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Les bordages raidis en construction hydraulique
Die versteifte Stauwand im Wasserbau

Stiffened Steel Plating in Hydraulic Construction

N. M. DEHOUSSE
Agrégé prés la Faculté des Sciences Appliquées de 1'Université de Liege (Belgique)

Dans ce qui suit, notre propos sera d’examiner 1’étude élastique d’éléments
cylindriques de section circulaire raidis par des nervures placées orthogonale-
ment dans le sens des génératrices (nervures longitudinales) et dans le sens
des directrices (nervures transversales ou circonférentielles).

De tels éléments sont appelés orthotropes en faisant usage d’un néologisme
consacré signifiant qu’il s’agit d’une anisotropie, ici structurelle, et offrant
deux directions privilégiées orthogonales.

I. Rappel sommaire de la théorie des coques lisses

La méthode la plus connue pour le calcul approché mais tres exact des
coques cylindriques lisses est sans doute la méthode D.K.J.1) (Donnel-von
Karman - Jenkins). Les notations classiquement employées, lors de 1’exposé de
cette méthode, sont reprises & la fig. 1 pour les coordonnées et les déplacements
et & la fig. 2 pour la charge extérieure et les éléments de réduction, dans chaque
section, comptés par unité de longueur. Pour alléger les écritures, nous ferons
usage des signes

, w of : (. of

/" pour désigner 3% et f° pour désigner 7o

La méthode D.K.J. exprime comme suit les éléments de réduction en
fonction des déplacements:

1) De berekening van de spanningverdeling in cirkelcilindrische schaaldaken volgens
de D.K.J. methode — 1.B.C. mededelingen, Delft, 1956.
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K " ..
M.’zz ="q'2—(w qz +vw ):

(1)
K .
MmQ):M(px:?(l_v)w N

\ E3s E &
ou D= 1,2’ K= l—gﬁ-s_—;z—j-
cient de Poisson correspondant.

Le matériau constituant la coque lisse est supposé homogene et isotrope.
Par les équations d’équilibre entre les éléments de réduction, on peut éliminer

ces derniers pour n’obtenir finalement que les 3 équations suivantes en u, v, w:

, £ = module élastique du matériau et v = coeffi-

D D 1-

7 &It i)t g T +gvT)+ X =0,

D 1-—
52—(@;"+w'+vgu")+?_?f(u-'+qv”)+Y=0, (2)

D K 2K
?(v'+w+vqu')+§4—w""+-qu"”+Kw”” =Z.

Il est aisé, entre ces trois relations, de faire disparaitre deux des déplace-
ments (u et v) en ne conservant que le troisieme, on obtient ainsi 1’équation
du 8° ordre en w:

D *w 1 3Y

41 2 ey A2 7 O
Kq4 w+q 8%4( v?) =q4 Z+q3 PP
) 1 #Y 1 #X 4 *X
—————— — v

Vg oxtee @owogd | oad’
\ e 1
T o2 q2 o (PZ

+(2+

(3)

Le probleme du traitement des coques cylindriques lisses se réduit ainsi &
I’étude d’une équation aux dérivées partielles linéaire.

Lorsque w aura été déterminé, on pourra en déduire « et v par les équations
(2) et les efforts par les équations (1) pour autant que les conditions aux limites
aient été imposées sur les bords:

x=0, et =20
x =1 P = P

On ne dispose pas & ’heure actuelle des solutions correspondant & n’importe
quel type de conditions aux limites.

On aborde plutét le probléme d’une maniére inverse en étudiant les con-
ditions aux limites qui correspondent & des solutions possibles.

C’est ainsi que les solutions

.. NTX .. mm
w= 2 W,f,(p)sin et w= > W, fn(x)sin g
n=L2... m=1,2... Po
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sont le plus fréquemment employées.

Elles correspondent, la premiére & des appuis simples en =0 et z=1 et
des appuis quelconques en ¢ =0 et p=¢,, la seconde & des appuis simples en
=0 et p=¢, et des appuis quelconques en x=0 et z=1.

Ce sont heureusement des conditions d’appui trés fréquentes en pratique.

IIL. Les équations différentielles des coques raidies

Pour le calcul des relations donnant la valeur des efforts par unité de lon-
gueur (1), on procéde & des intégrations sur 1’épaisseur de la coque; ¢’est ainsi
que

ou o, est I’effort par unité de surface (tension) sur laquelle il agit normalement
et dans le sens des ¢.

C’est en remplagant ultérieurement o, par sa valeur, en fonction des déplace-
ments, que l’on obtient selon la méthode D.K.J. I’expression de N, écrite
précédemment.

Dans le cas d’une coque raidie, I’expression précédente de N, ne sera
valable que sur la surface de la coque non raidie.

Au droit d’un raidisseur on devra écrire selon la figure 3:

j; 0 d dz—}-_fcr elpdz,

‘P
ou w, est ’aire de la section du raidisseur.
On aura ainsi:
N,= | o,d So,52d
= o 2+ O,y 2
i °d,
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si bien que 1’on pourra écrire d’une maniere générale:

+8/2 e
N(p =—87f2 O'q,dZ"I"f(x)d!‘q)O'q,jq;dZ,

en admettant que o, ne varie pas sur la largeur ¢, ni sur d, et en remarquant
que e, varie en fonction de z dans le domaine w,,.

Dans la formule précédente, w, représente la section du raidisseur sous la
coque; d’autre part, f(z) est une fonction nulle partout sauf au droit des
raidisseurs ou elle prend la valeur unité (fig. 3). f (x) répondra & 1’expression:

f(x){g’;‘{ﬂ[x_(m%_ge)]_H[x_(b+k€q,+gz)]},

en employant la notation H (x) pour désigner la fonction d’Heaviside.
Si I’on substitude & o, son expression en fonction de u, v et w, de la, méthode
D.K.J., on obtient la valeur de N, dans la coque raidie:

D Ef(fv w w'’
N, =—@W+wt+vqu')+f(x)- [(——+—)w ——5h ],
°*= g ( 9 I d, |\'qg " q)PT g
ol %, est le moment statique de w,, calculé par rapport & la surface médiane
de la coque proprement dite.
11 est évident que cette facon de procéder appliquée aux raidisseurs longi-
tudinaux va donner naissance a une fonction

()= Y1 ag—(v-+ies—5)] 2 [un - (i )]

en tout point analogue & f (x).

Si I’on opére sur les efforts linéaires en extension, flexion, cisaillement et
torsion selon z et selon ¢ on peut obtenir les relations suivantes analogues aux
relations (1) mais valables pour la coque raidie.

Q,
Ny =2 +wvgu) +f @) 2200 +w) g0

N, =Lwqrvwire) @) Qu —Hu',
q 2
D 1—yp u’ (4)%)
D 1-— . , ,

Nop = —5— W +av)+£(9) Sav',

2) Les bordages raidis en construction hydraulique — N. M. DEHOUSSE. Ed. Derouaux,
Liége 1961.
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My = gt = @) [ ) - 2w,

K " Y ’ ”
M, =z ¢+vw) @) [Hyw' — Ryw'],

K w-/ w (4)
Mq,x:—q—(l—v)w"+f(x) [TQ)—E—‘}-LQ,Z—],
Mz(p=§(l—v)w-/+f((p) [Txu; +var].

