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Ultimate Strength of High Yield Strength Constructional-Alloy Circular
Columns — Effect of Thermal Residual Stresses

Résistance limite des barres comprimées & section circulaire, en alliage & haute
limite élastique — Influence des contraintes résiduelles thermiques

Tragfihigkeit von Sdulen mit Kreisquerschnitt aus legiertem Baustahl mit hoher
Fliefgrenze — Einfluf3 von thermischen Eigenspannungen

AKIRA NITTA BRUNO THURLIMANN
National Aeronautical Laboratory, Swiss Federal Institute of Technology,
Tokyo *) Zurich ¥)

I. Introduction

It is a well-known fact that for columns of intermediate slenderness the
use of a high-yield-strength alloy steel will increase the resistance against
instability because of its high yield strength which primarily governs the load-
carrying capacity of column members in the inelastic range. In structures such
as tall built-up towers constructional alloy steel round bars have been fre-
quently used for the tower legs. It should be pointed out, however, that the
process of heat treatment for such a material may cause cooling residual
stresses and initial out-of-straightness, both of which are significant factors
influencing the ultimate strength of columns.

Even though a number of experimental results have been published [1]1)
comparatively little significant work has been done to predict theoretically
the thermal residual stresses in circular cylinders. Recently, WEINER and
HuppresToN [2] showed a solution of the phase-transformation stresses from
the standpoint of the flow theory of plasticity. Since the process for obtaining
a general solution is very involved it seems almost inevitable to introduce
simplifying assumptions when performing numerical calculations. Hence cer-
tain constant values of the material properties are used as a common value

*) Formerly Fritz Engineering Laboratory Lehigh University, Bethlehem, Pa.
1) The numbers in parentheses refer to the list of references. They are listed in order
of their occurrence.
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for the whole stage of cooling instead of taking the true values corresponding
to the variable temperatures.

By including the effect of the residual stresses in steel columns a reasonable
approach to the solution of the buckling load was suggested by Oscoop [3],
Yang and others [4]. Extensive studies on rolled wide-flange steel columns
have been performed by several investigators [5], [6].

On the other hand, it has been shown that centrally loaded columns can
be expected to carry higher loads than that given by the tangent modulus
theory [7]. Unfortunately, however, this post-buckling behavior of inelastic
columns has never been solved in a general way. Fujira [8] solved graphically
the ultimate strength of H-shape built-up columns including the effect of
residual stresses due to welding. The maximum load-carrying capacity of a
wide-flange beam-column subjected to an axial thrust and end moments was
obtained by GaramBos and KETTER [9]. Since these particular solutions are
not applicable to any other cross sectional shapes in which the magnitude
and the distribution pattern of residual stresses are different, further studies
are necessary in order to visualize the true column behavior until failure
occurs.

II. Thermal Residual Stresses in Solid Circular Columns

When structural steel members are subjected to quenching operations,
two different types of stresses, namely thermal and transformation stresses,
will be produced. If the strains arising during the cooling period exceed the
elastic limit of the steel at any instance, residual stresses will remain after
complete cooling. In general, the formation of such residual stresses is mainly
influenced by the initial temperature, the cooling method and the shape and
size of the specimen. For those sections which are rapidly cooled by water
quenching without subsequent tempering or other stress relieving, the thermal
residual stresses become of great importance.

1. General Description of the Analysis

a) Temperature Distribution

When a long circular steel cylinder (radius = R) of initial uniform tem-
perature 7', is submerged in water, the temperature distribution at co-ordinate
r, and time ¢, can be obtained by making the following assumptions [10]:

Cooling takes place polar-symmetrically.

There is no variation in temperature along the length of the cylinder.
The thermal diffusivity, «, is independent of temperature.

Newton’s cooling law holds.

il S .
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The temperature distribution is as follows:

lp.r) _ g,y Jolmip)

exp (—m271), 1
T, "2 )y mg) P ) @
where
p= % = non-dimensional co-ordinate,
T = %:— = non-dimensional time parameter,
c = constant depending upon the initial temperature and radius of

the cylinder, and m,’s are parameters that satisfy the equations;
milJ(mi)=CJO(mi), (i=1,2,3...) (2)

Jp and J; being Bessel function of order zero and one, respectively.

b) Stress-Strain Relationship at Elevated Temperatures

During the period of cooling from an initial temperature, 7}, to the room
temperature (taken as zero degrees), the material is assumed to be isotropic
but non-homogeneous due to the variation of temperature in the cross section
of the cylinder. For USS “T-1"’ constructional alloy steel?), which was used
in the experimental investigation described herein, stress-strain diagrams at
various elevated temperatures obtained from simple tension tests3) are shown
in Fig. 1. In order to simplify the analysis it is assumed that below the yield
point, which is determined by the “ordinary 0.29; offset method’’ on each
diagram, the steel behaves as an elastic material with a temperature-dependent
modulus of elasticity, & (7'). At the level of the yield stress it is assumed that
plastic flow takes place without strain-hardening. Hence, an idealized elastic-
plastic stress-strain relationship is used for the material at each temperature
as shown in the same figure.

Taking any arbitrary time interval 4+ during the cooling stage, the cor-
responding decrement in temperature 4 7 (p) can be obtained from Eq. (1).
For the elastic part in the cross section the relationship between the corre-
sponding change of stress 4 ¢ and of strain 4 € will be expressed in the following

2) USS ““T-1” constructional alloy steel is a quenched and tempered steel that, in
normal production, is air cooled from the tempering temperature. As part of this investiga-
tion, however, the effect of two other possible final heat treatments, stress-relieving after
tempering and quenching after tempering, on column strength was studied. “T-1"" steel
bars for critical applications, such as television towers, are normally cold straightened
and stress relieved after air cooling but the effect of this process is covered in a second
study.

3) This test data were supplied by the United States Steel Corporation.
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Fig. 1a), b). Stress-strain relationship at various temperatures.

way %) (compressive stress and strain being taken as positive):
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2
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[dog—v(T){do,+4 0], (3)

where «(7') is a linear thermal expansion coefficient and v(7') is Poisson’s

ratio.

¢) Thermal Stresses

The thermal stresses produced as cooling occurs during the time interval
4+ will be obtained in the following way:
First, if the cylinder is fully restrained at both ends, axial displacements
along the length will vanish; thereby

de,=0.

