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Out-of-Plane Buckling of I-Section Rings

Flambage lateral des anneaux ä section en double-te

Über das Kippen von Kreisringen mit I-Querschnitt

JOHN E. GOLDBERG JOHN L. BOGDANOFF
Ph.D., Professor of StructuralEngineering Ph. D., Professor of Aeronautical and

Engineering Sciences

Purdue University, Lafayette, Indiana, USA

Introduction

The creative and imaginative trend displayed by contemporary architec-
ture has brought to the attention of structural engineers a number of problems
which have not been common in the earlier context of structural engineering.
This Situation has been especially true in the design of roofs to enclose such
large Spaces as arenas, exhibition halls, gymnasia and fieldhouses.

When the plan of a building of this type is circular, a suspended roof may
be found to be a particularly effective Solution to the problem of providing a
cover for the large area, and several such roofs have been constructed for
circular buildings of these types. In these buildings, the suspended roof is
supported by a system of radial cables which are attached to an outer boundary
member. This member, in turn, may be supported by a set of columns equally
spaced around the circumference of the buildings.

This ring must be designed to resist the inward pull of the cables as well
as the circumferentially distributed gravity load of the roof, including possible
snow load. The requirement that the working stresses do not exceed safe and
acceptable values provides certain criteria for the choice of material of the
ring, for its cross sectional area, for its section modulus with respect to bending
in the vertical direction, and for an analogous torsional strength property.
Under possibly extreme circumstances, such rings may buckle in one of several

ways, and, when these circumstances prevail, the design criteria may be more
closely related to the choice of suitable rigidities in the appropriate directions
than to the properties mentioned above. It may be important, consequently,
to determine the adequacy of the ring with regard to its ability to resist
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buckling in each of the several possible modes of collapse when subjected to
the anticipated loads from the roof system.

When a ring is under radial compressive loads which produce a sufficiently
large hoop compressive force, the possibility that the ring may buckle is
obvious. It is somewhat less obvious that, under certain circumstances, the
ring may buckle if subjected to outward-acting and suitably placed distributed
loads of sufficiently large magnitude. Thus, if the roof is convex and is
supported by arch ribs instead of cables so that the outer ring becomes a thrust
ring and the hoop force is tensile, a critical magnitude of the tensile hoop
force may also exist.

Aside from the possibility of local element buckling or crippling, a circular
ring when subjected to hoop compression may buckle in its own plane or may
buckle out of its plane. In the former case, the mode of buckling is characterized

by the ring going out-of-round. The phenomenon of buckling of a ring
in its own plane is fairly well understood and a generally adequate theory is
available [l]1) for the treatment of, at least, the basic problem of this kind.
Application of the available theory for inplane buckling determines the moment
of inertia of the cross section of the ring, about the centroidal axis normal to
the plane of the ring, which is required to preclude buckling in this mode.

The present paper is concerned with the development of stability criteria
for out-of-plane buckling of circular rings. In particular, uniform rings of
I-section are considered and formulas are presented which give the critical
magnitudes of hoop forces for rings forming a complete circle and supported
at a number of equally spaced points. The cross sections to which the formulas
apply directly should be symmetrical about the web but need not be
symmetrical about an axis normal to the web. Thus, I-sections which are
symmetrical about the web but have unequai flanges are included. The theory
may be readily extended, however, to more general shapes. For simplicity, the
present treatment emphasizes rings which are curved in the plane of the web.
The equations and resulting formulas may be modified to fit the case of rings
of unsymmetrical or symmetrical I-section which are curved in the planes of
the flanges.

The problem of lateral buckling of initially straight beams of I-section was
discussed by Timoshenko [2], Timoshenko's results were extended to the
case of a straight I-beam with unequal flanges by Weber [3]. Subsequently,
Wagner [4] presented a more general theory for thin-walled open sections
which was further improved by Kappus [5] and Goodier [6].