Pour simplifier les écritures, les notations suivantes ont été introduites:

Ew Eh EI
dq,¢=9¢’ dq:p = Ho. _d“f = £y
G, QK 2y G2,
= S T T Tl Uy

d P d ' d @’

@ P P

x x T
GQ, GK,p A\, G2,
7= Se i =T S =L

représentent la surface de la section des raidisseurs,

h, et h, sontles moments statiques des w, et w, calculés par rapport
a la surface médiane,
I, et I, sontles moments d’inertie des mémes w, et w, calculés par

rapport a la surface médiane,
K,,et K,, constituent les modules de torsion des raidisseurs,

enfin Q2 7, A, et A, marquent la contribution des raidisseurs au cisaillement:
dans 1’hypothése ou les raidisseurs sont des profilés en té soudés sur ou sous
la coque, avec leurs semelles paralléles & la coque, £, et £ sont les sections
réduites de ces semelles et A, A, sont les distances de la surface médiane de la
coque au centre de gravité des sections réduites.

Les w, I, ', K, K,, sont toujours positifs; les » sont positifs dans le
sens ou z est positif donc si les raidisseurs sont sur la coque (a I’extrados), les A
sont positifs dans le sens des z négatifs donc si les raidisseurs sont sous la
coque (& l'intrados).

Toutes ces caractéristiques sont & calculer pour chaque type de raidisseur:
il est évident que 1’on n’est pas tenu & respecter la seule forme de profilé en té.

En suivant un processus analogue & celui des coques non raidies, soit en
éliminant par les équations d’équilibre les éléments de réduction entre les
relations (4) et les équations d’équilibre, on voit apparaitre les trois équations
différentielles suivantes qui sont ainsi celles des coques & nervures:
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D(u// + v-/+ wr)+D l_v(u--+ ?J.,)
q 1 P 2 )

S
HH@Fu +f9) (@'~ How") + X =0,

-D o . .7 - ot ”
—(F(v +w +vqu'') 3 (' +qv")
1
+f(x)—é§[!2q)(v"+w ————w ]+]‘ )8, v"+Y =0,

, 5
P—(v'+w+vqu’)+—lgw' +2—]£ +K " q* i
q? q* q* q*

17182, . 2H, .. Hy, ... Ry ... w” u"']
+f(x)—|— (v +w)— w'—— v —w "+ T + L
4 )q[q( ) q? q g ? q ? q

LR N/4

1
+f (‘P)&" [Tw + Lx’l)'” -—quu”’ + quw’”’]

1 1
+f (¢)3(%w"'+va") +f (x)ai (T,w"' +L,u")=Z

III. Discussion des équations différentielles des coques raidies

1. Les trois équations (5) méritent un examen sérieux, car elles sont la clé
de la résolution des coques raidies.
Dans les équations en cause, on découvre trois séries de termes:

a) ceux représentant la charge appliquée: X, Y et Z;
b) ceux en D, K, u, v et w et qui sont communs aux équations (5) des coques
raidies et aux équations (2) des coques lisses;

c) ceux en f(x), f(p), f' (x) et [ ().

La signification en est évidente: la charge appliquée est reprise partielle-
ment par la coque et partiellement par les nervures; le rc‘)le des raidisseurs est
ainsi matérialisé par les termes en f (x), f(¢), ' (z) et f (¢

Si 'on pose f(x)=f (x)=0, on se trouve en presence d’une coque raidie
seulement dans le sens longitudinal.

Si ’on pose f(¢)=f (¢)=0, il n’y a que des nervures transversales.

Si enfin f(z)=f (x)=f(p)=f (p)=0, on a affaire & la coque non raidie.

2. Le role des raidisseurs se caractérise par quatre types de forces. Les
trois premiers sont ceux des termes en f(x) et f(p)

S
1) . 1/ "
XO — (__2_u et (qu "wa )suivantx:
q suivant ¢

YO = —1— I:.Q(p (v +w) —%w] et (Sx'U”)suivantaca

2
q suivant ¢
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Z0=l[_q_,( +w)_2lz¢w..___f-zzgv...+_R%pw....+_77_q)_w..,,+L¢L:l ’
qL49 q q q q q ]suivant ¢
et 1 [Tx v _ Lqu" + Roquw™ + va"’]

q q suivantz

Xy, Y, et Z, sont des pressions agissant sur la surface médiane de la
coque et le long de bandes dont la largeur est d, suivant x et d, suivant ¢.

Sur la largeur des bandes, ces pressions restent constantes.

Le quatriéme type de force est celui des termes en ' (z)et f (¢).

De la définition des fonctions f (x) et f (@) on peut écrire:

e Z{s o= (b ey 22)] <5 = (b4 ke, )],
F@r =Y ploe— (v 4ieg)| -3 |ae-(vrier ) )

out & (x) est la fonction de Dirac dont 1’existence a été consacrée par les physi-
ciens et justifiée par des mathématiciens tels que L. Schwarz (Théorie des
distributions).

On sait que la fonction 8 (z) est nulle partout, sauf & ’origine ou sa valeur
est infinie de telle sorte que

et

“+ o
J o(x)dx =1.
La plus importante propriété de cette fonction est celle qui lui permet de
sélectionner dans n’importe quelle autre fonction une valeur particuliére:

+ o0
J 8@—a)f @) =)
Le calcul symbolique montre que sa relation avec la fonction d’Heaviside
est trés simple:
H (2) = 8 (2).

On sait en effet que la dérivation des fonctions symboliques est définie a
partir de la propriété d’intégration par parties:

~+ 0 + o
I s@f@de=~ | ['@s@de,

ou s(z) désigne une fonction symbolique et f(x) une fonction dont la seule
restriction est de s’annuler en dehors d’un intervalle fini.

Dans la présente note, les fonctions f () sont précisément de ce type et la
substitution de & (x) & H' (x) est licite.

Dés lors, il apparait que les termes en f' (x) et f* (p) symbolisent des forces
concentrées dans un systeme de forces réparties.
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Comme ils font intervenir une série de fonctions 8 agissant en des points
distants de d, ou d, et que ces fonctions & sont précédées de signes différents,
les termes en f'(x) et f (p) définissent des couples de forces radiales donc
normales & la surface.

Leur valeur est ainsi

1 et . .
Upp = ?IE(Tq)w +Lyu'")d, suivant ¢,
T{l) (¥/4 14 L]
et Uyr = —El~w +L,v")d, suivant x.

Le probléme de la coque raidie peut ainsi étre ramené & un probléme de
coque lisse: cette derniére étant chargée des forces extérieures et des X, Y,
Z, et U, adéquats (fig. 4).

o, S

d

Les X, Y,, Z, sont des pressions agissant sur des bandes de largeur géné-
ralement faible (d,,d,).

3. Pour rendre la suite de 1’étude plus abordable, bien qu’il n’y ait aucune
impossibilité théorique & opérer autrement, on supposera les pressions en cause,
réduites & 1’effort correspondant & une intégration dans le sens de la largeur
de la bande.

Ainsi plutét que de parler de pressions X,, Y, et Z,, on opérera sur des
Xod,, Yyd, et Zyd, qui sont des lignes de forces dans le sens des g.
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De la méme maniere, les bandes longitudinales de largeur d, seront rem-
placées par des forces linéaires

Xod,, Yod, et Z,d,.

Enfin, les moments U, et U,, constitués de forces égales mais opposées
et distantes de d, et d, seront remplacés par des lignes de moment de méme
intensité.

Ce procédé est d’autant plus correct que les largeurs d,, et d, sont petites.

A ce stade, le calcul de la coque raidie est ramené a celui d’une coque lisse

chargée de forces extérieures et de lignes de forces et de moment le long des
nervures.