(4)

4) Conventional subscripts 7, 6 and z denote radial, tangential and axial components
of the stress and the strain, respectively.
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The following equilibrium condition must be satisfied for any element in
the cross section.
d (A O'r) + (A O'r) - (A 00)

dr r =0 (3)

By letting the corresponding change of radial displacement be 4 v, radial
and tangential components of strain are given by
de, = 24) dep=4" (6)

r dr r’

From Eqs. (3), (4), (5) and (6), the following differential equation can be
obtained: :

[glz_u_)_*__l_@__cﬂ]_*_dBldw_i_deg__st )
ldp* "p dp  p*] dp dp " dp p  dp’
where = @ =
w = R H p - R’
[1-v(T)]
B, =
1 [1+V(T)][1—2V(T)]E(T)’
- v(T)
B = [1+»(T)] [1—2V(T)]E(T)’
1
; d B; d Bs .
When v, £ and « are independent of temperature, both ap and Tp vanish

- and Eq. (7) coincides with the known equation [11]:
Pow ldo o 1+vd(4T)

dpE o de T T 1=y dp

The boundary conditions are given as follows:
at p=20 w=20,
at p=1 40,=0

which leads to

dw v(T) ] [1 +v(T) ]
—— + |e=—— = |—=a(T)4T| . 9
[dp]p=1 [I-V(T)w p=1 l“V(T)a( ) p=1 ®)
The differential Eq. (7) with variable coefficients together with the given

boundary conditions Eqgs. (8) and (9) can be approximately solved by using
the finite difference method. When v and « are independent of temperature ),

5) See Section d) in this article.
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for example, the following N simultaneous equations for N unknowns, w,’s
(¢=1,2,...N) have been derived as follows:

Wiy [2z~1—§(0§+1_0%—1)]+wi[—4 - liv i __0%—1)]

. 1
+w,+1[21+1+ (Citt — Og—l)]=<x +V;7[

for 2=1,2,...(N-1)
with wy =0,

Citt AT -0 AT, 4],

(10)

1 2
&nd U)N'_l[4N]+wAr[—4:N+4:—1—V(N+4:):| =

P [ON 1 Ty (45— OF ON) ATy~ 0§14 T]

N
where the subscript ¢ of w and 4 7' denotes the values for p,= N’ and Citl =
Blpir1) ot
Ep) >

Since the first and the last equations contain only two unknowns and the
rest of them involve three unknowns each, the solution can be easily obtained
by successive elimination of the unknowns.

From Egs. (3), (4) and (6), the incremental axial stress produced in the
fixed-end cylinder is given by the following formula:

, E(T)
Ao, = (T+v) (I—2)

[Vi(g+v2——(l+v)ad T]. (11)
dp = p

However, the actual cylinder is free from the resultant force in the axial
direction; therefore the following correction term

1
[ doldA (= —2{4d}pdp)
0

should be added to the axial stress given by Eq. (11). Thus, finally, the incre-
mental stresses caused by cooling during 4 = will be obtained by the following
formulee:

= 5 (1) —v i 2 V)«
4o = (i say [0 gt e~ (9 =d T,

= B(T) de 2 V) o
AGB—(1+V)(1_2V)[ Lot (1= —(14) AT], a2

1
do,=do,—2[dc,pdp.
0

1. Fully elastic case

Transient stresses at any instance of cooling will be obtained as the sum-
mations of the incremental stresses computed by Eq. (12), provided that the
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material remains within the elastic limit. The latter depends upon the tem-
perature at each location in question.

T=T7
Or b,z = ZOA 0r, 0,2 (13)
T=

2. Klastic-plastic case

Applying Mises’ condition as the criterion of yielding at various tempera-
tures, the material will remain elastic if

Jy<3a2(T), (14)
where J2 = % [(Or - 00)2 + (00 - O'z)2 + (Uz - Gr)z . (15)

However, when the value of J,(7'), which is computed by using the stress
components based upon Eq. (13), exceeds the value of }o? (7'), yielding takes
place in such regions and a correction for the stresses must be made to get
the actual stress distribution. It is assumed that during a time interval 4,
the increment of each stress component (dg,),, (doy), and (do,), in the
plastic range is proportional to that of the elastically computed stress com-
ponent of Eq. (12)6), namely,

(4o, _ Aoy, _(do),
do, dog do,

These incremental stresses, (do,),, (doy), and (do,), thus assumed,
satisfy the boundary condition and the equilibrium condition of a small
element, because 4 o,, 464 and 4 o, fulfill all these requirements. Then, in the
plastic region, the transient stress components at =, can be expressed in
terms of the values at the preceding step, r=r, (r,—7,=47) and the plastic
stress increments:

00,0 (T = T2) = 0,0, (r =) Hed o, . - ()
Since in the plastic region, when =7, the yield condition must be satisfied,
Jy(r=15) = Lol(r=m1,)
the following relationship is obtained from Egs. (15) and (16).

AJ262+2j2(71,A)e+J2(~r=~rl)—%—c§(7~=7-2)=0, (17)

where

4 J2 = %[(A O'r—A 00)2+(A UG—A Uz)2+ (A UZ_A 0.7)2]’
J_2 (Tl > A) = % [(Gr - 00)7=r1 (A Op -4 00)
+ (09 - Gz)r=71 (A Gy — 4 Gz) + (Gz - UT)T=71 (A 0y 4 Gr)] .

6) See Appendix for justification of assumption.
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Hence the proportionality factor, e, is given as follows:

_ G )+ VT, AP+ ATy (G 03 (r = )~y (r = 7))
a7, :

As a result of this correction for the incremental stresses in the plastic range
it becomes necessary to redistribute the stresses in the elastic range so as to
maintain the equilibrium of the whole body. For the convenience of the dis-
cussion, the incremental correction stresses, 46, g , in the plastic range will be
defined as follows:

A4 67',0,2 = (A Gr,e,z)p_A 0r,0,2 = —-(1 —6)A G, 0,2 (19)

(18)

The resultant forces of the incremental correction stresses in both tangential
and axial directions, ¢, and ), are given respectively by

Qo =[Aaedr, Q,=[4s,2nr)dr.

(Plastic zone) (Plastic zone)

The radial component 45, which vanishes at the elastic-plastic boundary
(e=1) has no influence on the elastic region. When the inner part of the cross
section is plastic and the outer part remains elastic (boundary at p=p,), the
average stresses to be corrected in the elastic region are as follows:

Pe

1—e)dopd
@ =0f( e)dogdp
R_re I_Pe ’

45.= 0, A=

Qi
B)

N (20)
2f{(1—e)do,pdp
A - Qz — 0
S ) =72

e

I

On the other hand, if the inner part is elastic and the outside portion becomes
plastic, then

1
0 f(1—e)dogdp
4, = 0, A50=—r_3=”" . ,

. (20")
g, 2(1-edopdp
A5, =Yz _ & .