The topic of out-of-plane buckling of arches having thin-walled open cross
sections was discussed by Federhofer [7], who used the energy method to
determine the critical loads for segments of rings subjected to circumferential
compression.

x) Numbers in brackets refer to corresponding items in the Bibliography.
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In the present paper, the matter of stability is approached through the
derivation of a pertinent set of differential equations and emphasis is on the
case of a complete ring. The equations are valid for both compressive and
tensile hoop forces. The major formula, having been derived from a quadratic
form and therefore yielding a pair of roots or Solutions, normally will, in fact,
provide critical values for both compression and tension for the same number
of waves in the buckled mode.

Displacement-Moment Relations

The cross section of a typical ring is shown in Fig. 1. The point 0 is the
centroid of the section. The distances from 0 to the centroids of the two
flanges are bx and b3. The distance from 0 to the centroid of the web, not
shown in Fig. 1, is b2. These distances, in subsequent equations, will be taken
as positive if the centroid of the element lies inside of the centroid of the
section, and negative if the centroid of the element lies outside of the centroid
of the section. The distributed radial loads, p, are applied at a distance bp

from 0, and it should be noted that the point of application of this loading
in the cross section need not lie within the section itself. Thus, the loads may
be introduced through brackets or lugs which are not a part of the actual
section. The sign Convention mentioned above for 6X, 62 and 63 applies also to
bp. The loads, p, are taken as positive when acting inwardly along or parallel
to the respective radii.

A differential element of the ring is shown in Fig. 2. The central angle
subtended by the undeformed element is d 9. Points O and 0' are the centroids

'J ü

x O
^-ZZZZZZ£^

—* _L

vy

Fig. 1. Cross Section of Ring.
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of the two end cross sections. In discussing the displacements and deformations
of the ring, the assumption is made that the cross sections are not deformed
in their own planes but may be deformed or warped in the directions normal
to their planes. The displacement of 0 normal to the original plane of the ring
is denoted by v v (0) and the rotation of the cross section about the tangential
axis is denoted by <f> <f>(0). Positive v is taken downward, and <p is positive
when the upper part of the section moves toward the center of the ring.

dd

Fig. 2. Differential Element of Ring.

The section is considered as comprising three elements, namely, the two
flanges and the web. The changes in curvature and twist of each of the elements
are readily determined by vector methods. For clarity, the inner flange is
considered.

If the circular axis passing through the centroid of the flange is given
vertical displacements, v1, varying in general along the circular axis, the slope
of this axis in the tangential direction may be taken as

& dvt
\R~dJ (1)

ignoring the slight difference between the radius of this flange and the radius
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of the centroid of the entire section. The tangential slope at a neighboring
point will be

*k
dvx d

R~de+R~l6
(dvZ\
\Rdd) Rd6. (2)

These slopes or rotations may be represented as vectors along the axes about
which they take place, i. e., directed along the respective radial lines, and they
may be added or subtracted as ordinary vectors. They are shown in Fig. 3

zr

c/9
r-u
rk

de^

Fig. 3. Vector Analysis of Tangential Slopes of Inner Flange.

using the right hand screw sign Convention. As may be seen in the figure, the
difference between s/r/ and ipx for small d 6 may be resolved into a radial
component which, to first order in the differential is

d

\Rdd) Rdd d2vx Rdd
Rd6\Rdd] R2d62

and a tangential component which, to the same order, is

^dd izrede-

(3)

(4)

The first of these corresponds to a change in curvature such as would be
associated with vertical bending of the element. Since the distance between
the two sections is taken to be B d 6 the change in curvature is

d2v1
Kx: R*dd*' (5)

The second or tangential component corresponds to a twist and the rate of
twist due to the vertical displacement becomes

1 dvx
ßx R Rdd (6)
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The angular displacement of the flange at 9 in the plane of the cross
section is

Xi +

and at a neighboring point,
JA,

(8)x[=cf> + 4i,Bd6.
Rdd

These rotations may be represented as vectors directed along the tangential
axes as shown in Fig. 4, again using the right hand rule.

*-.."v*^^r—:^^r-
^

</e

-±r-3-</e
c4^ jrf ete

Fig. 4. Vector Analysis of Twisting Displacements of Inner Flange.

