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Matrix Analysis of Indeterminate Space Trusses

Analyse matricielle de treillis tridimensionnels hyperstatiques

Matrizenanalyse von statisch unbestimmten Raumfachwerken

SHU-TTEN LI
Ph. D., M. IABSE, Professor of Civil Engineering, S. Dak. School of Mines and Technology

Rapid City, S. Dak. (U.S.A.)

Introduction

Although the general analysis of indeterminate space frames in matrix or
other forms has not too infrequently appeared in technical literature, while a
"Formulation of Equilibrium Equations for Pin-Jointed Structures" was
contributed by Professor M. Naruoka to the 1961 Volume of these
Publications, very little has been published, however, on the general analysis of
indeterminate space trusses, especially in the form of using matrix methods

directly. This paper has been developed to fill the gap as well as the need in
the wake of increasingly more applications of indeterminate trusses in space.
Exactly the same procedure would apply to the simpler Naruoka case.

An indeterminate space truss, as herein construed, may consist of any
three-dimensional trussed structure of direct-stress-carrying members, having
redundant reactions or redundant members, or both, such that the three-
dimensional equations of statics alone, namely YiX 0, ^]Y 0, 2^ 0,

2 Mx 0, 2 My 0, 2 Mz 0, are incapable of giving a Solution.

It is the aim of this paper to develop a general matrix analysis, by taking
the mathematical advantages of dealing with arrays of row (in [ J) and column
(in { }) vectors, of indeterminate space trusses of any geometrics, under any
loading conditions, and with any status of supports. Matrix vectors are parti-
cularly adapted to represent 3-dimensional member-length projections, and
displacement, stress, and reaction components.

The treatment has been extended to multiple loadings through matrices
of unknown vectors and loading vectors via the inversion of coefficient matrix
of displacement components. The matrix formulation applies as well to
indeterminate space trusses with yielding and elastic supports.
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A. Axial Stresses of Members

a) Deformation-Displacement Equations

The axial stress in any member in a space truss may be conveniently
expressed in matrix form in terms of the deformation, and the linear displacements

of the ends, of the member.
Let A B in Fig. 1 be any member in a space truss. The ends A and B have

orthogonal coordinates denoted by space vectors (xayaza) and (xbybzb) with
reference to some origin 0. The linear displacements of the ends (A, B), parallel

Zk

Sy
Xb

Z3Z:
X ß rfWJK V* / Ym*\ I

ZJ Va ^z^B i

ß^KS^*
Fig. 1.

to the axes, may be indicated by vectors (uavawa) and (ubvbwb) respectively.
The 1

thus
The linear projections of A B on the axes will be denoted|by (Xab Yab Zab)

\ Xab XA \ xb
1 ^cib Va ~- \ Vb

^Zab_ ZZa\ \

z

(1)

Deleting subscripts for the member A B, unless two or more of its kind
are under consideration, we have, by virtue of orthogonal projections, its
length (L) defined by

L2 [XY Z\{XY Z},
X2 + Y2 + Z2 (2)

and, following first derivative of the terms, we get

L(AL) \_XYZ\{AX A Y A Z} (3)

after cancelling the common scalar factor 2.

But since

it follows that

Z1X~ «A ~ub~
A T «a — H
AZ^ AA wb_

AL ^-yXY z\Li

™a -Ub~
Va ~»6

JZa -wb_

(4)

(5)
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Moreover, according to basic principles of theory of elasticity, if S be the
axial stress in any member AB, A its cross-sectional area, and E the modulus
of elasticity of the material, its length deformation is given by

SLAL AE'

Hence S=^-AL*=^-\XYZ\
ua -ub~
Va ~Vb

™a -wb_

(6)

As the stress components are proportional to the length projections, we
have the relation

and, therefore,

Sx

Sy

~S
X a AT

Sy L Y
^sz_ Z

x~ Ua ubAE
Z?

Y [XY Z\ Va-Vb
Z _wa~wb_

(8)

(9)

It may then be stated that the stress components of any member of given
A, E, L, are a matrix-vector function of the length projections and differences of
components of Joint displacements.

b) Joint Equilibrium Equations

At any Joint of members, there may be externally applied loads as well as

internally transmitted stresses acting. Static equilibrium of the Joint requires
that there must be no unbalanced components in any direction of the orthogonal
axes. If the components of an external load applied at the Joint are denoted
by the matrix vector (PxPyPz), then we have for all external loads, and
internal stresses in members JK, JL, etc., at Joint J,

\ZP~
iZPy
Izp*.