2 2
7T Pe

Finally, the transient stresses in the elastic range, when 7=r,, are given
in the following form:

Oy, 9,2_(7 = 72) = O, 0,2(7 = 7'1)'*'A Oy, B,z+Agr, 0,2* (21)

This process of computation will be continued until the temperature of
the cylinder becomes uniformly equal to zero. When time approaches infinity
(tr — o) the residual stresses are given by the limiting values of Eqs. (16)
or (21), depending upon either plastic or elastic regions in the cross section.
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d) Numerical Solution

The successive approximation method described in the foregoing articles
will be applied to the calculation of the thermal transient and residual stresses
in a water-quenched high yield-strength constructional alloy steel cylinder
which is subjected to a sudden cooling from a uniform initial temperature
(T,=1300°F).

The temperature distribution in the cylinder is computed by Eq. (1)
with the constant ¢=4.5, which is taken from experimental data given in the
Ref. (12). Fig. 2 illustrates the results for several values of the time para-
meter, 7.

Fig. 2. Temperature distribution in solid circular cylinders.

By using the finite difference method with N =10, the w,’s are obtained
from Eq. (10) for each incremental time interval 4 r. The appropriate K (7')’s
as function of the temperature are taken from Fig. 1b. In this numerical
computation it is assumed that the linear coefficient of thermal expansion
a="7.74 X 1078 inches per inch per degree F is constant throughout the whole
range of temperatures according to the results of experimental measure-
ments [13]. It is also assumed that v=0.3.

After obtaining the incremental stresses (4 o,,4 oy and 4 ¢,) from Eq. (11)
and summing these stresses, the plasticity condition is checked at every stage
of the computation. Then the proper correction is made for elastic-plastic
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cases where it is required. This step-by-step process is repeated by evaluating
the transient stresses at any instance 7, a typical result being shown in Fig. 3.
Finally when 7= o0, the residual stresses o,, oy and o, are obtained as demon-
strated in Fig. 4.

2. Experimental Investigation

Residual stress measurements were carried out on 23/, inch diameter
specimens of USS “T-1’’ Steel round bars which were subjected to the follow-
ing heat treatments: a) quench, temper and stress-relieve, b) quench, temper
and air-cool, and ¢) quench, temper and quench from the tempering tempera-
ture [14]. Of these, the quench, temper and air-cool treatment is the normal
production treatment.

Since in circular cylindrical bars the residual stresses resulting from heat
treatment can be assumed to have a distribution pattern of polar symmetry,
Sachs’ method is regarded as a suitable way for the measurement of the tri-
axial residual stresses [15]. It should be pointed out, however, that the ordi-
nary boring-out operation might cause yielding of the material adjacent to
the drilled layer due to the heat generated. Thereby unexpected influences
may be introduced on the strain measurements. Such influences can be con-
sidered as local effects and hence safely ignored only if the strain readings are
made on surfaces sufficiently removed from the bored layer. They do become
serious when the drilling layer approaches the outer surface where the strain
gages are attached. To avoid these unfavorable conditions and to obtain the
complete residual stress pattern including the outer part of the cross section,
which gives the largest contribution to the bending rigidity of the member,
and thereby to its column strength, the so-called ‘“‘combined method’’ [16]
together with the ““boring-out method’’ was used in this series of experiments.
Two test specimens taken from originally identical material were measured by
these two different methods. The results obtained from these independent
tests were checked against each other in that region of the cross section where
both methods were applied.

As can be seen from the derivation of Sachs’ equation, if only the boring-
out method is used, the equilibrium condition of resulting forces over the
entire cross section is always satisfied regardless of whether the measured
magnitude and distribution of residual stresses is correct or not. Consequently,
the equilibrium condition is not sufficient to check the test results. If, however,
two independent processes such as the boring-out method and the combined
method are used on two specimens taken from identical material, it is then
possible to perform the equilibrium check in the final results of the residual
stress distribution. The difference between the computed tensile and com-
pressive resultant forces were in all cases of this series less than five percent.
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Fig. 5a), b). Measured residual stresses in air-cooled or stress-relieved steel cylinders.

The experimentally determined residual stresses for bars that were water-
quenched from the tempering temperature after tempering are shown in
Fig. 4 and are compared with the theoretical values obtained by the analytical
method presented in the previous article. Their correlation is satisfactory.

In addition measured residual stresses for an air-cooled and a stress-
relieved material are shown in Figs. 5a and 5b indicating a considerable
decrease in the magnitude of residual stresses from the one observed in the
quenched material.
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III. Inelastic Buckling Strength of Circular Columns

1. Column Strength and the *‘ Equivalent Residual Stress’’

Since the column strength in the inelastic range is dependent upon the
magnitude and distribution of the residual stresses, it is necessary to calculate
the strength for each case of a given shape of cross section with a known
pattern of residual stress. For steel columns of wide-flange shape or rectangular
cross section, reasonable solutions were obtained theoretically. They were
checked with a large number of tests [5]. The residual stress in these columns
is practically uniaxial so that the total stress at any fiber in the cross section
can be obtained simply as the sum of the residual stress and the imposed stress
due to loading.

In the case of solid circular columns, however, it has been found that the
residual stresses due to heat treatment are triaxial, and the axial and tangen-
tial stresses have almost the same magnitude at the outer surface of the cross
section. Therefore, some consideration must be given to the effect of the
triaxiality of the residual stresses on column strength. For convenience a
fictitious longitudinal residual stress called the “equivalent residual stress”,
o, will be introduced into the analysis to avoid dealing with the actual tri-
axial state present in the member. This stress will be defined such that the
yield condition can be expressed simply by the following equation as in the
uniaxial case:

(22)

o,+0o =0,

where o is the compressive stress due to an applied load.

When a cylindrical column, which contains residual stresses o,, oy and o,
is subjected to an additional axial compressive stress, o, yielding will take
place at points where Mises’ yield condition is satisfied:

% [{(G + Uz) - 00}2 + {00 — 0y 2 + {Ur - (G+ O'z)}z] = % 0-22/ . (23)

From Egs. (22) and (23), the “equivalent residual stress’’ is expressed by
the following formula:

O = Oz_%(0-9+07)+0y—1/0'12/'—%(0'0_0'1')2' (24)

Using the static yield stress of the material determined from coupon tests and
the residual stresses determined in the previous chapter of this paper, the
equivalent residual stresses in each column member can be computed.