As in the previous case, the difference between the two vectors may be

resolved into components parallel and normal to the tangential axis at 9. The

tangential component of this difference represents an additional twist and,
since the distance between the two sections is Rd9, the associated rate of
twist, to a first order in the differential, is

dcfy
ßi Rd9' (9)

The radial component of the difference in the vectors represents a
contribution to vertical bending and, as may be seen from Fig. 4, has a magnitude

The associated curvature is

Xld9 4>Rdt
Jzv

K - +

(10)

(11)

where the negative sign indicates that the curvature is in a sense opposite to
that of the curvature given by Eq. (5).

In view of Eqs. (5), (6), (9) and (11), the rate of twist and the normal
curvature due to vertical and angular displacements are
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R-l l dVl
4- *£\Pl R\Rd9 +'de)9

d2v1
*_ R*dß2

±
R'

(12)

(13)

The bending moment in the inner flange about the radial axis, that is, the
vertical bending moment, is

M1 -EI1K1 (14)

and, by Substitution of Eq. (13), this becomes

where I1 is the moment of inertia of the cross section of the inner flange about
the radial axis.

According to the theory of Saint Venant [2], the torsional moment in the
inner flange may be taken as

Tx Gxßx, (16)

where C± is the torsional rigidity of the flange, and becomes, through Substitution

of Eq. (12), n t j a ±\

*.-§(_&+$• <">

If the flange is rectangular, its torsional rigidity may be taken as [2],

Olxi\{Cx :(l-0.63|), (18)

in which 0 is the modulus of rigidity or shearing modulus.
The bending and twisting moments in the web and in the outer flange are

obtained by substituting the appropriate subscripts into Eqs. (15), (17) and (18).
An expression for the normal shear in each element will be required. This

may be obtained through consideration of the equilibrium of a differential
length of the element. The relevant tractions acting on the inner flange are
shown in Fig. 5.

T<+$k«*9

«+%&«"*

Fig. 5. Internal Tractions Acting on Inner Flange.

^>

c/S,
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Summing moments about a radial axis leads to

o dMx Tx
s^R~Ie+\R- (19)

Similar expressions for the normal shear in the web and in the outer flange
are obtained by substituting the appropriate subscripts into Eq. (19).

Equilibrium Equations

Before proceeding to the writing of the pertinent equilibrium equations.
it is desirable to evaluate the additional loading due to the combination of
circumferential stress and deformation. Taking N to be the resultant hoop
force, and assuming that, before buckling occurs, the circumferential stresses

are uniformly distributed, these stresses are found to be

N
° -j, (20)

where A is the cross sectional area, and both N and a are taken as positive
when the ring is in compression.

Before the ring is deformed from a perfectly circular shape, the hoop
stresses do not exert loads in a direction normal to the plane of the ring since
there is no curvature in this direction. Furthermore, since the section is
symmetrical about the plane of the web, the uniformly distributed hoop stresses
combined with only the initial or natural curvature in the plane of the ring
result in a balanced resultant radial force which produces no moment about
the centroid.

When the ring is deformed, the hoop stresses acting along the additionally
curved fibers will produce equivalent loads in the directions of curvature.
With an origin at the centroid of the cross section and coordinate axes as

shown in Fig. 1, the vertical and radial displacements, respectively, of any
point may be written as

w v + xd>,

u =ycf>,

where, as stated previously, v is the vertical displacement at the centroid. The
curvature of a deformed fibre, measured in the tangential plane normal to the
web, may be obtained by substituting w for vx in Eq. (13), and becomes

_
d2w cf)

n~ R2d92 ~~~R'

rr d2v d26 ct>
/rt_xK- -WI¥+x\Wd¥-\n- (22)
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The change in curvature in the horizontal plane is

K---*U- <23>

As a consequence of these curvatures, the hoop stresses have the effect of
producing equivalent loads distributed in the circumferential direction and
varying in intensity over the cross section. The intensity of the upward-
acting load per unit area of cross section (and per unit length of beam) is

in °Kn>

or
/ d2V d2cf> c/>\

^ a(^^+^-^F-^j (24)

and the additional inward-acting load per unit area of cross section is

•72 JL

** ay-m¥> (25)

in which a is related to the hoop force through Eq. (20).
The upward component of the resultant load per unit length of beam is

Qn=fqndA, (26)

where the integration is over the entire cross section. Since the origin is taken
at the centroid of the section, Substitution of Eq. (24) leads to

«•-*(_Sr-_)- <2,)

The radial component of the resultant load, in excess of the load in the
unbuckled state, clearly vanishes since the loading varies linearly with the
distance from the centroid.

