buckling cor-
responding to modes having seven and eight full waves. Consequently, the
sole use of Eq. (44) as a design criterion would be unconservative, and perhaps
greatly so, if the ring had fewer than fourteen equally spaced simply supports.

The critical loads shown in Table IT have been computed, for simplicity,
using the indicated elastic values for the two moduli. Consequently, certain
of the results are implausibly high and exceed the yield strength of presently
available materials. These excessively high values are reduced to realistic
values by introducing an appropriate modulus reduction factor. The correct
critical load, stress and moduli are readily found by a trial-and-error procedure
starting with, say, the elastic results. One now chooses a stress, determines
the corresponding moduli from the proper stress-strain curves, and reduces
the computed hoop force in the ratio of the reduced modulus to the elastic
modulus. The stress corresponding to the reduced hoop force is now compared
with the previously assumed stress. If these values coincide, the reduced hoop
force is the critical force. If not, a new trial value of stress is chosen and the
comparison process is repeated.

Since the radial loads act inwardly, the tensile critical loads listed in
Table IT are irrelevant and may be disregarded. 1f, however, the ring were
being designed to take the thrusts of a large number of arches as for a ribbed
dome,. the tensile values would be significant. This would also be true if the
ring were being designed to support a shell dome, particularly if the dome
were somewhat less than hemispherical.

Discussion

If the supports are not equally spaced, the ring ordinarily will buckle in
a mode which is not sinusoidal. It is also conceivable that, even though the
supports are equally spaced, the ring might buckle in a mode which is not
sinusoidal. One may speculate that this is a likely possibility if the number
of equally spaced supports is large or moderately so. Under these circumstan-
ces, a buckle might have an essentially local character. Thus, one might assume
a mode which is almost a half-sine wave in one interval between two supports
and with similar alternating forms but having continually attenuated ampli-
tudes in successive intervals in both directions from the large buckle. Although
Egs. (35) and (36) are still applicable, the rigorous mathematical solution is
quite difficult and tedious. One would have to write the general solution of
this eighth order system for each interval with eight arbitrary constants or
parameters. Continuity and compatibility conditions are then written to join



90 JOHN E. GOLDBERG - JOHN L. BOGDANOFF

the successive segments of the ring and will form a set of linear, homogeneous,
algebraic equations. The requirement that the determinant of the coefficients
of the arbitrary constants vanishes will provide the characteristic equation,
and the lowest root of this polynominal equation will correspond to the criti-
cal load.

In view of the difficulty associated with obtaining a rigorous solution for
this case, an approximate and generally conservative solution may be pro-
posed. Such a practical solution is obtained by taking the mode in the form

w0 w6

v = Vsin—a—, ¢ = Dsin (45)

o
instead of using Egs. (37). Here « is the angle subtended by the arc or interval
between two adjacent supports and § is measured from one of these supports
toward the other. The consequence of this assumption is simply to replace n
in the following equations and in the calculations by the term =/«. This assumed
form of solution disregards the constraint imposed upon the interval in which
the major buckling occurs by the somewhat attenuated buckles of the suc-
cessive intervals.

When only buckling in a regular mode such as implied by Eqs. (37) is
involved, the great increase which may be obtained in going from an even
number of equally spaced supports to an odd number deserves notice and
comment. For example, if the ring is supported at four points, it may buckle
in an unsymmetrical mode having as few as two full waves. As shown in
Table II for n =2, the critical compressive load is 606 pounds. If the ring
were supported at five points, it could buckle in a sinusoidal mode with a
minimum of five full waves. The critical compressive load for n=5, is 31,230
pounds. Thus, by adding one support, a very great increase in the critical load
has been obtained, at least theoretically.