Thus, the equivalent residual stress pattern shown by the dashed line in
Fig. 6 was determined. For convenience in making subsequent calculations
the following equation was assumed to approximate this pattern:

%P) _qpmih. (25)

Oy
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The three constants, ¢, b and n can be selected such that the actual results
are best approximated in a chosen region. As will be discussed in the following
articles, the closer the approximation is at the outer part of the cross section
(which contributes most to column strength and also usually contains the
highest compressive residual stresses), the better will be the column strength

0.5 —
0.4
[-A
e |
g, 0.3
Eq. 25
0.2 4
Test Results :
| (T.Nos. 8-38 8-4) ] ]
0.1 !
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O ft—p— et =t
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Fig. 6. Equivalent residual stress.

prediction. In the case of an as-quenched material, for example, the constants
were obtained by matching the analytical expression, Eq. (25) with the equi-
valent residual stress at p=0.70, 0.95 and 1.00. The resulting constants were

a=0459, b=0, n=190,

Fig. 6 shows the comparison between the actual equivalent residual stress
distribution and this approximation, which is only valid for the outer part of
the cross section. A better representation of the equivalent residual stresses
over the entire cross section can be achieved by introducing lower order terms
of p. However, as will be shown in the following chapter, the effect of using
more involved expressions in the computation of the ultimate strength of a
column is negligible except for very short columns. Columns of practical length
reach their maximum Jload before yielding penetrates into the region p <0.5
where the magnitude of the equivalent residual stress is usually low.

2. Stress-Strain Relationship for Coupons and for Stub Colummns

The most fundamental basis for the determination of the inelastic buckling
strength of column members is the static stress-strain relationship of the
material in the inelastic range. This relationship can only be obtained from
coupon tests which are conducted under a controlled rate of strain [17], and
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is not affected by residual stresses. For a high-strength constructional alloy
steel, such as USS “T-1"" steel, the stress-strain curve of a coupon shows a
pronounced yield stress level and strain hardening can hardly be observed
until fracture takes place [14]. In other words, the idealized elastic-fully plastic
stress-strain relationship is a good approximation for such an alloy steel and
will be used in the analysis that follows.

The average stress-strain relationship for a short (stub) column, which is
affected by residual stresses, can be used to predict the buckling strength of
long or intermediate length columns of the same material and cross section.
When such a stub column is subjected to compression, yielding will start from
the outer part of the cross section, where a relatively high residual stress in
compression is present. If the distribution pattern of the equivalent residual
stress is polar symmetric, o,(r), then the boundary between an elastic core
and the yield zone is a concentric circle. Letting the radius of this circle be r,,

the average compressive stress, o,,,, and the average strain, e,,,, due to the’
imposed loading are given by the following equations:
R
r,\% 2
Oqve (7'6) =0y~ f O'e(ye)_'l? ro, (T)d?‘, ) (26)
Te
1
€ave (re) = f {Gy — 0O (re)} . (27)

Thus, for a given pattern of the equivalent residual stress the average stress-
strain relationship of a bar containing residual stresses is readily obtained by

(ksi)
120 | w _Yield level of Tension Coupons

Qgy / OO O

\By Eqs. 26 & 27

| O * Stub Column Test Results
80 (T.NO.4-5)
Cave |

1 B ) Note®: This difference A Oy is caused by

Yield Level of Stub Column

Triaxiality of Residual Stress

40 [~

| ] I | | L

— €gye

Fig. 7. Average stress-strain diagram.
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eliminating r, from Eqs. (26) and (27). Fig. 7 is an example of this relationship,
and shows fairly good agreement with the stub column test results [14].

Since the resultant force determined by integrating the equivalent residual
stress over the entire cross section does not necessarily vanish, it should be
anticipated that the yield level predicted from coupon test results will not
necessarily coincide with that determined from the stub column test. Fig. 7
shows that this is actually the case. The difference between these two values
is due to the effect of the triaxiality of the residual stresses in the solid cylin-
drical column. In the case of an as-quenched material, for example, the
difference was found to be about four percent.

3. Tangent Modulus Load

According to the tangent modulus theory, the buckling load, P,, of a
centrally 16aded and perfectly straight column is given by the so-called tangent
modulus formula [18]:

P, _=E,

4G

in which A is the cross sectional area, kTOI—-' is the effective slenderness ratio,

and K, is the tangent modulus of the material. This formula presumes that
the material is homogeneous even in the inelastic range and that its stress-
strain characteristic is known.

If, however, residual stresses are present in a column member compressed
beyond the elastic limit, yielding will take place at localized parts of the cross
section where the total stress is equal to o,. Thereafter, the column material
becomes non-homogeneous. When an idealized stress-strain relationship is
assumed for the material and residual stresses are taken into account, the
following formula for the buckling load, P, applies [4]:

P

cr

- i -

70

where E I, is the effective bending rigidity of the column, E being the modulus
of elasticity of the material and I, being the moment of inertia of the elastic
portion of the cross section.

When a perfectly straight circular cylindrical column, containing relatively
high compressive equivalent residual stresses of a polar symmetric distribution
is subjected to a monotonically increasing axial thrust, yielding will start from
the surface. As has been discussed in the foregoing article, the elastic core will
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be bounded by a concentric circle having a radius, r,. Resistance to bending
of such a cross section is dependent on the moment of inertia of the elastic
core if no strain-reversal occurs at the instance of bending, as is assumed in
the tangent modulus concept. Non-dimensionalized for the present problem
the moment of inertia is:
I, _ (&)4 (29)
1 R

Using the average stress-strain relationship expressed by Eqgs. (26) and (27)
in the preceding article, the tangent modulus of a stub column, E; can be
obtained in the following manner:

2
Et . d Cave — E(i) . (30)

d €ave

Eq. (28) can therefore be written as follows:

52

It should be noted that this new formula gives a lower prediction of the
buckling load than that based on the conventional tangent modulus theory.

4. Reduced Modulus Load

Another criterion used to define the buckling load of a perfectly straight
column subjected to a concentric axial thrust is the “reduced modulus load’’.
This load, P., is defined as the load at which the member is, at least theoreti-
cally, not stable but is indifferent with regard to a deformed position. Moreover,
the reduced modulus concept assumes that the column member remains
absolutely straight until the reduced modulus load is applied. Although prac-
tical columns rarely behave in this assumed manner, the reduced modulus
concept is useful because it gives an upper limit to the load-carrying capacity
of a member.