The radial and normal loads have a resultant moment about the tangential
axis at the centroid equal to

MN l(xqn + yqh)dA

per unit length of beam. Upon Substitution of Eqs. (24) and [25), this becomes

dAM -JU d2v
|g ** +\lv* **MN-*J [X[R2dd2+XR2de2 R)+y R2dß

[(x2 + y2)dAR2d92

and therefore may be written as

M»~%JJFdlfi> ^
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in which J is the polar moment of inertia of the cross section about its centroid.
A positive value of MN indicates that the moment acts in a clockwise direction
about the tangential axis at the centroid of the section shown in Fig. 1.

In addition to the radial loading, p, and to the hoop force, which produces
the resultant normal load and torsion given by Eqs. (27) and (28), a differential
element of the complete section is subjected to three sets of tractions similar
to those shown in Fig. 5 as acting on the inner flange.

är Rd9Bdß.

dM RdGRd6

T*Tf + T2 + T5

s5+mRde

*+%frM°

Fig. 6. Loads Acting on Differential Element.

Assuming that the direction of the radial loads is unchanged during
buckling, and summing forces in the direction normal to the web yields

8x-s2-s3+(sx+^Rde) + (s2+^LRde)

in which the last term is due to the component of the radial loads normal to
the web.

This reduces to
d

and finally to

d /r, n o x it/ d2v <b\ Nme^+^+^-N{wd¥-i)-R^0

m¥(81 + S2 + S3)-Nw^ 0. (29)
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Summing moments about the tangential axis at the centroid yields, upon
simplifying,

^(T1 + T2 + TS)-^(MX + M2 + M3)

d J d26 (30)
+ j^(bZ3i + hSZrb383)-N^1p-fß2-bpp<f> 0.

Substitution of Eq. (19) together with similar expressions for S2 and S3 into
Eqs. (29) and (30) gives

d2 tJ d2 ti
^^Z^M^MM^^iT^T^T^-N^^^O, (31)

2d
(Tx + T2 + T3)-^(Mx + M2 + M3)+~zL-(bxM1 + b2M2 + b3M3)

(33)

Rdd"1 * *' R" 1 a 3/ ' R2dd2
T „, (32)

It is convenient to introduce the abbreviations,

Bx EIX + EI2 + EI3,
B2 EIxbx + EI2b2 + EI3b3,
B3 EIxb2x + EI2b2. + EI3b§,
Bi Cx + C2 + C3,

B5 Gxbx + C2b2 + C3b3,

B6 Cxbl + C2bl + C3bl.

Observing, also, that
vx v + bx <f>,

v2 v + b2(j>, (34)

v3 v + b3<f>

and substituting the expressions for the internal moments and shears transforms

Eqs. (31) and (32) into

dlv d2<f> \ d*j> B^l d2v d2<j> \_R / d*v d2<f> \ d*<f> BZ d2v

iX&dd* Rsd62J 2Riddi'r R \Rsd02~rR \Rzd62 ' R2dd2)

B5 d2<f> ,T d2v
-I S Z. AT 0^ R2 R2d62 R2d62

(35)

aTld B*( d*v d^\ i ^ <?<(, Bxl d2v <f>\

RXR^de2^ Rdd2} R R2d62'r R\R2dd2 RJ
B2 d2<f> d*v d2<j> \ d*j+ r R2de2 2\E4^e4 R*de2} 3iJMö* l '

Bs( d*v d2<j>\ B, d*j> (J d2<j> .bp\
R\R3dd2 R2dd2/~t' R R3d62 \A R2d02~r R9]
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This pair of equations together with expressions for the internal tractions
in terms of the displacements govern the process of out-of-plane buckling of
ideal circular rings of I-section for the assumed loading condition.

Solution of Equations

For an ideal complete ring with appropriate support conditions, namely,
equally spaced simple supports, a Solution of the governing equations may be
taken with sufficient generality in the form,

v Vcosn9,
(37)

cf) 0 cos n 9,

in which V and 0 are the amplitudes, undetermined as yet, and n is an integer
representing number of circumferential waves in the buckled ring.