4. D’autres équations peuvent étre déduites des équations (5). Notamment
of

celles des plaques raidies qui s’écrivent avec gy = 1o

D
D1¢"+va°’+?(1 —v)u” +f(x) Spu* +f(y) (2w —H,w")+ X =0,

D
D(v°°+vu°')+~2ﬁ(l —v) (W + ")+ f () (2,07 = H ,w™°)+f(y) S,»"+ Y =0,

K wo° + 2 K w°!’ _|_Kw/m+]t (.Z') [_Hq)vooo + Rq) w°°%° +T<pw°°” + L(puoo’]
+ f (y) [Tx w®°” + Lx W — Hq; w” + Rx ’LL’””]
+ ) (T + L") +f (2) (T w* + L,u™) = Z.

En ne considérant que les déplacements verticaux w, on aura simplement:
KwOOOO + 2 KwOO// + 1{ w/l// +]( (m) [R(p wOOOO + T(p wOOll] +f (y) [Tx wOOII + wa/lll]

) [Ty w] +f (@) [Tyw™] = Z.

Enfin, il est possible de déduire de (5) les équations différentielles que 1’on
obtiendrait en répartissant les raideurs des nervures uniformément entre deux
nervures.

P
2

IS

’ m
-

m
_6




LES BORDAGES RAIDIS EN CONSTRUCTION HYDRAULIQUE 47

Pour cela, et conformément & la figure 5, on voit qu’il suffit de remplacer

f () par une fonction constante: ?,
@
x

f(p) par une fonction constante: ﬂ—,

et de poser f' (z)=f (¢)=0.

iy d d . ; s
On peut ensuite incorporer les facteurs —% et — dans les raideurs et écrire
€

® €z
d Ew d Eh
A Hy= g =5
4 (4 P 4
o~ b _Hos - g e _ by
€, €, €, €,
@ ¢ €(p €(p ’ ¢ E(P E(p ’
pro_p % _ Bl o _ g % _ G2
* xéx ex ’ * N €x 6.’12 ’
Tr =Tq,fli’:ﬁf{w, L;=L¢ﬁ=ﬁa.@;,
E(p E(p G(p 607
rr— 1, % =EKW, -r1% _ Ao
Ex €, € €p

Dans ces conditions les équations en cause se transforment en 3 équations
différentielles & coefficients constants:

D 1-— Sy
’J(ullq+VU.l+Vw,)+E§ 5 V(u"-l—qv")—l—ﬁu"—{—.Q;u”—H’;cw'"—}-X — 0,
D D 1—
?(U"—Fw'—#vqu")%——q— —2¢j(u"+qv”)
Qr Hr,
+?:('U“+w.)" q;pw.“-}-S;U”‘l'Y—_—-O,
6
D . ’ K - 2K Ry K m .9 QS) . ( )
—q—z(v +w+vqu)+—qzw —l—?w +?w q +?(v +w)
2 Hr LT r r r r
_ 3(pw.. ‘;pu“’*—H;DU.“—*-EZEMN“+Zgw””+'£§w””
q q q q q q

1
—H;um-l’"R; w””—i—L;gv'” — Z.

Dans le cas fréquent ou les nervures sont minces dans le sens paralléle a la
surface médiane de la coque, (d, et d, petits) on peut admettre que les efforts
de cisaillement sont repris uniquement par la coque seule et dans les équations
ci-dessus, les coefficients 87, S, L7 et L, disparaissent.
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On retrouve alors les 3 équations différentielles mentionnées par Mas-
SONNET 3).

IV. Principe de résolution des équations des coques raidies

La valeur des efforts X,d,, Y,d,... Z,d, dépend essentiellement des
déformations finales u, v et w soit donc de la solution.

C’est & cause de cette caractéristique que leur détermination ne peut se
faire qu’au moyen de relations intégrales.

Dans les calculs du présent paragraphe, on a considéré seulement 3 des 4
efforts linéaires dans le but de soulager les écritures.

Formellement les U, seront omis ici et seuls les X, ¥, et Z, seront pris en
considération.

Il n’y a évidemment aucune difficulté de principe & inclure les U, dans les
formules qui vont suivre.

Lorsque la coque raidie se déforme, les efforts précités varient de point en
point le long des nervures.

Supposant les variations connues nous les désignerons par

F, (ke,,p) pour Z,d, F, (z,le,) pour Zyd,
D, (ke,,p) pour Y,d, D, (x,le;) pour Y,d,
¥, (ke,,p) pour X,d, Y, (x,le;) pour X,d,

ou k et I fixent respectivement la position de la nervure circonférentielle et
de la nervure longitudinale.

Ainsi donc F,(ke,,p) représente la variation selon ¢ de la force radiale
exercée par la k'®™° nervure circonférentielle sur la coque lisse et ¥, (z,l¢,)
représente la variation selon z de la force longitudinale exercée par la [i¥me
nervure longitudinale sur la coque lisse.

On suppose ensuite que 1’on soit en mesure de calculer les déplacements
u, v et w de la coque lisse mais sollicitée par

a) une force concentrée radiale unitaire,
b) une force concentrée circonférentielle unitaire,
c¢) une force concentrée longitudinale unitaire.

Ces déplacements seront désignés respectivement par
Uy Yy, Wy
Ug, Vg, Wg-.
Uy, Vo5 Wo-
Ces u, v et w sont ainsi les fonctions de Green associées aux systémes des
3 équations différentielles des coques lisses:

3) Plaques et coques cylindriques orthotropes & nervures dissymétriques, CH. Mas-
soNNET, A.I.P.C. Volume 19, Ziirich 1959.
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FX(u,v,w)=0, FX(u,v,w)=0,
FY (u,v,w) =0, FY (u,v,w) +d6(x—%,p—¢) =0,
FZu,v,w) =6(x—2%,¢—¢), FZ(u,v,w) =0,

FX(u,v,w)+8x—%,¢—¢) =0,
FY (u,v,w) =0,
FZ(u,v,w) =0,

ou FX (u,v,w), FY (u,v,w) sont les termes des équations différentielles (2)
non compris les termes de charge et ou T et @ fixent la position de la force
unitaire concentrée.

Ainsi les u,v,,w, ... w; dépendent de deux types de coordonnées: celles
fixant la position de la force concentrée (z,) et celles qui fixent la position
des points courants (z, ¢).

On peut obtenir deux expressions différentes des actions créées par les
nervures.

La premiere est celle des F,,®,,...¥,. :

Pour obtenir la seconde, il suffit de remplacer dans les Z,d,,, Y, d,, ... X,d,
les déplacements u, v, w par leur valeur réelle.

Pour y arriver, on substitue d’abord dans ces expressions, les déformations
créées par des forces unitaires:

Uy, Vy, Wy . W

On obtient ainsi de nouvelles expressions qui seront désignées par
(Zoydp) 4 (Yodp)s (Xody) 4
(Zoyd,) 4 (Ypd,) 4 (Xod,) 4 obtenues par substitution des u,,v,,w,.

..... (X,d,)p obtenues par substitution des ug,vg,wg.