It is assumed that the simplified stress-strain relationship shown in Fig. 8a
is applicable to any fiber, that the column is kept perfectly straight until the
axial thrust reaches the reduced modulus load, P, and that yielding in any
cross section along the member penetrates to r=r,. (Fig. 8b and 8c.) At the
instance when the reduced modulus load is reached, a bending moment,
4 M induced by an infinitesimally small increment of curvature, 4@, is com-
puted in the following manner (strain reversal being allowed):

AM =[do(x—s)d A, (32)
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where s is the distance from the centroidal axis to an assumed neutral axis in
the cross section. do=E AP (x—s) in the region of either the elastic core
(r£r,) or unloading zone. On the other hand, 40=0 for a loading zone of
r>r,. The calculation is carried out for two possible cases (as shown in Fig. 8)
depending upon the assumed position of the neutral axis; i.e. for s27r,, and

for s=<r,.

The effective rigidity, £ I,, against the infinitesimally small bending is

aM

EI(,/‘:E'.

The resulting non-dimensionalized formule are:

Stress

Loading

Unloading

/
/
/

tan*' E /

| {

(a

N
Unloading Loading

Strain €

) STRESS-STRAIN RELATIONSHIP

Unloading h,' Loading

Fig. 8a), b), ¢). Pattern of stress increment at reduced modulus load.

l*— S
A
(c) s>

(33)
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f,_ 1 [2 2143 ( s = -
- = - +48)|7m—cos'—)+(1+48%) cos 13
T pe (p3 | o
— 5 [T=F(13+28) - Vpl =2 (13} +28)],  (for 5 < p,),
Ie 1 2(,2 <2 <2 13
‘I—=;T‘[7TP3(P6 +43%) 4+ (14452 cos™15] (34)
— VTR (13428, (for5zp,),
ko
_ T __ s
where Pe = and 3 B

The position of the neutral axis, §, is determined by the condition that
there shall be no increment in the axial thrust, P, that is

AP =[4dcd4 =0. (35)
Hence 1 Vo2 —52(2p2 +52) 4 p25 (77' —cos™! i) — pS2sin (003‘1 i)
e PG
— 1)1 —-52(2+52) +5cos 15 =0, (for 3 £ p,), (36)
mp28—3 V1 —352(245%) +5cos 15 =0, (for 3 = p,).

These equations were solved graphically for given values of p,, and the results
are shown in Fig. 9.

By using these results, I,/I will be obtained from Eq. (34). In Fig. 10, it
can be seen that the effective bending rigidity, [,//, based upon the reduced
modulus concept is approximately proportional to (r,/R)2, whereas that cor-
responding to the tangent modulus theory is proportional to (r,/R)%. Therefore,

0.5

_———_(regs)—-!—-—-(%}s)

(4398)1
1 L )

0 1 | 1
0 0.5 .0

—_— )

Fig. 9. Position of neutral axis at reduced modulus load.
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from Eqs. (28) and (30) it follows that the reduced modulus load, F,, can be

expressed as follows:
B. 7T2 E Et
4Dy B (37)
(W

It is interesting to note that the conventional formula for the buckling
load which has been regarded as the “‘tangent modulus load’ is found, by
considering the influence of residual stresses, to be approximately equal to
the ‘“‘reduced modulus load’’ in the case of columns with circular cross sections.
The “‘true tangent modulus load’’ i.e. the load in case of no strain reversal, is
given by Eq. (31). The difference between the two values for the as-quenched

column, is less than seven percent [14].

1.0

REDUCED MODULUS

) | Tueoav\/’

g

L fe _
0.5 T

- TANGENT MODULUS
THEORY

T
ml_rp

— &F= ()

Fig. 10. Effective bending rigidity.

IV. Ultimate Strength of Circular Columns

1. General

A determination of the true ultimate strength of columns is a post-buckling
problem. A general analytical solution to this problem is extremely difficult to
obtain because the yield pattern over the cross section and consequently the
bending rigidity for inelastic columns is a function not only of loads and cur-
vatures at each instance but also of the magnitude and distribution of the
residual stresses present in the members. It is therefore unrealistic to investigate
the ultimate strength of a column by calculating the bending rigidity of the
partially yielded cross section by using a stress-strain relationship of the
material from a coupon test without considering residual stresses. In this
paper a semi-graphical approach taking into account the effect of the residual
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stresses for obtaining a solution to the ultimate load-carrying capacity of
circular columns will be presented.

Although there might be other factors reducing the ultimate load-carrying
capacity of concentrically loaded columns, the effect of initial deflections of
members will be of major significance [19]. For this reason, investigations on
the combined effects of these internal and external imperfections, that is
“residual stresses’” and ‘“‘out-of-straightness’’, will be carried out.

The following assumptions are made in determining the ultimate strength
of a simply supported column of length &k L subjected to an axial compressive
load.

1. The material possesses the idealized elastic-fully plastic type of stress-
strain relationship. (See Art. III.2.)

2. Plane cross sections remain plane.

Mises’ yield condition defines the yielding of the material. (See Art. III. 1.)

4. Lateral deflections of the column can be approximated by a cosine curve,

w

T2
w(z) = dcos(ﬁ),
where d is the deflection at mid-length of the column. Hence it follows
that the curvature, @, at that point is expressed as (see Art. IV.4):
- e. (38)
o
The column strength can be best investigated by observing the behavior
at the most critical section of the member, that is, at mid-length of the column.
If a circular column containing an equivalent residual stress, o,, is subjected
to an axial compressive load, yielding will start when the sum of the applied
compressive stress and the equivalent residual stress at any point on the cross
section reaches the yield stress of the material. Further application of loading
produces an elastic-plastic cross section. For simplicity, the stress, o, due to
the applied load may be divided into two parts: a) a linear distribution, o;:
b) a correction pattern for the yielded zone, ¢ (Fig. 11). The applied stress in
the cross section, then, can be expressed in the following way:

In the elastic region,
o =0y, (for o+o,<0)). (39)

In the plastic region,
c=0,—6, (for o4+o,=0,). (40)
Letting o, be a stress at the center of the cross section, it can be shown that

o, =0y+EPrcosb. (41)

Furthermore, the elastic-plastic boundary in the cross section is given by
the equation: (42)

c,+o;= oy -
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Now the axial thrust, P, applied to the column is readily computed from
- the equilibrium consideration:

P=[ocdA=0y4A—[cdA. (43)

(Plastic zone)

&- ‘
—Q —=f
&

Actual Total Equivalent Linear Stiress Correction Stress
Stress Distribution Residual Stress
(g+o) = % + 9, - o

Fig. 11. Stress pattern in cross section.