With the Substitution of Eq. (37) and cancellation of certain common
factors, Eqs. (35) and (36) become

{AX-N)V + A20 O,
(38)

in which

4 - n* n j. l nAftf^ + IP**'
1 7)2 1 1

A2 ^Bx +^B2 + -^Bi + ^B5, (39)

1 2 n2 2 1

Eqs. (38) constitute a pair of linear homogeneous equations in the amplitudes

of the displacements. These equations have a non-trivial Solution if the
determinant, the elements of which are the coefficients of the amplitudes,
vanishes. Expansion of this determinant yields the characteristic equation

(t-^MMt-^H N +A^-Al^O, (40)

which is a quadratic equation in N. The two roots of this equation are readily
found by means of the quadratic formula and are

N=b±ib*-iac
2a
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in which
J T>

a ~A~n2bp> b=A±a + A3, c=AxAz-A\. (42)

One may note that Eq. (41) provides two values for the hoop force, N,
which will maintain equilibrium of the buckled ring. Ordinarily one of these
values will be positive, corresponding to hoop compression, and one will be

negative, corresponding to hoop tension. The two values are associated with
different combinations of V and 0 and the relative magnitudes of these amplitudes

may be determined by substituting the appropriate value of N into
either of Eqs. (38).

The case of n 0, corresponding to an axisymmetric mode of buckling, is

singular and Warrants special consideration. In this case the displacements
and the bending moment become independent of the angular coordinate, 9,

and the internal torsional moment vanishes. Only the second of Eqs. (38) is
relevant. Upon multiplying through by n2 and setting n equal to zero, this
equation reduces to

N -r\- <«>

This equation shows that, insofar as axisymmetric buckling is involved, a
tensile critical hoop force can exist only if the denominator is positive, i.e., if
the radial loads are applied on a circle lying within the circle defined by the
centroids of the sections; and that a compressive critical hoop force can exist
only if the radial loads are applied on a circle lying outside of the centroids.

Determination of Critical Load

In the case of a complete ring which is simply supported at equally spaced
points and subjected only to radial loads, the critical magnitude of the hoop
force may be determined through the use of Eqs. (41) and (43). For a given
ring only n, the number of füll cosine (or sine) waves in the buckled form of
the ring, is not known a priori. The proper number of waves is the number,
among the admissible numbers, which is associated with the lowest of the
values given by Eqs. (41) and (43).

The proper value of n is most easily obtained by the following procedure.
One determines the set of geometrically admissible values for n, Substitutes
each of these into Eqs. (39) and (41), and thus computes a set of corresponding
values for N. One also computes the value for the symmetrical mode by means
of Eqs. (43). The smallest value of the set of computed JV's is the critical
hoop force at which the ring will buckle.

The admissible values of n in a given case depend upon the number of
supports and especially whether this number is odd or even. Clearly, n must
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be an integer since any non-integral number would imply a discontinuity
which is untenable in a complete ring.

If m is the number of equal spaces and is odd, it is easily seen that the
minimum admissible non-zero number of füll waves is also m. Other admissible

values of n are integral multiples of m. The nodes may be located at
support points or at equally spaced positions located arbitrarily with respect
to the supports.

If m is even, it is easily seen that the minimum non-zero number of füll
waves is m/2. Other admissible values are m, 3 m/2, 2 m and so on. In the
cases of fractional multiples, the support locations must be at nodes of the
buckled configuration. In the cases of integral multiples, the nodes need not
be located at the supports but may be located arbitrarily with respect to the
supports.

An interesting and possibly significant exception to the foregoing is the
case of a ring on three supports. With appropriate tilts about two diameters,
any buckled ring may retain contact with any three arbitrarily specified
support points. It follows that a ring supported at three points may buckle
into any number of waves, for example, two, and this possibility exists whether
the supports are spaced equally or not.

The case of a ring on four supports also deserves special consideration. In
this case the ring may buckle in a sinusoidal mode having any number of
nodes. This possibility exists when the supports are located symmetrically
about at least one diameter, but do not he on an axis of symmetry. Furthermore,

it is easily seen that the supports need not be equally spaced so long
as the axis of symmetry coincides with the diameter about which the buckled
ring is symmetrical.