..... (Xod,)c obtenues par substitution des ug, vg, we -

Ces 18 expressions sont ainsi des fonctions de x, ¢, ¥ et &.
On possede & présent tous les outils nécessaires pour égaler les deux formes
des actions créées par les nervures. On est conduit & 6 équations:

F(p(x>¢) =

(Zodog)r + 2 {J (Zody) 4 F, (k€¢,¢)qd¢}+k21{j (Zod,)pPy(ke,, ¢)qdp}
k
+ K

(Zody)o ¥y ke, @) qd e+ Z{f (Zody) 4 Fy (%, le,) AT}

X

'elb,

I T
Ms &
EPIL.7

X (x,lex)dy_c}—{-l:; ([ (Zody)o ¥, (7, Le,) AT},
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¢(p(x’q))=
k=n k=n
(Y()d(p)1+kz {_.[(Yd) F (keqw()v) Z{J YdQJ)B@qJ(keqﬂ¢)qdq—)}
=1 @ k=1 (4
+sz{_f(Yod¢)c¥'¢<ke@,¢>qd¢}+ S B, B @1 d7)
2, 4 Ay
’iz ([ (Tody) 5@y 1) A7} + ; ( (Yody)o ¥, @ le,) AT,

et 4 autres relations analogues en
Xod,, Zyd,, Yod, et X,d,.

Dans la premiére de ces équations on trouve exprimée d’une maniére géné-
rale 1’égalité entre F, et Z,d,.

(Zyd,); représente I’expression de Z,d, dans laquelle on a substitué les
u, v et w de la coque lisse: ¢’est une fonction de z et ¢.

Les expressions entre accolades sont évidentes; elles représentent 1’inté-
gration selon une fonction donnée de fonctions unitaires.

Les différents termes du membre de droite de cette premiére équation
correspondent au fait que la coque raidie peut étre étudiée par superposition
de la charge extérieure appliquée et de charges lignes de forces agissant le long
des axes des nervures.

Les 6 équations ci-dessus constituent un systéme de 6 équations intégrales
de Fredholm de la 2e espéce dégénérées en sommes, en les 6 fonctions inconnues:

F,®,%,.F,,®,%,.

Les noyaux de ces 6 équations intégrales (Z,d,),, (Yod,)4, (Xod,) 4, ..
résultent donc de l'introduction des fonctions de Green associées aux 3 équa-
tions différentielles de coques lisses, dans les expressions des (Z,d,), (¥,d,,). .

(Xpdy).

Le probléme est ainsi ramené:

1. au calcul de ces fonctions de Green,
2. a la résolution du systéme des 6 équations intégrales.

On sait qu’un moyen parfois commode pour le calcul des fonctions de
Green est de faire appel aux transformées de Laplace.

Pour que ce procédé soit réellement efficace, il faut connaitre toutes les
conditions aux limites au méme bord (probléme aux valeurs initiales).

Pour des problémes aux frontiéres, il fonctionne dans quelques cas en laissant
subsister des inconnues qui, apreés inversion, seront calculées en tenant compte
des conditions aux limites.

Ce processus, trés lourd, ne fonctionne pas ici étant donné la complexité des
conditions aux limites.

Un autre systéme est celui consistant & exprimer la force concentrée en
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série double de Fourier; on peut ainsi, en utilisant de nombreux termes de la
série, trouver une solution pour la coque appuyée sur les 4 bords

(x=0)a (x'__l), (‘P=0)> ((P=(P0)'
Tres souvent, on peut considérer les coques comme étant appuyées sur deux

bords et possédant d’autres caractéristiques sur les deux autres bords; par
exemple

l. enx =0etx =1: appuisimple
en ¢ = 0 et ¢ = ,: bords libres, encastrés, I'un libre, I’autre appuyé ...

2. engp =0et ¢ = ¢,: appui simple
enx =0etx =10: bordslibres, encastrés, I'un appuyé, 1’autre encastré...

On peut alors employer pour le calcul des fonctions de Green des séries
simples dans un procédé analogue a celui de Lévy-Estanave pour le calcul
des plaques.

On fait appel dans ce cas aux formules rappelées précédemment:

w=_ % Wpfulp)sin=7=,

n=1,2...

. m
w= > W,f.()sin ¥,
m=1,2... Po

V. Cas pratiques d’applications

Les équations intégrales précédentes décrivent 1’aspect le plus compliqué
que le probléme puisse revétir.

En fait, lors des applications & la construction métallique pratique (hydrau-
lique-aéronautique-navale) des circonstances simplificatrices permettront un
traitement plus aisé. Ce sera notamment les cas:

1. lorsque la coque pourra étre supposée appuyée sur les deux bords ¢ =0 et
@ =p, et que seules des nervures circonférentielles existeront;

2. lorsqu’elle pourra étre supposée appuyée sur les deux bords =0 et x =1
et que seules des nervures longitudinales existeront;

3. lorsque les nervures d’un cours seront trés voisines au point que leur
action sur la coque soit pratiquement continue;

4. lorsque les deux cours de nervures seront dans les mémes conditions qu’au
3. ci-dessus.

VI. Coque raidie dans un seul sens
1. Dans I’hypotheése ol la coque est raidie dans une seule direction (soit ¢,

soit x), les difficultés sont beaucoup moindres. En effet, le probléme des coques
raidies dans deux sens exige 1’étude des effets des forces locales (fonctions de
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Green) qui sont trés difficiles & obtenir alors que si la coque ne présente qu’un
seul cours de nervures, adéquatement placées, on peut se contenter de faire
appel & des forces linéaires variant en sinus ou cosinus et d’intensité unité.

Notamment, si ’on suppose que la coque repose sur les bords ¢=0 et
@ =@, d’une maniére simple, la solution qui admet un développement en série
simple de Fourier dans le sens des ¢ est applicable. Tous les déplacements de la
coque seront des fonctions circulaires dans le sens des ¢ et dés lors, puisque les
Xod,, Yyd, et Zyd, sont des fonctions linéaires des u, v et w, ceux-ci varieront
aussi selon des fonctions circulaires de p. On est ainsi conduit & 1’étude de
coques sollicitées par des lignes de force variant suivant des fonctions circu-
laires de ¢. ~

On pourrait aussi conclure & 1’étude des effets de X d,, Y,d, et Z,d,,
variant suivant les fonctions circulaires en z, dans des coques appuyées simple-
ment en x=0 et x=1.

2. Pour employer le processus décrit précédemment, il importe évidemment
que la coque considérée soit appuyée sur 2 bords et que les nervures soient
disposées dans le sens perpendiculaire & ces deux bords.

11 est alors possible d’envisager I’action de forces linéaires, agissant suivant
une directrice (fig. 6a) ou suivant une génératrice (fig. 6b), et variant dans le
sens de la nervure selon

siny @ (ou cosyp), sinAx (ou cosAzx).

Cela impose donc que dans le sens des nervures, la charge soit développée
en série de Fourier et que chaque terme de la série soit étudié séparément.

A titre d’exemple, on a considéré les cas représentés par les figures 6¢ a 6f.

Dans ces figures, les appuis sont schématisés par des hachures et la pression
appliquée est représentée en pointillés. Les pressions considérées varient selon
la loi hydrostatique: on s’est placé dans I'optique de la construction hydrau-
lique.

— Cas de la figure 6c.
Le développement doit porter dans le sens des ¢ et la charge appliquée
doit s’écrire

Z =-4d«x [Z A, sin 22%’7”70] ou 4 = poids spécifique de 1’eau

Po

9 +@o
avec A, =— sinnmpdcp

Po Po

0
. 1. 1 .
donce Z = —Ax[smw—q)+~sm377¢+—sm5wq)+ .. :Ii
P 3 @ O Po T

Les trois premiers termes suffiront en général pour assurer un bon résultat.



LES BORDAGES RAIDIS EN CONSTRUCTION HYDRAULIQUE 53

— Cas de la figure 6d.