Also, the internal moment, M, about the centroidal axis at the cross
section in question is given by:

M =(orcosfdA =EID—[Grcosfdd. (44)

(Plastic zone)
By introducing non-dimensional parameters, A and ¢, defined as

A=20  and (PEE_I_%
O'y 0'2/

the elastic-plastic boundary (Eq. (42)) may be given as
At@pcosf—1+-¢ =0, (42")
Ty

Similarly, P and M are obtained, by using Eqgs. (40) and (41), as follows:

j? =U(A @) = /\——%ff [)\—I—(ppcosﬁ—l—-%]pdpd& (43')

Y (Plastic zone) v
M _ P 1 _ | o ,
PR VAge) _Z_;f [)\—I-qopcosﬁ l_ay]P cosfdpdf. (44')

(Plastic zone)

If the pattern of the equivalent residual stress, o,/c, is given, the elastic-
plastic boundary is obtained as a solution of Eq. (42’). Herewith, U (A, ¢) and
V (A, ) can be computed by Eqs. (43’) and (44’), respectively.
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At mid-length of the column, the following relationship must be satisfied.
M= P(d,+d), (45)
where

d,= initial lateral deflection at mid-length of the column, and
d = additional lateral deflection at the same point.

2
From Eq. (38), 4 _

R 47
)

K
v Syl
Oy

where n = (generalized slenderness ratio of column).

Hence Eq. (45) can be given in the following form:

Vide) _ do | 7 ;
U (A, ) SRT4 ¥ (45)

This equation determines the relationship between A and ¢ for a given column
(given values of dy/R and 7). It may be solved by a graphical method. Using
this particular set of A and ¢, P/P, will be computed from Eq. (43’), and
thereby the load-deflection curves can be obtained.

2. Columns with Residual Stresses of Polar Symmetry

When a column member contains a polar symmetric residual stress pattern
such as caused by heat treatments, the load carrying capacity of the member
can be obtained from the results of the previous article by using the assumed
equivalent residual stress pattern, o, (p) of Eq. (25).

It can be seen from Eq. (39), that the cross section of the member remains
in a fully elastic state as long as the following relationship between A and ¢ is
satisfied:

0<As(l—a—b)—gp. (46)

When comparatively high compressive equivalent residual stresses exist
at the surface of the cross section, yielding can produce the two different
patterns shown in Fig. 12. The proper choice of these two patterns for an
elastic-plastic case depends on the following relations:

Elastic-plastic case A:
(I—a—-b)—p=A=(l—a—-b)+e. (47)

Elastic-plastic case B:
(l—a—-b)+p=A. (48)
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From Eq. (42’) the boundary between the elastic core and the plastic zone is
given by the following equation.

ap”+epcosf+(A+b—1) =0. (49)

Yield Zone

CASE (A) CASE (B)

Fig. 12. Yield pattern in cross section.

To simplify the integrations in Eqs. (43") and (44’) it will be assumed that
this boundary line can be approximated by the following expression:

p(6) = pyexp (u6) (50)

where p, and p are independent of the coordinates, p and 8, and can be deter-
mined in the following manner:

Case A:
At =0, p=p, which is a root of the equation
apr+@p+(A+b—1) =0 (51)
and the limiting angle, 6*, for the boundary line at p=1 (see Fig. 12) is given by
6% (\, ) = cos— (i:ﬁ—_-b—“—A) (52)
'
Furthermore,
log,
pdg) = ——oeo. (53)
Case B:

po is obtained from Eq. (51) in the same way as in Case A. At 0=, p=p_,
which is determined as a root of the equation

ap®—pp+(A+b—1)=0. (54)
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Furthermore,

pA, ) = %10&; (’;—’;)- | (55)

With this information on the elastic-plastic boundary in the cross section,
U, ¢) and V (A, p) are obtained:

000 =3+ [ 5is] lpwepes) ~ [T o) -
e e e e
Voo = |g] [[01]—%—] oot
21 (1 —b—2A)] ([3 wsin0* —cos 0% + pd]
T ou) ]{[p;w%] }

Elastic - Plastic Region

—
T

<

0.5 \
\
7N =0.658
O0:T.No I-6
AN
AN
\
1 ] 1 | Il
Y 0.02 d, 0.04 0.06
—{&}

Fig. 13. Load-deflection curves of axially loaded column (without residual stress).
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The upper term in brackets, {}, is for Case A, and the lower term is for
Case B. It can be easily seen that for an elastic case, U=A, V=¢/4.

For an assumed value of ¢, the corresponding value of A can be deter-
mined from Eqs. (45'), (56) and (57) by means of a graphical method. The
value of P/P, will then be obtained from Eq. (56).

Typical results of the load-deflection curves for columns without and with
residual stresses are shown in Fig. 13 and Fig. 14, respectively. The behavior
of an initially straight column is illustrated by the load-deflection diagram
for dy=0 in Fig. 14. It was observed from the computation that strain reversal
starts to take place after exceeding the true tangent modulus load, where the
yield pattern in the cross section (Case B) changes its shape gradually, and
eventually turns into Case A. The maximum load the member can carry is
slightly higher than the true tangent modulus load, the difference between
these two loads being dependent upon the slenderness ratio of the column.

Fig. 15 indicates both the effects of initial deflections and residual stresses
of polar symmetry on the ultimate strength of column members. It can be
seen from the figure that a considerable loss in the ultimate load-carrying
capacity must be anticipated for columns with even a small amount of initial
deflection. This is especially pronounced in the range n=1.0.

P Elastic~Plastic /
b - ——C Region (Case B) ,
Pl ,/ Elastic— Plastic
Region (Case A)
i
5
0.5
o 0,02 0.04 0.06
— %

Fig. 14. Load-deflection curves of axially loaded column (including residual stress).
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=== Without Residual Stress

Including Residual Stress
(0=0.459, b=0,n=19)

0.4 L L L |
o 0.02 004 0.06

—

Fig. 15. Ultimate strength of circular columns without/and including residual stress of
polar symmetry.

3. Experimental Verification of the Theory

Concentrically loaded column tests were performed [14] to verify the
theoretical predictions of the ultimate strength of high yield strength alloy
steel round columns developed in this paper.

As shown in Fig. 16, the columns were tested in a flat-ended condition.
The effective length, k L, was determined by measuring the locations of zero
curvature directly with strain gages. It was therefore unnecessary to consider
the effects of unavoidable end eccentricities upon the column strength. To
determine the initial deflection of the members, precise measurements in two
perpendicular directions were made on each specimen.

First, to check the relationship between deflection and curvature at mid-
height of the column assumed in Art. IV.1, test results of these values com-
pared with Eq. (38). Fig. 17 shows that this assumption is satisfactory.

The column behavior is best observed in Figs. 13 and 14, where the test
results can be compared with the corresponding theoretical curves for the
same d,/ R values.