Eqs. (31) and (32) have been derived with the assumption that the direction

of the radial loading, p, remains parallel to the plane of the undeformed
ring. In some technically important cases the direction of the loads will change
during the buckling process. For example, in the case of a suspended roof and
with n greater than zero, all loads, p, may be required to pass through a point
defined vertically in space at the center of the circle. In this case, the relative
angle between the web axis of the cross section and the load p becomes approximately

cf) + (v + bp(j>)jR. As a result, the coefficient of N in Eq. (31) should be

replaced by
/ d2\

\R2d
d2v v + bpcf)}

\92 ' R2

and the coefficient of N in Eq. (32) should be replaced by

_ \J d^ b*(rliV + b*<l\\
[A R2d92~*~ 1? V9 Rz )\

with corresponding changes in Eqs. (40) and (41). It should be noticed that
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Eq. (43), which gives the critical load for axisymmetrical buckling, ordinarily
will not require similar modification. This follows from the fact that the entire
suspended structure is free to move up and down as an undeformed body
unless an actual support is provided, say, in the form of a post at the center
of the structure.

While the basic differential equations, Eqs. (35) and (36), are quite general,
the Solution culminating in Eq. (41) does not apply to the general case of
elastic and unequally spaced supports, or to the case of initial in addition to
those in the plane of the ring. The extension of the theory to include these
cases will be considered in a future paper.

Illustrative Example

As an illustrative example, critical magnitudes of hoop force of the ring
shown in Fig. 7 are calculated for several sinusoidal buckling modes. Inward

^i

i i
~*" .5

¦^
12" 0 *

P-*
U°

./L

1 1

—_»»

— 7.199 *~

"•m ir —?

8*

1

Fig. 7. Cross Section of Ring for Illustrative Example.

acting radial loads are applied at the middle line of the inner surface and it is
assumed that the direction of these loads does not change during buckling.

Relevant properties of the section are,

A 19.4 sq. in. R 727.7 in.

Iyy 779.87 in.4 bp 7.699 in.
J 886.15 in.4 E 30 X IO6 psi
J\A 45.6778 in.2 G 11.5x10« psi

Additional necessary quantities are calculated below.
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Table I. Properties of Ring

Element I C

G
b Ib Ib*

G

Gb >
1

2

3

72.000
0.146

34.133

0.4868
0.5625
1.3023

7.499
0.199

-7.201

536.33
0.03

-245.79

3995.1
0.0

1769.9

3.6262
0.1119

-9.3779

27.012
0.022

65.530

Total 106.279 2.3516 290.67 5765.0 -5.6398 94.564

Bx E (106.279)= 3.1884x109
B2 E (290.67) 8.7201 X IO9

Bz E (5765.0) 172.95 X IO9

B4 O (2.3516) 27.043 XlO6
Bb G (-5.6398) -64.858 X IO6

BQ £(94.564) 1087.5 XlO6

One now computes the quantities, A1, A2, A%, a, b and c by means of
Eqs. (39) and (42), and finally, computes the value of N by means of Eq. (41).
The results are summarized in Table II.

Table II. Critical Hoop Forces for Various Modes

n
Admissible No.

of Supports

iV, Critical Load, lbs.

Compressive Tensile

0
1

2
3

4
5

6

7

8

9

10

Any
2, 3

2, 3, 4

2, 3, 4, 6

2, 3, 4, 8

2, 3, 4, 5, 10

2, 3, 4, 6, 12

2, 3, 4, 7, 14

2, 3, 4, 8, 16

2, 3, 4, 6, 9, 18

2, 3, 4, 5, 10, 20

340
606

3 663
12 200
31 230
58 180
99 150

157 340
217 110
292 700

571 200
576 900
603 200
656 800
754 400
924 400

1 218 500
1 725 200
2 670 500
4 695 400

10 840 500

The second column of the table lists the number of equally spaced simple
supports which are compatible with the indicated modes of buckling. It
appears reasonably clear that the use of larger values of n will give corres-
pondingly larger computed values for N in both tension and compression.