Le développement doit porter aussi dans le sens des ¢.
On peut écrire la pression comme suit (fig. 6g)

Z = —[qeosB—qcos(B+py—g¢)]d = —qd[cosf—cos (B+py— )]

et en développant en série :

. . 2nmeo
Z-—qA[%Ansm 2%]

Pdo.

Do
2 :
avec A, = —f[cosﬁ—cos (B+po—9)] sin 7
Po J Po

Ici il faudra généralement envisager 4 & 5 termes de la série.

Appui simple

Appui simple

Appui simple

Fig. 6a Fig. 6b

X

|
|
x7
/
/
/}é
/ 7
2L L
g /
\ /

xY

Fig. 6f Fig. 6g
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— Cas de la figure 6e.
Le développement doit porter sur x et on écrira la pression appliquée sous
la forme

7 = sm—l——ésmT-l-gsmT—zsm—l—

ka

_ —-ZAZ{. ax 1. 272 1. 37wx 1 . 471'96}

— Cas de la figure 6f.
Ici, de la théorie des coques appliquée aux toitures, il est bien connu qu’un
seul terme est suffisant et dés lors la charge s’écrit simplement:

T

Z = —qd[cosB—cos (B+<p0—qp)]$sin 7 (fig. 6g).

Dans le sens perpendiculaire aux nervures, il n’y a aucune restriction a la
variation de la charge extérieure.

Si la loi de représentation varie continiiment, on peut appliquer comme
solution particuliére de la coque non raidie, celle fournie par la théorie de la
membrane.

Cependant, cette variation peut étre brusque, par exemple dans le cas de
plages non chargées.

La solution de menbrane ne s’applique plus alors, mais on peut obtenir une
intégrale particuliére & partir de la coque infinie ou de la coque compléte par
intégration d’effets concentrés.

Enfin, si sur deux bords la coque doit étre supposée simplement appuyée,
les deux autres bords peuvent connaitre n’importe quel mode d’appui (simples,
encastrés, ...). Il n’y a ici non plus aucune restriction dans ce sens.

3. Si I’on étudie, par exemple, le cas des coques appuyées sur les deux bords
=0 et p=¢,, pour déterminer I’action d’une nervure, on doit calculer les
efforts

S
Xodq,—'—q“é”d(pu .
Yyd, =q_12 Q, (v +w)—""w ]dqn
1 2 H . w"" w'’
Zyd, g[——‘p(v+ ) ——5 2w —é—gv + 2w +T, . + 1L, . ]dq,,
1 o ..
Usy = glow"" + Lyu1d,.

On connait déja la variation de ces efforts dans le sens des ¢:

X,d, varie selon sinyp, Y;d, selon cosyp, Z,d, selon sin y¢

et U,, selon sinyg.

L’amplitude de ces fonctions n’est pas connue.
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S’il y a plusieurs nervures identiques, & chacune correspond une valeur de
I’amplitude de X,d , par exemple. On peut admettre, que toutes les valeurs de
Xyd, d’une coque raidie sont des valeurs déterminées d’une fonction ¥(x).
Ainsi, on peut représenter les diverses valeurs le long de la coque:

de X,d, par ¥(x)
Y,d, par @ (x)
Zyd, par F (x)

U par 1'(x).

Og

Si les nervures sont également espacées, en faisant appel & une notation
déja introduite, on peut écrire que les valeurs des amplitudes inconnues sont
données par

¥(ke,), D (ke,), F(ke,), I'(ke,) ou k variede 14 n.

(k=1: premiére nervure; k=2: seconde nervure . .. etc.).

Pour fixer les idées, on considére une coque appuyée aux bords p=0 et
@ =¢,, libre en 2 =0 et encastrée en z=1.

On suppose, que sur cette coque on fasse agir des lignes d’efforts unitaires
selon une directrice quelconque d’abscisse k¢, .

On considere les quatre cas de lignes d’efforts de la figure 7.

On désigne par:
uy v,w, les déplacements obtenus pour la coque sollicitée longitudinalement
les déplacements obtenus pour la coque sollicitée circonférentielle-
ment

UpVpWpg

Fig. 7a Fig. 7b

Fig. Tc Fig. 7d
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U Vo We les déplacements obtenus pour la coque sollicitée radialement

u pvpwyp les déplacements obtenus pour la coque sollicitée par une ligne de
moments.

Ces déplacements dépendent ainsi de x, coordonnée courante, et de ke,
qui fixe la position de la ligne de force.

La variation dans le sens des ¢ est connue et on peut négliger d’en parler.

On remplace ensuite ces u, ... wy, dans les Xod,,... U

0p*
(Xodp)as Yody)as (Zyd,) s, (Ug,) s résultent du remplacement des w4, v,,w,
(Xody)p, (Yody)p: (Zedy)p, (Uy,)p résultent du remplacement des uy, vy, wp
(Xody)er Yody)es (Zody)os (Uy,) o résultent du remplacement des ue, vg, we
(Xody)p> (Yody)ps (Zogd,)p, (Uy,)p résultent du remplacement des up,, vy, wp

Ainsi (Y, d,,) représente la loi de variation selon z des efforts circonféren-
tiels créés dans une coque par les nervures si la coque prenait les déformations
correspondant & une sollicitation radiale selon la loi:

—1000kg/msinyp en ke,.

On peut alors écrire les quatre équations suivantes, analogues a celles du
chapitre IV et ou

(Xodq;)o: (YOd(p)Oﬁ (Zodw)o et (Uow)o

sont les valeurs des efforts créés par les nervures si la coque raidie se défor-
mait comme la coque lisse.

Y (x) = [Xodolo

H T XL P e+ 3 [Xod,1,0 (be,)
h=p 1
+k§1[X°d"’]C (kep)+ Z [(XodolpI'(key)} e 1000
?@) = Hodol
H S LT (be)+ 3 Tody)y® (ke -
k=n k=n 1
+ 3 odylo F (ke)+ 3 odyln T (hey)} 555+
F (@) = [Zydyly
k=n k=n
+ {k§1 [ZO d(p]A I}I(k G(p) + k§1 [ZO d(p]B(p (k eq))
k=n k=mn 1
+ X [Zadglo B (lbey)+ 3 [ZydylnT (bep)i 1505
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F(CL‘) = [UO(D]Q

+{ Z [UOq)]A kZ= Ozp]B ke(p) (7)
k=n 1
+ Z [Uoglc F ; Uooln I'(k €4)} 7505 -
Le facteur ;oo 000 est présent car les u 4,v,,...,w, ont été calculés pour des

charges de 1000 kg/m ou de 1000 kgm/m.

Ces équations constituent un systeme de 4 équations intégrales de Fred-
holm dégénérées, qui définissent les fonctions ¥ (x), @ (), F (x), I (x).

Dans ces équations, les [Xd,],...[U,,]lp dépendent de z et de ke, les
[Xodylo- - - [Ugplo ne dépendent que de x.

Le probléeme revient ainsi & la recherche des fonctions ¥ (z), @ (x), F (x)
et I’ (x).

Le calcul des u 4, v, w,, ..., w, précédents est trés long et de ce fait aussi
le calcul des [Xyd ] ... [Uy,lp.

En effet, si ’on désire calculer par exemple les ., vy, wy, on doit done
faire agir sur une coque ayant les conditions d’appui indiquées, une force
linéaire de —1000kg/msiny¢ suivant la directrice x=Fke,,.

11 n’est pas possible de laisser k£ sous forme de paramétre.

En effet, la solution du probléme réside dans la superposition d’une solu-
tion particuliere et de la solution générale.