-Ai 1 rr. + -*Zj 2r.+1 j lx j2x~
Pjly~T'pj2y+ '

Pjlz + Pj2z~^ '

and
2^

LZ^J

8jkx + $'

jky

L ^jkz

jlX ~T~

ßy~T~

To satisfy the condition of Joint equilibrium at J, it is necessary that

XSX "i^r ~o~

ZSy — ZPy 0

_2^_ 2^J 0_

(10)

When stress-component vectors (Sx8y8z) are further substituted by
Eq. (9), we have "deformation-displacement-equilibrium equations", called
"compatibility equations".
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c) Compatibility Equations

Compatibility equations at a Joint are such that they satisfy three-dimensional

equilibrium at the Joint, are congruous with the length deformations
of the members meeting there, and agree with the displacements of the Joint
and the far-end joints of the members. In other words, they are "inter-Joint
harmonious equations". If we denote by the subscript "i" any member
connecting J with any far-end Joint, K, L, etc. whose generalized subscript
is also "i", the Substitution of Eq. (9) into Eq. (10) will yield, by changing
the member subscripts (a, b) into the generalized (j,i), a set of compatibility
equations. Thus,

-laf
~x<~ Uj — ui P. ~

¦*• jmx IT
Yi [XtTiZt\ Vj-*>i -E P.-*• jmy 0

_£«_ Wj — wi P.
_

-*• jmz __
0

(11)

i—jk, jl, etc. i~k, l, etc. m

where the vector {u^v^Wj} does not vary under the summation sign, and E
would be within the latter if it were not constant throughout.

By calling a* w
and Computing

(12)

A 4' A'
B B'jk B'„
C Cjk +

Cji
D D* »si
E E'jk E-t
F JFi'k_ J«\

A' D' E'~
0 B' 0

0 F' C'_

x:2 XY XZ
0 r2 0

0 YZ Z2

+ etc, where
X 0 0" X Y Z~

0 7 0 0 Y 0

0 0 Z OYZ

(13)

for each member meeting at the Joint, we will get as the set of compatibility
equations from the form of Eq. (11) into the following convenient working
system:

(14)

ZA D El rv
DBF

_E F Cd
vi -E

A ' T)' W

T)' /?' W

W JF' C

~ut~

Vi •-E
P.¦*¦ jmx
P.¦*- jmy
P.

_ jmz _

-k, l, etc. m— 1, 2, etc.

d) Simultaneous Equations of Displacement Components

The orthogonal components of any displacement at each Joint are
represented by a set of 3 equations as formulated in Eq. (14). If an indeterminate
space truss has n joints free to move in any direction, there are n sets of such

equations forming a system of 3n simultaneous equations with orthogonal
components of Joint displacements as Unknows. The Solution of the system
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of equations will give a unique determination of the unknown displacement
components, as there are 3 such equations for the 3 unknowns at each Joint.

When the number (n) of joints becomes large, the Solution of a system of
simultaneous equations 3 times as large will be arduous, requiring a fast
method such as the author's "Matrix Algorisms*) for the Solution of Non-
Homogeneous Simultaneous Algebraic Linear Equations" presented orally to
the 1960 national meeting of the Association for Computing Machinery.

After the displacement-component vectors (uvw) of all joints have been
determined, the stress in each member may be readily computed with Eq. (7).

e) Consistent Coordinates, Sign Convention, and Stress Senses

In order to get automatically from Eq. (7) the stress in any member AB
as tension when positive and compression when negative, systematic care
must be exercised to keep coordinates and sign Convention consistent throughout

the numerical analysis. This may be accomplished in the following sequence:
1. Establish the space position vector (xyz) of each Joint consistent with

reference to the orthogonal axes.
2. Obtain the length-projection vector (X Y Z) for each member consistent

with the position vectors of its end joints as stated in Eq. (1) by subtracting
the position vector for the far-end Joint of each member from that of the
Joint for which the compatibility equations are being written. That is, Eq. (1)
is in consistent form for writing equations for Joint A. The same set will
take the form

xba xb xa
¦^ba Vb - Va

_Zba__ _zb__ -Za_

X
- z

ab

ab

J ab

(15)

for writing equations for Joint B, that is, the sign of the length (L) projection
vector of any member AB for Joint B is opposite to that for Joint A. By
recognizing this fact, consistency will be achieved and computation simplified.