The magnitudes of the critical load for out-of-plane buckling may be

compared with the magnitude for buckling in the plane of the ring. For the
latter case, the critical hoop force is given by the formula [1],

SEIyy
R2 • (44)
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Since Iyy, the moment of inertia about the axis normal to the web, is 779.87 in.4,

Eq. (44) yields approximately 135,000 pounds for the magnitude of the
compressive hoop force for buckling in the plane of the ring. Reference to Table II
shows that this value falls between the values for out-of-plane buckling
corresponding to modes having seven and eight füll waves. Consequently, the
sole use of Eq. (44) as a design criterion would be unconservative, and perhaps
greatly so, if the ring had fewer than fourteen equally spaced simply supports.

The critical loads shown in Table II have been computed, for simplicity,
using the indicated elastic values for the two moduli. Consequently, certain
of the results are implausibly high and exceed the yield strength of presently
available materials. These excessively high values are reduced to realistic
values by introducing an appropriate modulus reduetion factor. The correct
critical load, stress and moduli are readily found by a trial-and-error procedure
starting with, say, the elastic results. One now chooses a stress, determines
the corresponding moduli from the proper stress-strain curves, and reduces
the computed hoop force in the ratio of the reduced modulus to the elastic
modulus. The stress corresponding to the reduced hoop force is now compared
with the previously assumed stress. If these values eoineide, the reduced hoop
force is the critical force. If not, a new trial value of stress is chosen and the
comparison process is repeated.

Since the radial loads act inwardly, the tensile critical loads listed in
Table II are irrelevant and may be disregarded. If, however, the ring were
being designed to take the thrusts of a large number of arches as for a ribbed
dorne, the tensile values would be significant. This would also be true if the
ring were being designed to support a shell dorne, particularly if the dorne

were somewhat less than hemispherical.

Discussion

If the supports are not equally spaced, the ring ordinarily will buckle in
a mode which is not sinusoidal. It is also conceivable that, even though the
supports are equally spaced, the ring might buckle in a mode which is not
sinusoidal. One may speculate that this is a likely possibility if the number
of equally spaced supports is large or moderately so. Under these circumstances,

a buckle might have an essentially local character. Thus, one might assume
a mode which is almost a half-sine wave in one interval between two supports
and with similar alternating forms but having continually attenuated amplitudes

in successive intervals in both directions from the large buckle. Although
Eqs. (35) and (36) are still applicable, the rigorous mathematical Solution is
quite difficult and tedious. One would have to write the general Solution of
this eighth order system for each interval with eight arbitrary constants or
parameters. Continuity and compatibility conditions are then written to join
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the successive segments of the ring and will form a set of linear, homogeneous,
algebraic equations. The requirement that the determinant of the coefficients
of the arbitrary constants vanishes will provide the characteristic equation,
and the lowest root of this polynominal equation will correspond to the critical

load.
In view of the diffieulty associated with obtaining a rigorous Solution for

this case, an approximate and generally conservative Solution may be

proposed. Such a practical Solution is obtained by taking the mode in the form

v F sm—, 6 0sin— (45)
cc a

instead of using Eqs. (37). Here a is the angle subtended by the are or interval
between two adjacent supports and 9 is measured from one of these supports
toward the other. The consequence of this assumption is simply to replace n
in the following equations and in the calculations by the term 7r/a. This assumed
form of Solution disregards the constraint imposed upon the interval in which
the major buckling occurs by the somewhat attenuated buckles of the
successive intervals.

When only buckling in a regulär mode such as implied by Eqs. (37) is

involved, the great increase which may be obtained in going from an even
number of equally spaced supports to an odd number deserves notice and
comment. For example, if the ring is supported at four points, it may buckle
in an unsymmetrical mode having as few as two füll waves. As shown in
Table II for n 2, the critical compressive load is 606 pounds. If the ring
were supported at five points, it could buckle in a sinusoidal mode with a
minimum of five füll waves. The critical compressive load for n 5, is 31,230

pounds. Thus, by adding one support, a very great increase in the critical load
has been obtained, at least theoretically.