Comme solution particuliére, on adopte celle de la coque infinie.

La solution générale comporte 8 constantes qui doivent étre fixées en expri-
mant qu'en x=0 l’appui est libre (M,=N,=@,=N,,=0) et qu'en x=I{
P’appui est encastré (u=v=w=w’"=0).

La valeur des constantes dépend donc de la solution particuliére c’est-a-
dire de la position de la ligne de force considérée.

Donc pour k=1 (force linéaire a la Ire nervure), il faut calculer les 8 cons-
tantes, recommencer ensuite pour k=2 ...

Lorsque ce travail est fait, on dispose alors de n formes de u,, vy et wg.

Les mémes opérations sont a répéter pour

Uy, Vy, Wy, Up,Vp, W €6 up,vp,wp.

Ce travail est nécessaire si I’on désire exprimer les conditions aux limites
dans les équations (7).

On peut heureusement s’en dispenser, en exprimant les conditions aux
limites «extérieurement» a ces équations et en ne les exprimant qu’une fois
au lieu de 47 fois comme dans le systeme précédent.

11 suffit d’opérer sur des coques infinies judicieusement chargées.

La premiére opération consiste a étudier une coque infinie dans le sens des
x, raidie comme doit 1’étre la coque finie, et chargée des forces extérieures
(voir figure 8 — premier stade).
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Dans ces conditions, ke, peut rester dans les relations des déplacements

U4,V ... Wwn sous forme de parametre.

L’effet de la force considérée, aux différentes positions %, s’obtient aisément
par glissement de la fonction précedente parallelement a elle-méme.

Les expressions [Xyd,]4...[U,,]p sont ainsi calculées une seule fois pour
toutes.

x=0
Premier stade Deuxiéme stade
x=1 =1 x=1
—
x=0 x= 0 x=0
Troisiéme stade Quatriéme stade Cinquiéme stade
Fig. 8

Les valeurs de [X,d,], . . - [Uy,lo dépendent des valeurs de la coque infinie
lisse: on les obtiendra par intégration de la force linéaire suivant la loi donnée.

Les 2°, 3°, 4° et 5° stades sont définis & suffisance par la figure 8.

11 faut faire agir sur la méme coque infinie et raidie des lignes d’efforts en
x=0. Par simple retournement, les résultats obtenus sont valables pour z=1.

Il importe de remarquer que ces opérations s’expriment mathématique-
ment par la seule modification des termes de charge [X,d, ]y, [Yydylo, [Zodylo
[Uylo des équations (7). .

En somme, on remplace le probléme posé par 5 problémes élémentaires.

Par une adéquate superposition des 5 cas précédents, on peut exprimer les
conditions aux limites en =0 et x=I[: on voit que ces conditions ne sont
alors imposées qu’une seule fois.

On constate donc qu’il faut résoudre les équations (7) en ce sens que les
fonctions ¥ (z), D (z), F (), I' (z) sont & déterminer & partir de la coque infinie.

Les méthodes connues de résolution des équations intégrales sont appli-
cables.

En fait, le probléme se pose trés bien pour une résolution directe par collo-

cation.
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On peut écrire les equations (7) aux différents points ke, (k=1,...,n) et
prendre comme inconnues les valeurs ¥ (ke,), D (ke,), F (ke,) et Uy, (ke,).

On construit ainsi un systéme de 47 équations & 47 inconnues qui sont
précisément les effets des nervures sur la coque.

Dans le cas d’un grand nombre de nervures, le systéme devient lourd mais
on peut alors le ramener & un systéme de 16 équations & 16 inconnues (au
maximum dans le cas le plus général) en faisant usage d’une formule d’inter-
polation.

VII. Application au calcul d’une porte secteur

Dans les notes qui suivent, on a envisagé 1’étude d "une porte secteur d’écluse
répondant aux caractéristiques suivantes:

Hauteur: 11 m,
Ouverture: 90°,
Rayon: 10 m,

Epaisseur du bordage: 8 mm,

Matériau: acier.

La pression hydrostatique est supposée varier de 0 au dessus de la porte &
11000 kg/m? au bas de la porte. Le cas d’une revanche pourrait étre étudié
sans difficulté et exactement de la méme maniére que le cas actuel.

La porte comprend 4 raidisseurs distants de 2,2 m et obéissent aux carac-
téristiques reprises a la figure 9.

Le bordage sera fixé par rivure, sur les quatre pans de charpente extrémes,
de sorte que I’on peut admettre un appui simple sur les 4 bords.

£ 90° 10m
%{ \i—/ 8mm
- &
gl 3 /
1§
S ? 100mm
. N
\
/ \
// 10mm &\\\\\\\\\\V -

11000 kg, / 2
A“ ) 50mm

Fig. 9a Fig. 9b
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On pourra alors écrire la charge appliquée sous la forme:

. 1. 3 4
Z=—Ax[smﬂ+—sm ﬂ(P---]——,
Po 3 Po m

. 41 . 1.
soit donc Z = —1000x— [S1n2<p+§sm6qo+---]kg/m2.
. aT '

Dans cette étude, le premier terme sera étudié et la charge sera ramenée a

Z = —1000zsin 2 ¢

4 .
donc au facteur — prés c’est le premier terme.

Dans le cas particulier actuel il a été supposé puis vérifié que le role joué
par les moments linéaires était faible et que le systéme de 4 équations pouvait
alors se ramener & un systeme de 3 équations entre les 3 fonctions ¥, @ et I':

¥(x) = [Xod,l
1 k=p k=4 k=4
+o5se {k;[XO d,)4 ¥ (k2,2) +k§1[X0 d,]5® (k2,2) +k§1[xo d,lo F (k2,2)},

o (x) = [YO d(p]ﬂ

1 k=t

k=4 k=4
+ o0 2 oL P22+ 3 H 1,0 (22)+ 3 (Hdglo F (22,

F(x) = [Z0d¢]0

1 k=4 k=4 k=4
{3 [Zd, ) P (k2,2)+ Y [Zod)p D (k2,2)+ X [Zodylo F (k2,2)}.
1000 k=1 k=1 k=1

Le systeme de 12 équations & 12 inconnues auxquelles les relations (8)
conduisent, a été résolu par l'ordinateur I.B.M. 650 du Centre de Calcul
numérique de 1’Université de Liége et a fourni les résultats repris ci-apres.

Pour le premier stade: coque infinie raidie et chargée des forces extérieures.

Poshion ds la ¥(z) en kg/m D (x) en kg/m-103 F(x) en kg/m-103
nervure
2,2 m — 3842,045 757 456,220 318 219,220 737
4,4 m —2672,008 054 455,918 807 219,077 379
6,6 m —1483,345 455 456,410 427 217,862 818
8,8 m — 271,169 789 455,678 744 218,664 457

Lorsque le travail de calcul des fonctions ¥, @ et F est terminé, il reste
alors un travail important mais systématique de superposition des effets pour
obtenir notamment la valeur de v, w, N, et M, dans la coque et surtout aux
points =0 et x=1[ ou les conditions aux limites devront étre réalisées.

Par exemple, le calcul de la déformation radiale est opéré selon la formule:
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w = w0+kz4wA’P(k2,2)+ Dwp®(k2,2)+ X we F(k2,2).
k=1 k=1 k=1

Il en est de méme pour les autres effets.

Le second stade consiste dans le calcul de la coque infinie raidie et sollicitée
par une force radiale unitaire de 1000 kg/msiny ¢ en x=0 (fig. 8).