3. Fix proper signs for the length-projection vector (X Y Z) of each member
and Substitute its numerical value into the equations.

By adhering to the above sequence systematically, the stress-component
vector (SaxSaySaz) acting upon the member AB at Joint A will have senses
consistent with the directions of the orthogonal axes. The stress (S) in the
member AB as given by Eq. (7) will be tension when " + " and compression
when "-".

*) Its complete version in English entitled "Converging Matric Algorisms for Solving

Systems of Linear Equations", by Shu-t'ien Li, appears in Trans., Chinese Association

for the Advancemenb of Science (CAAS). Taipeh, Vol. 3, No. 1, November 1962,
pp. 16—22.
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f) Illustrative Example

To exemplify the numerical process, let the stresses for all members of the
trussed bracket in Fig. 2 be determined by means of Eqs. (1) to (15) with
simplified modifications made possible by the round-number space position

D, E, F, G are
fixed supports

y' c

(-5,0,0) \

WOA 70)/

/ (sto,o)

(~3tf2,ro)-/-B
1/ 1 W6V

/ 24A 1/ / (3,12,10)

/ (-VW)
F

(7,16,0)

z*
\ fr

Fig. 2.

Table 1. Space Member Consta?Us

MemX Y Z X2 F2 Z2 £2 L XY XZ YZ A 100 a
ber ft ft ft ft2 ft2 ft2 ft2 ft ft2 ft2 ft2 in.2 in.2/ft3

AB 3 -6 0 9 36 0 45 6.7082 -18 0 0 1.5 0.49690
C -3 -6 0 9 36 0 45 6.7082 18 0 0 1.5 0.49690
D 5 6 10 25 36 100 161 12.6886 30 50 60 2.5 0.122377
E -5 6 10 25 36 100 161 12.6886 -30 -50 60 2.5 0.122377
F -7 -10 10 49 100 100 249 15.7797 70 -70 -100 4.0 0.101803
G 7 -10 10 49 100 100 249 15.7797 -70 70 -100 4.0 0.101803

BA -3 6 0 9 36 0 45 6.7082 -18 0 0 1.5 0.49690
C -6 0 0 36 0 0 36 6.0000 0 0 0 1.5 0.69444
D 2 12 10 4 144 100 248 15.7480 24 20 120 2.5 0.064012
F -10 -4 10 100 16 100 216 14.6969 40 -100 -40 1.5 0.047251
G 4 -4 10 16 16 100 132 11.4891 -16 40 -40 1.5 0.098908

GA 3 6 0 9 36 0 45 6.7082 18 0 0 1.5 0.49690
B 6 0 0 36 0 0 36 6.0000 0 0 0 1.5 0.69444
E -2 12 10 4 144 100 248 15.7480 -24 -20 120 2.5 0.064012
F -4 -4 10 16 16 100 132 11.4891 16 -40 -40 1.5 0.098908
G 10 -4 10 100 16 100 216 14.6969 -40 100 -40 1.5 0.047251

where

and

L

100a

[LX Y Z\{X Y Z}Y12

100,4

"100" times being introduced to avoid small numbers in later calculations.
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vectors. They and sectional areas of members indicated in Fig. 2 yield length
projections, projection Squares, length Squares, lengths, projection products,
and a's as computed in Table 1.

Recognizing D, E, F, C being fixed supports in this case, we have

{uvw}d}eJtff {0 0 0} (16)

Hence, the formulation of the system of equations may be simplified as set
forth in the Symmetrie matrix Operations below:

[0.49690]
X

9 -18 0

-18 36 0

0 0 0

9
+

18 0

18 36 0

0 0 0

ab
+

[0.122377]
X

25 30 50"

30 36 60

50 60 100
+' 25 -30 -50"

-30 36 60

-50 60 100

[0.49690]
X

9 -18 0

36 0

0 0
+

"

18 0

36 0

0 0

ad
+

[0.101803]
X

49 70 -70"
70 100 -100

-70 -100 100
+

49 -70 70"

-70 100 -100
70 -100 100

af

ag_

Va

(17)

-18

0 ab

[0.49690]
X

9 -18 0"

-18 36 0

0 0 0

[0.098908]
X

16 -16 40"

+ -16 16 -40
40 -40 100

0

[0.69444]

uh

wh

un

wn

0"