Table 1 summarizes the test results and theoretical predictions on the
ultimate strength of columns. As can be seen a fairly good agreement between
theory and experiment has been obtained in this investigation.
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Ifig. 16. Column test. Fig. 17. Relationship between deflection and curvature.

Table 1. Comparison between theory and test results on the ultimate strength of columns

Test Length (f01101‘e11i20t1 | , Initia‘l Theory Test
No. L (in) hlendfﬁrness ])efl("(-i ion P asl Py B Py
Ratio, 4 ‘ do/R
Al1—6 40 0.658 0.028 0.89 0.89
1—7 62 0.979 0.012 0.82 0.79
14—6 40) 0.666 0.011 0.97 0.965
14—7 62 0.976 0.036 0,72 0.72
B 86 40 0.626 0.013 0.87 | 0.885
8—17 62 0.940 0.051 0.66 ‘ 0.675
88 80 1.200 0.041 052 ‘ 0.51

Group A: Air-cooled or stress-relieved specimens (low residual stresses)
Group B: Quenched specimens (high residual stress)
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V. Summary and Conclusion

1. Using a temperature-dependent stress-strain relationship and Mises’
yield criterion, the thermal transient and residual stresses in a heat-treated
solid circular cylinder were analyzed. A step-by-step procedure for obtaining
an approximate solution was presented. As an example, numerical calculations
were performed for the case of a water-quenched steel bar.

Residual stress measurements on specimens, which were subjected to such
heat treatments as quenching, air-cooling or stress-relieving, were made by
using the ““combined-method’’ together with the ordinary ‘“boring-out method’’.
For either tempering, air-cooling or stress-relieving the residual stresses were
less than about 15—209, of the yield stress of the material, whereas the as-
quenched specimens contained considerably higher compressive residual
stresses (axial and tangential) in the outer part of the cross section. (Figs. 4
and 5.) A satisfactory correlation between the theoretical analysis and the
test results has been obtained on the magnitude and distribution of the residual
stresses in a water-quenched steel.

2. The influence of triaxial residual stresses in column members upon their
compressive strength in the inelastic range was investigated by introducing
the “equivalent residual stress’ concept. Hence the problem was reduced to
the case of uniaxial residual stress, thereby simplifying the analysis to a large
extent. With a known pattern of the equivalent residual stress and the static
yield stress of the material, the average stress-strain relationship for a short
column was obtained and verified by stub column tests (Fig. 7).

A lower and an upper bound for the inelastic buckling load of round
columns, the ‘““true’’ tangent modulus load, and the reduced modulus load, .
were obtained in terms of the tangent modulus, E,. It was then shown that
the true tangent modulus load is proportional to (#,/E)?, whereas the reduced
modulus load is approximately proportional to the ratio (Z,/E). (Eqgs. (31)
and (37).)

3. The maximum load-carrying capacity of axially loaded round columns
was analyzed by including the effects of both thermal residual stresses and
initial deflections. Members containing high residual stresses caused by water-
quenching, for example, carry approximately a 10—209, lower load than air-
cooled or stress-relieved steel columns, provided that their generalized slender-
ness ratio » and initial deflections d, are the same (Fig. 15). In general, the
reduction of the ultimate strength due to initial deflection is quite pronounced,
especially in the region »=1.0.

To verify the theoretical analysis of the ultimate strength, column tests
were performed. Fair agreement between the theoretical predictions and the
experimental results was obtained (Table 1).

4. The methods used in this paper may be extended to the solution for
hollow circular cylindrical columns if their wall thickness is sufficiently large
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so that local buckling is eliminated. If the magnitude and the distribution of
residual stresses in the outer part of the cross section are similar, then the
results obtained for solid circular columns can be approximately used for the
hollow cylindrical columns, because the yielding usually does not penetrate
deeply into the cross section before the ultimate load is reached.

Acknowledgements

This work has been carried out at the Fritz Engineering Laboratory,
Lehigh University, Bethlehem, Pennsylvania, as part of a research project
on Circular Columns of USS “T-1" Constructional Alloy Steel sponsored by
the United States Steel Corporation.

The authors wish to express their gratitude to Dr. Robert L. Ketter and
Dr. Theodore V. Galambos for contributing fruitful discussions and suggestions.

Mr. Dian P. Jen assisted in the testing, in performing the numerical com-
putations and in drawing the figures. His cooperation is gratefully acknow-
ledged.

Nomenclature

Common Notations:

Subscript »r = Radial component
Subscript § = Tangential component
Subscript z = Axial component
- Subscript + = 1,2,3,... N
4 = Increment

Functions and Notations:

A Cross sectional area
B, B, and B; Coefficients in differential equation, Eq. (7)
Ci+1, 01 ete. Ratios of modulus of elasticity, e.g.

i+l — E (Pi+1) -1 — B (Pi—l)
Gt = E(p;) G = E(p;) ° ete-
B Young’s modulus
E(T) Temperature-dependent modulus of elasticity
E, Tangent modulus of stub column

7 Moment of inertia

I, Effective moment of inertia

Jp, S Bessel function of order zero and one, respectively

Jy Second invariant of deviatoric stress tensor, see Eq. (15)
Jy(7y,4) Function, see Eq. (17)
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Length of column

Bending moment

Number of division

Axial thrust

Critical load as defined by Eq. (28) .
Maximum load

Reduced modulus load

Tangent modulus load

Full plastic load (=o,.4)
Incremental resultant force in tangential and axial direction,
respectively, due to correction stress
Radius of cross section
Temperature

Initial temperature

Axial thrust function = P/P,

Moment function =

Py R
Constants in equiva,lerylt residual stress pattern
Constant for cooling rate, see Eq. (1)
Deflection of effective column at mid-length
Initial deflection of effective column at mid-length

[4or,0,21p
A 0'1',0,2

Effective column length factor

Real root of Eq. (2)

Constant in equivalent residual stress pattern
Coordinate (radial direction)

Radius of elastic core

Radius of gyration (= R/2)

Distance between centroidal axis and neutral axis
Parameter = s/R

Time

Lateral deflection of column

Radial displacement

Coordinate (in the direction of lateral deflection)
Coordinate (axial direction)

Linear thermal expansion coefficient

Strain (compressive strain is taken positive)

Average strain o
“Generalized’’ slenderness ratio = (k L/r) (1/n) VE [oy,
Coordinate (tangential direction)