Le mode d’opération est exactement le méme que précédemment et les
noyaux des équations (8) sont déja calculés. La seule modification par rapport
au cas du premier stade, réside dans la force appliquée, qui ici n’est plus la
pression hydrostatique mais une force radiale unitaire en x=0.

Le méme processus s’applique aux autres stades de calcul.

On a obtenu les solutions suivantes:

Position de Sollicitation ¥ (x) D (x) F (x)
la nervure en kg/m en kg/m en kg/m
2.2 + 75,452 + 7781,654 +3739,249
4.4 + 95,429 +7773,343 +3735,366
6.6 + 114,501 + 7764,189 +3730,921
8.8 + 132,990 +7753,946 + 3725,929
1000 kg/m
2.2 l — 37,723 —3891,195 —1869,806
4.4 — 47,711 —3887,089 —1867,872
6.6 — 57,247 —3882,459 —1865,650
8.8 — 66,538 —3877,327 —1863,153
7000 kg/m
2.2 — 48,438 —1,917 602 —0,921 698
4.4 — 47,290 + 1,963 898 + 0,943 637
6.6 P — 45,985 + 5,772 343 + 2,773 860
8.8 — 45,140 + 9,508 399 + 4,569 235
1000Kkg/mm
2.2 + 19,338 +0,515 823 + 0,247 266
4.4 + 18,850 — 0,891 269 —0,428 251
6.6 + 18,412 —2,411 701 —1,158 923
8.8 + 18,019 - 3,903 212 —1,875 672
1000kgmy/m

On peut alors calculer pour chaque sollicitation les déformations et les

efforts comme on 1’a indiqué précédemment.
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om 2m 44m 66m 8,8m im
AN 7]
tmm | \\ /l Fig. 10a. Diagramme de w. Ce dia-
- - / gramme est aussi celui de M, il suffit
\\ JL de multiplier w par — 35,84 pour obte-
I W4 nir M, en kgm/m
om 22m 4,m 6,6m 88m 1m
tmm I \ ) / Fig. 10b. Diagramme de v
T r\_/
—
<
AN
1074m I + N
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™ 7 (dans la coque)
A
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A
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(dans la coque)
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Les 5 problémes élémentaires sont ainsi résolus: on connait les efforts et
les déformations dans 5 coques infinies raidies et sollicitées 1’'une par la pression
hydrostatique et les 4 autres par des charges unitaires en x=0.

Il reste & ramener tous ces cas & la coque finie ¢’est-a-dire qu’il faut expri-
mer les conditions aux limites en =0 et x=1.

Les conditions imposées sont celles de I’appui simple: v=w=N,=M_ =0
en x=0et x=I.

11 suffit de combiner les résultats précédents.

On se trouve alors en présence d’un systéme de 8 équations & 8 inconnues
dont on tire 8 constantes multipliant les sollicitations unitaires précedentes et
finalement par superposition des effets on peut obtenir les valeurs définitives
des u, v, w... ‘

Les diagrammes 10 représentent quelques uns des effets de la coque raidie.

VIII. Repartition de la raideur des nervures

Si les nmervures disposées dans le sens des ¢, telles que 1’on vient de les
considérer, sont infiniment rapprochées, le probléme se simplifie paradoxale-
ment. On peut en effet admettre qu’elles agissent alors a la maniére d’un tapis
continu et les équations (5) sont & remplacer par les équations (6) — dans le
cas général de double raidissage — équations beaucoup plus simples car elles
ne comportent plus de coefficient variable selon x ou selon ¢.

La solution de ces équations est du méme type que celle des coques lisses:
elle est facile & obtenir.

Les intégrales de FrREDHOLM, dégénérées en sommes, deviennent alors
d’authentiques intégrales de FrREDHOLM. L’examen comparatif des équations
intégrales des deux types permet de conclure en ce qui concerne 1’écart des
raidisseurs pour que 1’hypothése de la répartition des raideurs soit possible.
On peut aisément montrer que la répartition est licite quand les fonctions qui
entrent en jeu lors du calcul des effets discontinus peuvent étre remplacées
par une distribution variant selon une loi triangulaire de surface unité sans
qu’une modification notable soit enregistrée (fig. 11). Cette opération permet
d’ailleurs de définir 1’écart maximum entre les raidisseurs4).

(9]
v -6
>

Fig. 11

]

4) Les bordages raidis en construction hydraulique. N. M. DEroUssE. Ed. Derouaux,
Liege, 1961.
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IX. Application a un barrage mobile a cylindre

Soit & étudier le barrage mobile a cylindre représenté figure 12. Ce barrage
est raidi par les deux cours de nervures représentés a la méme figure. La sollici-
tation transmise par le bordage est une pression hydrostatique appliquée
seulement sur une partie de la paroi amont de 1’ouvrage. On applique & cet
ouvrage les relations (6) et la charge extérieure est développée en série de

100mm

7
. A 5mm

50mm

Nervures longitudinales
disposées tous les 5°

Nervures transversales
disposées tous les 0,50m

Fig. 12

Fourier dans le sens des z: seul le premier terme est pris en considération.
On admet done, sous le couvert d’une vérification ultérieure, que la raideur
des nervures peut étre répartie. En appliquant le méme procédé de résolution
que pour les coques lisses, on est d’abord conduit & calculer une équation
résolvante qui ne comporte plus que la fonction variable w [analogue & 1’équa-
tion (3)]. Tous ces calculs faits, on trouve 1’équation du 8e ordre suivante:

14 D —
o[ 040 (D) - () 7]

LI D T D
+ —q—zw {(2K+T;+T;) (D+8r) (~2—+ S;) ~(D+£2) H7? 4 (?'}- Sg;) H: L7,

— %”—L;DJF (K + R%) [(D+.Qg,) (D+.Q;)+£2)—(S;+ 87,)4- 8% Sg,]}
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5l g g . o 2
+ W D H o+ (K + Ry) (D+2) (5 + 8,
D
+QK+To+T)) [(D +827) (D +£82%) +—2—(SQ+ Sp) + 858,
D
+ (K + Ry) (D +£27) (—2—+ Sg) + (D +82) HY, L+ (D +-£27) my, L;;}
o — D

+ g0 (D@ + (K + By |(D+95) D+20)+5 (81+5,) + 5.

D D (D
+ @K+ TTr) (D +9r) (__,)—+ s;,) ~ S Hy L+ Hy L, (T+S{p)}

1 D D\
+ o {(K+ Rr) (D41 (?JFS;) _ (?+S;) Hgf}

1 D 2w (D o\ L )
s o[- D ) -2 o) (Ts1) - Zprap 0+
1 (1 1

. [(D £ (D+20)+ 5 (S5 87+ Sw]}

Ly D
2q

LA s

Lr D nm D
- —””(?4—8;,) (D +_Qg,)} + 122 (D+£2) (D +£27) (—2—+S£) =0,

avec les notations explicitées précédemment.

Le procédé de calcul des autres effets: v, u, M, N, M, ... est identique
a celui des coques lisses, & partir de relations beaucoup plus compliquées, mais
sans difficulté de principe.

Lorsque 1’on étudie des coques incomplétes (¢, <27) et que la charge est
répartie continiment sur toute la surface, on sait qu’une solution particuliére
acceptable est fournie en négligeant ’effet des moments de flexion et de torsion
et des efforts de cisaillement radiaux.
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On peut en principe appliquer cette maniére de faire ici & condition de
décomposer le cylindre complet en deux coques (cf. fig. 13): une coque chargée
sur ¢, =90° et une coque non chargée sur 270°.