40

0

100

X
36 0 0

+ 0 0 0 +
ba 0 0 0 bc

bg

Uh

Wh

[0.064012]
X

"
4 24 20

24 144 120

20 120 100

[0.49690]

9 -18 0

-18 36 0

0 0 0
+

"

[0.69444]

[0.047251]

+

ba

bd

Ua

va

100

40

-100

X
40 -100"
16 -40

-40 100 bf

X
36

0

0

0 0" ~u~
0 0 %
0 0 bc wc

(18)

0"

24

0

100
~IS~'
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[0.49690]
X

" 9 18 0"

18 36 0

0 0 0

[0.69444]
X

"36 0 0~

+ 0 0 0 +
ca 0 0 0 cb

[0.064012]
X

4 -24 -20
-24 144 120

-20 120 100
+

[0.098908]
X
16 -40"
16 -40

16

16

-40 40 100'-jCf

+

[0.49690]
X

9 18 0 ~U~
[0.047251] 18 36 0 va

X
100 -40 100

uc

vc

0 0 0
+

ca _Wa_
0

0
100

-40 16 -40 tn [0.69444] 0
~w

100 -40 100
cg_

L wcj X
36 0 0"^ ~ub~

c

0 0 0 Vb

0 0 0 cb _wb_

(19)

All the necessary and sufficient conditions of deformation-displacement-
equilibrium are written into Eqs. (17) to (19) for the Solution of unknown
displacement-component vectors (uvw)abc at joints A,B,C. As the physical
space truss in this case has "symmetric geometry", we get, as it should be,
a ''symmetric coefficient matrix" for the unknown vector, even though any
or all of the axes were given any other parallel location. After reducing the
coefficients, Eqs. (17) to (19) are arrayed into one single simultaneous
symmetric matrix equation:

25.039 0 0 -4.4721 8.9442 0 -4.4721 -8.9442 0

0 64.949 -5.6756 8.9442 --17.8880 0 -8.9442 -17.8880 0

0 -5.6756 44.836 0 0 0 0 0 0

4.4721 8.9442 0 36.036 -7.1004 0.51146 -25.000 0 0

8.9442--17.8880 0 -7.1004 29.445 1.83512 0 0 0

0 0 0 0.51146 1.83512 21.017 0 0 0

4.4721 -8.9442 0 -25.000 0 0 36.036 7.1004--0.51146
8.9442--17.8880 0 0 0 0 7.1004 29.445 1.83510

0 0 0 0 0 0 -0.51146 1.83510 21.017

ua
va

0

40

™a

ub

0

0

H 24

wb 0

uc 0

vc

we

0

_
0_

(20)

100
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Solving the above simultaneous displacement-component matrix equation
by one of the author's matrix algorisms previously mentioned or any other
fast method, we arrive at the desired array of results as follows:

ua ub uc
100

va Vb vc ~" TT
Wa wb wc_

-0.31906 0.18566 0.28789

1.30089 1.75693 0.62694
0.16467 -0.15793 -0.04774

(21)

Substituting these displacement components at ends of each member and
its (X Y Z) into Eq. (7), and using proper signs according to Eq. (15), we get
stresses in lb. after multiplying the matrix by the scalar IO5.

$a
st
Sa

Sa
Sn

ab

ad

SbnJbc

bd

cf

1.5/ 45 [
1.5/ 45 [
2.5/161 [
2.5/161 [
4.0/249 L

4.0/249 L

1.5/ 36 L

2.5/248 L

1.5/216 [-

1.5/132 [
2.5/248 L

1.5/132 [
1.5/216 L

3

-3
5

-5
-7

7

-6
2

-10
4

-2
-4
10

-6 0j{-
-6 0J{-

6 10] {-
6 10] {-

-10 10] {-
-10 10J{-

0 0]{-
12 10J{
-4 10J{
-4 10J{
12 10]{
-4 10J{
-4 10J{

I + 4,074"

- 7,410

+ 12,200
+ 17,154
-14,665
-21,840
+ 2,556
+ 20,035

- 7,266

- 8,937

+ 6,522

- 4,701
74

0.50472
0.60695
0.31906
0.31906
0.31906
0.31906
0.10223
0.18566
0.18566
0.18566
0.28789
0.28789
0.28789

-0.45604
0.67395
1.30089
1.30089
1.30089
1.30089
1.12999
1.75693
1.75693
1.75693
0.62694
0.62694
0.62694