The appreciable increase in the magnitude of the critical load which is
obtained by going from four supports to five is not wholly unexpected, although
the amount of the increase in this particular problem is somewhat surprising.
However, an even more striking situation is disclosed if one compares the
critical loads for the cases of five and six supports. In the case of six equally
spaced supports, buckling modes can occur with as few as three full waves.
For n=3, Table IT shows the compressive buckling load to be 3,663 pounds.
Assuming that the ring on five supports would buckle in a regular sinusoidal
mode, one sees that an increase of about 750 per cent would be obtained by
reducing the number of supports from six to five. This comparison strongly
suggests that the designer should contemplate the use of an odd number of
supports if these are to be equally spaced. While these conclusions have been
based upon the assumption of buckling in a regular sinusoidal mode when the
number of supports is odd as well as even, it is entirely likely that this con-
dition will be very nearly attained if the number of odd supports is not large.
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One need only consider the fact that, in the case of an odd number of supports,
a mode having essentially one-half wave between supports must have an
attenuating form so that compatibility can be satisfied in the complete ring.
In the case of a small number of supports, it is doubtful that sufficient atte-
nuation could occur in the limited number of successive spans on either side
of the major buckle and still retain the nearly sinusoidal mode with one-half
wave per span which is associated with this minimum critical load.
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Summary

A theory is presented for out-of-plane buckling of circular rings of I-section
and the case of buckling of a complete ring under the action of a distributed
radial loading is considered. Formulas are derived which give the critical
magnitudes of the hoop forces associated with the out-of-plane buckling
modes. The problem is of interest, for example, in connection with the design
of the compression ring at the outer boundary of a suspended roof, and
occasionally in connection with the design of the thrust ring at the base of a
ribbed dome.

For simplicity, the theory is presented for sections which are symmetrical
about a radial axis but which need not possess a normal axis of symmetry.
Although the formulas presented are valid for singly and doubly-symmetric
sections, the theory may be extended to unsymmetrical sections.

In addition to the possibility of out-of-plane buckling of a ring when sub-
jected to a loading which produces a compressive hoop force, it is shown that
a ring may also buckle, under certain conditions, when the hoop force is tensile.
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Résumé

L’auteur étudie le lambement latéral des anneaux circulaires & section en
double-té et examine le cas d’un anneau fermé, soumis & une charge radiale
répartie. Il établit des formules donnant les valeurs critiques des efforts cir-
culaires, associées aux divers modes d’instabilité latérale. Le probléme se pose,
par exemple, pour I'étude de la ceinture comprimée des toitures suspendues
et, parfois, pour I’anneau inférieur des coupoles nervurées.

Pour simplifier I’exposé, 'auteur n’envisage que des sections possédant au
moins un axe de symétrie, contenu dans le plan de 1’anneau. Les formules
présentées sont valables pour des sections & symétrie simple ou double; la
théorie peut cependant étre étendue & des sections quelconques.

L’auteur montre que, sous certaines conditions, un anneau peut flamber
latéralement, non seulement lorsqu’il est comprimé, mais méme lorsqu’il est
soumis & des charges produisant une traction circulaire.

Zusammenfassung

Es wird eine Theorie fiir das Kippen von Kreisringen mit I-Querschnitt
entwickelt und der Fall des Kippens eines geschlossenen Ringes unter einer
verteilten Radialbelastung untersucht. Es werden Formeln hergeleitet, welche
die kritischen Ringkrifte bei verschiedenen Arten von Kippen angeben. Das
Problem ist z. B. im Zusammenhang mit der Ausbildung des Druckringes am
Rand eines Hédngedaches und gelegentlich im Zusammenhang mit der Aus-
bildung des Fuliringes einer gerippten Kuppel von Interesse.

Der Einfachheit halber werden nur einfach-symmetrische Querschnitte
untersucht, wobei die Symmetrieachse mit der Ringebene zusammenfillt.
Obwohl die angefiihrten Formeln nur fiir einfach- und doppeltsymmetrische
Querschnitte Geltung haben, so kann die Theorie ebenfalls auf unsymmetrische
Profile ausgedehnt werden.

Es zeigt sich, daf} ein Ring nicht nur unter Ringdruckkriften, sondern
auch unter gewissen Umsténden, bei dulleren Belastungen mit entsprechenden
Ringzugkriften auskippen kann.



	Out-of-plane buckling of I-section rings