The appreciable increase in the magnitude of the critical load which is
obtained by going from four supports to five is not wholly unexpected, although
the amount of the increase in this particular problem is somewhat surprising.
However, an even more striking Situation is disclosed if one compares the
critical loads for the cases of five and six supports. In the case of six equally
spaced supports, buckling modes can occur with as few as three füll waves.
For n 3, Table II shows the compressive buckling load to be 3,663 pounds.
Assuming that the ring on five supports would buckle in a regulär sinusoidal
mode, one sees that an increase of about 750 per cent would be obtained by
reducing the number of supports from six to five. This comparison strongly
suggests that the designer should contemplate the use of an odd number of
supports if these are to be equally spaced. While these conclusions have been
based upon the assumption of buckling in a regulär sinusoidal mode when the
number of supports is odd as well as even, it is entirely likely that this
condition will be very nearly attained if the number of odd supports is not large.
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One need only consider the fact that, in the case of an odd number of supports,
a mode having essentially one-half wave between supports must have an
attenuating form so that compatibility can be satisfied in the complete ring.
In the case of a small number of supports, it is doubtful that sufficient atte-
nuation could occur in the limited number of successive spans on either side
of the major buckle and still retain the nearly sinusoidal mode with one-half
wave per span which is associated with this minimum critical load.
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Summary

A theory is presented for out-of-plane buckling of circular rings of I-section
and the case of buckling of a complete ring under the action of a distributed
radial loading is considered. Formulas are derived which give the critical
magnitudes of the hoop forces associated with the out-of-plane buckling
modes. The problem is of interest, for example, in connection with the design
of the compression ring at the outer boundary of a suspended roof, and
occasionally in connection with the design of the thrust ring at the base of a

ribbed dorne.
For simplicity, the theory is presented for sections which are symmetrical

about a radial axis but which need not possess a normal axis of symmetry.
Although the formulas presented are valid for singly and doubly-symmetric
sections, the theory may be extended to unsymmetrical sections.

In addition to the possibility of out-of-plane buckling of a ring when
subjected to a loading which produces a compressive hoop force, it is shown that
a ring may also buckle, under certain conditions, when the hoop force is tensile.
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Resume

L'auteur etudie le flambement lateral des anneaux circulaires a section en
double-te et examine le cas d'un anneau ferme, soumis ä une charge radiale
repartie. II etablit des formules donnant les valeurs critiques des efforts
circulaires, associees aux divers modes d'instabilite laterale. Le probleme se pose,

par exemple, pour l'etude de la ceinture comprimee des toitures suspendues
et, parfois, pour l'anneau inferieur des coupoles nervurees.

Pour simplifier l'expose, l'auteur n'envisage que des sections possedant au
moins un axe de symetrie, contenu dans le plan de l'anneau. Les formules
presentees sont valables pour des sections ä symetrie simple ou double; la
theorie peut cependant etre etendue ä des sections quelconques.

L'auteur montre que, sous certaines conditions, un anneau peut flamber
lateralement, non seulement lorsqu'il est comprime, mais meme lorsqu'il est
soumis a des charges produisant une traction circulaire.

Zusammenfassung

Es wird eine Theorie für das Kippen von Kreisringen mit I-Querschnitt
entwickelt und der Fall des Kippens eines geschlossenen Ringes unter einer
verteilten Radialbelastung untersucht. Es werden Formeln hergeleitet, welche
die kritischen Ringkräfte bei verschiedenen Arten von Kippen angeben. Das
Problem ist z.B. im Zusammenhang mit der Ausbildung des Druckringes am
Rand eines Hängedaches und gelegentlich im Zusammenhang mit der
Ausbildung des Fußringes einer gerippten Kuppel von Interesse.

Der Einfachheit halber werden nur einfach-symmetrische Querschnitte
untersucht, wobei die Symmetrieachse mit der Ringebene zusammenfällt.
Obwohl die angeführten Formeln nur für einfach- und doppeltsymmetrische
Querschnitte Geltung haben, so kann die Theorie ebenfalls auf unsymmetrische
Profile ausgedehnt werden.

Es zeigt sich, daß ein Ring nicht nur unter Ringdruckkräften, sondern
auch unter gewissen Umständen, bei äußeren Belastungen mit entsprechenden
Ringzugkräften auskippen kann.
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