0.32260}
0.21241}
0.16467}
0.16467}
0.16467}
0.16467}

-0.11019}
-0.15793}
-0.15793}
-0.15793}
-0.04774}
-0.04774}
-0.04774}

[105]

(22)

Applying Eq. (8), we obtain stress components. The premultiplication of
a unit row vector gives summations. Thus, we have
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Joint SfL [ X Y £] 1 sx Sy s. J

A B [1 1 1 1 1 1]
4074
6.708

l 3 -6 0] [ 1822 -3644 o J

C
-7410
6.708

l -3 -6 0] [ 3314 6628 o J

D
12200
12.689

l 5 6 10] [ 4807 5769 9615]

E
17154
12.689

[ -5 6 10] [ -6759 8111 13519J

F
-14665
15.780

l
_

-7 -10 10] [ 6505 9293 -9293]

G
-21840
15.780

l 7 -10 10] [ -9688

II

13840 -

II

-13840]
J

II

VLsx H&V Z£J sllould | 0 40,00C 0] vs. | 1 39,997 1 J

B i [11 111]]
~4074

6.708
l -3 6 0] [ -1822 3644 o J

c
2556
6.000

l -6 0 0] [ -2556 0 o ]

D
20035
15.748

l 2 12 10] [ 2544 15267 12722]

F -7226
14.697

' -10 -4 10] [ 4917 1967 -4917]

G
-8937
11.489

[ 4 -4 10] [ -3112

II

3112

II

-7779]

II

lz^ msv 2äj si lould [0 24,000 OJvs. [ -29 23,990 26 J

C i [11 n ijj
"-7410

6.708
3 6 0] -3314 -6628 o ]

B
2556
6.000

6 0 0] 2556 0 o ]

E
6522

15.748
"2 12 10]

_
-828 4970 4141 J

F -4701
11.489

-4 -4 10] 1637 1637 -4092]

G
-74

14.697
' !0 -4 10] | -50

II

20

II

-50]

II

YHSxUSy 2«J shLould | 0 0 0] vs. | 1 -1 -1 J-

(23)

(24)

(25)

The discrepancies are due to rounding-off and other computational errors.
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B. Reactions at Supports

a) Equilibria and Reactions at Supports

To satisfy the condition of equilibrium at supports, the orthogonal reaction
components at each of them must be equal in magnitude, but opposite in
direction, to the summations of stress components of members transmitting
loads thereto. Thus, the components of any reaction and its magnitude are
given by

\_RX Rv Rz\ [-ZSX -ZSV -2ÄJ, (26)

R [[RxRyRz]{RxRyRz}fl> (27)

and its direction cosines are expressed by

[cos 6X cos dy cos dz\ -1 [Rx Ry RJ. (28)

Eqs. (26) to (28) completely define the reaction at any support, provided
we have no other external loads applied there. In cases where applied loads
act at any support, Eq. (26) becomes

[Rx Ry Rz\ - LI (Sx + Px) 2 (Sy + Py) £ (Sz + Pz)\. (29)

The sign of each component of (2 Px 2 Py 2 Pz) should be respectively the
same as, or opposite to, that of (£SX £Sy J]SZ), depending upon whether
they are in the same, or opposite, direction.

If the resultant of member stresses and applied loads at a support is toward
it, the reaction at the same support will be also toward it but in the opposite
direction in space; and vice versa. Consequently, when stress signs are "+ "
for tension and iC

— " for compression, the signs for reactions will be " — "
away from a support and " + " toward it.

b) Illustrative Example

Let the reactions at supports D, E, F, G of Section A (/), Fig. 2, be
determined, where (£PX £Py 2J^W>/,0==(0 ° °) because of no applied loads
acting at any of the supports. Members transmitting loads thereto are grouped
below:

Joint D, DA Joint E, EA Joint F, FA Joint G, GA
DB EC FB GB

FC GC

With stress-component vectors already obtained at the close of Section
A (/), reaction-component vectors, magnitudes of reactions, and their direction

cosines are computed by Eqs. (26) to (28) as follows:
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[sx s„ sz\ L*_ R„ UJ

[Rx Ry Rz\d [-1 -1 J

[Rx Ry Rz\e t-1 -1 J

[RxRyRz\}= L-l -1 -IJ

lRxRvRz\g [-l -1 -IJ

whence

4,807 5,769 9,615
2,544 15,267 12,722

-6,759 8,111 13,519
-828 4,970 4,141

"

6,505 9,293 -9,293~

4,917 1,967 -4,917
1,637 1,637 -4,092

-9,688 13,840 -13,840~

-3,112 3,112 -7,779
-50 20 -50

2,544 15,267 12,722^ ^7'351 "21'°36 ~22^>

a=[ 7,587 -13,081 -17,660Je,
c

<3°)

b [-13,059 -12,897 18,302],,
c

b [ 12,850 -16,972 21,6691,,

R^. R„ B. R~ R„ -ß.