Parameter for elastic-plastic boundary in the cross section
Thermal diffusivity

Parameter = oy/o,

Proportionality factor =
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7 Parameter for elastic-plastic boundary in the cross section
v Poisson’s ratio
P Non-dimensionalized coordinate = r/R
Pe Parameter for radius of elastic core = (r,/R)
Pos P Parameters for elastic-plastic boundary in the cross section
o Stress (compression is taken positive)
O qve Average stress
o, Equivalent residual stress
oy Linear stress
o Stress at the center of cross section as defined by Eq. (41)
G Correction stress
o, Transient or residual stress in radial direction
oy Transient or residual stress in tangential direction
oy Yield stress in simple tension or compression
o, Transient or residual stress in axial direction
4a, Transient stress in axial direction when both ends are fixed
(increment)
[4o,0.)p Transient stress in plastic range (increment)
46,4, Correction of transient stress in plastic range (increment)
do,q., Correction of transient stress in elastic range (increment)
T Non-dimensional parameter for time = k,/R?
o Curvature
@ Non-dimensional parameter for curvature = —E;EQ
w Incremental radial displacement (non-dimensiil)nalized) = ﬁRE
Appendix
Geometrical Illustration of the Assumption
[A Gr]p _ [A U@]p — [A Uz]p =e, (O <e< l)
4o, 4oy 4o,
in Art. I1. 1. c:

The transient stress state at an arbitrary time 7 can be illustrated in the
three-dimensional coordinate system shown in Fig. 18. In this figure, point 4
denotes the stress state at r=7,, and the vector AC represents the elastically
computed stress increment from r=7; to r=7,(4d7=71,—7;), its components
being 4 0,, 40y and 4 a,.

If yielding takes place during this interval 4+, the vector AC would
extend beyond the yield surface S, defined by

Jz(T = "'2) = %012;(7' = ”'2)
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(see Eq. 15). The actual incremental stress vector in the plastic zone, whose
components are [do,],, [dogl, and [d0,], should terminate on the yield
surface S, after intersecting the point B (which corresponds to the initiation
of yielding). In general, the location of the terminal point B’ depends upon
the plastic flow that occurred during yielding. For a material with an idealized
stress-strain relationship as assumed in Art. II.1.Db, there is no increase of
stress in the case of a uniaxial stress state. Even when the stress condition is

Fig. 18. Transient stress state.

triaxial, the change of the stress component during yielding (vector B B’)
will be small as compared with the increment up to the initiation of yielding
(vector 4 B). Therefore,

AB' ~AB=eAC,
where e is a factor of proportionality. This relationship leads to the assumption

[A Ur]p _ [A UG]p _ [A Uz]p —

da, dop Ao,

If the time interval 4+ is sufficiently small, this assumption will be satis-
factory.
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Summary

This paper treats primarily problems on the formation of cooling residual
stresses due to heat treatments and their effect on the load-carrying capacity
of high yield-strength constructional alloy steel circular columns.

First, the thermal transient and residual stresses in a solid cylinder are
studied on the basis of a temperature-dependent stress-strain relationship and
Mises’ yield criterion. An approximate solution computed by a step-by-step
method is presented with a numerical example for the case of a water-quenched
alloy steel. The result is checked with experimental measurements performed
by the “combined method’’ together with the ordinary ‘‘boring-out method’’.

With proper information on the residual stresses thus obtained, an average
stress-strain curve is readily furnished for bars with each heat treatment.
Then a solution to the inelastic buckling strength of round columns is developed
on the basis of (1) the tangent modulus concept and (2) the reduced modulus
concept.
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As a final objective, the ultimate strength of circular columns is analyzed
taking into account the effects of the residual stresses and initial out-of-
straightness of column members. It is shown that good correlation exists
between the theoretical predictions and column test results.

Résumé

Les auteurs traitent principalement de problémes portant sur la formation
de contraintes résiduelles de refroidissement dues aux traitements a chaud, et
de leur influence sur la charge de compression supportée par les barres circu-
laires en acier allié & haute limite élastique.

Tout d’abord, cette étude porte sur les contraintes thermiques transitoires
et résiduelles dans un cylindre solide sur la base d’une relation contrainte —
allongement dépendant de la température et du critere d’écoulement de Mises.
Une solution approximative, évaluée par une méthode de proche en proche,
est présentée, avec un exemple numérique, dans le cas d’un acier allié trempé
a 1’eau. Le résultat est contrdlé par des mesures expérimentales réalisées a
l’aide de la «méthode combinée» utilisée de pair avec la «méthode de tré-
panation» ordinaire.

Les contraintes résiduelles étant ainsi connues, on peut établir facilement
une courbe moyenne donnant la relation contrainte — allongement des barres,
pour chaque traitement a chaud. Puis, une solution donnant la résistance au
flambage des barres circulaires dans le domaine plastique est développée sur
la base de la théorie du «module tangent» et de celle du «module réduit».

Comme objectif final, la résistance limite est analysée en tenant compte
des effets des contraintes résiduelles et des imperfections initiales des barres.
On montre qu’il existe une bonne corrélation entre les prédictions théoriques
et les résultats des essais faits sur les barres.

Zusammenfassung

Die Arbeit befaf3t sich mit der Ausbildung von Eigenspannungen infolge
Wirmebehandlung und deren EinfluB auf die Tragfihigkeit von Sdulen mit
Kreisquerschnitt aus hochwertigem Baustahl.

Zuerst werden die instationdren Wirmespannungen und die sich nach
Abkiihlung ergebenden Eigenspannungen in einem Kreiszylinder auf Grund
eines temperaturabhingigen Spannungs-Dehnungs-Gesetzes und der Mises-
schen FlieBbedingung untersucht. Kine schrittweise N&herungslosung mit
einem numerischen Beispiel fiir den Fall eines mit Wasser abgeschreckten
Zylinders aus legiertem Stahl wird hergeleitet. Das Ergebnis wird mit MeB3-
resultaten verglichen, welche an Probestiicken durch eine «Kombinations-
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Methode», zusammen mit der gebrduchlichen « Ausbohrungs-Methode», erhal-
ten wurden.

Aus der Kenntnis des Eigenspannungszustandes lassen sich durchschnitt-
liche Spannungs-Stauchungs-Kurven fiir Stiitzen herleiten, die unterschied-
liche thermische Behandlungen erfahren haben. Daraus wird die Knickfestig-
keit von Saulen mit Kreisquerschnitt entwickelt, und zwar sowohl nach der
«Tangenten-Modul-Theorie» als auch nach der «Reduzierten-Modul-Theorie».

Schlielich wird noch die Tragfihigkeit der Sdulen unter Beriicksichtigung
der Eigenspannungen und anfinglichen Ausbiegungen untersucht. Ein Ver-
gleich zeigt eine gute Ubereinstimmung der berechneten Werte mit Versuchs-
resultaten.



	Ultimate strength of high yield strength constructional-alloy circular columns: effect of thermal residual stresses