En exprimant 1’égalité des déplacements en 4 et B, on obtient 8 équations
en les 8 inconnues efforts en 4 et B.

Ici, il a été choisi d’opérer par intégration d’une force linéaire (fig. 14).

On a d’abord résolu le probleme de déterminer les déplacements et les

efforts dans une coque compléte sollicitée par une force linéaire radiale de
—1000 kg/m.

\

Fig. 14

Il reste & présent a intégrer ces effets le long de la zone chargée.

Comme le montre la figure 15, la charge appliquée peut étre représentée
par

4

o

que 1’on peut scinder en deux:

Z = 1000 (q%—i—qsin (p) sin%x kg/m? pour —45°<p< +45°,

4 ]/§ . T 5
Zy = - 1000 (q—z—) smekg/m ,
4 . . T
Zy = -—IOOOqsmcpsme kg/m2.
T

Si I'on désigne par f, un effet quelconque créé dans la coque compléte par
une charge radiale de —1000kg/m sinllr—x placée en p=« (fig. 14), on pourra

écrire que sous Z; l'effet sera:
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+45° 1 +45°
P fﬁfo—ozlqd“ _ ——-70,705ffdoc,
ke
—450° —45°

alors que sous Z, ’effet sera

+45° y +45°
4 .
F, = fmzzqda =—— lOOffsmocdoc.
—45° ‘ —45°

Les figures 16 et 17 montrent les diagrammes des w et » dis & la charge Z,
tandis que les figures 18 et 19 montrent les mémes effets mais dis & Z,. Pour
la simplicité de la représentation, on a supposé la surface moyenne développée
dans le sens des .

¥ d 180° /’“l'ﬁ\s. | 9"1/ \45" _19f.._,_.11cm

Fig. 16
%\
L / N\
[T\
e
i [ 1\ ]
| i N B
Ss===t==
| e
?Q,_‘%_ - L jso i P .
N\ / N
, I \ / ]
z T NS T
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Diagramme des w dds a la charge z,

/Aw
I ] | e
¥ A 15 02 \ 450 0°
N !
/
| _ RN /
L N | / 4
L T
Fig. 18

05

v

Diagramme des v dis a la charge z,
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Fig. 21
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11 reste a vérifier s’il est raisonnable de répartir la raideur des nervures
aussi bien dans un sens que dans I’autre.

A ce sujet, les figures 20 et 21 montrent la comparaison entre un effet
«concentré» et le méme effet réparti selon une loi triangulaire de surface unité
sur la base des écarts adoptés entre les raidisseurs (longitudinaux et trans-
versaux).

Les écarts sont suffisamment faibles pour que la répartition des raideurs
soit licite.

X. Cas courants de double raidissage

Nous avons vu que le cas des coques raidies dans un seul sens se traitait
a partir des coques lisses en ajoutant des efforts concentrés au droit des ner-
vures.

D’autre part, nous avons vu aussi qu’il n’y a guere plus de difficulté a
traiter une coque lisse qu'une coque raidie dont les raideurs sont réparties.
Ceci nous permettra d’étudier les cas les plus fréquents de bordage raidis qui
sont ceux ou il y a de nombreux raidisseurs dans un sens et assez peu dans
I’autre sens (fig. 22).

Fig. 22

L’action des nombreux raidisseurs sera répartie et les raidisseurs de ’autre
sens seront étudiés comme nous ’avons vu précédemment mais cette fois plus
en se servant d’un support qui soit la coque lisse mais d’un support qui
soit la coque & nervures réparties. Nous sommes ainsi revenus au cas double
de raidissage.

C’est de cette maniére que le probléme se présentera généralement dans
les applications pratiques aux vannes segment, vannes cylindriques hautes,
portes d’écluse plane ou secteur, vannes cylindriques de barrage.
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X1. Annexe

Les équations différentielles (5) ont été établies en faisant usage des hypo-
theses de la méthode D.K.J. de calcul des coques cylindriques lisses.

Un calcul plus rigoureux basé sur les relations présentées par KoITER %)
donnerait les équations suivantes légérement différentes de celles données
sous le numéro (5).

" D .r D ’ D s
1—v
+ 24

K (w™' —v")+f(p)[£,u" — H,w"]

+ f—;—gzc—)[Sq,u"+L¢ (w'—v")]+X =0.

D .. D , D, . L K ., 3—v
53(1+V)u +—2—(l—v)v —{—g—ﬁ(v +w )——qiw 5
3 , Koo
+§?(l—v)Kv ——qz(w —v"")+f(p)
L T L L
. S v”+_x_ w'll__v” ____,E w‘ll__vll _Jvll_—@ w.”—?}” Am]
@ g ( ) P ( ) ) P ( )
H R
+—éf—)l:,Q(p(’v”+w.)+7¢(’[)“—-w“‘)—‘-q?(p(w'—i—w.”):l +Y: O_
D . ’ K 2K o mm 2(1_V) on
?(v +w+vqu)+?(w —v )—|——éz—w + Kw"” — p K
+@[—%ﬂ(v'-i-w)—iz‘p(quQw"—i—v"')
9 L¢ q

R
+ Eg(w" +w )+ S,u + L, (w"”——v"’)]

+f((;0) [R.’,Ew””_qum_va.”_‘%(w..”_,v'”)

T ’D.” L
+i w.-ll_v-ll +Lx +———'1:Ax w.-”—_v.”:l
q2 ( ) q qz ( )

+fq( )[Sq,u + L, (w —v")]

. T$ LN/3 V/4 v” L,’E L/4 1/4
+F () [Egcw )L+ A (0 =)
_va”“—zﬁ(w'ﬂ_v”)] - Z.

5) Proceedings of the I.U.T.A.M. symposium on the theory of thin elastic shells.
North Holland Publishing Company, Amsterdam, 1960.
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Résumé

Le calcul des effets élastiques dans les coques cylindriques circulaires
raidies par des nervures disposées longitudinalement et transversalement est
étudié.

A partir des fonctions d’Heaviside et de Dirac, on montre que les coques
raidies se traitent comme des coques lisses & condition d’ajouter des lignes
d’efforts selon les axes des nervures.

La détermination de la grandeur des ces efforts linéaires s’opére au moyen
d’équations intégrales de Fredholm, de la” deuxiéme espéce, dégénérées en
sommes.

Deux exemples d’application relatifs aux constructions hydrauliques sont
présentés.

Zusammenfassung

In der vorliegenden Arbeit wird das elastische Verhalten von lings und
quer versteiften Kreis-Zylinderschalen untersucht. Auf Grund der Heaviside-
schen und Diracschen Funktionen wird festgestellt, dal die versteiften Schalen
wie unversteifte behandelt werden konnen, falls zusitzliche Linienlasten ent-
lang der Rippenachsen aufgetragen werden.

Die GroBe dieser Linienlasten wird mit Hilfe von ausgearteten Fredholm-
schen Integralgleichungen zweiter Art bestimmt.

Es werden Anwendungen im Wasserbau beschrieben.

Summary

This study is devoted to an analysis of the behaviour of cylindrical shells
reinforced by longitudinal and transverse stiffeners.

By the use of Heaviside and Dirac functions, it is shown that a stiffened
shell can be calculated as an unstiffened shell upon which line loads, acting
along the axis of the stiffeners, are superimposed. The magnitude of these line
loads is determined by degenerated Fredholm integral equations of the second
kind. Applications to hydraulic construction are presented.
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