Rf

and

vx JLVy ^-vz ^vx ^vy

"([ -7,351 -21,036 -22,337] { -7,351 -21,036 -22,337})V.~

(L 7,587 -13,081 -17,660] { 7,587 -13,081. -17,660})V*
([-13,059 -12,897 18,302] {-13,059 -12,897 18,302})V.

([ 12,850 -16,972 21,669] { 12,850 -16,972 21,669})^
* " — " indicates away from support.

lb

A3i;55i
-23,250
+ 25,920
+ 30,376_s

(31)

1/R R~, R» R,

\ßxW*i cos_1(3i^5rL -7,351 -21,036 -22,337j) L256°-32' 228°-ll' 134°-56'jd,

xßxWs. «^'(iFlisö4 7'587 ~13'081 -17>66°j) L289°-03' 235°-46' 139°-26'JC,

'l (32)

Yejyez\Bl cos-i (2^92öL-l3,059 -12,897 18,302jj [239°-45' 119°-50' 45o-05'J/;

YOxWb, cos_1 (30^76 L 12'85° -16'972 2l=669j) L295°-02' 123°-58' 44°-30'Jff.

C. Different Loadings and Their Combinations

a) Different Loadings

An indeterminate space truss may be subjected to dead load, live load,
live load impact, wind load, wind load on live load, tractive force, centrifugal
force, frictional resistanee, rib shortening, shrinkage (if of reinforced concrete
members), thermal rise, thermal fall, and seismic force (inertia force), etc.
Whenever there are more than one loading besides dead load, it is desirable
to compute the stresses and reactions separately for different loadings.
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In the extension of Eq. (14) to relate all unknowns in the system in the
form of Eq. (20), if An is the coefficient matrix, X™ the unknown-vector
matrix, and Cm the loading-vector matrix, the generalized matrix equation
will be

(xlm [cj™, (33)

where m is the number of different loading conditions. It means there are m
unknown vectors corresponding to m loading vectors, but the coefficient
matrix remains constant for all loading conditions if the geometrical and
dimensional properties of the space truss are held constant.

Whenever m>2, it is more advantageous to solve Eq. (33) by inversion,
using the appropriate one of the author's matrix algorisms previously referred
to, or any other fast method, whence

[X]S [A]?[C]Z. (34)

Stress and reaction vectors may then be obtained as before from the
results of the displacement-component vectors given by Eq. (34).

b) Combination of Stresses and Reactions

Within the ränge of strains and stresses that Hooke's law applies, any
desired combination of stresses for any group of loadings may be validly
obtained by applying the "principle of superposition", that is, for any member,

Scomb. 2ö^3 (35)

where G denotes any desired group of loadings; and similarly, for any reaction,

Rx
Ry

comb.

Px
Ry (36)

D. Yielding and Elastic Supports

a) Yielding and Elastic Displacements

In the present treatment, let a yielding displacement vector (uvw)y at
any support be defined as such that an equilibrium is attained on reaching
such component displacements but they will wholly or partially remain upon
release of loading.

On the other hand, an elastic displacement vector (uvw)e at any support
will be defined as such that an equilibrium is attained on reaching such
component displacements but they will completely disappear upon release of
loading.
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Any case of yielding supports for an indeterminate space truss requires

evaluated or observed displacements for Computing stresses and reactions,
while any case of elastic supports can be analyzed once the elastic properties
of the supports are defined.

A fixed support will have all 3 displacement components equal to "zero",
while a yielding or elastic support will have at least one displacement
component not equal to "zero".

b) Stresses and Reactions due to Support Displacements

The treatment in Sections A (a) to A (d) is perfectly general under all
conditions of loading as well as Joint and support displacements. The illustrative

example of Section A (/), however, has all supports D, E, F, G fixed in
space. Predetermined yielding displacements affect stresses and reactions but
do not increase the number of equations in a system like Eq. (20). For each
elastic support, 3 more equations in the said system will have to be
formulated.

Yielding and elastic support displacements should be written into the
matrix equations in the same way as Joint displacements except that yielding
displacements have already appraised known values while elastic displacements

are unknowns as Joint displacements.
Having determined all unknown Joint and support displacements, stresses

and stress components of truss members are given by Eqs. (7) and (9); and
reaction components, reactions, and their direction angles by Eqs. (26) to (29).

General Applicability and Advantages

1. The method as presented in the foregoing is capable of general application

to the analysis of any indeterminate space truss whose reactions cannot
be determined by three-dimensional equations of statics, namely J]X 0,

2 r=o, 2^ o, 2^ 0, %My o, 2 Jfa=o.
2. Its applicability is not restricted by the degree of redundancy, external

or internal.
3. It is operative for any geometrics, under any loading conditions, and

with any Status of supports.
4. The coefficient matrix of Joint displacement-component vectors, once

formulated, holds true under all loading conditions, and its "inverse" affords
a ready Solution for all unknown vectors corresponding to their loading vectors.

5. In the case of symmetrical space truss about one or more orthogonal
axes, the resulting Symmetrie matrix further reduces the time of inverting
a large matrix almost to one half.

6. With an indeterminate space truss, it is more expedient to solve stresses
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first than reactions first, and the fact that there are generally more members
than joints, makes it the most advantageous choice to determine Joint (including

support) displacement-component vectors first as adopted in the foregoing
method.

7. The matrix formulation considerably simplifies the entire numerical
analysis by dealing with large arrays of vectors instead of individual quantities,

and enables electronic digital computation in matrix Operations almost
without specific programming.

8. In particular, the general applicability of the method to any indeterminate

space truss, may best be shown in the case of dorne skeleton structures*)
of which all the known types of highly indeterminate, efficient Systems: a)
meridional ribs with latitudinal rings, b) lamellar, c) curvihnear-lamellar, d) lattice,
e) geodesic, and even f) Kaiser geodesic space truss, g) inverted (Suspension),

may be analyzed by the method presented, though the nature of the last two
types would need slight supplementary analyses.

9. For programmed automatic computation, automatic logical checks may
be instituted at appropriate stages to verify the fulfillment of the equilibrium
criterion

2LM-3J L0 o o] (37)

for any tested Joint or support, where F components are those of all stresses,
loads, or reactions at a Joint or a support; and finally to see whether the
computed direction cosines satisfy

[cosö^ costf^ cos 0J {cos 0^ cos#^ cosöj [1] (38)

as they should.

Summary

A matrix formulation for the analysis of any indeterminate space truss is
presented. All deformation-displacement equations, Joint equilibrium equations,

compatibility equations, and simultaneous equations of displacement
components have bean developed in matrices. And in this form are treated
equilibria and reactions at supports, different loadings and their combinations,
yielding and elastic supports. Numerical matrices for determining stresses
and reactions are given.

Resume

L'autsur montre commsnt on paut formuler sous forme matricielle l'etude
da nImporte quel treillis tridimensionnel hyperstatique. Toutes les equations
de deformation-deplacement, les equations d'equilibre aux articulations, les

*) "Metallic Dome-Structure Systems", by Shu-t'ien Li, Proc, ASCE, Vol. 88, No.
ST 6, Journal of the Structural Division, Dscember 1962, Paper 3358, pp. 201—226.
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equations de compatibilite et les equations simultanees des composantes des

deplacements ont ete mises sous forme matricielle. C'est sous cette forme que
sont etudies les equilibres et les reactions aux appuis, les differentes charges
et leurs combinaisons, les appuis plastiques et elastiques.

L'auteur donne des matrices numeriques pour la determination des efforts
et des reactions.

Zusammenfassung

Der Verfasser zeigt die Anwendung von Matrizen auf die Berechnung von
statisch unbestimmten Raumfachwerken. Die Verformungs-Verschiebungs-
gleichungen, die Gleichgewichtsbedingungen in den Knotenpunkten, die
Verträglichkeitsbedingungen und die Simultangleichungen der Verschiebungs-
komponenten werden alle in Matrizenform entwickelt. In dieser Form werden
Gleichgewichte und Reaktionen an den Auflagern, verschiedene Belastungen
und deren Kombinationen, plastische und elastische Auflager untersucht. Es
werden zur Bestimmung der Beanspruchungen und Reaktionen numerische
Matrizen angegeben.
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